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COMPACT CLOSED CATEGORIES AND Γ-CATEGORIES
(WITH AN APPENDIX BY ANDRÉ JOYAL)

AMIT SHARMA

Abstract. In this paper we develop a 2-categorical approach to coherence in compact
closed categories. Our approach allows us to place compact closed categories within the
context of homotopical algebra. More precisely, we construct two new model categories
whose fibrant objects are (two different models of) compact closed categories. We prove
a strictification theorem by showing a Quillen equivalence between the two.
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1. Introduction

A compact closed category is a symmetric monoidal category having the special property
that each object has a left (and therefore a right) dual. The archetype example of compact
closed categories is the category of finite dimensional vector spaces. Some other prominent
examples of compact closed categories include the category of finitely generated projective
modules over a commutative ring and the category of finite dimensional representations
of a compact group. The category of abelian groups can be characterized as a reflective
localization of the category of commutative monoids, namely the localization functor has
a right adjoint which is the fully faithful inclusion of the full subcategory of abelian groups
(local-objects). It happens that this localization is generated by a single map which is the
inclusion i+ : N //Z. The model category of (permutative) Picard groupoids (Perm,Pic)

The author would like to thank André Joyal for having numerous discussions with the author regard-
ing this paper and also for writing Appendix A: Aspects of Duality, which has added a lot of clarity to
the paper.

Received by the editors 2021-02-23 and, in final form, 2021-12-21.
Transmitted by Ross Street. Published on 2021-12-30.
2020 Mathematics Subject Classification: 18M05, 18M60, 18N55, 18F25, 55P42, 19D23.
Key words and phrases: Compact closed categories, coherently compact closed categories, Segal’s

Nerve functor.
© Amit Sharma, 2021. Permission to copy for private use granted.

1222



COMPACT CLOSED CATEGORIES AND Γ-CATEGORIES 1223

[Sha] is a left Bousfield localization of the natural model category of permutative (or
strict symmetric monoidal) categories Perm. This localization is also generated by a
single map which is the inclusion iPic : F⊗(1) //FPic(1) of the free permutative category
on one generator into the free Picard groupoid on one generator. In section 3 of this
paper we obtain a model category of (permutative) compact closed categories as a left
Bousfield localization of the category of permutative categories Perm. The localization
is again generated by a single map which is the inclusion i : F⊗(1) // Frcc(1), where the
codomain is the free compact closed category on one generator. The main objective of
this paper is to compare the aforementioned model category of (permutative) compact
closed categories with a model category of coherently compact closed categories which is
a left Bousfield localization of a (model) category of coherently commutative monoidal
categories [Sha20] generated by a single map which is (up to equivalence) an adjunct of
the generator i. The main result of this paper is that the two aforementioned model
categories are Quillen equivalent. This result maybe regarded as a strictification theorem
for (coherently) compact closed categories.

The classical (1-dimensional) cobordism hypothesis [BD95],[Lur09] informally states
that the (framed) 1-Bordism category, namely the category whose objects are framed 0-
dimensional manifolds and morphisms are (diffeomorphism classes of) framed 1-dimensional
manifolds with boundary, is the free compact closed category on one generator. To a
purely algebraic problem, the cobordism hypothesis provides an answer which is rooted
in differential topology. In this paper we seek an answer to the same underlying algebraic
problem within homotopical algebra. This paper is a first in a series of papers aimed
at developing a theory for compact closed (∞, n)-categories and also providing a purely
algebraic description of a free compact closed (∞, n)-category on one generator. In this
paper we construct a model category whose fibrant objects can be described as categories
equipped with a coherently commutative multiplication structure wherein each object has
a dual. This model category is intended to be a prototype for subsequently constructing
model categories whose fibrant objects are models for (n+ k, n)-categories equipped with
a coherently commutative monoidal structure and which are fully dualizable.

Normalized coherently commutative monoidal categories were introduced in the pa-
per [Seg74] where they were called Γ-categories. These (normalized) objects have also
been referred to in the literature as special Γ-categories. A model category whose fibrant
objects are (unnormalized) coherently commutative monoidal categories was constructed
in [Sha20]. In this paper we will denote this model category by ΓCat⊗. Unlike a sym-
metric monoidal category, higher coherence data is specified as a part of the definition of
a coherently commutative monoidal category. Moreover, in the latter, a tensor product
of two objects is unique only up to a contractible space of choices. In section 4 of this
paper we extend the notion of compact closed categories to the more generalized setting of
coherently commutative monoidal categories. We name these objects coherently compact
closed categories. We construct another model category structure on the (functor) cate-
gory ΓCat whose fibrant objects are coherently compact closed categories. This model
category, denoted ΓCatcc, is a (left) Bousfield localization of the model category of co-
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herently commutative monoidal categories ΓCat⊗. We go on to show that the thickened
Segal’s Nerve functor [Sha20, Sec. 6.] is a right Quillen functor of a Quillen equivalence
between the aforementioned model category structure of (permutative) compact closed
categories on Perm and ΓCatcc. The following picture depicts the idea of coherently
compact closed categories and also depicts how various coherently commutative objects
in Cat are related:

Categories

free construction

��

Coherently commutative
monoidal categories

adding
inverses

xx

adding
duals

$$

Coherently commutative
Picard groupoids

Coherently
compact closed

categories

The addition processes depicted by the two diagonal arrows in the above picture are
manifested by localizations.

The Barrat-Priddy-Quillen theorem was reformulated in the language of Γ-spaces in
[Seg74]. In the same paper, Segal constructed a functor from the category of (normalized)
Γ-spaces ΓS• to the category of (connective) spectra. This functor maps the unit of the
symmetric monoidal structure on ΓS•, namely the free Γ-space on one generator Γ1, to
the sphere spectrum. In section 2 of the same paper, Segal constructed a (normalized)
Γ-space, which he denoted by BΣ, which can also be described as (simplicial nerve of) the
(categorical) Segal’s nerve [Sha20] of the (skeletal) permutative category of finite sets and
bijections, denoted K(N ). The reformulated theorem states that the spectrum associated
to the Γ-space BΣ is stably equivalent to the sphere spectrum. In other words, the
reformulation states that the Γ-space Γ1 is equivalent to BΣ in the stable model category
of Γ-spaces constructed in [Sch99]. A stronger version of this theorem called the (special)
Barrat-Priddy-Quillen theorem appeared in the paper [dBM17]. This theorem states that
the two Γ-spaces in context are also unstable equivalent i.e. they are equivalent in a
model category of special Γ-spaces. Along the same lines, our construction of the model
category ΓCatcc implies that the Segal’s nerve of the free compact closed category on
1-generator K(Frcc(1)) is a fibrant replacement of the (representable) Γ-category Γ1 in



COMPACT CLOSED CATEGORIES AND Γ-CATEGORIES 1225

the model category ΓCatcc.
We say that a compact closed category C is freely generated by a category A if C is

equipped with a functor iA : A //C which induces the following equivalence of groupoids,
for each compact closed category D:

(iA)∗ : [C,D]⊗ // J([A,D]),

where [C,D]⊗ denotes the category of symmetric monoidal functors from C to D and
monoidal natural transformations between them. The main objective of section 2 is to
show that the compact closed category freely generated by A in the sense of [KL80],
denoted F(A) , is also freely generated by A in the aforementioned sense.

In Appendix A we collect some folklore results regarding the notion of duality. In
Appendix B we recall the basic notion and existence result of left Bousfield localization
of model categories.

1.1. Acknowledgments. The author would like to thank André Joyal for having nu-
merous discussions with the author regarding this paper and also for writing the appendix
A: Aspects of Duality which has added a lot of clarity to the paper.

2. A 2-categorical approach to coherence in compact closed categories

A compact closed category is a symmetric monoidal category wherein each object has
the special property of having a left (and hence a right) dual. We begin by recalling the
definition of a compact closed category:

2.1. Definition. A compact closed category is a symmetric monoidal category C in
which each object c ∈ Ob(C) can be assigned a triple (c•, ηc, εc) where c• is an object of C
(called right dual of c) and ηc : 1C // c⊗ c• and εc : c•⊗ c // 1C are two maps in C such
that the following two maps are identities:

c• ∼= c• ⊗ 1C
id⊗ηc
// c• ⊗ c⊗ c•

εc⊗id
// 1C ⊗ c• ∼= c• (1)

and

c ∼= 1C ⊗ c
ηc⊗id
// c⊗ c• ⊗ c

id⊗εc
// c⊗ 1C ∼= c (2)

2.2. Remark. The symmetric monoidal structure ensures that the right dual is also a
left dual and therefore we will just call c• as the dual of c.

In the paper [KL80] the authors solve the coherence problem of compact closed cate-
gories by constructing an (honest) free compact closed category generated by an ordinary
category A. Their construction defines a left adjoint to the forgetful inclusion of compact
closed categories into Cat. This was possible by chosing a duality data for each com-
pact closed category and defing a category of compact closed categories whose morphisms
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are strict symmetric monoidal functors which preserve the chosen duality data. More
elaborately, the describe three categories equipped with the following inclusions:

CompPermstr ⊆ CompPerm ⊆ Comp

The objects of Comp are pairs (D,DD), whereDD is a choice of duality data, see definition
2.3, on D and maps are those strict symmetric monoidal functors which strictly preserve
duality data. CompPerm is the full subcategory whose objets are pairs (D,DD) such
that D is a permutative category. CompPermstr is a full subcategory of CompPerm
whose objcts are pairs (D,DD) where D is a permutative category which satisfy the
following three conditions:

1. For each pair of objects d1, d2 ∈ D, the chosen dual of d1⊗d2 in DD, i.e. (d1⊗d2)•,
is d•2 ⊗ d•1.

2. The chosen dual of the unit object 1D is the unit object i.e.

1•D = 1C .

3. For each object d ∈ D, the dual of d• is d i.e.

d•• = d.

The following three adjunctions are described in [KL80]:

U : Comp� Cat : F (3)

U : CompPerm� Cat : F ′ (4)

and
U : CompPermstr � Cat : F ′′ (5)

In this section we present a 2-categorical approach to the coherence problem of compact
closed categories. More precisely, we show that for each category A, the incusion (unit)
map ιA : A //F(A) has the following universal property: For each functor F : A //D,
where D is a compact closed category, there exists a (strict) symmetric monoidal functor
F⊗ : F(A) // D such that F = F⊗ ◦ ιA and which is unique upto a unique monoidal
natural isomorphism. We establish analogous universal properties for F ′(A) and F ′′(A).
Throughout this section C will represent a compact closed (not necessarily permutative)
category.
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2.3. Definition. A duality data associated with a compact closed C is the following set:

DC =
⊔

c∈Ob(C)

(c•, εc, ηc),

where c• is an object in C and ε : c•⊗c //1C and η : 1C //c⊗c• are the counit and unit

maps such that equations (1) and (2) hold. In particular c• is a dual of c in C. We will
refer to c• as the chosen dual of c in DC and refer to the triple (c•, εc, ηc) as the chosen
adjunction of c in DC.

Let D be another compact closed category having duality data DD =
⊔

d∈Ob(D)

(d•, εd, ηd).

2.4. Definition. A strict symmetric monoidal functor F : (C,DC) //(D,DD) preserves
duality data if

(F (c•), F (εc), F (ηc)) = (F (c)•, εF (c), ηF (c)),

for each object c in C, where (c•, εc, ηc) is the chosen adjunction of c in DC and (F (c)•, εF (c),
ηF (c)) is the chosen adjunction of c in DD.

Let (F, λF , εF ) : C // D be a symmetric monoiodal functor. The following pull-
back square in the category of symmetric monoidal categories and symmetric monoidal
dunctors, associates a category P(F ) to this functor:

P(F ) //

p(F )

��

DJ

s

��

C
F

// D

where s is the source functor i.e. maps an isomorphism to its source object.

2.5. Remark. The symmetric monoidal functor s is an equivalence of categories which
is surjective on objects which implies that so is p(F ).

The objects of P(F ) are triples (c, d, α), where c ∈ Ob(C), d ∈ Ob(D) and α : F (c) ∼= d
is an isomorphism in D. A morphism from (c1, d1, α1) to (c2, d2, α2) is a pair (f, g) ∈
C(c1, c2)×D(d1, d2) such that the following diagram commutes:

F (c1)
α1

∼=
//

F (f)
��

d1

g

��

F (c2) α2

∼= // d2

The tensor product bifunctor of P(F )

−�− : P(F )× P(F ) // P(F ).

is defined on objects as follows:

(c1, d1, α1)� (c1, d1, α1) := (c1 ⊗
C
c2, d1 ⊗

D
d2, (α1 ⊗

D
α2) ◦ λF ).



1228 AMIT SHARMA

2.6. Remark. If the domain category of a symmetric monoidal functor F : C // D is
compact closed then it follows from remark 2.5 that P(F ) is also compact closed.

2.7. Definition. Let (D,DD) be a compact closed category with chosen duality data.
The category of isomorphisms of D, namely the functor category DJ , inherits a canonical
duality data from D wherein the chosen duality data of an isomorphism f : c ∼= d is the
triple

(f •, εf , ηf ) ,

where f • is the dual of f in the sense of definition A.3, namely

f • = (f †)−1.

and the counit and unit maps εf and ηf are the following two commutative diagrams:

c• ⊗ c εc //

f•⊗f
��

1C

d• ⊗ d εd
// 1C

1C
ηc
// c⊗ c•

f⊗f•
��

1C ηd
// d⊗ d•

where (c•, εc, ηc) and (d•, εd, ηd) are the chosen adjunctions of c and d respectively in DD.

2.8. Definition. For a functor F : (C,DC) // (D,DD), the compact closed category
P(F ) inherits a canonical duality data wherein the chosen dual of an object (c, d, α) is
the triple (c•, d•, α•), where c• and d• are the chosen duals of c and d in DC and DD
respectively and α• is the chosen dual of α in the canonical duality data associated to DJ ,
namely α• = (α†)−1.

2.9. Notation. We denote by pt : P(F ) //D the following composite:

P(F )
p2
//DJ t

//D.

2.10. Lemma. There exists a monoidal natural isomorphism

βF : F ◦ p(F )⇒ pt.

Proof. We define βF as follows:

βF ((c, d, α)) := α.

By the definition of maps in P(F ), it is easy to see that this defines a natural isomorphism.
Now we check that it is monoidal.

Let (c1, d1, α1) and (c2, d2, α2) be two objects of P(F ). We recall that

(c1, d1, α1)� (c2, d2, α2) = (c1 ⊗ c2, d1 ⊗ d2, (α1 ⊗ α2) ◦ λF ).
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This implies that

βF ((c1, d1, α1)� (c2, d2, α2)) = (α1 ⊗ α2) ◦ λF .

Since pt is strict symmetric monoidal, therefore we have the following commutative dia-
gram:

F (c1 ⊗
C
c2)

βF //

λF

��

d1 ⊗ d2

F (c1)⊗
D
F (c2)

α1⊗
D
α2

// d1 ⊗ d2

The unit object of P(F ) is the triple (1C , 1D, εF ). Further, F ◦p(F )((1C , 1D, εF )) = F (1C)
and pt((1C , 1D, εF )) = 1D. Now the following commutative diagram tells us that βF is a
monoidal natural isomorphism:

F (1C)
εF //

εF
##

1D = pt((1C , 1D, εF ))

1D

We recall that any natural isomorphism β : H ∼= G, where H and G are functors
between categories A and B, is uniquely represented, through adjointness, by a functor
β : A //BJ such that the following diagram commutes:

BJ

(s,t)
��

A
(H,K)

//

β

77

B ×B

The following lemma will be useful in proving key results in this section:

2.11. Lemma. Let (C,DC) and (D,DD) be a pair of compact closed categories with chosen
duality data and F : C // D and G : C // D be a pair of strict symmetric monoidal
functors which preserve duality data. A monoidal natural isomorphism α : F ∼= G is
represented by a strict symmetric monoidal functor α : C //DJ which preserves duality
data, where DJ has the canonical duality data.

Proof. We will first show that the functor α : C // DJ representing the monoidal
natural transformation α : F ⇒ G, is a strict symmetric monoidal functor. This will
be accoplished in two steps namely, we will first show that α is a monoidal functor and
then we will show that it is symmetric monoidal. Let c1, c2 be a pair of objects in C.
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By assumption, α : F ⇒ G is a monoidal natural transformation and F and G are both
strict symmetric monoidal therefore we have the following two commutative diagram:

F (c1 ⊗ c2)

α(c1⊗c2)

��

F (c1)⊗ F (c2)

α(c1)⊗α(c2)

��

G(c1 ⊗ c2) G(c1)⊗G(c2)

F (1C)
α(1C)

// G(1C)

1D

The first commutative diagram above shows that the functor α strictly preserves the
tensor product, namely, for any pair of objects c1, c2 ∈ C we have the followig equality:

α(c1 ⊗ c2) = α(c1)⊗ α(c2).

The second commutative diagram shows that the functor α is strictly unital, namely, the
following equality holds:

α(1C) = 1D.

We now claim that the triple (α, id, id) : C //DJ is a monoidal functor in the sense of
the definition on [ML98, Pg. 255]. In order to prove our claim we will have to verify
(3) and (4) on [ML98, Pg. 255-56]. Since both F and G are strict symmetric monoidal
functors and α : F ⇒ G is a monoidal natural transformation by assumption, we have
the following commutative diagram for each triple of objects c1, c2, c3 ∈ C:

G(c1)⊗ (G(c2)⊗G(c3))
αD // (G(c1)⊗G(c2))⊗G(c3)

F (c1)⊗ (F (c2)⊗ F (c3))

α(c1)⊗(α(c2⊗α(c3)))
44

αD

// (F (c1)⊗ F (c2))⊗ F (c3)

(α(c1)⊗α(c2))⊗α(c3)
44

G(c1 ⊗ (c2 ⊗ c3))
G(αC)

// G((c1 ⊗ c2)⊗ c3)

F (c1 ⊗ (c2 ⊗ c3))
F (αC)

//

α(c1⊗(c2⊗c3))
44

F ((c1 ⊗ c2)⊗ c3)
α((c1⊗c2)⊗c3)

44

Now condition (3) of the definition of a monoidal functor given on [ML98, Pg. 255] follows
from the above commutative diagram. Condition (4) of the same definition follows from
the observation that the following two diagrams commute, under the assumptions of the
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lemma, for each object c ∈ C:

G(c)⊗ 1D
βD
r // G(c)

F (c)⊗ 1D
βD
r //

α(c)⊗1D
88

F (c)
α(c)

::

G(c)⊗G(1C) G(c⊗ 1C)

G(βC
r )

OO

F (c)⊗ F (1C)
α(c)⊗α(1C)

88

F (c⊗ 1C)

F (βC
r )

OO

α(c⊗1C)

::

and

1D ⊗G(c)
βD
l // G(c)

1D ⊗ F (c)
βD
l //

α(c)⊗1D
88

F (c)
α(c)

::

G(1C)⊗G(c) G(1C ⊗ c)

G(βC
l )

OO

F (1C)⊗ F (c)
α(1C)⊗α(c)

88

F (1C ⊗ c)

F (βC
l )

OO

α(1C⊗c)

::

Thus we have shown that the triple

(α, id, id) : C //DJ

is a monoidal functor. In other words, the functor α has a strict monoidal structure.
In order to show that α is a strict symmetric monoidal functor we have to establish the
commutativity of the following diagram for each pair of objects c1, c2 ∈ C:

α(c1 ⊗ c2)

α(γC(c1,c2))

��

α(c1)⊗ α(c2)

γD(α(c1),α(c2))

��

α(c2 ⊗ c1) α(c1)⊗ α(c2)
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This is equivalent to showing the commutativity of the following diagram, for each pair
of objects c1, c2 ∈ C, in the symmetric monoidal category D:

G(c1 ⊗ c2)

G(γC(c1,c2))

��

G(c1)⊗G(c2)

γD(G(c1),G(c2))

��

F (c1 ⊗ c2)

α(c1⊗c2)
88

F (γC(c1,c2))

��

F (c1)⊗ F (c2)

α(c1)⊗α(c2)
66

γD(F (c1),F (c2))

��

G(c2 ⊗ c1) G(c2)⊗G(c1)

F (c2 ⊗ c1)

α(c2⊗c1)

88

F (c2)⊗ F (c1)

α(c2)⊗α(c1)

66

The left face of the above diagram commutes because α : F ⇒ G is a natural transforma-
tion. The right face of this diagram commutes because we have the following composite
natural transformation:

α×α

��

γD

��

C × C

F×F

��

G×G

EE
D ×D

−⊗−

��

τ
%%

D

D ×D
−⊗−

;;

The top and the bottom faces of this diagram commute because α : F ⇒ G is a monoidal
natural transformation by assumption. The front and the back face of the above diagram
commute because F and G are strict symmetric monoidal functors by assumption. Thus
we have shown that the functor α : C // DJ , representing the monoidal natural trans-
formation α : F ⇒ G between strict symmetric monoidal functors F and G, is a strict
symmetric monoidal functor.

The next step is to show that the strict symmetric monoidal functor α : C // DJ

preserves duality data. Let c be an object in C and c• is its chosen dual in DC . It is
sufficient to show that

α(c•) = ((α(c))•)−1 ,

where (α(c))• is the dual of α(c) in the sense of definition A.3. Since c• is the chosen dual
of c therefore the duality data DC specifies two maps εc : c•⊗c //1C and ηc : 1C //c⊗c•.
Now, the strict symmetric monoidal structures of F and G and the assumption that both
functors preserve duality data, together imply that the following two diagrams commute:

1D // F (c)⊗ F (c)•

α(c)⊗α(c•)
��

F (c)• ⊗ F (c)

α(c•)⊗α(c)

��

// 1D

1D // G(c)⊗G(c)• G(c)• ⊗G(c) // 1D
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Now it follows from lemma A.5 that α(c•) = (α(c)†)−1.

2.12. Notation. We denote by [C,D]Du
⊗ the groupoid whose objects are strict symmetric

monoidal functors between compact closed categories C and D which preserve duality data
and whose morphisms are monoidal natural isomorphsisms.

For the remaining section, the domain C of the symmetric monoidal functor F will
be the category F(A), which is constructed in [KL80], namely the free compact closed
category generated by A, where A is an ordinary category. We recall from [KL80] that
F(A) has an associated duality data and it is equipped with an inclusion functor ιA :
A //F(A). This compact closed category has the following universal property: For any
functor H : A //D, whose codomain is a compact closed category D with chosen duality
data DD, there exists a unique strict symmetric monoidal functor H⊗ which preserves
duality data, such that the following diagram commutes:

A

ιA
��

H // D

F(A)
H⊗

<< (6)

The following lemma tells us that for a fixed compact closed category (D,DD), each
symmetric monoidal functor in [F(A), D]⊗ is isomorphic to a strict symmetric monoidal
functor which preserves duality data:

2.13. Lemma. A symmetric monoidal functor G : F(A) //D is isomorphic to the unique
strict symmetric monoidal functor (GιA)⊗ : F(A) // (D,DD) which preserves duality
data, defined in (6).

Proof. Let G : F(A) // D be a symmetric monoidal functor which may not preserve
duality data. Since the pullback square defining P(G) is also a pullback square in Cat
and there exists a functor iDA : A // DJ defined by iDA(a) = idG(a), the category P(G)
is equipped with a canonical functor cAG : A // P(G) which is depicted in the following
commutative diagram:

A

ιA

((

iDA

��

cAG

""

P(G) //

p(G)

��

DJ

s

��

F(A)
G

// D

Now the choice of canonical duality data on P(G) and the universal property of ιA
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gives us a strict symmetric monoidal functor σAG which preserves duality data:

A

ιA
��

cAG // P(G)

F(A)
σA
G

;;

Again by the universality of ιA, we have the following commutative diagram:

A

ιA
��

cAG // P(G)
p(G)

// F(A)

F(A)
σA
G

;;

The universality of the map ιA implies that the following diagram commutes:

A

ιA
��

cAG // P(G)

pt

��

F(A)
σA
G

;;

(GιA)⊗
// D

Thus the composite pt ◦ σAG of strict symmetric monoidal functors which preserve duality
data is the same as the strict symmetric monoidal functor (GιA)⊗ which preserves duality
data and which is defined in (6). Now the following diagram gives us a monoidal natural
isomorphism which we denote by γG : G ∼= (GιA)⊗:

F(A)
σA
G

##

P(G)
p(G)

{{

pt

!!

∼= βG

F(A)
G

// D

where βG is the natural isomorphism from lemma 2.10.

The above universal property leads us to the following theorem which states that the
compact closed category F(A) is also free in a sense of 2-universal algebra:

2.14. Theorem. For any compact closed category D, the following functor is an equiv-
alence of groupoids which is surjective on objects:

(ιA)∗ : [F(A);D]⊗ // J([A;D]),

where [F(A);D]⊗ is the groupoid of symmetric monoidal functors from F(A) to D and
J([A;D]) is the groupoid of all functors from A and D and natural isomorphsism between
them.
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Proof. Let G : A // D be a functor. We can choose a duality data DD on D. Now
the aforementioned universal property of ιA shows that the functor (ιA)∗ is surjective on
objects. Now it is sufficient to show that (ιA)∗ is fully-faithful.

Let α : G⇒ H be a natural isomorphism in J([A,D]) and G′ and H ′ be two symmetric
monoidal functors from F(A) to D such that (ιA)∗(G′) = G and (ιA)∗(H ′) = H. We will
show that there exists a unique monoidal natural isomorphism α′ : G′ ⇒ H ′ such that
(ιA)∗(α′) = α.

The natural isomorphism α can be viewed as a functor

α : A //DJ ,

such that G = s ◦α and H = t ◦α. Since D is a permutative compact closed category by
assumption, the acyclic fibration of categories s : DJ //D implies that so is DJ . We may
chose a duality data on DJ such that the source and target strict symmetric monoidal
functors s : DJ //D and t : DJ //D are both duality data preserving. By construction
of the monoidal natural isomorphism γG′ in the proof of the lemma above, we may assume
that G′ and H ′ both are strict symmetric monoidal functors which preserve duality data.
Now by the universal property of ιA, there exists a unique strict symmetric monoidal
functor α′ which preserves duality data such that the following diagram commutes:

A α //

ιA
��

DJ

(s,t)

��

F(A)

α′
77

(G′,H′)
// D ×D

The uniqueness of α′ follows from our assumption thatH ′ andG′ are both strict symmetric
monoidal functors which preserve duality data together with lemma 2.11.

2.15. Corollary. For each permutative compact closed category D, the inclusion func-
tor

i⊗ : [F(A), D]Du
⊗ ↪→ [F(A), D]⊗

is an equivalence of groupoids.

Proof. The functor is fully faithful. In the proof of the above theorem we have shown
that each symmetric monoidal functor can be replaced by a strict symmetric monidal
functor which preserves duality data.

A similar argument applied to strict symmetric monoidal functors gives us the follow-
ing corollary:

2.16. Corollary. The inclusion functor

istr : [F(A), D]Du
⊗ ↪→ [F(A), D]str⊗

is an equivalence of groupoids.

Combining the above two corollaries we get the following proposition:
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2.17. Proposition. For each permutative compact closed category D, the inclusion

[F(A), D]str⊗ ⊆ [F(A), D]⊗

is an equivalence of categories, where [F(A), D]str⊗ is the groupoid of strict symmetric
monoidal functors and monoidal natural isomorphisms and [F(A), D]⊗ is the groupoid of
symmetric monoidal functors and monoidal natural isomorphisms.

Proof. The inclusion i⊗ factors as follows:

[F(A), D]Du
⊗

istr
↪→ [F(A), D]str⊗ ⊆ [F(A), D]⊗.

Now the result follows from the two out of three property of weak equivalences in a model
category, considering the facts that i⊗ and istr are both equivalences of categories.

The following lemma will be useful in proving the next theorem in this section:

2.18. Lemma. Let Q be a cofibrant permutative category. For any permutative category
D, we have the following inclusion is an equivalence of categories:

[Q,D]str⊗ ↪→ [Q,D]⊗.

Proof. The category Perm of srict symmetric monoidal categories and strict symmetric
monoidal functors is isomorphic to the category of algebras over the (categorical) Barrat-
Eccles operad in Cat. This implies that their is a 2-monad T in Cat such that the
category of (strict) T -Algebras and strict morphisms T − Algs is isomorphic to Perm.
Further, the category T−Alg of strict T -Algebras and pseudo morphisms is isomorphic to
the category of strict symmetric monoidal categories and symmetric monoidal functors.

We recall that the cofibrant objects in the natural model category Perm, [Sha, Thm.
3.1], [Lac07, Thm. 4.5] are exactly flexible algebras defined in [BKP89, Rem. 4.5]. Now
the result follows from [BKP89, Thm. 4.7].

Let P be a permutative category which is cofibrant in the natural model category of
permutative categories Perm which is equipped with a strict symmetric monoidal functor
E : F(A) //P whose underlying functor is an equivalence of categories. The next lemma
says that equivalence of groupoids from the previous theorem is preserved under E:

2.19. Lemma. The following composite functor:

(ιA)∗strE
∗
str : [P,D]str⊗ // [F(A), D]str⊗ // J([A,D]).

is an equivalence of groupoids, for any permutative category D.
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Proof. We have the following commutative diagram in the category of groupoids:

[P,D]⊗

E∗

��

[P,D]str⊗? _∼oo

(E∗)str
��

[F(A), D]⊗

ι∗A
��

[F(A), D]str⊗? _∼oo

(ι∗A)strww

J([A;D])

The top horizontal arrow in the above diagram is an equivalence of categories from Lemma
2.18. Since E is a homotopy equivalence of symmetric monoidal categories, namely there
exists a symmetric monoidal functor H : P // F(A) and two monoidal natural isomor-
phisms EH ∼= id and id ∼= HE, it follows that E∗ is an equivalence of categories. Now
the commutativity of the above diagram proves the result.

Now we consider the free permutative compact closed category F ′(A) generated by A
and the free permutative strict compact closed category F ′(A) generated by A which are
described in [KL80, Sec. 9]. These permutative categories are equipped with the following
strict symmetric monoidal functors (see [KL80, Sec. 9]) which preserves duality data:

F(A)
E1
// F ′(A)

E2
// F ′′(A).

Further, (the underlying ordinary functors of) both E1 and E2 are equivalences of cate-
gories.

2.20. Corollary. The following composite functor:

(ιA)∗str(E1)∗str : [F ′(A), D]str⊗ // [F(A), D]str⊗ // J([A,D]).

is an equivalence of groupoids which is surjective on objects, for any permutative category
D.

Proof. The permutative category F ′(A) is cofibrant in the natural model category of
permutatve categories so it follows from the above lemma that the functor (ιA)∗str(E1)∗str
is an equivalence of categories.

We have the following commutative diagram in Cat:

A
ιA

||

ι′A

""

F(A)
E1

// F ′(A)

where ι and ι′ are the unit maps of the adjunctions (F , U) and (F ′, U) discussed in [KL80].
Now the universal property of ι′ implies that for any functor F in [A;D], there exists a
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strict symmetric monoidal functor F str
⊗ such that the following diagram commutes:

A
ιA

||

ι′A

""

F

��

F(A)
E1

//

33

F ′(A)

F str
⊗ ""

D

The above diagram implies that the functor (ιA)∗str(E1)∗str is surjective on objects.

2.21. Remark. The above corollary implies that for each functor F : A //D, where D
is a permutative compact closed category, there exists a strict symmetric monoidal functor
F str
⊗ : F ′(A) //D such that F = F str

⊗ ◦ ι′A which is unique upto a unique isomorphism.

The above argument applied to the composite E2 ◦ E1 gives the following corollary:

2.22. Corollary. The following composite functor:

(ιA)∗str(E1 ◦ E2)∗str : [F ′′(A), D]str⊗ // [F(A), D]str⊗ // J([A,D]).

is an equivalence of groupoids which is surjective on objects, for any permutative category
D.

2.23. Remark. The above corollary implies that for each functor F : A //D, where D
is a permutative compact closed category, there exists a strict symmetric monoidal functor
F str
⊗ : F ′′(A) //D such that F = F str

⊗ ◦ ι′′A which is unique upto a unique isomorphism.

3. Compact closed permutative categories

The category of all (small) symmetric monoidal categories has a subcategory Perm which
inherits a model category structure from the natural model category Cat. The objects of
Perm are permutative categories (or strict symmetric monoidal categories) which are
those symmetric monoidal categories whose tensor product is strictly associative and
strictly unital. The morphisms of Perm are strict symmetric monoidal functors namely
those symmetric monoidal functors which preserve the symmetric monoidal structure
strictly. In this section we will construct another model category structure on the cat-
egory of permutative categories Perm whose fibrant objects are (permutative) compact
closed categories.

3.1. Notation. Unless specified otherwise, in this section a compact closed category will
mean a permutative category which is compact closed.
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3.2. Notation. We denote by 1 the following set:

1 := {+,−}

and refer to it as the set of orientations of a point.

We now describe a permutative category Frcc(1) whose object monoid is the free
monoid generated by the two object set 1 = {+,−}. An object in Frcc(1) is a finite
sequence of elements of {+,−}, for example (+,−,+,−,−). The monoidal product in
Ob(Frcc(1)) is given by concatenation. The product of f and g will be denoted by f�g.

3.3. Notation. We will name objects of Frcc(1) by lowercase letters f , g etc. which
is suggestive of the fact that an object f in Frcc(1) can be represented by a funtion f :
n // {+,−}.

The set 1 is equipped with a bijection in : 1 //1 which changes the sign i.e. in(+) = −
and in(−) = +. For each n is equipped with a bijection Σrev(n) : n // n which reverses
the order: i 7→ n− i+ 1.

3.4. Definition. Each object f in the proposed permutative category Frcc(1) determines
another object, which we denote by f •, which is obtained by replacing each + in f by a −
and each − by a + and then reversing order. Equivalently, considering the object f as a
function f : n // 1, f • is represented by by the following composite:

n
Σrev(n)

// n
f
// 1

in
// 1.

We will refer to f • as the dual of f .

3.5. Remark. For each f ∈ Ob(Frcc(1)) there is a canonical bijection of the underlying
sets of f and f • which we denote by c(f). This canonical bijection maps the element at
index i in f to the element at index n− i+ 1 in f •. We observe that the bijection c(f) is
a sign reversing involution.

3.6. Notation. The length of an object f in the proposed permutative category Frcc(1)
is the cardinality of the finite sequence f e.g. the length of (+,−,+,+) is 4. We denote
the length of f by |f |. We will denote the ordered set {1, 2, . . . , |f | by |f |.

3.7. Definition. Let f and g be two objects in the proposed category Frcc(1). A matching
G from f to g, denoted G : f  g, is a sign reversing involution of the set f •�g.

3.8. Example. Let f = (+,−) be an object in Frcc(1). The following pictures represent
two distinct matchings from f to f :

|− f• −| |− f −|
+ − + −
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and the second matching is the following:

|− f• −| |− f −|
+ − + −

3.9. Remark. A matching F : f  g uniquely determines a (directed) graph G(F ) whose
vertices are the elements of the set f •�g. Each vertex in G(F ) has degree one. A connected
component in G(F ) consists of two elements of f •�g having opposite signs and an edge
joining them. In each connected component of G(F ), the vertex − has outgoing degree one
and incoming degree zero and the vertex + has incoming degree one and outgoing degree
zero.

3.10. Remark. The set of vertices of each connected component of G(F ) is a pair of
elements in f •�g having opposite signs. The family of pairs determined by all connected
components of G(F ) partition the set f •�g.

3.11. Definition. A pair in a matching F : f  g is a two element subset p ⊆ f •�g
whose elements are the source and target of a unique edge in G(F ).

The next definition classifies pairs:

3.12. Definition. A pair p in a matching F : f  g is called a domain pair if p∩g = ∅.
It is called a codomain pair if p ∩ f = ∅ and it is called an external pair if it is neither a
domain pair nor a codomain.pair.

Now we describe a composition of two matchings: F : f  g and G : g  h. In order
to do so we consider the following coCartesian square in the category of graphs:

g
c(g)

//
_�

��

g• �
�

// G(G)

��

G(F ) // G(F )
⊔
g

G(G)

In the above diagram, we are regarding g as a graph whose set of vertices is g and whose
source and target maps are identities. The connected components of G(F )

⊔
g

G(G) can be

classified into two different types:

1. Grafted edge: A connected subgraph of G(F )
⊔
g

G(G) which has one vertex of out-

going degree one and another vertex having incoming degree one, all other vertices
have degree two.
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2. Circle: A connected subgraph of G(F )
⊔
g

G(G) whose set of vertices V is in bijection

with a finite sum of copies of the set 1 = {+,−} and is equipped with an inclusion
V ↪→ g, such that each vertex has incoming degree one and outgoing degree one.

All the grafted edges of G(F )
⊔
g

G(G) uniquely determine a matching of f •�h which we

denote by G ◦ F and which is the composite of G and F .

3.13. Example. Let f = (+), g = (+,−,+) and h = (+,−,+,+,−) be three objects in
Frcc(1). Let F be a matching from f to g which is represented by the following diagram:

|
f•

− | |− g −|

− + −
c

+

Let G be a matching from g to h which is represented by the following diagram:

|− g• −| |− h −|
− + − + − + +

c

−

The composition of G and F can be described by the following diagrams:

− + − +

− + − + − + + −

− · · ·

+ − + + −
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Now the composite matching G◦F is more succiently represented by the following diagram:

|
f•

− | |− h −|

− +
c

− + +
c

−

We observe that in the above composition, a codomain pair of G composed with a couple
of external pairs of H to produce a codomain pair in H ◦G.

3.14. Definition. For two composable matchings F and G as above, we define a natural
number Cir(H,G) as follows:

Cir(G,F ) := number of circles in G(F )
⊔
g

G(G).

We will refer to this number as the circles created by the composition of H and G.

Now we have all the machinery needed to define a morphism in Frcc(1):

3.15. Definition. A morphism from f to g in Frcc(1) is a pair (G, k) where G is a
matching from f to g and k ∈ N.

We observe that there is NO morphism between two objects f and g in Frcc(1), if the
sum of their lengths |f |+ |g| is an odd number. Let (H, l) : g // h be another morphism
in Frcc(1). We define

(H, l) ◦ (G, k) := (H ◦G, k + l + Cir(H,G))

3.16. Example. Let f = (+,+,−) be an object of Frcc(1). The identity map of f in
Frcc(1), denoted (idf , 0) is represented by the following diagram:

|− f• −| |− f −|

+ − − + + −

3.17. Example. A morphism (H, 1) from f = (+,−,+,+,−) to g = (+,−,+,−,+,+,−)
is represented by the following diagram:

|− f• −| |− g −|
+ − −

d

+ − + −
c

+ − + +
c

−
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An object of Frcc(1) represents an oriented smooth 0-manifold by considering it as a se-
quence of points given + or − orientation. The morphism (H, 1) determines a 1-Bordism
whose boundary is f •�g. This 1-Bordism is represented by the following diagram:

+ > +

− −

+
∧

+
∧

+
>

−

−
<

+

+

−
∧

3.18. Example. Let f = (+), g = (+,−,+) and h = (+,+,−,+,−) be three objects in
Frcc(1). Let a map (G, 0) : f // g in Frcc(1) be represented by the following diagram:

|
f•

− | |− g −|

− +
c

− +

We observe that G is a matching of codomain index 1. Let another map (H, 0) : g // h
in Frcc(1) be represented by the following diagram:

|− g• −| |− h −|

− +
d

− + +
c

− +
c

−

We observe that H is a matching of codomain index 2 and domain index 1. The composite
matching H ◦G creates one circle and the map (H ◦G, 1) = (H, 0) ◦ (G, 0) is represented
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by the following diagram:

|
f•

− | |− h −|

− + +
c

− +
c

−

The tensor product of two maps (G, k) : f //g and (H, q) : h //l is defined as follows:

(G, k)�(H, q) := (G�H, k + q),

where G�H is the unique matching determined by the graph G(G)
⊔
G(H).

3.19. Example. Let f = (+), g = (+,−,+), h = (−,−) and k = (+,−,−,−) be objects
in Frcc(1). Let (G, 1) : f // g be a map represented by the following diagram:

|
f•

− | |− g −|

− + −
c

+

Let (H, 0) : h // k be a map represented by the following diagram:

|− h• −| |− k −|

+ + + − − −

The map (G, 1)�(H, 0) : f�h // g�k is represented by the following diagram:

|− h•�f• −| |− g�k −|

+ + − + −
c

+ +

c

− − −
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The above tensor product (G, 1)�(H, 0) represents a 1-Bordism which is a disjoint union
of two 1-Bordisms represented by (G, 1) and (H, 0), as shown by the following diagram:

+ > + −−

(G,1)

−

+
∧

−−

+ −−

(H,0)

−
<

−

−
<

−

−

∧

−−

The aforementioned tensor product defines a bifunctor:

−�− : Frcc(1)× Frcc(1) // Frcc(1).

The above bifunctor endows the category Frcc(1) with a strict symmetric monoidal (per-
mutative) category structure.

3.20. Lemma. The permutative category Frcc(1) is a compact closed category wherein
each object f : n // 1 has a dual f •.

Proof. An object f in Frcc(1) is as a tensor product of a finite number of objects reprep-
resented by (+) and (−). Moreover, adjunctions compose which implies that if f has a
dual f • and g has a dual g• in the permutative category Frcc(1), then g•�f • is a dual of
f�g.

In light of the above observations, it is sufficient to show that (−) is a dual of (+)
in the permutative category Frcc(1). We claim that the unit η : () // (−,+) and counit
ε : (+,−) // () maps for the duality in context are represented by the following two
diagrams respectively:

−

c

+ +

d

−

In order to prove our claim, we verify (1) and (2). In order to verify (2), we will show
that the composite

(ε�id+) ◦ (id+�η) = id+.

The map (id+�η) : (+) // (+,−,+) is represented by the following diagram:

− + −

c

+
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The map (ε�id+) : (+,−,+) // (+) is represented by the following diagram:

− +

d

− +

Now, one can see that the composite of the above two morphisms is the following which
is also the identity map on (+):

− +

Condition (1) can be verified similarly.

The following corollary is an easy consequence of some earlier definitions and lemma
3.20:

3.21. Corollary. In the compact closed category Frcc(1), we have the following:

1. The unit object is its own dual i.e. ()• = ().

2. The dual of the dual of an object f in Frcc(1), is the object f itself i.e. (f •)• = f ,
for each f ∈ Frcc(1).

3. For a pair of objects f and g in Frcc(1) (viewed as maps f : n //1 and g : m //1),
the following commutative diagram implies the equality (f�g)• = g•�f •:

m+ n
Σrev(m+n)

//

Σrev(m)+Σrev(n)
))

n+m
f�g

// 1

in
��

m+ n //

g�f

66

1

3.22. Definition. We will refer to Frcc(1) either as the free compact closed category on
one generator or as the algebraic 1-Bordism category.

3.23. Lemma. The compact closed category Frcc(1) has the universal property that for
each object c of a compact closed permutative category C there is a strict symmetric
monoidal functor Fc : Frcc(1) // C such that Fc(c) = c, which is unique upto a unique
natural isomorphism.

Proof. The terminal category 1 is the category having one object and NO non-identity
morphisms. Using the description of morphisms of the compact closed category G(1) on
[KL80, Pg. 197-8] one can readily deduce that the compact closed permutative category
G′′(1), described in [KL80, Sec. 9], is isomorphic to Frcc(1). Observations in the last
paragraph of [KL80, Pg. 210] imply that G′′(1) is isomorphic to F ′′(1) described by the
adjunction 5 above. Now the result follows from corollary (2.22).
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3.24. Remark. The free compact closed category over one generator Frcc(1) is equipped
with an inclusion (strict) symmetric monoidal functor i : F⊗(1) //Frcc(1), where F⊗(1)
is the free permutative category on one generator namely it is (isomorphic to) the category
of finite sets and bijections. Both Frcc(1) and F⊗(1) are cofibrant objects in the natural
model category of permutative categories Perm.

3.25. Proposition. A permutative category is compact closed if and only if it is a {i}-
local object.

Proof. For any compact closed category C, it follows from lemma 3.23 and corollary A.10
that the following map, which is the evaluation map on the generator, is an equivalence
of groupoids:

J
(
[i, C]str⊗

)
: J
(
[Frcc(1), C]str⊗

)
// J
(
[F⊗(1), C]str⊗

) ∼= J(C)

where J is the right adjoint to the inclusion map ι : Gpd //Cat. Thus each permutative
compact closed category is an {i}-local object.

Conversely, let us assume that C is an {i}-local object. We recall that for any category
D we have the following equality of object sets: Ob(D) = Ob(J(D)). By assumption the
functor J

(
[i, C]str⊗

)
is an equivalence of groupoids which now implies that each strict

symmetric monoidal functor F : F⊗(1) // C is isomorphic to some functor in the image
of J

(
[i, C]str⊗

)
. Let F lie in the image of J

(
[i, C]str⊗

)
, then there exists a strict symmetric

monoidal functor F cc : Frcc(1) // C such that the following diagram commutes:

Frcc(1) F cc
// C

F⊗(1)

i

OO

F

<<

In particular, F cc((+)) = F⊗((+)). Since F cc is a strict symmetric monoidal functor, it
follows that F cc((−)) is a dual of F cc((+)) = F⊗((+)) in the permutative category C
because (−) is the dual of (+) in Frcc(1). Now the following isomorphism:

J
(
[F⊗(1), C]str⊗

) ∼= J(C),

and our supposed equivalence together imply that each object in C is isomorphic to an
object iF cc((+)) for some F cc in

(
[Frcc(1), C]str⊗

)
and therefore it has a dual in C. Thus

we have shown that C is compact closed.

3.26. Definition. A map of permutative categories F : C //D will be called a compact
closed equivalence of permutative categories if it is a {i}-local equivalence.

3.27. Remark. A strict symmetric monoidal functor F : C // D between cofibrant
permutative categories is a compact closed equivalence if the following functor is an equiv-
alence of groupoids:

J([F,E]str⊗ ) : J([D,E]str⊗ ) // J([C,E]str⊗ )
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for each permutative compact closed category E.

Now we state and prove the main result of this section which is is regarding the
construction of a model category of compact closed categories. The proof uses an existence
theorem of a left Bousfield localization of a (class of) model category which is reviewed
in appendix B:

3.28. Theorem. There is a model category structure on the category of all small permu-
tative categories and strict symmetric monoidal functors Perm in which

1. A cofibration is a strict symmetric monoidal functor which is a cofibration in the
natural model category Perm.

2. A weak-equivalence is a compactly closed equivalence of permutative categories.

3. A fibration is a strict symmetric monoidal functor having the right lifting property
with respect to all maps which are both cofibrations and weak equivalences.

Further, this model category structure is combinatorial and left-proper. The fibrant objects
in this model category are (permutative) compact closed categories.

Proof. The model category structure is a left Bousfield localization of the left-proper,
combinatorial natural model category structure on Perm with respect to a single map i :
F⊗(1) //Frcc(1). The existence of this left Bousfield localization and the characterization
of cofibrations and weak-equivalences follows from [Shab, Thm. 3.4] and B.2.

3.29. Notation. We denote the above model category by Permcc and refer to it as
the model category of compact closed categories (or as the model category of permutative
compact closed categories).

4. Coherently compact closed categories

In this section we will construct another model category structure on the category of
Γ-categories ΓCat = [Γop,Cat]. The main result of this section is that the thickened Se-
gal’s nerve functor K is a right Quillen functor of a Quillen equivalence between the model
category of coherently compact closed categories, which will be constructed in this section,
and the model category of compact closed permutative categories Permcc constructed in
the previous section. We construct the desired model category as a left Bousfield local-
ization of the model category of coherently commutative monoidal categories constructed
in [Sha20], which we denote by ΓCat⊗. We begin by briefly recalling that the thickened
Segal’s nerve functor K : Perm // ΓCat constructed in [Sha20]:
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4.1. Definition. For each n ∈ N we will now define a permutative groupoid L(n). An
object of this groupoid is a finite sequence (f1, f2, . . . , fr) consisting of based maps in Γop

having domain n+. A morphism (f1, f2, . . . , fr) // (g1, g2, . . . , gk) is an isomorphism of
finite sets

F : Supp(f1) t Supp(f2) t · · · t Supp(fr)
∼=
// Supp(g1) t Supp(g2) t · · · t Supp(gk)

such that the following diagram commutes

Supp(f1) t · · · t Supp(fr)
F //

))

Supp(g1) t · · · t Supp(gk)

uun

where the diagonal maps are uniquely determined by the inclusions of components of the
coproducts into n and Supp(f) denotes the support of the based map f .

The (thickened) Segal’s nerve functor is now defined, in degree n as follows:

K(C)(n+) := [L(n), C]str⊗ ,

where C is a permutative category. The functor K : Perm // ΓCat has a left adjoint,
denoted L, see [Sha20, Sec. 6]. The thickened Segal’s nerve of the free compact closed
category on one generator Frcc(1), denoted by K(Frcc(1)), is equipped with an inclusion
map

j : Γ1 //K(Frcc(1)) (7)

which is determined by the generator of Frcc(1).

4.2. Definition. A coherently commutative monoidal category X is called a coherently
compact closed category if the symmetric monoidal category X(1+) is a (not necessarily
permutative) compact closed category.

4.3. Proposition. The thickened Segal’s nerve K(C) of a compact closed permutative
category C is a coherently compact closed category.

Proof. The above proposition follows from [Sha20, Cor. 6.13] and the fact that any
symmetric monoidal category which is equivalent to a compact closed category is itself
compact closed.

4.4. Definition. We will refer to the coherently compact closed category K(Frcc(1)) as
the thickened Segal’s nerve of the algebraic 1-Bordism category.

4.5. Definition. A {j}-local equivalence will be called a compact closed equivalence of
Γ-categories.
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4.6. Theorem. There is a left-proper, combinatorial model category structure on the
category ΓCat wherein a map is a

1. cofibration if it is a strict cofibration of Γ-categories, namely a cofibration in the
strict model category of Γ-categories.

2. weak-equivalence if it is a compact closed equivalence of Γ-categories.

3. a fibration if it has the right lifting property with respect to maps which are simul-
taneously cofibrations and weak-equivalences.

A Γ-category is fibrant in this model category structure if and only if it is coherently
compact closed.

Proof. The model category structure is obtained by carrying out a left Bousfield local-
ization of the natural model category structure on Perm with respect to {j}, this follows
from [Bar07, Thm. 2.11]. The same theorem implies that the model category is combi-
natorial and left-proper.

4.7. Notation. We denote the above model category by ΓCatcc and refer to it as the
model category of coherently compact closed categories.

4.8. Lemma. The adjoint pair (L,K) is a Quillen pair between the model category Permcc

and the model category ΓCatcc.

Proof. We recall from above that the model category ΓCatcc is a left Bousfield lo-
calization of the model category of coherently commutative monoidal categories ΓCat⊗

therefore it has the same cofibrations as ΓCat⊗, namely Q-cofibrations. Since the adjoint
pair in context is a Quillen pair between Perm and ΓCat⊗ therefore the left adjoint L
preserves cofibrations between the two model categories in the context of the theorem.
The fibrations between fibrant objects in ΓCatcc are strict fibrations of Γ-categories which
are preserved by K. Now [Joy08, Prop. E.2.14] tells us that the adjoint pair (L,K) is a
Quillen pair between Permcc and ΓCatcc.

4.9. Remark. An argument similar to the proof of the above lemma shows that the adjoint
pair (L,K) defined in [Sha20, Sec. 5] is a also a Quillen pair.

4.10. Theorem. A coherently commutative monoidal category X is a {j}-local object if
and only if L(X) is a compact closed permutative category.

Proof. Let us first assume that L(X) is a compact closed category, then KL(X) is a
{j}-local object because the adjunction (L,K) is a Quillen pair, by lemma (4.8), and a
right Quillen functor preserves fibrant objects. Further, the unit map ηX : X //KL(X) is
a strict equivalence of Γ-categories [Sha20, lem. 6.15]. This implies that X is a {j}-local
object because KL(X) is one.
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Conversely, let us assume that X is a {j}-local object. We consider the following
commutative diagram:

Maph
ΓCatcc(K(Frcc(1)),KL(X))

MaphΓCatcc (j,KL(X))
//

∼=
��

Maph
ΓCatcc(Γ

1,KL(X))

∼=
��

Maph
Permcc(L(K(Frcc(1))),L(X))

K
//Maph

Permcc(L(Γ1),L(X))

where the bottom horizontal map K = Maph
Permcc(L(j),L(X)). Since X is a {j}-local

object by assumption, the Γ-category KL(X) is also one. Thus the top row is a homotopy
equivalence of Kan complexes. By the two out of three property of weak-equivalences in
a model category, K is a homotopy equivalence of Kan-complexes. Now the following
commutative diagram implies that L(X) is a compact closed category:

Maph
Permcc(L(KFrcc(1)),L(X))

MaphPermcc (L(j),L(X))
//Maph

Permcc(L(Γ1),L(X))

T
��

Maph
Permcc(Frcc(1),L(X))

MaphPermcc (ε,L(X))

OO

//Maph
Permcc(F(1),L(X))

where ε is the counit map which is a weak equivalence in the natural model category
Perm. The downward map T =Maph

Permcc(ι,L(X)) is a homotopy equivalence of Kan
complexes because the inclusion functor ι : F(1) //L(Γ1) is an equivalence of categories.

4.11. Corollary. An Γ-category X is a fibrant object of the model category ΓCatcc if
and only if it is a coherently compact closed Γ-category.

Proof. We begin by recalling that for each coherently commutative monoidal category
Z, its degree one category Z(1+) inherits a symmetric monoidal category structure [?,
Prop. 3.3.1.]. A Γ-category X is fibrant in the model category ΓCatcc if and only if it
is a coherently commutative monoidal category and a {j}-local object. In this case, the
unit map ηX : X // K(L(X)) is a strict equivalence of Γ-categories. Now we have we
have the following commutative diagram of equivalence of categories:

X(1+)
ηX(1+)

//

iX &&

K(L(X))(1+)

ev
��

L(X)

This diagram implies that X(1+) is compact closed because it is equivalent to a compact
closed category L(X) via the (symmetric monoidal) functor iX .
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4.12. Remark. The model category of coherently commutative monoidal categories ΓCat⊗

is a Cat-model category. This implies that

Maph
ΓCat⊗(j,X) = J(MapΓCat(j,X)).

Now it is easy to see that following statements are equivalent:

1. The inclusion map j : Γ1 //K(Frcc(1)) is a weak-equivalence in ΓCatcc.

2. For any coherently compact closed category X, the following map is an equivalence
of function spaces:

JMapΓCat(j,X) : JMapΓCat(K(Cob1), X) // J(MapΓCat(Γ
1, X))
∼=
// JN(X(1+)).

4.13. Proposition. A morphism of Γ-categories F : X //Y is a compact closed equiv-
alence of Γ-categories if and only if for each compact closed (permutative) category Z we
have the following homotopy equivalence of function complexes:

Maph
ΓCat⊗(F,K(Z)) :Maph

ΓCat⊗(Y,K(Z)) //Maph
ΓCat⊗(X,K(Z))

Proof. F is a compact closed equivalence of Γ-categories if and only if for each coher-
ently compact closed category W , the following map is a homotopy equivalence of Kan
complexes:

Maph
ΓCat⊗(F,W ) :Maph

ΓCat⊗(Y,W ) //Maph
ΓCat⊗(X,W )

Since K(Z) is a coherently compact closed category, by the above corollary, one direction
of the statement is obvious.

The other direction of the statement follows from the observation that for each coher-
ently compact closed category W , the unit map ηW : W //KL(W ) is a strict equivalence
of Γ-categories.

It was shown in [Sha20, Thm. 6.18] that the adjoint pair (L,K) is a Quillen equiva-
lence between the natural model category of permutative categories Perm and the model
category of coherently commutative monoidal categories ΓCatcc. This Quillen equiva-
lence is a strict equivalence of the underlying homotopy theories, namely both functors
preserve and reflect weak-equivalences of the model categories in context and the unit
and the counit maps are natural weak-equivalences.

4.14. Lemma. The Segal’s nerve functor K preserves and reflects compact closed equiv-
alences of permutative categories.
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Proof. Let F : C // D be a compact closed equivalence of permutative categories. It
follows from [Sha20, Thm. 6.18], [Sha20, Thm. 6.17] and the observation that each object
of the natural model category Perm is fibrant, that for each permutative category C, the
counit map εC : LK(C) //C is a weak-equivalence in the natural model category Perm
i.e. the underlying functor of εC is an equivalence of categories. We consider the following
diagram of function complexes for each compact closed permutative category Z:

Maph
Permcc(D,Z)

MaphPermcc (F,Z)
//

MaphPermcc (εD,Z)
��

Maph
Permcc(C,Z)

MaphPermcc (εC ,Z)
��

Maph
Permcc(LK(D), Z) //

∼=
��

Maph
Permcc(LK(C), Z)

∼=
��

Maph
ΓCatcc(K(D),K(Z))

MaphΓCatcc (K(F ),K(Z))

//Maph
ΓCatcc(K(C),K(Z))

The two vertical isomorphisms follow from [Hir02, Prop. 17.4.16] applied to the Quillen
pair from lemma 4.8. It follows from [Hir02, Thm. 17.7.7] that the top horizontal arrow
and the upper two verical arrows are homotopy equivalences of simplicial sets. Now the
two out of three property of weak equivalences in a model category implies that the lower
horizontal map, namely Maph

ΓCatcc(K(F ),K(Z)) is a homotopy equivalence of simplicial
sets. Now proposition 4.13 and [Hir02, Thm. 17.7.7] together imply that K(F ) is a
weak-equivalence in ΓCatcc.

Conversely, let us assume that K(F ) is a weak-equivalence in ΓCatcc. Now the bottom
horizontal arrow in the above diagram is a homotopy equivalence of simplicial sets and
therefore the top horizontal arrow is one too. Now proposition 4.13 and [Hir02, Thm.
17.7.7] together imply that F is a weak-equivalence in Permcc.

The following corollary is an easy consequence of the above lemma:

4.15. Corollary. The left Quillen functor L preserves and reflects compact closed equiv-
alences of Γ-categories.

Now we will state and prove the main result of this paper:

4.16. Theorem. The adjoint pair (L,K) is a Quillen equivalence between the natural
model category of compact closed permutative categories Permcc and the model category
of coherently commutative monoidal categories ΓCatcc.

Proof. Let X be a cofibrant object in ΓCat⊗ and C be a fibrant object of Permcc. We
will show that a map F : L(X) // C in Permcc is a weak equivalence if and only if it’s
adjunct map φ(F ) : X //K(C) is a weak-equivalence in ΓCatcc.

We first recall that the Quillen pair (L,K) is a Quillen equivalence between the nat-
ural model category Perm and the model category of coherently commutative monoidal
categories ΓCat⊗ [Sha20, Thm. 6.18]. We further recall that every object in the natural
model category Perm is fibrant. Now it follows from [Hov99, Prop. 1.3.13.] that for
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each Q-cofibrant Γ-category X, the unit map of the adjunction ηX : X // KL(X) is a
weak-equivalence in ΓCat⊗ and therefore a weak-equivalence in ΓCatcc.

Now the result follows from proposition 4.14 and the following commutative diagram:

KL(X)
K(F )

// K(C)

X
φ(F )

99

η(X)

OO

The following corollary follows from the above theorem, remark 4.9 and the natural
weak-equivalence K ⇒ K constructed in [Sha20, Cor. 6.19]:

4.17. Corollary. The adjoint pair (L,K) is a Quillen equivalence between the natural
model category of compact closed permutative categories Permcc and the model category
of coherently commutative monoidal categories ΓCatcc.

The main result is stronger than what is stated in Theorem 4.16:

4.18. Remark. The Quillen pair (L,K) induces a strict equivalence of the underlying
homotopy theories on the two model categories in context. More precisely, both functors
preserve weak-equivalences and the unit and counit maps are natural weak-equivalences.

A. Aspects of Duality
by André Joyal

The results of this appendix are folklore and where possible, we will provide a reference.

A.1. On certain monoidal transformations. Let C be a symmetric monoidal cat-
egory. If c is a dualisable object in C, with dual object c•, let us denote by ηc : 1C //c⊗c•
and εc : c• ⊗ c // 1C the unit and counit of the duality. If d is another dualisable object,
then

A.2. Definition. The transpose f † : d• // c• of a morphism f : c // d is defined to be
the composite

d•
d•⊗ηc

// d• ⊗ c⊗ c• c•⊗f⊗c•
// d• ⊗ d⊗ c• εd⊗c• // c•

A.3. Definition. A morphism g : c• // d• in a symmetric monoidal category C is a
dual of the morphism f : c // d, between dualizable objects in C, if the following two
diagrams commutes

c• ⊗ c εc //

g⊗f
��

1C

d• ⊗ d εd
// 1C

1C
ηc
// c⊗ c•

f⊗g
��

1C ηd
// d⊗ d•
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The following proposition shows that it is sufficient to have the above two commutative
diagrams in order to establish a duality between f and g in the symmetric monoidal
category CI :

A.4. Proposition. A dual of a morphism f in a symmetric monoidal category C in
the sense of definition A.3 is a dual of f when regarded as an object of the symmetric
monoidal category CI .

Proof. Let g : c• // d• be a dual of a morphism f : c // d in the symmetric monoidal
category C in the sense of definition A.3. We observe that the two commutative diagrams
in definition A.3 above are maps in the (symmetric monoidal) morphism category CI .
We claim that these two maps are the counit and unit maps which establish a duality
between f and g. The commutativity of the two diagrams in definition A.3 implies that
the following two diagrams, wherein the horizontal composite maps are identities, are
commutative:

c

f
��

ηc⊗c
// c⊗ c• ⊗ c c⊗εc //

f⊗g⊗f
��

c

f
��

c•

g

��

c•⊗ηc
// c• ⊗ c⊗ c• εc⊗c

•
//

g⊗f⊗g
��

c

g

��

d
ηd⊗d

// d⊗ d• ⊗ c
d⊗εd

// d d
d•⊗ηd

// d⊗ d• ⊗ c
εd⊗d•

// d

These two commutative diagrams establish the desired duality in CI .

A.5. Lemma. If a morphism g : c• // d• is a dual of a morphism f : c // d, then
g ◦ f † = 1d• and f † ◦ g = 1c•. Hence the morphisms f and g are invertible.

Proof. Let us compute g ◦ f †. The following diagram commutes by naturality:

d•
d•⊗ηc

// d• ⊗ c⊗ c• d•⊗f⊗c•
//

d•⊗c⊗g
��

d• ⊗ d⊗ c• εd⊗c• //

d•⊗d⊗g
��

c•

g

��

d• ⊗ c⊗ d•
d•⊗f⊗d•

// d• ⊗ d⊗ d•
εd⊗d•

// d•

It follows that the morphism g ◦ f † is the composite

d•
d•⊗ηc

// d• ⊗ c⊗ c• d•⊗f⊗g
// d• ⊗ d⊗ c• εd⊗d• // d•

But we have (f ⊗ g)ηc = ηd, since g is a dual of f . Hence the morphism g ◦ f † is the
composite

d•
d•⊗ηd // d• ⊗ d⊗ d• εd⊗d• // d•

But (εd⊗d•)(d•⊗ηd) = 1d• by the duality between d and d•. This shows that g◦f † = 1d• .
The proof that f † ◦ g = 1c• is similar.
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A.6. Lemma. Let α : F ⇒ G be a monoidal natural transformation between symmetric
monoidal functors F,G : C //D between symmetric monoidal categories C = (C,⊗, 1C)
and D = (D,⊗, 1D). If the symmetric monoidal category C is compact closed, then α is
invertible.

Proof. Let us show that the map αc : F (c) //G(c) is invertible for every object c ∈ C.
The object c has a dual c•, since the category C is compact closed. Let ηc : 1C // c⊗ c•
and εc : c• ⊗ c // 1C be the unit and counit of the duality. The object F (c) has then a
dual F (c)• := F (c•). The unit ηF (c) : 1D // F (c)⊗ F (c•) is defined to be the composite

1D
' // F (1C)

F (ηc)
// F (c⊗ c•) ' // F (c)⊗ F (c•)

and the counit εF (c) : F (c•)⊗ F (c) // 1D is defined to be the composite

F (c•)⊗ F (c) ' // F (c• ⊗ c) F (εc)
// F (1C) ' // 1D

Similarly, the object G(c) has a dual G(c)• := G(c•). The unit ηG(c) : 1D //G(c)⊗G(c•)
is defined to be the composite

1D
' // G(1C)

G(ηc)
// G(C ⊗ c•) ' // G(c)⊗G(c•)

and the counit εG(c) : G(c•)⊗G(c) // 1D is defined to be the composite

G(c•)⊗G(c) ' // G(c• ⊗ c) G(εc)
// G(1C) ' // 1D

Let us show that the morphism αc• : F (c•) // G(c•) is a dual of the morphism αc :
F (c) // G(c). The following diagram commutes, since the natural transformation α :
F ⇒ G is monoidal

1D
' // F (1C)

αI

��

F (ηc)
// F (c⊗ c•)

αc⊗c•

��

' // F (c)⊗ F (c•)

αc⊗αc•

��

1D '
// G(1C)

G(ηc)
// G(c⊗ c•) '

// G(c)⊗G(c•)

Hence the following square commutes

1D
ηF (c)

// F (c)⊗ F (c•)

αC⊗αc•

��

1D ηG(d)

// G(C)⊗G(d•)
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Similarly, the following square commutes

F (c•)⊗ F (c)
εF (c)

//

αc•⊗αc

��

1D

G(d•)⊗G(d) εG(d)

// 1D

This shows that the morphism αc• : F (c•) // G(c•) is a dual of the morphism αc :
F (c) //G(c). It then follows by Lemma A.5 that αc is invertible.

If C and D are symmetric monoidal categories, let us denote by [C,D]⊗ the category of
symmetric monoidal functors from C to D and monoidal natural transformations between
them. The category [C,D]⊗ is symmetric monoidal.

A different proof of the following proposition appears in [DM18, Prop. 1.13]

A.7. Proposition. If C is a compact closed symmetric monoidal category, then the
symmetric monoidal category [C,D]⊗ is a groupoid for every symmetric monoidal category
D.

Proof. Let α : F ⇒ G be a morphism in the category [C,D]⊗. The monoidal natural
transformation α is invertible by Lemma A.6. Its inverse α−1 : G⇒ F is monoidal (by a
general result). Thus, [C,D]⊗ is a groupoid.

A.8. On the compact closed symmetric monoidal category free on one
generator . Let me denote by B the compact closed symmetric monoidal category
freely generated by one object U ∈ B. By definition, for every compact closed symmetric
monoidal category C and every object c ∈ C there exists a symmetric monoidal functor
F : B // C such that F (U) = c, and the functor F is unique up to unique isomorphism:
if G : B //C is another functor such that G(U) = c, then there exists a unique monoidal
natural isomorphism α : F //G such that αU = idc.

If C is a category, then the subcategory of invertible morphisms of C is a groupoid
called the core of C. I will denote the core of C by Ccor or by J(C). The core of a
symmetric monoidal category C is a symmetric monoidal subcategory of C.

I will use the following construction in the proof of the next propsition. Let me denote
by J the groupoid freely generated by one isomorphism i : 0 // 1. If C is a category then
an object of the category CJ is an isomorphism f in C. The source and target functors
s, t : CJ // C are connected by a natural isomorphism h : s // t defined by putting
h(f) = f : s(f) // t(f). The category CJ is symmetric monoidal if C is symmetric
monoidal. Moreover, the source and target functors s, t : CJ // C and the natural
transformation h : s // t are symmetric monoidal. The category CJ is compact closed
if C is compact closed, since the functor s : CJ // C is an equivalence of symmetric
monoidal categories.
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A.9. Proposition. Let B the compact closed symmetric monoidal category freely gen-
erated by one object U ∈ B. If C is a compact closed symmetric monoidal category, then
the evaluation functor

eU : [B, C]⊗ // C

defined by putting evU(F ) := F (U) takes its values in the core of C. Moreover, the induced
functor

e′U : [B, C]⊗ // Ccor

is an equivalence of symmetric monoidal categories.

Proof. The category [B, C]⊗ is a groupoid by Proposition A.7. Hence the functor eU takes
its values in the core of C. Let us show that the induced functor e′U is an equivalence of
categories. For every object c ∈ C there exists a symmetric monoidal functor F : B //C
such that F (U) = c, since C is compact closed and B is compact closed and freely
generated by the object U ∈ B. We then have e′U(F ) := eU(F ) := F (U) = c. We have
proved that the functor e′U is surjective on objects. Let us show that the functor e′U is
fully faithful. If F,G : B // C are symmetric monoidal functors, let us show that for
every isomorphism f : F (U) //G(U) there exists a unique monoidal natural isomorphism
α : F ⇒ G such that αU = f . We shall first prove the existence of α. The symmetric
monoidal category CJ is compact closed, since the symmetric monoidal category C is
compact closed by hypothesis. The isomorphism f is an object in CJ . By the freeness of
B, there exists a symmetric monoidal functor

H : B // CJ

such that H(U) = f . We have sH(U) = s(f) = F (U), since f : F (U) // G(U). The
functor sH : B // C is symmetric monoidal, since the functors H and s are. Thus,
there exists a unique monoidal natural isomorphism ρ : F // sH such that ρU = idF (U).
Similarly, if t : CJ // C is the target functor, then tH(U) = t(f) = G(U). Thus, there
exists a unique monoidal natural isomorphism λ : tH // G such that λU = idG(U). If
h : s // t is the canonical isomorphism, then the composite α := λhρ is a monoidal
natural isomorphism α : F //G

F
ρ
// sH

h◦H // tH
λ // G

We have αU = f , since ρU = 1F (U), (h◦H)U = h(H(U)) = h(f) = f and λU = 1G(U). The
existence of α : F //G is proved. Let us show that α is unique. Let β : F //G a monoidal
natural isomorphism such that βU = f . Then γ := β−1α : F // F is a monoidal natural
isomorphism such that γU = 1U . It follows that γ = 1F , since B is freely generated by the
object U ∈ B. We have proved that the functor e′U : [B, C]⊗ //Ccor is fully faithful. It is
thus an equivalence of categories, since it is surjective on objects. It is also an equivalence
of symmetric monoidal categories, since it is a symmetric monoidal functor.
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The above proposition has the following version for strict version which can be proved
by closely adapting the argument in the proof of the above proposition:

A.10. Corollary. Let Bstr be the compact closed permutative category freely generated
by one object U ∈ Bstr. If C is a compact closed permutative category, then the evaluation
functor

eU : [Bstr, C]str⊗ // C

defined by putting evU(F ) := F (U) takes its values in the core of C. Moreover, the induced
functor

e′U : [Bstr, C]str⊗ // Ccor

is an equivalence of categories, where [Bstr, C]str⊗ denotes the category of strict symmetric
monoidal functors from Bstr to C and monoidal natural transformations between them.

B. Localization of model categories

In this appendix we recall the notion of a left Bousfield localization of a model category
and also recall an existence result of the same.

B.1. Definition. Let M be a model category and let S be a class of maps in M. The
left Bousfield localization of M with respect to S is a model category structure LSM on
the underlying category of M such that

1. The class of cofibrations of LSM is the same as the class of cofibrations of M.

2. A map f : A // B is a weak equivalence in LSM if it is an S-local equivalence,
namely, for every fibrant S-local object X, the induced map on homotopy function
complexes

f ∗ : MaphM(B,X) //MaphM(A,X)

is a weak homotopy equivalence of simplicial sets. Recall that an object X is called
fibrant S-local if X is fibrant in M and for every element g : K // L of the set S,
the induced map on homotopy function complexes

g∗ : MaphM(L,X) //MaphM(K,X)

is a weak homotopy equivalence of simplicial sets.

We recall the following theorem which will be the main tool in the construction of the
desired model category. This theorem first appeared in an unpublished work [Smi] but a
proof was later provided by Barwick in [Bar07].
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B.2. Theorem. [Bar07, Theorem 2.11] If M is a left-proper, combinatorial model cat-
egory and S is a small set of homotopy classes of morphisms of M, the left Bousfield
localization LSM of M along any set representing S exists and satisfies the following
conditions.

1. The model category LSM is left proper and combinatorial.

2. As a category, LSM is simply M.

3. The cofibrations of LSM are exactly those of M.

4. The fibrant objects of LSM are the fibrant S-local objects Z of M.

5. The weak equivalences of LSM are the S-local equivalences.

References

[Bar07] C. Barwick, On (enriched) left bousfield localization of model categories, arXiv:0708.
2067, 2007.

[BD95] John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum
field theory, Journal of Mathematical Physics 36 (1995), no. 11, 6073–6105.

[dBM17] Pedro Boavida de Brito and Ieke Moerdijk, Dendroidal spaces, Γ-spaces and the special
Barratt-Priddy-Quillen theorem, arXiv:1701.06459, 2017.

[DM18] P. Deligne and J. S. Milne, Tannakian categories,
https://www.jmilne.org/math/xnotes/tc2018.pdf, 2018.

[Hir02] Phillip S. Hirchhorn, Model categories and their localizations, Mathematical Surveys
and Monographs, vol. 99, Amer. Math. Soc., Providence, RI, 2002.

[Hov99] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, Amer.
Math. Soc., Providence, RI, 1999.

[Joy08] A. Joyal, Theory of quasi-categories and applications, http://mat.uab.cat/~kock/

crm/hocat/advanced-course/Quadern45-2.pdf, 2008.

[KL80] G. M. Kelly and M. L. Laplaza, Coherence for compactly closed categories, Jour. of
Pure and Appl. Alg. 19 (1980), 193–213.

[Lur09] J. Lurie, On the classification of topological field theories, Current developments in
mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280.

[ML98] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate
Texts in Mathematics, no. 5, Springer, New York, 1998, Republication of 1971 origi-
nal. MR:1712872. Zbl:0906.18001.

arXiv:0708.2067
arXiv:0708.2067
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf


COMPACT CLOSED CATEGORIES AND Γ-CATEGORIES 1261

[Sch99] S. Schwede, Stable homotopical algebra and Γ- spaces, Math. Proc. Camb. Soc. 126
(1999), 329.

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

[Sha] A. Sharma, Picard groupoids and Γ-categories, arXiv:2002.05811.

[Sha20] A. Sharma, Symmetric monoidal categories and Γ-categories, Th. and Appl. of cate-
gories 35 (2020), no. 14, 417–512.

[Smi] J. Smith, Combinatorial model categories, unpublished.

[Man10] M. A. Mandell, An inverse K-theory functor, Doc. Math. 15 (2010), 765–791.

[BKP89] R. Blackwell, G.M. Kelly, and A.J. Power, Two-dimensional monad theory, Journal
of Pure and Applied Algebra 59 (1989), no. 1, 1 – 41.

[Lac07] S. Lack, Homotopy-theoretic aspects of 2-monads., Journal of Homotopy and Related
Structures 2 (2007), no. 2, 229–260 (eng).

[Shab] A. Sharma, On cofibrations of permutative categories, arXiv:2102.12363.

Department of Mathematical Sciences
Kent State university
Kent, OH
Email: asharm24@kent.edu

This article may be accessed at http://www.tac.mta.ca/tac/

arXiv:2002.05811


THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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