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REMARKS ON COMBINATORIAL AND ACCESSIBLE MODEL
CATEGORIES

JIŘÍ ROSICKÝ

Abstract. Using full images of accessible functors, we prove some results about com-
binatorial and accessible model categories. In particular, we give an example of a weak
factorization system on a locally presentable category which is not accessible.

1. Introduction

Twenty years ago, M. Hovey asked for examples of model categories which are not cofi-
brantly generated. This is the same as asking for examples of weak factorization systems
which are not cofibrantly generated. One of the first examples was given in [1]: it is a
weak factorization system (L,R) on the locally presentable category of posets where L
consists of embeddings. The reason is that posets injective to embeddings are precisely
complete lattices which do not form an accessible category. Hence L is not cofibrantly
generated. Since then, the importance of accessible model categories and accessible weak
factorization systems has emerged, and, the same question appears again, i.e., to give an
example of a weak factorization system (L,R) on a locally presentable category which is
not accessible. Now, L-injective objects do not necessarily form an accessible category
but only a full image of an accessible functor. Such full images are accessible only under
quite restrictive assumptions (see [5]). But, for an accessible weak factorization system,
L-injective objects form the full image of a forgetful functor from algebraically L-injective
objects (see Corollary 3.3). Moreover, such full images are closed under reduced prod-
ucts modulo κ-complete filters for some regular cardinal κ (see Theorem 2.5). We use
this property to present a non-accessible factorization system on the category of Boolean
algebras having, again, L consisting of embeddings. Full images of accessible functors are
also used for showing that accessible weak factorization systems on a locally presentable
category are closed under small intersections (see Theorem 3.9). Another proof of this
fact is given in [10].

Given a cofibrantly generated weak factorization system (L,R) on a locally presentable
category K, [19] constructs a classWL and shows that, assuming Vopěnka’s principle,WL
is the smallest class of weak equivalences making K a model category with L as the class
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of cofibrations. It is still open whether Vopěnka’s principle is needed for this. Recently,
S. Henry [9] has radically generalized results of D.-C. Cisinski [6] and M. Olschok [12] and
has given mild assumptions under which Vopěnka’s principle is not needed. Using full
images of accessible functors we show that (K,L,WL) is a model category iff its transfinite
construction from [19] converges, i.e., it stops at some ordinal (see Theorem 4.7).

Finally, we show that weak equivalences in an accessible model category form a full
image of an accessible functor, which corrects an error in [17] (see Theorem 5.1).

Acknowledgement. We are grateful to J. Bourke, R. Garner and the referee for valuable
comments to this paper.

2. Full images

Let F : M → K be an accessible functor. Recall that this means that both M and
K are accessible and F preserves λ-directed colimits for some regular cardinal λ. The
full subcategory of K consisting of objects FM , M ∈ M is called a full image of F .
While accessible categories are, up to equivalence, precisely categories of models of basic
theories, full images of accessible functors are, up to equivalence, precisely categories of
structures which can be axiomatized using additional operation and relation symbols (see
[14]); they are also called pseudoaxiomatizable. In both cases, we use infinitary first-order
theories.

Let M be a full subcategory of a category K and K an object in K. We say that M
satisfies the solution-set condition at K if there exists a set of morphisms (K → Mi)i∈I
with Mi in M for each i ∈ I such that every morphism f : K → M with M in M
factorizes through some fi, i.e., f = gfi. M is called cone-reflective in K if it satisfies the
solution-set condition at each object K in K (see [2]). Given a set X of objects of K, we
say that M satisfies the solution set condition at X if it satisfies this condition at each
X ∈ X .

2.1. Proposition. ([16, Proposition 2.4]) The full image of an accessible functor is
cone-reflective in K.

2.2. Proposition. Let K be a locally presentable category, I a set and Xi ⊆ K, i ∈ I,
full images of accessible functors. Then ∪i∈IXi is a full image of an accessible functor.

Proof. Let Xi be full images of accessible functors Fi :Mi → K, i ∈ I. Then ∪i∈IXi is
a full image of an accessible functor F :

∐
i∈I Xi → K induced by Fi.

2.3. Notation. Let X be a class of morphisms in K. Then X will denote its 2-out-of-3
closure, i.e., the smallest class of morphisms such that

1. f, g ∈ X implies gf ∈ X ,

2. gf, f ∈ X implies g ∈ X and

3. gf, g ∈ X implies f ∈ X .
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We will consider these classes as full subcategories in K→.

2.4. Proposition. Let K be a locally presentable category and X ⊆ K→ a full image of
an accessible functor. Then X is a full image of an accessible functor.

Proof. X can be obtained from X by a sequence of pseudopullbacks. Let X0 = X . We
take composable pairs of X0 and their compositions form X1. Then we take those pairs
(g, f) for which f and the composition gf belong to X1. Their g’s form X2. Further we
take those pairs (g, f) for which g and gf belong to X2. Their f ’s form X3. By iterating
this construction, we get X = ∪i<ωXi, Thus the result will follow from [16, Lemma 2.6]
and Proposition 2.2 as soon as we show that X1, X2 and X3 are always full images of
accessible functors.

Assume that X is a full image of an accessible functor F : M → K→. We have the
pseudopullback

K→→ P2 //

P1

��

K→

dom

��
K→

cod
// K

where dom takes the codomain and dom the domain of a morphism. Consider the pseu-
dopullback

P P̄2 //

P̄1

��

M

dom·F

��
M

cod·F
// K

Let H : P → K→→ be the induced functor and comp : K→→ → K→ the composition
functor. Then X1 is the full image of the accessible functor comp ·H (we use [11, Theorem
5.1.6]).

Now, consider the pseudopullbacks

Q1
//

��

M

F

��
K→→ comp

// K→

and
P1

//

Ḡ

��

X

G

��
K→→ comp

// K→



REMARKS ON COMBINATORIAL AND ACCESSIBLE MODEL CATEGORIES 269

where G is the inclusion. Let H1 : Q1 → P1 be the induced functor. We get the accessible
functor Ḡ ·H1 whose full image consists of composable pairs having composition in X .

Next, consider the pseudopullbacks

Q2
//

��

M

F

��
K→→

P1

// K→

and
P2

//

¯̄G

��

X

G

��
K→→

P1

// K→

Let H2 : Q2 → P2 be the induced functor. We get the accessible functor ¯̄G ·H1 whose full
image consists of composable pairs having the first member in X . Since the intersection
of two full images of accessible functor is a full image of an accessible functor (see [16,
Lemma 2.6]), we get an accessible functor H : N → K→→ whose full image consists of
composable pairs having the composite and the first member in X . Then X2 is the full
image of P2 ·H : N → K→.

Analogously, we show that X3 is a full image of an accessible functor.

2.5. Theorem. Let F : M → K be a limit preserving κ-accessible functor where M
is locally κ-presentable. Then the full image of F is closed in K under reduced products
modulo κ-complete filters.

Proof. Let I be a set, Ki = F (Mi), i ∈ I and let F be a κ-complete filter on I.
Then the reduced product

∏
F Ki is a κ-directed colimit of projections KA

i → KB
i where

A ⊇ B ∈ F . Then K = F (M) where M =
∏
F Ki.

3. Accessible weak factorization systems

A functorial weak factorization system in a locally presentable category is called accessible
if the factorization functor F : K→ → K→→ is accessible (see [17]). Here, K→→ denotes the
category of composable pairs of morphisms. Any cofibrantly generated weak factorization
system in a locally presentable category is accessible.

3.1. Theorem. Let (L,R) be an accessible weak factorization system in a locally pre-
sentable category K. Then R is a full image of a limit-preserving accessible functor
M→K→ where M is locally presentable.

Proof.R is the full image of an accessible right adjoint Alg(R)→ K→ (see [17, Remarks
2.3(2) and 4.2(1)]).
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3.2. Remark. But R does not need to be accessible, see [17, Example 2.6]. Thus [17,
Remark 5.2 (1)] is not correct (I am indebted to M. Shulman for pointing this out).
Neither it is accessibly embedded in K2. Assuming the existence of a proper class of
almost strongly compact cardinals, R is preaccessible and preaccessibly embedded to K→;
see the proof of [16, Proposition 2.2]. The latter means that the embedding R → K2

preserves λ-directed colimits for some λ.

3.3. Corollary. Let (L,R) be an accessible weak factorization system in a locally pre-
sentable category K. Then L-Inj is a full image of a limit-preserving accessible functor
M→K where M is locally presentable.

Proof. An object K is L-injective if and only if K → 1 is in R. The monad R restricts
to a monad R on K ↓ 1 and yields an accessible right adjoint Alg(R)→ K. Now, L-Inj is
the full image of this restriction.

The next result improves Proposition 3.4 in [16].

3.4. Theorem. Let (L,R) be an accessible weak factorization system in a locally pre-
sentable category K. Then L is a full image of an colimit-preserving (accessible) functor
M→K→ where M is locally presentable.

Proof. L is the full image of an accessible functor Coalg(L) → K→ (see [17, Remarks
2.3(2) and 4.2(1)]).

3.5. Remark. If (L,R) is a cofibrantly generated weak factorization system in a lo-
cally presentable category then L does not need to be accessible. An example is given
in [16, Example 3.5(2)] under the axiom of constructibility. In this example, L is acces-
sible assuming the existence of an almost strongly compact cardinal. We do not know
any example of non-accessible L in ZFC. Example [16] 3.3(1) is not correct because
split monomorphisms are not cofibrantly generated in posets (this was pointed out by
T. Campion).

3.6. Remark. A weak factorization system (L,R) is accessible iff Coalg(L) is locally
presentable, which is a kind of smallness property of Coalg(L). On the other hand,
cofibrant generation is a smallness property of L. It does not seem that accessibility is a
smallness property of L. For instance, L in the next Example is finitely accessible.

3.7. Examples. (1) Let L be the class of regular monomorphisms (= embeddings) in
the category Bool of Boolean algebras. Then L-injective Boolean algebras are precisely
complete Boolean algebras and Bool has enough L-injectives (see [8]). Thus (L,L2)
is a weak factorization system (see [1, Proposition 1.6]). We will show that this weak
factorization system is not accessible. Following Theorem 2.5 and Corollary 3.3, it suffices
to show that complete Boolean algebras are not closed under reduced products modulo
κ-complete filters for any regular cardinal κ. I have learnt the following example from
M. Goldstern.

Let I be a set of cardinality κ and F be the filter of subsets X ⊆ I such that the
cardinality of I \X is < κ. Then the reduced product

∏
F 2 is isomorphic to the Boolean
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algebra U(κ) = P(I)/[κ]<κ where [κ]<κ is the ideal J consisting of subsets of cardinality
< κ. Let Ai, i < κ be pairwise disjoint subsets of I of cardinality κ. Let X be an upper
bound of Ai, i < κ in U(κ). Choose ai ∈ Ai, i < κ. Then X \ {ai| i < κ} is an upper
bound of Ai in U(κ) smaller than X. Hence Ai, i < κ do not have a supremum in U(κ).

(2) Let L be the class of regular monomorphisms (= embeddings) in the category Pos
of posets. Then L-injective posets are precisely complete lattices and Pos has enough
L-injectives (see [3]). Since the forgetful functor Bool → Pos preserves products and
directed colimits, complete lattices are not closed under reduced products modulo κ-
complete filters for any regular cardinal κ. It suffices to take the same reduced products
as in (1).

3.8. Remark. We can order weak factorization systems: (L1,R1) ≤ (L2,R2) if L1 ⊆ L2.
Following [17, Theorem 4.3], accessible weak factorization systems have small joins: if Li
is generated by Ci, i ∈ I then ∪i∈ILi is generated by ∪i∈ICi. S. Henry [10, Theorem B.8]
showed that they have small meets. We will give another proof.

3.9. Theorem. Let (Li,Ri), i ∈ I be a set of accessible weak factorization systems in a
locally presentable category. Then (∩i∈ILi,R) is an accessible weak factorization system.

Proof. Let P be the pseudopullback of all forgetful functors Coalg(Li)→ K→ (see [17]).
Then P is locally presentable and the full image of U : P → K→ is L = ∩i∈ILi (see
[16, Lemma 2.6]). There is a regular cardinal λ such that P is locally λ-presentable
and U preserves λ-filtered colimits. Let C be the (representative) full subcategory of λ-
presentable objects in P . Following [17, Theorem 4.3], C� = P� and thus, for R = |P�|,
(2R,R) is an accessible weak factorization system (see [17, Remark 3.6 and Theorem
4.3]. It remains to show that 2R = L.

Since
Ri = |Coalg(Li)

�| ⊆ |P�| = R,

we have ∪i∈IRi ⊆ R. Hence

�R ⊆ �(∪i∈IRi) ⊆ ∩i∈I�Ri ⊆ L.

On the other hand,
L = |P| ⊆ |�(P�)| ⊆ �|P�| ⊆ �R.

3.10. Remark. Another proof was suggested by the referee. Consider the weak factor-
ization system (

∏
i Li,

∏
iRi) on KI . This is clearly accessible and the diagonal functor

∆ : K → KI is a left adjoint. Then (∩iLi,R) is the left-lifting of (
∏

i Li,
∏

iRi) and,
following [7, Theorem 2.6], it is an accessible weak factorization system.
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4. Combinatorial model categories

4.1. Convention. In what follows, (L,R) will be a weak factorization system in a locally
presentable category K cofibrantly generated by I.

Denote by Comb(L) the class of all combinatorial model structures with L as cofibra-
tions. We can order it by (L,W1) ≤ (L,W2) iff W1 ⊆ W2.

4.2. Proposition. ([16, Corollary 4.7]) Comb(L) has small meets given as

∧i∈I(L,Wi) = (L,∩i∈IWi).

4.3. Remark. (1) Consider (L,Wi) ∈ Comb(L) where I 6= ∅ such that (L,Wi0) is
left proper for some i0 ∈ I. Each Wi ∩ L is cofibrantly generated by a set Si. Put
S = ∪i∈I(Si) \ Si0 . Then the left Bousfield localization of (L,Wi0) at S, yields the join
∨i∈I(L,Wi) in Comb(L).

(2) Assuming Vopěnka’s principle, Comb(L) is a large complete lattice, i.e., it has
all joins and meets. In particular, Comb(L) has a smallest element. There are given as
∨i∈I(L,Wi) = (L,∪i∈IWi) and (∧i∈I(L,Wi) = (L,∩i∈IWi). This follows from Smith’s
theorem because, assuming Vopěnka’s principle, every full subcategory of a locally pre-
sentable category has a small dense subcategory. Thus it is cone-reflective. Note that
Vopěnka’s principle is equivalent to the statement that any full subcategory of a locally
presentable category is cone-reflective (see [2, Corollary 6.7], or [18, Theorem 4.2]).

4.4. Definition. ([19, Definition 2.1]) Let WL be the smallest class W of morphisms
such that

1. R ⊆ W,

2. W satisfies the 2-out-of-3 condition, and

3. L ∩W is closed under pushout, transfinite composition and retracts.

If (L,WL) is a model structure it is called left-determined.

4.5. Remark. (1) Retracts are meant in the category of morphisms K→. [19] assumes
in (2) that W is closed under retracts. But this can be omitted following [13] (or Lemma
1 in Model category, nLab). On the other hand, we assume it in (3).

In what follows cof(X ) will denote the closure of X under pushout, transfinite compo-
sition and retracts while cell(X ) the closure under pushout and transfinite composition.

(2) If (L,WL) is a combinatorial model category, it is the smallest element in Comb(L).
It always happens assuming Vopěnka’s principle. But, without it, we do not know whether
the smallest element in Comb(L) might exist without being equal to WL.

Recently, S. Henry [9] proved the existence of a left-determined model structure in
ZFC under mild assumption.
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4.6. Notation. We put W0 = R, Wi+1 = Wi if i is an even ordinal, Wi+1 = cof(L ∩
Wi) ∪Wi if i is an odd ordinal and Wi = ∪j<iWj if 0 < i is a limit ordinal. Recall that
any limit ordinal is even and i+ 1 is odd iff i is even. ThenWL = ∪iWi where i runs over
all ordinals.

We say that Wi stops if WL =Wi for an ordinal i.

4.7. Theorem. (L,WL) is a combinatorial model category iff Wi stops.

Proof. I. Assume that (L,WL) is a combinatorial model structure. Then L ∩ WL is
cofibrantly generated by a set S. There is an odd ordinal i such that S ⊆ Wi. Thus
L ∩WL ⊆ Wi+1. Hence WL ⊆ Wi+2 and the construction stops.

II. Assume that Wi stops. At first, we replace Wi by W∗i which are full images of
accessible functors. They are defined in the same way as Wi for i even. R is a full
image of an accessible functor (following [16, Proposition 3.3]) and 2-out-of-3 closure
and union keep full images of accessible functors (see Proposition 2.4 and Proposition
2.2). Let i be odd. We will follow the proof of Smith’s theorem given in [4]. Since Wi

is cone-reflective (see Proposition 2.1), satisfies the 2-out-of-3 property and contains R,
[4, Lemma 1.9] produces a set Ji from [4, Lemma 1.8] for L and Wi. This means that
Ji ⊆ L∩Wi and every f ∈ Wi can be factored as hg with g ∈ cell(Ji) and h ∈ R. We put
W∗i+1 = cof(Ji) ∪W∗i . Then W∗i+1 ⊆ Wi+1. Following Theorem 3.4 and Proposition 2.2,
W∗i+1 is a full image of an accessible functor. Take f ∈ Wi and its expression as f = hg
with g ∈ cell(Ji) and h ∈ R. T Since g ∈ W∗i+1 and h ∈ R ⊆ W∗i , we have f ∈ W∗i+2.
Hence Wi ⊆ W∗i+2. Consequently, W = ∪iW∗i .

Since Wi stops, W∗i stops as well. Hence W is a full image of an accessible functor
and thus it is cone-reflective (see Proposition 2.1). Smith’s theorem implies that (L,W)
is a combinatorial model category.

5. Accessible model categories

A model structure (C,W) on a locally presentable category K is accessible if both (C, C�)
and (C ∩W , (C ∩W)�) are accessible weak factorization systems.

5.1. Theorem. Let (C,W) be an accessible model structure on a locally presentable cat-
egory K. Then W is a full image of an accessible functor.

Assuming the existence of a proper class of almost strongly compact cardinals, W is
preaccessible and preaccessibly embedded to K→.

Proof. The first claim is what [17, Remark 5.2(2)] proves, using [16, Lemma 2.6] and
Theorem 3.1. The second claim follows from [16, Proposition 2.2].

5.2. Remark. To correct [17, Proposition 5.3], one has to replace (4) by
(4’) W is preaccessible and preaccessibly embedded to K→.
Indeed, in the proof, P is preaccessible and preaccessibly embedded to K→ and thus it

has a small dense subcategory J of λ-presentable objects. This is what the proof needs.
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Note that we can apply [17, Lemma 3.3] because the forgetful functor P → K→ preserves
λ-directed colimits.
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