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A NOTE ON IMAGES OF COVER RELATIONS

J. R. A. GRAY

Abstract. For a category C, a small category I, and a pre-cover relation ⊏ on C we
prove, under certain completeness assumptions on C, that a morphism g : B → C in the
functor category CI has an ⊏I-image, where ⊏I is the pre-cover relation on CI induced
by ⊏, as soon as each component of g has an ⊏-image. We then apply this to show that
if a pointed category C is: (i) algebraically cartesian closed; (ii) exact protomodular
and action accessible; or (iii) admits normalizers, then the same is true of each functor
category CI with I finite. In addition, our results give explicit constructions of ⊏I-images
in functor categories using limits and ⊏-images in the underlying category. In particular,
they can be used to give explicit constructions of both centralizers and normalizers
in functor categories using limits and centralizers or normalizers (respectively) in the
underlying category.

Introduction

Perhaps the most natural way to extend the definition of commuting elements of a group
to homomorphisms into a group, is to say that a pair of group homomorphisms f : A → C
and g : B → C commute if each element in the image of f commutes with each element
in the image of g. Moreover, one can show, directly or as a special case of S. Mac Lane’s
characterization of bifunctors (see [15]), that this condition is equivalent to the existence
of a morphism φ : A×B → C making the diagram

A
⟨1,0⟩ //

f //

A×B

φ

��

B
⟨0,1⟩oo

gooC

(1)

in which ⟨1, 0⟩ and ⟨0, 1⟩ are the homomorphisms defined by ⟨1, 0⟩(a) = (a, 1) and
⟨0, 1⟩(b) = (1, b) respectively, commute. This last formulation was used by S. Huq in
[11] to study commutativity and other closely related notions in a categorical context,
close to the more recent semi-abelian context introduced by G. Janelidze, L. Márki,
and W. Tholen in [12]. Later, Z. Janelidze [14] introduced and studied relations on
the morphisms of a category called cover relations and of which the commutes relation
described above is an example. It was shown that other similar kinds of cover relations
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arise from special kinds of monoidal structures which are called monoidal sum structures.
In addition, it was shown that cover relations also arise from factorization systems on
categories, from which some of terminology and notation is derived.

Let us recall briefly what a cover relation is and how both these kinds of cover relations
arise. A pre-cover relation ⊏ is a relation on the class of morphisms of a category C such
that if f ⊏ g then the codomain of f and g are equal. A pre-cover relation ⊏ is a cover
relation if it satisfies: (i) if f ⊏ g and the composite hf is defined, then hf ⊏ hg; (ii) if
f ⊏ g and the composite fe is defined, then fe ⊏ g. Let (C,⊗, I, α, ρ, λ) be a monoidal
category, such that I is an initial object in C and for each A and B the morphisms

A⊗ I
1A⊗!B// A⊗B I ⊗B,

!A⊗1Boo

where !A and !B are the unique morphism from I to A and B respectively, are jointly
epimorphic. The induced relation ⊏ is defined by requiring, for a pair of morphisms
f : A → C and g : B → D, that f ⊏ g whenever C = D and there exists a morphism
φ : A⊗B → C making the diagram

A
ρA //

f ..

A⊗ I
1A⊗!B// A⊗B

φ

��

I ⊗B,
!A⊗1Boo B

λBoo

gppC

commute. On the other hand given a factorization system (E ,M) on a category C the
induced relation ⊏ on the morphisms of C is defined by requiring f ⊏ g whenever f
and g have the same codomain and if g = mv with m in M, then there exists u such
that f = mu. One of the aims of [14] was to show that under suitable conditions, both
factorization systems and monoidal structures can be recovered from their induced cover
relations.

Let us also recall that, given a cover relation ⊏ on a category C, the ⊏-image of a
morphism g : B → C can be defined as the terminal object in the full subcategory of (C ↓
C) with objects (A, f) such that f ⊏ g. A simple observation in recovering a factorization
system (E ,M) on a category C from its induced cover relation ⊏ is to note that if the class
M of a factorization system (E ,M) consists of monomorphisms, then M is the class of all
morphisms f : A → C such that (A, f) is the ⊏-image of some morphism g. In this case
it turns out that if (A, f) is the ⊏-image of a morphism g : B → C, then f is the image
of g with respect to the factorization system. Given a factorization system (E ,M) on a
category C, such that M consists of monomorphisms, it is easy to observe that for each
category I the induced factorization system (E I,MI) on the functor category CI, defined
componentwise, has MI consisting of monomorphisms. This means that the induced
cover relation ⊏I on CI, defined componentwise, admits images since it is also the cover
relation induced by (E I,MI), and furthermore, its images are computed componentwise.
However, it is not the case that if the underlying cover relation admits images, then images
necessarily exist for the induced cover relations on each functor category see Example 2.4
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below, nor that when they do exist they are computed componentwise. Our aims here
are: (a) to prove that if C and I are categories and ⊏ is a cover relation (more generally a
pre-cover relation satisfying condition (ii) of Definition 1.1 below) on C admitting images,
then, under certain completeness assumptions on C, the induced cover relation (pre-cover
relation) ⊏I on CI admits images; (b) to apply this result to prove that several categorical
algebraic conditions lift from a category to its functor categories. In particular, we show
that for a semi-abelian category C action accessibility, algebraically-cartesian closedness,
and the existence of normalizers, lift to functor categories CI with I finite. In fact our
results hold more generally see Corollary 2.3 for a precise formulation.

1. Preliminaries and examples

In this section we recall the basic background on (pre-)cover relations that we will need
in the next section. In addition, we give examples of (pre-)cover relations (one of which
is new), to which we will apply our main theorem of the following section, to obtain
the above mentioned results showing that certain categorical algebraic conditions lift to
functor categories.

We begin by recalling the following two definitions and proposition which essentially
appear in [14].

1.1. Definition. A pre-cover relation ⊏ is a relation on the class of morphisms of a
category C, such that if f ⊏ g then the codomains of f and g are equal. A pre-cover
relation ⊏ is a cover relation if it satisfies:

(i) if f ⊏ g and the composite hf is defined, then hf ⊏ hg;

(ii) if f ⊏ g and the composite fe is defined, then fe ⊏ g.

1.2. Definition. Let ⊏ be a pre-cover relation on a category C. The image of a mor-
phism g : B → C is terminal object in the full subcategory of (C ↓ C) with objects (A, f)
such that f ⊏ g.

We will denote the ⊏-image of g by (Im⊏(g), im⊏(g)).

1.3. Proposition. Let ⊏ be a pre-cover relation on C satisfying condition (ii) of Defini-
tion 1.1 and let g : B → C be a morphism in C. If g admits an image, then the morphism
im⊏(g) is a monomorphism.

Let us recall the necessary background in order to give the two examples of cover
relations mentioned above. For pointed category C we write 0 for the zero object as well
as for each zero morphism between each pair of objects. For objects A and B we write
π1 : A × B → A and π2 : A × B → B for the first and second product projections
(whenever they exist), and for a pair of morphisms f : W → A and g : W → B we write
⟨f, g⟩ : W → A× B for the unique morphism with π1⟨f, g⟩ = f and π2⟨f, g⟩ = g. Recall
that a pointed category with finite limits is called unital [2], if for objects A and B the
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morphisms ⟨1, 0⟩ : A → A × B and ⟨0, 1⟩ : B → A × B are jointly extremal-epimorphic.
A pair of morphisms f : A → C and g : B → C are said to (Huq) commute if there exists
a (necessarily unique) morphism φ : A×B → C making the diagram (1) commute.

1.4. Example. The commutes relation on a unital category is a cover relation. (In fact
it is the cover relation induced by the cartesian monoidal structure on C). The image of
a morphism g with respect to this cover relation is called the centralizer of g.

1.5. Example. Let C be a pointed category. For morphisms f : A → X and g : B → Y
in C we say that f normalizes g (and write f ▷ g) if X = Y , and there exists a morphism
u : A → C, a normal monomorphism v : B → C, and monomorphism h : C → X making
the diagram

A

f   

u // C

h
��

B

g~~

voo

X

commute. Note that in this case, it follows that g is a monomorphism and that h nor-
malizes g too since h = h1C and g = hv. The normalizes relation is a pre-cover
relation satisfying condition (ii) of Definition 1.1 and the image of a monomorphism
g : B → C is the normalizer of g (in the sense of [9]). Indeed, if g : B → X
is a monomorphism and (Im▷(g), im▷(g)) is the image of g, then there exists a mor-
phism u : Im▷(g) → C, a monomorphism h : C → X and a normal monomorphism
v : B → C such that im▷(g) = hu and g = hv. But, since h normalizes g it follows that
u : (Im▷(g), im▷(g)) → (C, h) being a monomorphism with domain a terminal object is an
isomorphism.

1.6. Remark. The pre-cover relation in the previous example can be enlarged to become
a cover relation by dropping the requirement that h be a monomorphism, but requiring
that g be a monomorphism. The idea of considering this cover relation (in the ideal
determined context [13]) arose in discussions with Z. Janelidze and led to considering the
above pre-cover relation. Images with respect to this larger cover relation still produce
normalizers (but with a stronger universal property). The difference disappears as soon
as the regular image of a normal monomorphism (exists) and is normal. By further
replacing the requirement that v be a normal monomorphism by that it is a Bourn-normal
monomorphism, one produces a cover relations whose images recover, in the protomodular
context [3], the normalizer defined in [5].

2. The main results

Let ⊏ be a pre-cover relation on a category C. For a category I, the pre-cover relation
⊏ induces a pre-cover relation ⊏I on CI, which is defined componentwise. Note that if ⊏
satisfies condition (i) or (ii) of Definition 1.1 then so does ⊏I. We have:
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2.1. Theorem. Let I be a category and let C be a category with pullbacks and with wide
pullbacks of families of monomorphisms indexed by the morphisms of I. Let ⊏ be a pre-
cover relation on C satisfying condition (ii) of Definition 1.1. A morphism g : B → C
in the functor category CI, admits an image with respect to ⊏I on CI if each component
of g admits an image with respect to ⊏. Moreover, when this is the case, for each X in
I the object (Im⊏I(g)(X), im⊏I(g)X) is the product in the comma category (C ↓ C(X)) of
a certain family (Wi, wi)i∈I where I is the collection of all morphisms with domain X.
This family consists of monomorphisms wi : Wi → C(X) obtained for each i : X → Y in
I by pulling back im⊏(gY ) along C(i), as displayed in the lower square of the diagram

Im⊏I(g)(X)
im⊏I (g)X

**
vi

''
Wi

wi //

ĩ
��

C(X)

C(i)

��
Im⊏(gY )

im⊏(gY )
// C(Y ).

(2)

Proof. Let g : B → C be morphism in CI. We begin by showing that the above
mentioned construction produces a morphism f : A → C which we then show to be the
image of g. For each i : X → Y in I, let wi : Wi → C(X) be the preimage of im⊏(gY )
along C(i) as displayed in (2). For each object X in I, let vi : A(X) → Wi be the ith
projection of the wide pullback of all wi where i is a morphism with domain X, and let
fX = w1Xv1X . Now let i : X → Y be a morphism in I. It is easy to check that for each
morphism j : Y → Z there exists a unique morphism ī : Wji → Wj making the right
hand square in the diagram

A(X)

A(i)

��

vji //Wji

wji //

ī
��

C(X)

C(i)

��
A(Y )

vj //Wj wj

// C(Y )

commute (in fact making it a pullback). It follows that there exists a unique morphism
A(i) : A(X) → A(Y ) such that the left hand diagram above commutes for each such
j. These assignments make A an object and f : A → C a morphism in CI. Since, by
definition, for each X in I the diagram

A(X) v1X
//

fX

**
W1X w1X

//

1̃X
��

C(X)

C(1X)

��
Im⊏(gX)

im⊏(gX)
// C(X).
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commutes, we see that fX = im⊏(gX)1̃Xv1X and so fX ⊏ gX and f ⊏ g. Let f ′ : A′ → C
be a morphism in CI such that f ′ ⊏ g, we need to show that there exists a unique
morphism u : A′ → A such that fu = f ′. Since f ′

Y ⊏ gY , for each morphism i : X → Y ,
there exists a unique morphism uY : A′(Y ) → Im⊏(gY ) such that the solid arrows in the
diagram

A′(X)
v′i

//

f ′
X

**

A′(i)
��

Wi

ĩ
��

wi

// C(X)

C(i)
��

A′(Y )
uY //

f ′
Y

55Im⊏(gY )
im⊏(gY )// C(Y )

commute, and hence there exists a unique morphism v′i : A
′(X) → Wi making the entire

diagram commute. It now follows that there exists a unique morphism uX : A′(X) →
A(X) such that viuX = v′i for each i with domain X and hence such that fXuX = f ′

X .
Noting that the components of f are monomorphisms it follows that the morphisms uX are
components of a (unique) natural transformation u : A′ → A with fu = f ′, as required.

2.2. Remark. It seems worth while pointing out that the existence of induced images in
functor categories can be deduced, under additional assumptions, from standard categorical
constructions.

Suppose that I and C are categories and let U : I0 → I be the functor including the
objects of I as a discrete category in I. Recall that the induced functor CU : CI → CI0

has right adjoint given by taking right Kan extensions, and these Kan extensions are
computed pointwise when C admits certain products (for instance when C admits products
of families whose indexing set is bounded by the morphisms of I). Recall also that if C has
pullbacks and the functor CU has a right adjoint, then for each C in CI the induced functor
CU

C : (CI ↓ C) → (CI0 ↓ CU) also has a right adjoint. Note that each functor CU
C also has

a right adjoint (although the functor CU may not) if C admits wide pullbacks of families
whose indexing set is bounded by the morphisms of I. Now suppose that g : B → C is a
morphism in CI such that gX admits an image for each X in I, and CU

C has right adjoint
R. One easily checks that the image of gU in CI0 is computed componentwise and that
(Im⊏I(g), im⊏I(g)) = R(Im⊏I0 (gU), im⊏I0 (gU)).

Recall that a category C is semi-abelian [12] if it is pointed, exact [1], protomodular
[3] and has binary coproducts.

2.3. Corollary. Let C be a finitely complete category and let I be a finite category. If
C is

• unital and algebraically cartesian closed [4] (see also [7, 8] where this notion is first
considered but unnamed), or

• semi-abelian (more generally pointed exact protomodular) and action accessible [6],
or
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• admits normalizers [9],

then the same is true of the functor category CI.

Proof. Recall that: (i) a unital category is algebraically cartesian closed if and only
if it admits centralizers (in the sense above), Proposition 1.2 of [4]; (ii) a pointed exact
protomodular category is action accessible if and only if for each normal monomorphism
n : S → C the normalizer of ⟨n, n⟩ : S → C × C exists, Theorem 3.1 of [10], (see also
[5]). The claim now follows from the previous theorem applied to the pre-cover relations
in Examples 1.4 and 1.5. Just note that the conditions of being pointed, unital, exact,
and protomodular easily lift to functor categories.

We end the paper by giving a simple example showing that images don’t always lift
to functor categories.

2.4. Example. Let C be the poset with underlying set with distinct elements {A,A′, B,B′, C, C ′}
and with partial order generated from

{(A,A′), (A,C), (B,B′), (B,C), (A′, C ′), (B′, A′), (C,C ′)},

considered as a category. For convenience, we introduce labels for some of the morphisms
as shown in the diagram

A

α
��

f // C

γ
��

B
goo

β
��

A′ f ′
// C ′ B′.

g′oo

u

ff

Now let ⊏= {(θ, ϕ) ∈ C2
1 | cod(θ) = cod(ϕ)} \ {(γ, g′), (1C′ , g′)} where C1 is the set of

morphisms of C, and cod is the codomain map. It is easy to check that ⊏ is a cover
relation. The main point is to note that if (θ, ϕ) is in ⊏, hϕ = g′ and h ̸= 1C′, then
either h = f ′ and ϕ = u, or h = g′ and ϕ = 1B′ and hence in either case hθ = f ′σ for
some σ. It straightforward to check that the ⊏-image of a morphism ϕ is (cod(ϕ), 1codϕ),
unless ϕ = g′ in which case its ⊏-image is (A′, f ′). However, the morphism (g, g′) :
(B,B′, β) → (C,C ′, γ) in C2, the category of morphisms of C, has no image with respect
to ⊏2. To see why, just note that the full subcategory of (C2 ↓ (C,C ′, γ)), with objects all
objects ((X,X ′, χ), (p, p′)) in (C2 ↓ (C,C ′, γ)) such that ((p, p′), (g, g′)) ∈⊏2, considered as
poset, has two maximal elements ((A,A′, α), (f, f ′)) and ((B,A′, uβ), (g, f ′)) (and hence
no largest element).
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[7] J. R. A. Gray, Algebraic exponentiation and internal homology in general categories,
Ph.D. thesis, University of Cape Town, 2010.

[8] J. R. A. Gray, Algebraic exponentiation in general categories, Applied Categorical
Structures 20(6), 543–567, 2012.

[9] J. R. A. Gray, Normalizers, centralizers and action representability in semi-abelian
categories, Applied Categorical Structures 22(5-6), 981–1007, 2014.

[10] J. R. A. Gray, Normalizers, centralizers and action accessibility, Theory and Appli-
cations of Categories 30(12), 410–432, 2015.

[11] S. A. Huq, Commutator, nilpotency and solvability in categories, Quarterly Journal
of Mathematics 19(1), 363–389, 1968.

[12] G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, Journal of Pure and
Applied Algebra 168, 367–386, 2002.

[13] G. Janelidze, L. Márki, W. Tholen, and A. Ursini, Ideal determined categories,
Cahiers de topologie et geométrie différentielle catégoriques 51, 115–127, 2010.
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Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Susan Niefield, Union College: niefiels@union.edu
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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