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LINEARIZING COMBINATORS

ROBIN COCKETT AND JEAN-SIMON PACAUD LEMAY

ABSTRACT. In 2017, Bauer, Johnson, Osborne, Riehl, and Tebbe (BJORT) showed
that the abelian functor calculus provides an example of a Cartesian differential category.
The definition of a Cartesian differential category is based on a differential combinator
which directly formalizes the total derivative from multivariable calculus. However, in
the aforementioned work the authors used techniques from Goodwillie’s functor calculus
to establish a linearization process from which they then derived a differential combina-
tor. This raised the question of what the precise relationship between linearization and
having a differential combinator might be.

In this paper, we introduce the notion of a linearizing combinator which abstracts lin-
earization in the abelian functor calculus. We then use it to provide an alternative
axiomatization of a Cartesian differential category. Every Cartesian differential cate-
gory comes equipped with a canonical linearizing combinator obtained by differentiation
at zero. Conversely, a differential combinator can be constructed a la BJORT when
one has a system of partial linearizing combinators in each context. Thus, while lin-
earizing combinators do provide an alternative axiomatization of Cartesian differential
categories, an explicit notion of partial linearization is required. This is in contrast to
the situation for differential combinators where partial differentiation is automatic in
the presence of total differentiation. The ability to form a system of partial linearizing
combinators from a total linearizing combinator, while not being possible in general, is
possible when the setting is Cartesian closed.

1. Introduction

Cartesian differential categories, introduced by Blute, Cockett, and Seely in [4], are left ad-
ditive categories which are equipped with a differential combinator D which formalizes the
derivative from multivariable calculus over Euclidean spaces. For every map f: A— B,
the differential combinator produces its derivatives D[f] : A x A— B, which is linear in
its second argument. The notion of linearity in a Cartesian differential category is defined
with respect to the differential combinator and often coincides with the classical notion
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from linear algebra. In particular, linearity in a Cartesian differential category always im-
plies additivity. That said, there are examples of Cartesian differential categories where
a map may be additive yet not linear. There is no shortage of examples of Cartesian dif-
ferential categories: the category of Euclidean spaces and real smooth functions between
them, the Lawvere Theory of polynomials over a commutative rig, any category with
finite biproducts, cofree Cartesian differential categories [11, 23], the coKleisli category
of a differential category [2, 5] which include models such as convenient vector spaces
6, 21, 25], and categorical models of the differential A-calculus [7, 12, 15, 24].

Abelian functor calculus was developed by Johnson and McCarthy in [20], based on
Goodwillie’s functor calculus [16, 17, 18]. In [1], Bauer, Johnson, Osborne, Riehl, and
Tebbe (BJORT) showed that, using the abelian functor calculus, the homotopy category
of the category of abelian categories is a Cartesian differential category. The differential
combinator V(—) (referred to as the directional derivative in [1, Section 6]) is defined as
[1, Definition 6.1] VF(X,V) := D1 (F(X & —))(V)!, where D;(G) is the linearization (or
linear approximation) of a functor G [1, Section 5].

From the Cartesian differential category perspective, the BJORT construction is back-
wards. In any Cartesian differential category it is always possible to define the notion of
a linear map and, indeed, to linearize a map using the differential combinator. However,
BJORT constructed their differential combinator using an already established notion of
linear map and linearization. The goal of this paper is to reverse engineer BJORT’s con-
struction by abstracting the notion of linear approximation D; from the (abelian) functor
calculus. To this end, we introduce the notion of a linearizing combinator and show
that every Cartesian differential category comes equipped with a canonical system of lin-
earizing combinators built from the differential combinator. Furthermore, we show that
the differential combinator can be reconstructed a la BJORT using such a system of lin-
earizing combinators. In this manner, we show that linearizing combinators do, in fact,
provide an alternative axiomatization of Cartesian differential categories.

To better understand the BJORT construction, let us consider classical multivariable
calculus. Given a smooth function f : R — R, linearization L[f] : R—=R is the best
R-linear function which is closest to f. This is given by the first degree term in its
Maclaurin series expansion (i.e its Taylor series expansion at 0), that is, L[f](z) = f'(0)z,
which is indeed an R-linear function. In terms of the differential combinator, its differential
D[f] : RxR—R is defined as D[f](z,y) = f'(x)y, and so L[f](x) = D[f](0, z). Therefore,
in an arbitrary Cartesian differential category, the linearizing combinator L is defined by
first applying the differential combinator and then evaluating the derivative at zero in its
first argument:

A—L B
Apply the differential combinator Ax A il B
Evaluate at zero in the first argument L[f]:= A 00 ax a2 p

'Here the second argument is the linear argument.
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We can use this to derive an abstract notion of a linearizing combinator, L, for arbitrary
Cartesian left additive categories, which satisfies axioms which parallel those of the dif-
ferential combinator. These include a sort of chain rule for linearizing a composite and
the fact that the linearization of a map is always additive. In particular, one can then
show that D, from abelian functor calculus, is an example of such an abstract linearizing
combinator.

To define a differential combinator from linearization, the ability to perform lineariza-
tion in context is required. We refer to linearization in context as partial linearization
because differentiation in context is usually called partial differentiation. Consider the
classical limit definition of the derivative of a smooth function f : R —R:

D{f](z,y) = lim flx+ty) — f(z)

t—0 t

Note that if we evaluate at x = 0, then we obtain an expression of L[f] in terms of a limit:

Lifl() = DIfI(0.) = tim 2T

For a fixed z, define g, : R—=R to be the smooth function defined as g,(y) = f(z + ).
Then:

DUfl(ry) = lim LEFLN I _ g elty) = 9.0)

t—=0 t t—>0 t

= L{ga](y)

Therefore, the derivative of f is the linearization of the function g,(y) = f(x 4+ y) in the
variable y. In other words, if we let g(x,y) = f(x+y), then D[f] is the partial linearization
of g(x,y) in its second argument while keep the first argument constant. We may write
this directly as D[f](z,y) = L[z — f(z + 2)](y) where we are viewing z — f(z + 2) as a
function in the variable context x. This is precisely how BJORT define their differential
combinator. In fact, every differential combinator in a Cartesian differential category
can be defined in this fashion. However, there is a caveat: in an arbitrary Cartesian
left additive category, it is not always possible to define partial linearization from total
linearization. Indeed, for example, C! functions have a total linearization combinator but
do not have partial linearization since this would induce a differential combinator, which
cannot be the case since the derivative of a C! function is not necessarily a C! function (see
Example 5.15 below for more details). Thus, partial linearization, that is linearization in
context, must be assumed.

From a categorical perspective, the notion of context is captured by simple slice cat-
egories [19], where a map A— B in the simple slice is a map of type C' x A— B in
the base category. Maps in the simple slice category over an object C' are said to be in
“context C”. Asking that a Cartesian left additive category has partial linearization is
requiring that it comes equipped with a system of linearizing combinators and is the
requirement that every simple slice category come equipped with a linearizing combinator
LY. Thus, for amap f : C x A—=B, L°[f] : C x A— B is its linearization in context C,
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and these linearizing combinators are compatible with one another. For example, given a
map of type C' x A— B, we require that partially linearizing A then C'is the same as
partially linearizing C' then A. For the abelian functor calculus, BJORT’s linearization
of a multivariable functor at a single variable by holding all other inputs constant, Dj, is
precisely a linearizing combinator in context. For a Cartesian differential category, every
simple slice category is again a Cartesian differential category where the differential com-
binator in context is given by partial differentiation. As such, every Cartesian differential
category comes equipped with a canonical system of linearizing combinators. Conversely,
to define a differential combinator from partial linearization, one must first be able to
precompose by a map which captures addition. In a Cartesian left additive category, for
every object A, there is a map @4 := mo+m : A X A— A which makes A a commutative
monoid. This allows the differential combinator D to be defined on a map by linearizing
in context that map precomposed by @4, thus, generalizing the construction above.

A ! B

Precompose by addition Ax A oA A ! B

LA AS]

Linearize in the second argument D[f] .= Ax A B

Furthermore, these constructions are inverses of each other, and so there is a bijective
correspondence between differential combinators and systems of linearizing combinators.
This shows that a Cartesian differential category is precisely a Cartesian left additive
category with a system of linearizing combinators.

To show how partial linearization arises from total linearization, we investigate lin-
earization in Cartesian closed settings. For Cartesian closed left additive categories, we
introduce the notion of an exponentiable linearizing combinator. We then show how
such a total linearizing combinator gives rise to a closed systems of linearizing combina-
tors: that is a system of linearizing combinators, which are compatible with the closed
structure. To obtain a linearizing combinator in context, given a total exponentiable lin-
earizing combinator, one employs the total linearization on the curry of the map and then
one uncurries the result:

f

CxA B
Curry A ) [C, A]
Linearize Pl C, A
ATHLIAWD

Uncurry LY[f] .= Cx A (C, Al

Outline: Section 2 is a background section which reviews the basic theory of Cartesian
differential categories (Definition 2.4) and Cartesian left additive categories (Definition
2.2). It also provides a list of the main examples of Cartesian differential categories
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used in this paper. The notion of linear maps (Definition 2.5) and their basic properties
(Lemma 2.6 and Lemma 2.8) are reviewed. Section 3 introduces linearizing combinators
(Definition 3.1) the main concept of study in this paper. In Proposition 3.6, we show
that every differential combinator induces a linearizing combinator, and afterwards we
provide examples of these induced linearizing combinators in our main examples. Sec-
tion 4 reviews the notion of partial differentiation (Proposition 4.4) and being linear in
context (Definition 4.5). Section 5 discusses partial linearization by introducing systems
of linearizing combinators (Definition 5.1). In Proposition 5.13, we show how every sys-
tem of linearizing combinators induces a differential combinator — following the BJORT
construction. The first main result of this paper is Theorem 5.14 which says that there
is a bijective correspondence between differential combinators and systems of linearizing
combinators: thus, a Cartesian differential category is precisely a Cartesian left additive
category with a system of linearizing combinators. We also provide an example of a lin-
earizing combinator on a Cartesian left additive category which is not induced from a
differential combinator or a system of linearizing combinators (Example 5.15). Section
6 studies how to define partial linearization from total linearization in the closed setting
by introducing exponentiable linearizing combinators (Definition 6.8) and closed systems
of linearizing combinators (Definition 6.6). In Proposition 6.9, we show that every closed
system of linearizing combinators induces an exponentiable linearizing combinator, and
conversely in Proposition 6.11, we also show how every exponentiable linearizing combina-
tor induces a closed system of linearizing combinators. Theorem 6.12 is the second main
result of this paper, which states that a Cartesian closed differential category (Definition
6.2) is precisely a Cartesian closed left additive category with a closed system of lineariz-
ing combinators, or equivalently an exponentiable linearizing combinator. We conclude
with some final remarks in Section 7.

Conventions: We use diagrammatic order for composition: this means that the compos-
ite map fg: A—C is the map which first does f : A—= B then g : B—C". We denote
identity maps simply as 1 : A— A, thus, to simplify notation, we omit the subscript _4.

2. Cartesian Differential Categories

In this section, in order to fix notation, we briefly review Cartesian left additive cate-
gories, Cartesian differential categories, and linear maps. We also provide the examples
of Cartesian differential categories which we will use throughout this paper. We assume
that the reader is familiar with the basic theory of Cartesian differential categories: for a
more in-depth introduction to Cartesian differential categories, we refer the reader to the
original paper [4].

The underlying structure of a Cartesian differential category is that of a Cartesian left
additive category. A category is said to be left additive if it is skew-enriched [8] over the
category of commutative monoids. This allows one to have zero maps and sums of maps
while allowing for maps which do not preserve the additive structure. Maps which do
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preserve the additive structure are called additive maps.

2.1. DEFINITION. A left additive category [}, Definition 1.1.1] is a category X such
that each hom-set X(A, B) is a commutative monoid with addition:

4 X(A, B) x X(A, B) — X(A, B) (f,9)— f+g

and zero 0 € X(A, B), such that pre-composition preserves the additive structure, that is,
flg+h)=fg+ fh and fO=0. Furthermore, we say that:

(i) A map f: A—= B is constant if Of = f;
(ii) A map f: A— B is reduced if 0f = 0;
(iii) A map f: A— B is semi-additive if (g + h)f = gf + hf;
(iv) A map f: A— B is additive if it is both reduced and semi-additive.

Next, we turn our attention to left additive categories with finite products. For a
category with finite products we use x for the binary product, mg : A x B— A and
m : A x B— B for the projection maps, (—, —) for the pairing operation, so that
f xg= (mof,mg), and T for the chosen terminal object. Let 74p: Ax B—B x A
denote the canonical natural symmetry isomorphism which is defined as follows:

TAB = (71, T0) (1)
We also denote the canonical natural interchange isomorphism by
capcep:(AxB)x (CxD)—(AxC)x (BxD)

which is defined as:
capcop = (T X Ty, T X 1) (2)

To simplify notation, we will often omit the subscripts of 7 and ¢. Note that both 7 and
c are self-inverse, that is, 77 = 1 and cc = 1.

2.2. DEFINITION. A Cartesian left additive category [23, Definition 2.3] is a left
additive category X which has products for which all the projection maps my: Ax B—=A
and m : A X B— B are additive.

The definition of a Cartesian left additive category presented here is not precisely that
given in [4, Definition 1.2.1], but was shown to be equivalent in [23, Lemma 2.4]. Also
note that in a Cartesian left additive category, the unique map to the terminal object T
is the zero map 0 : A—TT.

In a Cartesian left additive category, define the lifting map lapcp: A x D— (A X
B) x (C x D) as the map which inserts zeros in the middle two arguments, that is, define
la B p as follows:

EA,B,C,D = <1,0> X <O, 1> (3)
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As before, to simplify notation, we will often omit the subscripts of ¢ when there is no
confusion. It is important to note that in an arbitrary Cartesian left additive category,
¢ is not a natural transformation. However, ¢ is natural whenever g and h are reduced
maps making (f x k)¢ = £((f x g) x (h x k)). The lifting map ¢ is a crucial ingredient
in constructing differential combinators and linearizing combinators in context, as will see
in later sections.

Cartesian left additive categories can be equivalently axiomatized by equipping each
object with a commutative monoid structure so all the projection maps, my and my, are
monoid morphisms. In this axiomatization of a Cartesian left additive category, the
additive maps are precisely the monoid morphisms with respect to the canonical monoid
structure. Here is how that monoid structure arises:

2.3. LEMMA. [4, Proposition 1.2.2, Lemma 1.2.3] In a Cartesian left additive category,
for every object A define the map Ba: AX A—=A as ®4 := 79+ 7. Then:

(i) For every object A, (A, @4,0) is a commutative monoid, that is, the following equal-
ities hold:

0,)a=1 (1,000a=1 7Bs=Da c(PaXPa)Pa=(PaXDa)Da
(ii) For every pair of objects A and B, the following equalities hold:

@axp = c(Ba X Bp) (Daxp =1 U(Baxda)=1

(iii) A map f : A— B is additive if and only if ®af = mof + mf and Of = 0 (or
equivalently if ®af = (f x f)®p and 0f =0).

Cartesian differential categories are Cartesian left additive categories which come
equipped with a differential combinator, which in turn is axiomatized by the basic proper-
ties of the directional derivative from multivariable differential calculus. In the following
definition, note that unlike in the original paper [4] and other early works on Cartesian
differential categories, we use the convention used in the more recent works where the
vector argument of D[f] is its second argument rather than its first argument. There
are various equivalent ways of expressing the axioms of a Cartesian differential category.
For this paper, we’ve chosen the one found in [23, Definition 2.6] (using the notation for
Cartesian left additive categories introduced above).

2.4. DEFINITION. A Cartesian differential category [/}, Definition 2.1.1] is a Carte-
sian left additive category X equipped with a differential combinator D, which is a fam-
ily of operators D : X(A, B) —X(A x A, B), f — DI[f], where D[f] is called the derivative
of f, such that the following seven azxioms hold:

[CD.1] D[f + g] = D[f] + D[g] and D[0] = 0;
[CD.2] (1 x ®4)D[f] = (1 x m)D[f] + (1 x m)D[f] and (1,0)D[f] = 0;
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[CD.3] D[1] = m, D[ro] = mmy and D] = mmy;
[CD.4] D[(f,9)] = (D[f],D[g]):
[CD.5] D|[fg] = (mof,D[f])D[g] (the chain rule);
[CD.6] ¢ D[D[f]] = D[f] where { is defined as in (3);
[CD.7] ¢ D[D[f]] = D [D[f]] where c is defined as in (2).

A discussion on the intuition for the differential combinator axioms can be found in
[4, Remark 2.1.3]. Notice, in particular, that [CD.5] is the chain rule for the directional
derivative.

An important class of maps in a Cartesian differential category is the class of linear
maps.

2.5. DEFINITION. In a Cartesian differential category with differential combinator D, a
map [ is said to be linear [}, Definition 2.2.1] if D[f] = w1 f.

When we need to emphasize the differential sense in which a map is linear we shall
say that the map is D-linear.

2.6. LEMMA. [4, Lemma 2.2.2] In a Cartesian differential category with differential com-
binator D,

(i) If f is linear then f is additive;

(ii) If f is linear then for every map g which is post-composable with f, D[fg] = (f X
f)Plgl;

If g is linear then for every map f which is pre-composable with g, D[fg] = D[f]g.
Identity maps are linear;
Zero maps are linear;

Projection maps my and my are linear;

)
)
)
)
(vii) If f and g are linear and composable, then their composition fg is linear;
) If f and g are linear and pairable, then their pairing (f,g) is linear;

) If f and g are linear, then their product f X g is linear;

) If f and g are linear and summable, then their sum f + g is linear;

)

If f is a retract and linear, and if for a map g which is post-composable with f their
composite fg is linear, then g is linear;

(xii) If f is linear and an isomorphism, then its inverse f~' is also linear.
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It follows that the linear maps form a subcategory with finite bipoducts [4, Corollary
2.2.3]. Although additive and linear maps often coincide in the examples, it is important
to recall that, in general, while every linear map is additive, not every additive map is

necessarily linear.

2.7. COROLLARY. In a Cartesian differential category:
(i) The symmetry isomorphism 7 : A X B— B x A is linear;

(ii) The interchange isomorphism ¢ : (Ax B) X (C'x D)—=(Ax C) x (B x D) is linear;
)

(i) The lifting map £ : A x D— (A x B) x (C x D) is linear;
(iv) The sum map G4 : A x A— A is linear.

A key observation for this paper is that f is linear if and only if (0, 1)D[f] is linear.
We shall use this fact to construct the linearizing combinator of a Cartesian differential
category (see Proposition 3.6). This observation was proven in [4, Corollary 2.2.3] and we
repeat it here for completeness:

2.8. LEMMA. In a Cartesian differential category,
(i) For any map f, (0,1)D[f] is linear.
(i) f is linear if and only if f = (0,1)D[f].

PRrROOF. For (i), we must show that D[(0,1)D[f]] = m(0,1)D[f]. First note that by
Lemma 2.6.(iv), (v), and (viii) it follows that (0, 1) is linear. Therefore, we compute that:

D[(0, )D[f]] = ({0,1) x (0,1))D[D[f]] ((0,1) is linear + Lem.2.6.(ii))
= {{0,m), (0,71))D[D[f]]
= ((0,0), (m, m))D[D[/]] [CD.7]
= {{0,0), (o, 0) + (0,71)) D[D[f]]
= {{0,0), {mo, 0))D[D[S]] + ((0,0), 0, 71)) DID[f] [CD.2]
= {{0,m0), {0,0))DDIf]] + (0,71)Df] [CD.7] + [CD.6]
= {{0,m0), 0)D[D[/]] + (0, m)D[/]
= 0+ (0,m)D[f] [CD.2]

So we conclude that (0, 1)D[f] is linear. Now suppose that f is linear, then we compute:
(0,1)D[f] = (0, )mi f (f is linear)
=/

So f = (0,1)D[f]. Conversely, suppose that f = (0,1)D[f]. By (i), (0,1)D[f] is linear
and so f is also linear. [
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We conclude this section by providing examples of Cartesian differential categories.
The canonical example of a Cartesian differential category is the category of real smooth
functions. The main motivating example for this paper is, however, the abelian functor
calculus model of [1]. Many other interesting examples of Cartesian differential cate-
gories can be found throughout the literature such as smooth functions, polynomials, any
category with finite biproducts, cofree Cartesian differential categories [11, 23], the coK-
leisli category of a differential category [2, 5], convenient vector spaces [6, 21, 25], and
categorical models of the differential A-calculus [7, 12, 15, 24].

2.9. EXAMPLE. Every category with finite biproducts is a Cartesian differential category
where the differential combinator is defined as:

D[f] =mf

In this case, every map is linear by definition. The converse is also true: a Cartesian dif-
ferential category where every map is linear is precisely a category with finite biproducts.

2.10. EXAMPLE. Let R be the set of real numbers. Define SMOOTH as the category
whose objects are the Euclidean real vector spaces R" (including the singleton R? = {T})
and whose maps are the real smooth functions F' : R" —R™ between them. SMOOTH
is a Cartesian differential category where the differential combinator is defined as the
directional derivative of a smooth function. Recall that a smooth function F': R" —R™
is in fact a tuple F' = (fi,..., fin) of smooth functions f; : R” —=R. Then the Jacobian
matrix of F' at vector ¥ € R” is the matrix V(F')(Z) of size m x n whose coordinates are
the partial derivatives of the f;:

Of1 (= Ofi [~ Of1
g o . o
V()@= |7 o e
Ofm (= Ofm (= Ofm (=
81;1 (%) 8’;2 (z) ... a];n(x)

So for a smooth function F' : R* — R™, its derivative D[F] : R" x R® — R™ is then
defined as:

DIFY(#,) = V(F)@) i < L@ ,Zgﬁj<f>y@->

where - is matrix multiplication and ¥ is seen as a n x 1 matrix. A smooth function
F : R"—R"™ is linear in the Cartesian differential sense precisely when it is R-linear in
the classical sense, that is, F'(sZ + ty) = sF(Z) + tF(y) for all s,t € R and &,y € R".

2.11. ExAMPLE. We very briefly review the abelian functor calculus model of a Cartesian
differential category: for more complete details on this example see [1]. Let A be an
abelian category and let Ch(A) be its category of (non-negative) chain complexes. Define



384 ROBIN COCKETT AND JEAN-SIMON PACAUD LEMAY

HoAbCatcy, as the category whose objects are abelian categories where a map from A—B
is a point-wise chain homotopy equivalence class of functors A — Ch(B), and where
composition and identity maps are defined as in [1, Definition 3.5]. By [1, Corollary 6.6],
HoAbCatcy, is a Cartesian differential category where the differential combinator, which
in this case is written as V, is defined for F': A— Ch(B) as follows on objects:

VF(X,V):=DiF(X&-)(V)

where D is the linearization operator as defined in [1, Definition 5.1] using cross effects
of functors. In this case, a functor F' is linear in the Cartesian differential sense if it is
linear in the abelian functor calculus sense, that is, if F' preserves finite direct sums up to
chain homotopy equivalence [1, Definition 5.5].

2.12. ExXAMPLE. Every Cartesian left additive category has a cofree Cartesian differen-
tial category over it which satisfies the obvious couniversal property. Cofree Cartesian
differential categories were first constructed in [11] using the Faa di Bruno construction.
In this paper, we will use the alternative construction found in [23], as the differential
combinator is simpler to express. For a Cartesian left additive category X, let P : X—X
be the product functor defined on objects as P(A) = A x A and on maps as P(f) = f x f.
Then define D(X) as the category whose objects are the same as X and where a map
A— B is a D-sequence which is a sequence of maps (fy, f1,...) where f,, : P*(A)— B
and satisfying the coherences found in [23, Definition 4.2]. Composition and identity
maps are defined as in [23, Definition 3.6]. D(X) is a Cartesian differential category [23,
Corollary 4.25] where the differential combinator is defined by shifting D-sequences to the
left:

D[(fo, f1,--)] = (f1, f2,-- )

A D-sequence (fo, fi1,...) is linear if and only if f, = m ... m fo for all n [23, Lemma

n—times

4.26).

2.13. EXAMPLE. An important source of examples of Cartesian differential categories are
the coKleisli categories of differential categories. For a more on differential categories, see
2, 5]. A differential category [5, Definition 2.4] is an additive symmetric monoidal category
X equipped with a comonad (1,4 : |A—=A &4 : |A— A), two natural transformations
Ay :'A—'A®!A and ey : !A—=1I such that !A is a cocommutative comonoid, and a
natural transformation called a deriving transformation d4 : !A® A—=!A satisfying certain
coherences which capture the basic properties of differentiation |2, Definition 7]. Examples
of differential categories can be found in [2, Section 9]. When a differential category X has
finite products, define the natural transformation x4 p : (A x B) —!A ® | B as follows:

AaxB (o) ®!(m1

Xan = (Ax B) (A x B) @ (A x B) '\ 14®1B
By [4, Proposition 3.2.1], for a differential category X with finite products, its coKleisli

category X is a Cartesian differential category where the differential combinator is defined
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using the deriving transformation. For a coKlesili map f : !A— B, its derivative D[f] :

(A x A)— B is defined as:

D[f] = (Ax A)—22 1A@IA—24 japA— ~ja—7T . p

Applying Lemma 2.8.(ii) and being careful with coKleisli composition, one can show that
a coKleisli map f :!A— B is linear if and only if As(1(0) ® e4)daf = f. In particular,
for every map g: A— B in X, €49 : |A— B is a linear map in the coKleisli category
X.

2.14. ExampLE. A differential storage category [2, Definition 10] is a differential cat-
egory with finite products such that x4 p and et are natural isomorphisms, called the
Seely isomorphisms, so that (A x B) Z!A® !B and !'T = [. In this case, the Seely iso-
morphisms induce two extra natural transformations V4 : |A®!A—=14 and uy : [—1A
which make !A into a bialgebra. Furthermore, the differential structure can equivalently
be axiomatized in terms of a natural transformation n4 : A—"!A called a codereliction
[2, Definition 9], that is, there is a bijective correspondence between coderelictions and
deriving transformations [2, Theorem 4]. Given a codereliction 7, one defines a deriving
transformation d as follows:

1®na Va

A

di=1A® A IA®!1A

and conversely, given deriving transformation d, one defines a codereliction 7 as follows:

ni= A— " _agA—— 9 4

and these constructions are inverses of each other. As such, for a coKlesili map f : |A—B,
its derivative D[f] : (A x A) — B could also be expressed as follows:

Va

DIf] = (Ax A) 221401424 140 A2 14014 P

For a differential storage category X, the linear maps in the coKleisli category X, are
precisely those of the form 49 : !A— B for amap g : A— B in X.

2.15. ExXAMPLE. The category of convenient vector spaces and smooth functions between
them is an example of a coKleisli category of a differential storage category [6, 25]. For
a detailed introduction to convenient vector spaces, see [21]. Briefly, recall that a locally
convex space F is a topological R-vector space which is Hausdorff and such that 0 has a
neighbourhood basis of convex sets, and therefore we have a notion of converging limits.
A curve of E is a function ¢ : R— E and we say that a curve ¢ is differentiable if the

limit: .
o) e i S0 =0

t—>0 t

exists for all x € F/, and this defines a curve ¢ : R—=FE which is called the derivative of ¢.
A curve ¢ is smooth if all its iterated derivatives exists, i.e, if it is infinitely differentiable.



386 ROBIN COCKETT AND JEAN-SIMON PACAUD LEMAY

A convenient vector space [21, Theorem 2.14] is a locally convex space E such that for
every smooth curve ¢ there exists a smooth curve ¢ such that ¢ = ¢. Alternatively,
a convenient vector space is a locally convex vector space which ¢*-complete (which is
called Mackey complete in [6, Definition 3.15]) If £ and F' are both convenient vector
spaces, then a smooth function f : E—F'is a function f which preserves smooth curves,
that is, if ¢ is a smooth curve of F then ¢f is a smooth curve of F. Let CON be the
category of convenient vector spaces and smooth functions between them. By [6, Theorem
6.3], CON is isomorphic to the coKleisli category of a comonad on CONy;,, the category
of convenient vector spaces and smooth linear functions (i.e. smooth functions which are
also R-linear). Furthermore, CONy;, is a differential storage category [6, Theorem 6.6]
and therefore CON is a Cartesian differential category (see [25, Example 2.4.2] for full
details). For a smooth function f : F— F, its derivative D[f] : E x F— F is defined

as follows: t
DIfl(2.y) = lim L&) = f@)

t—>0 t

where ¢t € R and - is scalar multiplication. In CON, a smooth function is linear in the
Cartesian differential sense precisely when it is a (smooth) linear function in the ordinary
sense of linear algebra. Lastly, note that SMOOTH is a Cartesian differential subcategory
of CON.

3. Linearizing Combinators

In this section we introduce the notion of a linearizing combinator for a Cartesian left ad-
ditive category. Linearizing combinators are generalizations of the linearization operation
used in the abelian functor calculus [1, Definition 5.1]. In fact, we will show that every
Cartesian differential category comes equipped with a canonical linearizing combinator.
The basic idea is that a linearizing combinator produces the linear approximation of maps.

3.1. DEFINITION. A linearizing combinator L on a Cartesian left additive category X
is a family of operators, for each A, B € X

L: X(A, B)—X(A, B); f — L[f]
such that the following siz axioms hold:
[L.1] L[f + 9] = LIf] + Lg] and L[0] =0

[L.2] L[f] is additive, or equivalently by Lemma 2.3.(iii), ®aL[f] = moL[f] + mL[f] and
OL[f] = 0;

[L.3] L[1] =1, L[me] = mo, and L[m] =m
[L.4] L[{f,9)] = (LIf], LgD)
[L.5] L{fg] = LIfT LI(1+0f)g]
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[L.6] LIL[f]] = L[/]
The expression L[f] is called the linearization of f.

The basic intuition of a linearizing combinator L is that from an arbitrary map f, L
produces a linear map L[f]. Examples of linearizing combinators can be found at the end
of this section. The motivating example of a linearizing combinator is the linearization
operator from abelian functor calculus [1, Definition 5.1]. The main source of examples
of linearizing combinators come from Cartesian differential categories, as we will see in
Proposition 3.6 below, where the linearizing combinator is defined as the differential com-
binator evaluated at zero in the first argument. Indeed as explained in Lemma 2.8(i), for
every map f, the composite (0, 1)D[f] is a linear map. As a simple example, let f : R—=R
be a smooth function, then L[f] : R—=R is the R-linear map defined as the degree 1 term
of the Taylor expansion of f, that is, L[f](x) = f'(0)z.

The axioms of a linearizing combinator are analogues of the first six axioms of a
differential combinator. [L.1] says that the linearization of a sum of maps is equal to
the sum of linearization of maps. [L.2] says the linearization of a map is additive. [L.3]
tells us that identity maps and projection maps are already linearized. [L.4] says that the
linearization of a pairing of maps is same as the pairing of the linearization of maps. [L.5]
tells how to linearize a composite of maps, ie., the chain rule for linearization. And lastly,
[L.6] says that the linearizing combinator is idempotent, that is, since a linearization of
a map is already linearized, to apply the linearization combinator twice is the same as
doing it once. These axioms can also be found throughout [1]. Indeed, [L.1] is [1, Lemma
5.6.ii], [L.2] is [1, Lemma 5.6.i], [L.3] is [1, Lemma 5.16], [L.4] is [1, Lemma 5.18], and
[L.5] is a generalization of [1, Propostion 5.10].

The keen eyed reader may have noticed that on the right hand side of [L.5], the term
L[(1+0f)g| is a linearization of a composite of maps. In theory one could again apply
[L.5] to L[(1 4+ 0f)g]. However, the following calculation shows us that doing so does not
result in any simplification:

LI(1+0f)g]l =L[1+0fIL[(1+0(1+0f))g] [L.5]

=L[1+0f]L[(1+0+0f)g]

=L[1+0f]L[(1+0f)g]

= (L] + L[ofDL[(L +0f)g] [L.1]
= (L+LOJL[(1+0)f])L[(1+0f)g] [L.3] + [L.5]
= (14+OL[f])L[(1+0f)g] [L.1]
=(14+0)L[(14+0f)g] [L.2]

=L[(1+0f)g]

So [L.5] is indeed simplified as far as possible. That said, [L.5] does simplify when the
maps are either reduced, semi-additive, or additive.

3.2. LEMMA. Let L be a linearizing combinator on a Cartesian left additive category.
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(i) If f : A— B is constant then L[f] = 0.
(ii) For a reduced map f and any map g, L[fg] = L[f] L]g].
(iii) For a semi-additive map g and any map f, L[fg] = L[f] L]g].
PROOF. These are mostly straightforward calculations.

(1) Suppose that f is constant, that is, 0f = f. Then we have that:

L[f] = L[0f] (f constant)
— L[0] L[(1+00)/] [L.5]
= OL[f] [L.1]
=0 [L.2]

(11) Suppose that f is reduced, that is, 0f = 0. Then we have that:

Lifgl = LIfTLIA+0f)g] [L.5]
= L[f] L[(1+0)g] (f reduced)
= L[f] Llg]

(111) Suppose that g is semi-additive, that is, (f + k)g = fg + kg. Then we have that:

Lifgl = LI/ LI(L+0f)g] [L.5]
= L{f] Llg+0fqg] (g semi-additive)
= L[f] (Llg] +L[0fg]) [L.1]
= L[] (Llg] +L[O]L[(1 +0)fg]) [L.5]
= L[f] (L[g] +OL[fg]) [L.1]
= L[f] (L[g] +0) [L.2]
= L[f] Llg]

For a linearizing combinator, the analogues of linear maps are the maps for which the
linearizing combinator does nothing, that is, L[f] = f.

3.3. DEFINITION. In a Cartesian left additive category with a linearizing combinator L,
a map f is said to be L-linear if L[f] = f.

As we will see in Proposition 3.6, in a Cartesian differential category the L-linear
maps are precisely the linear maps. As such, L-linear maps satisfy many of the same
basic properties as linear maps.
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3.4. LEMMA. In a Cartesian left additive category with a linearizing combinator L,
For every map f, L[f] is L-linear;
If f is L-linear then f is additive;
If f is L-linear then for every map g which is post-composable with f, L[fg] = fL[g];
If g is L-linear then for every map f which is pre-composable with g, L[fg] = L[f]g.
Identity maps are L-linear;

Zero maps are L-linear;

)
)
)
)
)
)
(vii) Projection maps mo and m are L-linear;
) If f and g are L-linear and composable, then their composition fg is L-linear;
) If f and g are L-linear and pairable, then their pairing (f, g) is L-linear;
) If f and g are L-linear, then their product f x g is L-linear;
) If f and g are L-linear and summable, then their sum f+ g: A— B is L-linear;
)

If f is a retract and L-linear, and if for a map g which is post-composable with f
their composite fg is L-linear, then g is L-linear.

(xiil) If f is L-linear and an isomorphism, then its inverse f~' is also L-linear.

PROOF. Most of these follow directly from the axioms of a linearizing combinator. (i)
follows from [L.6], (ii) follows from [L.2], (v) and (vii) follow from [L.3], (vi) and (xi)
follow from [L.1], (ix) follows from [L.4]. For the rest, we mostly use [L.5] and Lemma
3.2.

(iii): Suppose that f is L-linear. By (ii), f is additive and therefore reduced. Then:

L[fg] = L[f] L[g] (Lemma 3.2.(ii))
= fL[g] (f is L-linear)

(iv): Suppose that g is L-linear. By (ii), g is additive and therefore semi-additive. Then:

L[fg] = L[f] L]g] (Lemma 3.2.(iii))
= L[f]g (g is L-linear)

(viii): Suppose that f and g are L-linear and composable. Then we have that:

L[fg] = fL[g] (f is L-linear + (iii))
= fg (g is L-linear)
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So fg is L-linear.

(x): Suppose that f and g are L-linear. By (vii) and (viii), 7o f and mg are also L-
linear. Then by (ix), the pairing of mo f and ¢ is also L-linear, that is, f x g = (7o f, m19)
is L-linear.

(xii): Suppose that f is a retract (with section f°) and L-linear, and that fg is L-linear.
Then:

Llg] = f°fLg] (f is a retract of f°)
= f°L{fg] (f is L-linear + (iii))
= ffyg (fg is L-linear)
=9 (f is a retract of f°)

So ¢ is L-linear.

(xiii): Suppose that f is L-linear and an isomorphism. By (viii), the composite ff~' =1
is L-linear. Since f is a retract, by (xii) we have that f~! is also L-linear. m

Once again, it is important to note that while every L-linear map is additive, not every
additive map is necessarily L-linear. That said, since every L-linear map is additive, the
subcategory of L-linear maps form a category with finite biproducts.

3.5. LEMMA. For a Cartesian left additive category X with a linearizing combinator L,
define Xt as the subcategory of L-linear maps of X, that is, whose objects are the same as
X and whose maps are the L-linear maps between them. Then X' is a category with finite
biproducts. Furthermore, for every map f in X, L[f] is a map in X"

PROOF. That composition and identity maps in X' are well-defined follows from Lemma,
3.4.(v) and (viii). That X" has finite products follows from Lemma 3.4.(vii) and (ix).
That X" is a Cartesian left additive category follows from Lemma 3.4.(vi) and (xi). Note
that a Cartesian left additive category where every map is additive is precisely a category
with finite biproducts. By Lemma 3.4.(ii), it follows that every map in X" is additive. So
Xt is a category with finite biproducts. Lastly, by Lemma 3.4.(i), for every map f in X,
L[f] is a map in X\ =

Note that in general, the linearizing combinator does not induce a functor from X to
Xt However by Lemma 3.2.(ii) and (iii), the linearizing combinator does induce a functor
from the subcategories of reduced maps, semi-additive maps, and additive maps to X".

We now show that every Cartesian differential category comes equipped with a canon-
ical linearizing combinator. Consider again the example of a smooth function f : R—R,
where L[f](z) = f/(0)z. Recall that D[f](x,y) = f'(x)y. Therefore, L[f](x) = D[f](0, x).
This construction generalizes to arbitrary Cartesian differential categories. Furthermore,
maps which are linear in the Cartesian differential category sense, that is D-linear, are
precisely those for which L[f] = f, that is those which are L-linear .



LINEARIZING COMBINATORS 391

3.6. PROPOSITION. Fvery Cartesian differential category, with differential combinator D,
admits a linearizing combinator Lp defined as follows for every map f : A— B:

Lo[f] == (0, )D[/f] (4)
Furthermore,
(i) For every map f, Lp[f] is D-linear;
(ii) A map f is D-linear if and only if f is Lp-linear.

PROOF. First note that (i) and (ii) are precisely a reformulation of Lemma 2.8 in terms of
Lp. Using this, we will now prove that Lp satisfies [L.1] to [L.6]. Each of the linearizing
combinator axioms will follow mostly from the differential combinator axiom of the same
number.

[L1): Lolf + 9] = Lolf] + Lolg] and Lp[0] = 0

Lo[f +g] =
[CD.1]

_ (0,1)0 [CD.1]

[L.2]: ®alp[f] = molp[f] + miLp[f] and OLp[f] = O:

By Proposition 3.6.(i), Lp[f] is D-linear and therefore by Lemma 2.6.(i), Lp[f] is also
additive, i.e., ®alp[f] = moLp[f] + mLp[f] and OLp[f] = 0.

[L.3]: Lp[l] =1 and Lp[m;] = m;:
By Lemma 2.6.(iv) and (vi), identity maps and projection maps are D-linear. There-
fore by Proposition 3.6.(ii), identity maps and projection maps are also Lp-linear, i.e.,

LD[l] =1 and LD[TFZ‘} = 7.

[L.4]: Lo[{f,9)] = (Lolf], Lolg])

Lo[(f,9)] = (0, 1)D[(f, 9)]
= <071> <D[f]7D[g]> [CD4]
= ((0,1)D[f], (0, 1)Dlg])
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= (Lo[f],Lolg])

[L.5]: Lo[fg] = Lo[f] Lo[(1 +0f)g]
Lolf] Lo[(1 +0f)g] = Lo[f]{0,1)D[(1 4+ 0f)g]

= mo(1+0f), D[1 + 0f]) D[g] [CD.5]
7o + mo0f, D[1] + D[0f]) D[g] [CD.1]
7o+ 0, 71 + (mo0, D[O])D[f]) Dlg] [CD.3] + [CD.5]
7o+ 0f,m1 + (0,0)D[f]) Dlg| [CD.A]
7o+ 0f, m + 0) D[g] [CD.2]
(mo + 0), (0, 1)) D[g]
, )mo +(0,1)0f, 0, L)1) Dlg]

)
1
1
1
1
1
1

D[fg] [CD.5]

[L.6]: Lo[Lo[f]] = Lol/]:

By Proposition 3.6.(i), Lp[f] is D-linear. Therefore by Proposition 3.6.(ii), it follows
that Lp[f] is also Lp-linear which means that Lp[Lp[f]] = Lp[f]-

So we conclude that Lp is a linearizing combinator. [

We conclude this section by providing examples of linearizing combinators by applying
Proposition 3.6 to the examples of Cartesian differential categories from Section 2.

3.7. EXAMPLE. For a category with finite biproducts, the linearizing combinator is simply
the identity combinator:

Lolf] = (0, 1)D[f] = (0, h)m f = f
This make sense since every map, in this example, is already D-linear by definition

3.8. EXAMPLE. For SMOOTH, the linearizing combinator is defined as evaluating the
directional derivative at zero in the first argument. Explicitly, for a smooth function
F : R"—R™, which recall is a tuple of smooth functions F' = (fy,..., fi):

L[F|(Z) = V(F <Z§£6%,.. Z%J;T >
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For example, consider the polynomial function f(z,y,2) = 2%y + 3z + 2 + 1. Then
L[f] picks out all monomials of degree 1 in f, so L[f](z,y,2) = 3x + z. As another
example, consider g(z,y) = e cos(y). Its derivative is worked out to be Dlg|(x,y, z,w) =
e” cos(y)z — e”sin(y)w. Then evaluating at 0 in the first two arguments, we obtain that
L{g](x,y) = €® cos(0)z — €' sin(0)y = z.

3.9. EXAMPLE. For HoAbCatcy,, the linearizing combinator is precisely the linearization
operator D; as defined in [1, Definition 5.1], which in turn is defined using cross effects
[1, Definition 2.1].

3.10. EXAMPLE. For a Cartesian left additive category X, the linearizing combinator for
its cofree Cartesian differential category D(X) is for a D-sequence (fy, f1, fo, .. .):

L{(fo. f1, far - )] = ({0, 1) f1, P(0, 1)) fo, P2((0, 1)) f5, - - .)

where recall that P is the product functor P(—) = — x —. However by [23, Lemma 4.26],
or by the axioms of a D-sequence [23, Definition 4.2], it follows that L [(fo, f1, fo,...)] can
be simplified to:

L{(fo, f1, f2,-- )] = (€0, 1) f1, m1(0, 1) f1, mm1(0, 1) fu, . . .) =i - ({0, 1) f1)

where the notation i, - — was introduced in [23].

3.11. ExAMPLE. For a differential category X with finite products, the linearizing com-
binator for the coKleisli category X is for a coKleisli map f :!A— B:

Ay 1(0)®e 4

L[] = 14 1A® 1A Ao A— 14 B

3.12. EXAMPLE. For a differential storage category X, the linearizing combinator for the
coKleisli category X, can alternatively be expressed using the codereliction map:

L[fl=1A—A 4" 14 _p

In differential linear logic, n is interpreted as producing the derivative evaluated at zero
since n = (u ® 1)d. CoKleisli maps !A— B are thought of as smooth maps, while maps
in the base category A— B are thought of as linear. For every smooth map f : !A—B,
we obtain a linear map n4f : A— B, which we precompose by ¢ to reobtain a smooth
map eanaf :!A— B.

3.13. ExXAMPLE. For CON, the linearizing combinator is defined as follows on a smooth

function f:
L)) = tim L2 SO

t—=0 t
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4. Differentiation in Context

We would like to prove the converse of Proposition 3.6, that is, from a linearizing combi-
nator we would like to construct a differential combinator following the same construction
as in [1]. However, to do so requires the ability to partially linearize maps, that is, to
linearize on certain variables while keeping others constant. This, equivalently, means we
would like to be able to linearize with respect to a fixed “context”. From a categorical
perspective, a map in a fixed “context” C'is interpreted as a map in the simple slice
category over (. Simple slice categories for a given category organize themselves into a
fibration, called the simple fibration [19, Chapter 1].

4.1. DEFINITION. Let X be a category with finite products. For each object C, the simple
slice category [19, Definition 1.3.1] over C' is the category X[C] where:

(i
(ii

(iii

) The objects are the objects of X, ob (X[C]) := 0b (X);

) The hom-sets are defined as X[C|(A, B) := X(C x A, B);

) The identity maps are the projection maps m : C x A—= A;

) The composition of maps f : C x A—= B and g : C x B—= D s the map
(mo, f)g: C x A—=D.

(iv

For each map h : C'"—C" in X, define the substitution functor h* : X[C] —X][C'] on
objects as h*(A) := A and on maps as h*(f) :== (h x 1)f.

Note that for the terminal object T there is an isomorphism of categories X[T] = X.
Every simple slice X[C] admits finite products where on objects the product is the same
as in X, the projection maps are respectively mmy : C X (A X B) — A and mm :
C x (A x B)— B, and the pairing of maps is the same as in X. If X is a Cartesian left
additive category, then so is every simple slice X[C] [4, Corollary 1.3.5] where the sum
and zero maps are defined again as in X. As such, we can easily define what it means for
a map to be additive in context.

4.2. DEFINITION. In a Cartesian left additive category X, we say that a map f : C' X
A—B is:

(i) Constant in its second argument if it is constant in X[C], that is, if (my,0)f =

f;
(ii) Reduced in its second argument if it is reduced in X[C], that is, if (m,0)f = 0;

(i) Semi-additive in its second argument if it is semi-additive in X[C], that is, if
<7T0)g + h>f - <7T07g>f + <7T0a h>f;

(iv) Additive in its second argument if it is additive in X[C], that is, if (m,0)f =0
and <7T07g + h>f = <7T07g>f + <7T07 h>f
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4.3. LEMMA. In a Cartesian left additive category X,

(i) A map f:C x A— B is constant in its second argument if and only if f = mog for
some map g : C — B;

(ii) A map f:C x A— B is additive in its second argument if and only if (my,0)f =0
and (1 X @a)f = (1 xm)f + (1 xm)f.

PROOF. For (i), it is immediate that (7, 0)mog = mog, so f = mg is constant in its second
argument. Conversely, if f is constant in its second argument then set g = (1,0) f then:

mog = mo(1,0)f
= <7T07O>f

= f (f is constant in its second argument)

So, f = mg. For (ii), since being additive in its second argument is the same as being
additive in the simple slice, (ii) is simply re-expressing Lemma 2.3.(iii) using simple slice
composition. n

In classical multivariable differential calculus, the standard way of defining partial
differentiation, or in other words differentiation in context, is by evaluating at zero certain
terms of the total derivative. This is also how one obtains partial derivatives in a Cartesian
differential category. In fact, for a Cartesian differential category, every simple slice is
also a Cartesian differential category whose differential combinator is given by partial
differentiation, which amounts to evaluating at zero in the context arguments of the total
derivative.

4.4. PROPOSITION. [4, Corollary 4.5.2] Let X be a Cartesian differential category with
differential combinator D. Then each simple slice X[C] is a Cartesian differential category
with differential combinator DY defined as follows for a map f : C x A—= B in X:

1x7mo,0x71)

. p (5)

DO[f] = C x (A x A) (C x A) x (C x A)
Furthermore, for every map h : C' —= C in X, the substitution functor h* preserves
the differential combinator in contest [3, Proposition 4.1.3], that is, (h x 1)DC'[f] =

DY [(h x 1))
As with additivity, we can also define what it means for a map to be linear in context.

4.5. DEFINITION. In a Cartesian differential category X, a map f : C X A—= B s
linear in its second argument if it is linear in X[C], that is, if DC[f] = (mg, mmi) f =

(Ixm)f.

Being linear in context can also be expressed using the lifting map ¢, and as such by
[CD.6], it follows that derivatives of maps are also linear in their second argument.
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4.6. LEMMA. In a Cartesian differential category:

(i) A map f:C x A— B is linear in its second argument if and only if (D[f] = f.

(ii) For every map f: A— B, D[f] : A x A— B is linear in its second argument.

PROOF. For (i), we first observe that for an arbitrary map f : C' x A— B, we compute:

(o, (0,7T1>)Dc[f] = (mp, (0,71))(1 X 70,0 x 71) D[f]

= ({70, (0, 1)) (1 X 7o), (w0, (0, m1))(0 x 1)) D|[f]
((mo, (0, m1)m0), (0, (0, m1)71)) D[ f]

((m0,0), (0, 1)) D[ f]

(1

D

(mo(1,0), (0, 1)) D[f]
((1,0) x (0, 1)) D[]
= (D[f]

So (m, (0,71))DC[f] = ¢D|[f]. Now recall that by Lemma 2.8.(ii), in a Cartesian differ-
ential category a map ¢ is linear if and only if (0,1)D[g] = g. Since every simple slice
category is again a Cartesian differential category, then putting Lemma 2.8.(ii) into a
context C' means that a map f : C' x A—— B is linear in its second argument if and only
if (o, (0, 7)) DY[f] = f. However by the above calculations, we may re-express by saying
that a map f: C' x A— B is linear in its second argument if and only if (D[f] = f. For
(ii), for any map f : A— B, by [CD.6] we have that ¢ D[D[f]] = D[f]. Then by (i), it
follows that D[f] is linear in its second argument. "

We conclude this section by taking a look at the differential combinators in context
and maps which are linear in context in the examples of Cartesian differential categories
from Section 2.

4.7. EXAMPLE. In a category with finite biproducts, the differential combinator in con-
text C'is defined on a map f: C' x A— B as follows:

DELf] = (0 x m)f

A map f:C x A— B is linear in its second argument if and only if f = (0 x 1)f, or in
other words, if f does not depend on its first argument.

4.8. EXAMPLE. In SMOOTH, for a smooth function £ : RExR"—=R™ F = (fi,..., fm),
its partial derivative is the smooth function D¥'[F] : R¥ x (R" x R") —= R"™ defined as
follows:

DM [F)(2.,) = V(F)(2.7) <Z D TR >

A smooth function F : R¥ x R®" —=R™ is linear in its second argument if it is R-linear in
its second argument, that is, F(Z,s7 + t§) = sF(Z,7) + tF(Z,9) for all s,t € R, 7 € R¥,
and 7,y € R".
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4.9. EXAMPLE. In HoAbCatcy,, the differential combinator in context C' is defined on a
functor F': C x A— Ch(B) as follows:

VOF(Z,X,V):=D*F(Z,X & —)(V)

where DY is the partial linearization operator as defined in [1, Convention 5.11]. A functor
F : C x A— Ch(B) is linear in its second argument if F' preserves finite direct sums up
to chain homotopy equivalence in its second argument.

4.10. EXAMPLE. For a Cartesian left additive category X, the differential combinator in

context C for its cofree Cartesian differential category D(X) is worked out to be as follows
for a D-sequence (fo, f1, f2,...) : C x A—=B (so f, : P"(C x A)— B):

DC [(anfl, f2, .. )] =
(((1 % 70,0 5 7)) f1, P (1% 70,0 5 1)) for P2 (1 % 70,0 X 7)) i )

A D-sequence (fy, f1, f2,...) : C x A— B is linear in its second argument if and only if

forallneN: f,=/0...0 fy.
n—times

4.11. ExAMPLE. For a differential category X with finite products, the differential com-

binator in context C' for the coKleisli category X, is worked out to be as follows for a
coKleisli map f: !(C x A)— B:

'(CX(AXA))M)'((CXA)X/U XCxA,A
DUl = (CxA)pA—2 (O x A)p A
!(CxA)@(CxA)&)!(CXA) f B

Applying Lemma 4.6.(i), and being careful with coKleisli composition, one can show that
a coKleisli map f: I(C' x A) — B is linear in its second argument if and only if

xoa(l®@ea) (((1,0) @ (0, 1)) doxaf = f

In particular, for every map g : IC® A—B in X, xca(1®¢e4)g : |(C x A)— B is linear
in its second argument in the coKleisli category X.

4.12. ExXAMPLE. For a differential storage category X, the differential combinator in con-
text C for the coKleisli category X, can alternatively be expressed using the codereliction
map and the Seely isomorphisms as follows for a coKleisli map f: /(C' x A)— B:

!(CX(AXA))M’!C(X)!(AXA) 1®x4a,4
D[] := 10 ® (14 @14) —2U2 10 g (14 @ A4) —20Em)
0w (A4 — 2% ioga— 2 Lo xa)—L . B




398 ROBIN COCKETT AND JEAN-SIMON PACAUD LEMAY

In this case, the maps which are linear in their second argument in the coKleisli category
X, are precisely those of the form xca(1®¢e4)g: (Cx A)—B foramap g: IC® A—B
in X.

4.13. ExaMPLE. In CON, the differential combinator in context C is defined as follows
on a smooth function f: C x E— F:

DC[f|(z,2.y) = lim LEHEY) = /(= 2)

t—>0 t

A smooth function is linear in its second argument in the Cartesian differential sense
precisely when it is R-linear in its second argument.

5. System of Linearizing Combinators

Partial linearization is a key operation in [1] as it used in the construction of the differential
combinator. However, while it is always possible to define partial differentiation from total
differentiation, in general it is not necessarily possible to define partial linearization from
total linearization (see Example 5.15 at the end of this section). As such, we need to
separately define the notion of linearizing combinators in contexts, which we call a system
of linearizing combinators, which amounts to requiring that each simple slice admits a
linearizing combinator. This means that the first six axioms in Definition 5.1 below simply
place the axioms of Definition 3.1 in an arbitrary context — this is why they are given the
same label. However, we need an additional two axioms to ensure the correct relation
between the linearizing combinators in the slices.

We will show systems of linearizing combinators are in bijective correspondence with
differential combinators. Therefore, a system of linearizing combinators provides an al-
ternative axiomatization for a Cartesian differential category.

5.1. DEFINITION. A system of linearizing combinators on a Cartesian left additive
category X is a family of linearizing combinators L¢ indexed by every object C' € X, where
LY is a linearizing combinator for the simple slice category X[C], that is, the following
axioms hold:

[L.1] LY[f + g] = LY[f] + LYg] and LC[0] =0
[L.2] LC[f] is additive in its second arqument, or equivalently by Lemma 4.5.(ii):

(1 x @a)L[f] = (1 x mo)LE[f] + (1 x m )L ] (m0,0)L[f] =0

[L.3] LY[m] = m1, LEmimo] = mimo, and LE[mim] = mm
[L.4] LC[(f,9)] = (L°[f],Lg])
[L.5] L“[{m0, f)g] = (mo, LE[f]) LE [(m0, ™1 + (70, 0).f) g]
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[L.6] L [LO[f]] = LO[/]
and such that the following two extra axioms hold:

[L.7] Let a: Cx (Ax B)—(C xA)x B and B : C x (Ax B)—(C x B) x A be the
canonical natural isomorphisms respectively defined as follows:

o = <1 X7T0,7T17T1> B: <1 X7Tl,7T17T0>

and for a map f : C x (A x B)—= D, define the maps L§[f] : C x (A x B)—=D
and LY[f] : C x (A x B) —= D respectively as follows:

LG1f] = BLOB[31 ] L]f) = al*4[a~1]
Then for any map f : C x (A x B)—= D, LY[LS[f]] = LS[LS[f]].

[L.8] For any map h : C'—=C in X, the substitution functor h* (as defined in Definition
4.1) preserves the linearizing combinator in conteat, that is, (hx 1)LY[f] = L[(h x

1)f]

[L.8] simply says that partial linearization is unaffected by changes in the context
argument. On the other hand, [L.7] is admittedly slightly complex at first glance, however
it amounts to the linearizing combinator analogue of [CD.7] and states the symmetry
of partial linearization. Indeed, L§[f] is the linearization of A while keeping C' and B
in context, while LY[f] is the linearization of B while keeping C' and A in context. In
particular, [L.7] is also a generalization of [1, Lemma 5.15], which expresses sequential
linearization as discussed in [1, Convention 5.11] (though in [1], there is no extra context
variables, that is, C' = T —the terminal object). Therefore, [L.7] expresses that linearizing
A first then linearizing B (while keeping the other variables in context) is the same as
linearizing B first then A. As an example, consider the polynomial function f(z,y) =
xy + 22y + 3x + 4y. The total linearization of f, that is, linearizing f jointly in z and
y is the polynomial L[f](z,y) = 3z + 4y. Linearizing f in terms of x while keeping y in
context picks out the terms where x is of degree 1, and therefore results in the polynomial
Lo[f] = zy + 2xy® + 3z, which is now linear in z. On the other hand, linearizing f in
terms of y while keeping « in context results in the polynomial L,[f] = xy + 4y, which
this time is linear in y. Linearizing zy + 2xy® + 3z in terms of y or linearizing zy + 4y
in terms of = both results in Ly[Lo[f]] = Lo[Li[f]] = zy, which is an example of [L.7]. In
Proposition 5.4, we will provide an equivalent alternative version of [L.7] which requires
less setup.

Our first observation is that, since there is an isomorphism between the base category
and the simple slice category over the terminal object, it follows that a system of linearizing
combinators also induces a linearizing combinator on the base category.
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5.2. PROPOSITION. Let X be a Cartesian left additive category with a system of linearizing
combinators LY. Then X has a linearizing combinator L defined as follows for a map
f:A—B:

(0,1)

Lif]= A TxA—"ml _p (6)

where T 1s the terminal object. Furthermore:

(i) For every map f: A—= B and every object C, L [mr; f] = mL[f];
(ii) If f is L-linear then for every object C, m f is LY -linear;
(iii) For every map L-linear map f, (h x )L [g] = L°[(h x f)g];

)

For a map f : A x B—C, define Ly[f] : Ax B—C and L1[f] : Ax B—C
respectively as:

(iv

Lolf] := TL7[7 f] Li[f] == LALf]

where T is the canonical symmetry isomorphism as defined in (1). Then for every
map f: Ax B—=C, Lo[Li[f]] = Li[Lo[f]].

PROOF. First note that for the terminal object, m; : T x A—= A and (0,1) : A—T x A
are inverses of each other. We now show that L is a linearizing combinator by showing it
satisfies [L.1] to [L.6] of Definition 3.1:

[L.1]: L[f +g] = L[f] +L[g] and L[0] =0

LIf +gl= (0, )L [mi(f + g)]
(0, 1)LT [y f + mig]
= (0,1) (L"[rf] + L [m1g)) [L.1]
= (0, )L [mi f] + (0, 1)L " [m1g]
= L{f]+ L[g]
L[0] = (0, 1)L " [m0]
= (0, 1)L"[0]
= (0,1)0 [L.1]

[L.2]: ©4L[f] = moL[f] + mL[f] and OL[f] = 0

DaLlf] = @4 (0, LT [m1f]
= <0,@A>LT[7T1f]
= (0,1)(1 x @)L [mf]
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(0, 1)(1 x mo)L" [y f] + (0, 1)(1 x 7y )L [y f]
(0, o)L [m1 f] + (0, )L [ f]

mo(0, LT [y f] + 71 (0, 1)LT [y f]

moL[f] + miL[f]

OL[f] = 0(0, 1)L " [r1f]

= (0,0)L" [mf]

<07T070>|—T[7T1f]
0(mo, 0YL " [y f]
00

0

[L.3]: L[1] =1 and L[m;] =

[L.4]: L[{f,9)] =

1 [
uo -
=
2
3

(L1 LigD)
LI(f 9] =

~
—
_|
—
3
=
\
3
=
)
Pt

L' [m f] L' [m1g])
L [m1f], 40, LT [m1g])

i
~
~
~

[L.5]: L[fg] = L[f] L[(1+0f)g]

L[fg] =

L' [<7To T f)mg]
(o, LT [mo f]) LT [(mo, 71 + (70, 0) 11 f) 1]
(mo, LT [mif]) LT [(mo, 71 + O ) mig]

<7ro LT[ f]) LT [(m1 +0f) g]

<<o 170, (0, 1)L [m1 f]) LT [(m1 + 0f) g]

401

[L.2]

(mo is additive)

[L.2]

[L.3]

[L.3]

[L.4]

[L.5]
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= (0,0, YL [m f]) LT [(m1 + Of) g]
(O,L[f1) LT [(m +0f)g]

= L{f)(0,1) LT [(m1 +0f) g]

= L[f)(0,1) LT [m (1+0f) g]

= L[f] L[(1+0f)g]

LIL[A] = (O, 1>|—T [7T1<0, L [Wlf]]
= (0, 1)L [LT[m1 f]] (m1 and (0, 1) are inverses)
= (0, 1)L [mf] [L.6]
= L[/]

So we conclude that L is a linearizing combinator. For (i), for every object C, we compute:

L[y f] = LO[(0 x 1)m f]

= (0 x 1)L"[mf] [L.8]

- <07 7T1>LT [ﬂ-lf]

= m{0, YL [mf]

= T 1|—[f ]
So LYm; f] = mL[f]. For (ii), suppose that f is L-linear, that is, L[f] = f. Then it follows
that LE[m, f] = mf and so m f is L®linear. For (iii), suppose again that f is L-linear,
and so 7, f is LY -linear. By Lemma 3.4.(ii), 7, f is also additive (and so reduced) in the

simple slice category. Then using Lemma 3.2 with respect to simple slice composition, we
have that:

LE[(h x f)g] = LE[(h x 1)(1 x f)g]

= (hx DL[(1 x [)g] [L.8]
= (b x 1)L [{mo, m.f)g]

= (h x 1)(mo, LY [ f])LE 4] (Lemma 3.2.(ii))
= (h x 1)(mo, m f)LY 4] (f is L-linear, so 7y f is L -linear)
= (hx1)(1 x /)L [g]

= (hx f)LY]g]

So we have that (h x f)L[g] = LY[(h x f)g], when f is L-linear. Lastly (iv) is a special
case of [L.7] when C' = T. First observe that § = (1 x 7)a, where a and [ are defined
as in Definition 5.1. So we compute:

Lo[Lulf]] = TLE[rLALS]]
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= 7LP[rLA[(0,1 x 1)my f]]

[
TLP[rLA[((0,1) x Do my f]]
= 7LB[7((0,1) x Lo 7y f]] [L.8]
= 7LP[((0,1) x 1) al 4oy f]]
= 7({0,1) x LB al Ao ry f]] [L.8]

a 'L [L] [ f]]

a 'L [Lg [m f]] [L.7]
_IO{LTXA[OZ_IBLTXB[/B_IWL]CH
LTXA[Q_IBLTXB[ﬁ_lﬂ'lf]]

((0,1) x D)o™' BLF[3 7 my f]] [L.8]

Q

[L.8]

,_
b
\]
ul
u]
—~
S~
“O
—_
~—
X
—
S—
=
L
3
o
")

[
L8710, 1 x 1)7 f]]
= TL? [T f]]

= Li[Lo[/]]

So we conclude that Lo[L1[f]] = Li[Lo[f]]- n

The following lemma will be useful in the proofs of Proposition 5.4 and Proposition
5.13:

5.3. LEMMA. In a Cartesian left additive category with a system of linearizing combina-
tors LC,

(i) For every map h: C—=C", LY[moh] = 0;
(ii) For every map f: (C x A) x (B x D)—=E, { L°*A[f] = LC[(f];
(iii) For every map f: C x A—= B, ®cxaLC[f] = ¢ L [(®c x ©a)f]

PRrROOF. For (i), first note that by Lemma 4.3.(i), moh is constant in the simple slice
category. Then since L is a linearizing combinator, by Lemma 3.2.(i), it follows that
LY[moh] = 0. For (ii), recall that £ = (1,0) x (0,1). By Lemma 3.4.(v), (vi) and (ix), (0, 1)
is L-linear, and so (ii) is simply an application of Proposition 5.2.(iii). For (iii), recall that
@4 = m + m and so by Lemma 3.4, @, is L-linear. Note that by Lemma 2.3.(ii) that
Doxa = c(Bo X @a), and so (iii) is simply an application of Proposition 5.2.(iii). =
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As previously discussed, it may be tempting to assume that from a linearizing combi-
nator L on the base category, one should be able to define the linearizing combinator in
context L¢ by doing the same evaluate at zero trick as for differential combinators. This
however does not work. Instead, in order to prove the converse of Proposition 5.2, we
will require the extra assumption that our Cartesian left additive category be Cartesian

closed, which we discuss in Section 6.

Our next observation is that [L.7] can equivalently be stated in a more compact way
as [L.7.a] below, using the canonical interchange isomorphism. This equivalent version
will be more useful in the proofs of Proposition 5.5 and Proposition 5.13, while on the
other hand, [L.7] is somewhat more intuitive and will be more useful in Section 6. The
proof that [L.7] and [L.7.a] are equivalent include probably the “nastiest” calculations

in this paper.

5.4. PROPOSITION. In the presence of the other axioms [L.1]-[L.6] and [L.8], [L.7] is

equivalent to the following:

[L.7.a] Foramap f:(CxA)x(BxD)—E, ¢ LF [c LO¥A[f]]

_ LC><A [C LCXB[C fH

where recall that ¢ is the canonical natural interchange isomorphism as defined in (2).

PROOF. Suppose that [L.7] holds. Then for any f : (C'x A) x

(B x D)—FE, we compute

that:
c LCxB [c LCXA[fH _
= c((1x 1) x (1 x 1)L [e L S]]
= c((1x1)x (1x0)) 4 ((1x1)x(0x 1)L [c L]
= ¢ (((1x 1) x (1x0))LEF [e LOALf]] + (1 x 1) x (0 x 1)) LB [e LEAf]])
[L.2]
= c((1x1)x (1x0)LF[c CXA[f] c((1x 1) x (0% 1)) LB [e LY 1]
= c((1x1)x(1x0)L" [e((1x 1><1))LCXA[fH
+ c((Tx1)x (0x 1)L [e((1x (1 x 1)L £]]
= ¢((1x 1) x (1 x0))LE*? [c(((1 X 1 (1% 0)) 4 (1 x 1) x (0 x 1)) L]
+ c((1x1) % 0><1 NLEE e (1 x 1) x 1><0)) ((1x 1) x (0 x 1)) L4 [£]]
= c((1x1)x (Ix0)L? [e(((1x1)x (1x0)Lf]+ (1 x 1) x (Oxl))LCXA )]
+ (1 x 1) x (0x 1)) LP[e(((1 x ) (1 x 0)) LYf]+ (1 x 1) x (0 x 1)) L“A[f])]
= c((1x1)x (1x0)L [e((1 % (1 0)) LAf] + e ((1 x 1) x (Oxl)LCXA [A1]
+ c((1x 1) x (0x 1)) L [e((1 x (1 x 0)) LY f]+ (1 x 1) x (0 x 1)) L]
= c((1x 1) x (1x0)) (L"[e((1 x 1 (1% 0)) LAf]] + LPle((1 x 1)x (0 x [113)2L]C“‘[f]})
+ (1 x 1) x (0% 1)) (LYP[e (1 x 1)x (1 x 0)) LAf]] + LPe (1 x 1)x (0 x 1)) L*A[f]])

[L.2]
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c((Ix1)x (1x0))LP [e((1x1)x (1x0)Lf]
¢((1x 1) x (1% 0)) L [e((1x 1) x (0 x 1)) LE*A[f]]
c((1x 1) x (0 x D)) LEE [e((1x 1) x (1 x 0)) LE*A[f]]
c((1x1)x (0x 1)) LB e((1x 1) x (0x 1)) LA[f]]
c((1x 1) x (1x0))LP [e LY((1 x 1) x (1 x0)) f]]

(Lem.3.4.(v)+(vi)+(x) + Prop.5.2.(iii))
e LP((1x 1) x (1x0)e((lx1)x(0x 1)L f]]

(Lem.3.4.(v)+(vi)+(x) + Prop.5.2.(iii))
c((1x1)x (0x 1)) LB (1 x 1) x (1 x0))e L f]] (Nat. of ¢)
¢ LB (1 x 1) x (0x 1)) e (1 x 1) x (0 x 1)) LEXAL]]

(Lem.3.4.(v)+(vi)+(x) + Prop.5.2.(iii))
e LP((1x 1) x (1 x0))e LM((1 x 1) x (1x0)) f]

(Lem.3.4.(v)+(vi)+(x) + Prop.5.2.(iii))
¢ LY [e((1x 1) x (1 x0))((1x1)x(0x1))Lf]] (Nat. of c)
c((1x1)x (0x1))((1x1)x(1x0))L [e L f]]

(Lem.3.4.(v)+(vi)+(x) + Prop.5.2.(iii))
cLP e ((1x0) x (Ix1))((1x1)x(0x1))Lf] (Nat. of c)

¢ LYP e ((1x 1) x (1 x0))LYY((1 x 1) x (1 x 0)) £]] (Nat. of ¢)
¢ L9 [e((1 x 1) x (0 x 0)) L“*[£]]

c¢((1x1) x (0x0)) LCXB [ LEALf]]

¢ L9 [e((1x 0) x (0 x 1)) L*4[£]]

¢ LB [e L9 (( 1><1) (1x0))((1x1)x(1x0)f]]

(Lem 3 4.(v)+(vi)+(x) + Prop.5.2.(iii))
¢ LEB (0] [L.2]
c0 [L.2]
¢ L9P [(mo x ) (LA ]
¢ LB [e LY((1 x 1) x (1 x 0)) f]] + ¢ LZP[0] + 0+ ¢ (mo x m)LC [LE[¢S]]
(Lem.3.4.(vii) + Prop.5.2.(iii) 4+ Lem.5.3.(iii))
¢ LOP [e LYY((1 x 1) x o) (1 x 1) x (1,0)) f]] + ¢ 0+c (mo x m)LC [LE[f]]
[L.1]
¢ LB [e LY ((1 x 1) x o) ((1 % 1) x (1,0)) f]] + 0+ (7o X ZT1<)LC [chff]} |
e LY e (15 1) x mo) LYA[((1 % 1) x (1,0)) f]] + (w0 x m)L [LY[ES]]
(Lem.3.4.(v)+(vii)+(x) + Prop.5.2.(iii))
¢ L9P e ((1 x 1) x mo) LY((1 x 1) x (1,0)) £]] + (mo x m1)LE[¢f] [L.6]
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LE1ef]
7o) LY [B7MaLl" (1 x 1) x (1,0)) f]] + (o x m1)LE[Lf]
(Lem.3.4.(vii) + Prop.5.2.(iii))

a AL B aLl A (1 x 1) x (1,0)) f1] 4 (w0 x m1)LE[Ef]
a ' BLYE (B alY e a (1 x 1) x (1,0)) f]] 4 (o x m1)LE[Lf]
o 'L LY (1 x 1) x (1,0)) f]] + (7o x m)LE[Cf]

¢ LP (1 x 1) x mo) B aLl (1 x 1) x (1,0)) f]] + (mo x m1)
c((1x1)x

(1 x 1) x m)
= ((I1x1)xm)
(1 x 1) x m)

So we have the following equality:

e LOP [ L] = (1 x 1) x mo) a LS [LE e (1 x 1) x + (mo x m)L[Ef]

(7)

(1,0)) f1]

On the other hand, using the above equality and that fc =

LA e LYPe fl] = ce LY [e LT P e f]]

¢, we compute that:

(c is self-inverse)

= c((1x1) xm) o 'L [LT [ (1 x 1) x (1,0)) ¢ f]] + (mo x )L [le f])
((7) for cf)
= ¢(((1 x 1) x m)a 'L§ [LY [ ((1 x 1) (L,0)) e f]] + (mo x m)LE[Cf]) (b= 1)
c((1x 1) xm)a 'L [L¥[ar (1 x 1) x (1,0)) ¢ f]] + e(mo x m1)LE[Lf]
= c((1x1) xm)a 'L§ [LY[a (1 x 1) x (1,0)) ¢ f]] + (mo x m)LE[Cf]
(c(mp X m) = mo X 1)
= ((1x 1) xm) B7LG [LT[B (1 x 1) x (1,0)) f]] + (mo x m)LE[Lf]
= ((1x 1) xm) B7'LY [L§[B((1 x 1) x ( 0)) f1] + (o x m1)LE[Ef] [L.7]
= ((1x 1) xm) 671 alF [ BLABTIB (1 x 1) x (1,0)) f]] + (mo x m)LE[Cf]
= (1 x 1) xm)a™ ALY [B7al (1 x 1) x (1,0)) f]] + (w0 x m)L[Ef]
(1 x 1) x mo) @™ ALF [37 Ll e (1 x 1) x (1,0)) f]] + (w0 x m)L[Ef]
(1 x 1) xm)a'Lg [L{ e (1 x 1) x (1,0)) f]] + (mo x 1)L [f]
— c|LCxB [c LCXA[fH (7)

So we conclude that [L.7.a] holds.
Conversely, suppose that [L.7.a] holds. For a map f
map f°: (C x A) x

(1x1)xmo

£

First recall that for the terminal object T, m :

(CxA)yx (BxT)

(CxA)xB

: C' x (A x B)— D, define the
(B x T)—= D as the following composite:

f

C x (Ax B) D

X X T — X is an isomorphism with

inverse (1,0) : X — X x T. Therefore, we have the following equality:

f=a(1lx1)x

(1,0)) f°

(8)
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We also have the following equalities (which we leave to the reader to check for themselves):
Ao ((1x 1) x (1,0) = (1 x 1) x (1,0)) e = a™'B((1 x 1) x (1,0)) (9)

Lastly, by Proposition 5.2.(iii) (which did not require [L.7] to prove), one can show that
for any map g : (C' x X) x (Y x T)— D, the following equality holds:

L (1% 1) x (1,0)) g] = ((1 x 1) x (1,0)) L [g] (10)
Therefore, we compute that:
LSILEL) = AL [57 ol Ao ]

= ALOF [T al (1 x 1) x (1,0)) f]] (8)
BLEOP [ a (1% 1) x (1,0)) LA[f°]] (10)
BLOE [(1% 1) x (1,0)) e LA )
B(1x 1) x (1,00) LT [e LA[f°]] (10)
a((1x1)x(1,0))c LY [e LA f]] (9)
a((1x1)x(1,0)) LE&xA [c LCXB[ch]] [L.7.a]
al (1 x 1) x (1,0)) ¢ LY P[ef]] (10)
aL® [ B (1% 1) x (1,0))LO*F[cf7] )
aLl?A [a ' BLO B (1 x 1) x (1,0)) cf°]] (10)
al A a7 BLOP [B e (1 x 1) x (1,0)) £°]] (9)
— 4l CxA [a—lﬁLCxB {5_1fﬂ (8)

= LT[LG[f]]
So we conclude that [L.7] holds. =

We now turn our attention to the relationship between differential combinators and
systems of linearizing combinators. We first show that every differential combinator in-
duces a system of linearizing combinators. Indeed, since every simple slice category of a
Cartesian differential category is again Cartesian differential category, and every Cartesian
differential category comes equipped with a canonical linearizing combinator, it follows
that every Cartesian differential category admits a system of linearizing combinators.

5.5. PROPOSITION. Fvery Cartesian differential category, with differential combinator D,
admits a system of linearizing combinators where the linearizing combinators Lpc for the
simple slice categories are defined as in Proposition 3.6. As to not overload the subscripts,
we denote this linearizing combinator instead by LS := Lpc. Equivalently, LS is defined
as follows on a map f:C x A— B:

D[f]

LS[f]= C x A ! (C'x A) x (C x A) B (11)

where € is the lifting map as defined as in (3). Furthermore,
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(i) For every map f: C x A—= B, LS|[f] is linear in its second argument;
(i) A map f: C x A—=B is linear in its second argument if and only if f is LS-linear.

(iii) L = Lp, where L is the induced linearizing combinator from Proposition 5.2 and Lp
18 the induced linearizing combinator from Proposition 3.6.

PRrOOF. By Proposition 4.4, every simple slice category of a Cartesian differential category
is again a Cartesian differential category with differential combinator DY[f]. Then by
applying Proposition 3.6 to the simple slice categories, we obtain a linearizing combinator
LS for each simple slice category. So L§ satisfies [L.1] through [L.6] as in Definition
5.1. Furthermore, since a map of type C' x A— B is linear in its second argument if it
linear in the simple slice category, it follows from Proposition 3.6.(i) that for every map
f:C x A— B, L§[f] is linear in its second argument. Similarly, by Proposition 3.6.(ii),
amap f: C x A—= B is linear in its second argument (i.e. DY[f] = (1 x ;) f) if and
only if f is L§-linear (i.e. L§[f] = f).

For a map f : C'x A— B, by Proposition 4.4 and by definition of composition in the
simple slice category, L§[f] : C x A—= B is easily worked out to be:

L5 [f] = (70, (0,m)) D[] (12)

Which can equivalently be rewritten as:

L5[f] = (1 % (0,1))D[f] (13)

Expanding out the definition of DY[f], we obtain:

L5[f] = (1 x(0,1))D[f] (13)
= (1x(0,1)){1 x m,0 x m1)D[f] (5)

(1 x (0, 1))(1 x 7o), (1 x (0,1))(0 x 1)) D[f]

1x0,0x 1)D[f]

(1,0) x (0,1)) D[f]

1 x
1 x

{
{
= (
¢ D[]

So we have that L§[f] = ¢D[f]. We now show that [L.8] and [L.7.a] also hold (which
recall by Proposition 5.4 is equivalent to showing that [L.7] holds) :

[L.8]: (hx DLE'[f] = L5[(h x 1)f]
(hx VLY [f] = (hx 1)(1 x (0,1))D[f] (13)
= (1x(0,1))(h x 1)D[f]
= (1 x (0, 1))DY[(h x 1)f] (Proposition 4.4)

= Lgl(h x 1)f] (13)
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[L.7.a]: ¢ L5*? [c LS*A[f]] = L5 [e L§*P[c f]]

We leave it to the reader to check for themselves that the following equality holds (which
can be checked by a straightforward but tedious calculation):

cllcx )l xle=Lcxc)l xL)((cxc)x(ecxe)) (14)

Then we have that:

e LGP [ LG™f]] = et D[clD[/] (1)
= cl(cxc)(l x ) DID[f]] (Cor. 2.7.(i1)+(iii) + Lem. 2.6.(i1))
= cl(cxc)(l x )e D[D[f]] [CD.7]
= lexc)(lxL)((cxc)x(cxc)D[D[f]] (14)
= (D [cl(c x ¢)D[f]] (Cor. 2.7.(ii)+(iii) + Lem. 2.6.(ii))
= (D¢l Dlef]] (Cor. 2.7(ii) + Lem. 2.6.(ii))

= L e L e £]

We conclude that every Cartesian differential category has a system of linearizing combina-
tors. We now show that the linearizing combinators from Proposition 5.2 and Proposition
3.6 are the same:

LIfJ = (0, )mLf]
= (0, LS [71 f] (Proposition 5.2.(i))
= (0, 1){D[m f] (11)
= (0,1)¢(m x m)D[f] (Lem 2.6.(ii)+(vi))
= (0, 1)((L,0) x {0, 1))(m x 71)D][f]
= (0, 1)(0 x 1)DIf]
= (0,1)D[/]
= Lolf]
So we conclude that L = Lp. n

We now apply Proposition 5.5 to the examples of Cartesian differential categories from
Section 2 to obtain examples of systems of linearizing combinators in context, specifically
using the construction given in (11).

5.6. EXAMPLE. In a category with finite biproducts, for a map f : C' x A — B, the
linearizing combinator in context C'is defined as evaluating f at zero in its first argument:

LE[f] = (0x1)f
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5.7. EXAMPLE. In SMOOTH, for a smooth function F : R¥x R"—=R™ F = (fi,..., fm),
its partial linearization is the smooth function LE* [F] : RF x R"—=R™ defined as follows:

=1 =1

@WWZ@ZV@szwﬁﬂz<§jwﬂa®%uw§:m%@®m>

For example consider the polynomial function f : R x R —= R defined as f(z,z) =
21+ 2223 + 2+ 1. The partial linearization of f is defined by picking out the terms which
are linear in z, that is, L®[f](z,2) = 2%z + z.

5.8. EXAMPLE. For HoAbCatcy,, the partial linearizing combinator is precisely the partial
linearization operator D} as defined in [1, Convention 5.11]. Explicitly, for a functor
F : O x A—= Ch(B), its partial linearization is L°[F] = D}[F].

5.9. EXAMPLE. For a Cartesian left additive category X, the linearizing combinator in
context C' for its cofree Cartesian differential category D(X) is worked out to be as follows
for a D-sequence (fo, f1, f2,...) : C x A—= B (so f, : P"(C x A)— B):

LC [(f07 f1> f2? - )] = (ffl, P(g)fZ, P2(€)f3, .. )

where recall that P is the product functor P(—) = — x —.

5.10. EXAMPLE. For a differential category X with finite products, the linearizing com-

binator in context C' for the coKleisli category X, is worked out to be as follows for a
coKleisli map f: !(C' x A)— B:

I(C x A) Xea 10 @14 — 15410 g 4 LSO
L°[f] = d "
(O x A) @ (C x A) ——2—1(C x A) ! B

where recall that xca = Acxa(!(m) @ I(m1)).

5.11. ExXAMPLE. For a differential storage category X, the linearizing combinator in con-
text C' for the coKleisli category X, can alternatively be expressed using the codereliction
map and the Seely isomorphisms as follows for a coKleisli map f: (C' x A)— B:

(O x A) —C2 10 @IA—4 L 10 A—21

Lelf] = )
A (0 x A) —

IC®!A B
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5.12. EXAMPLE. For CON, the partial linearizing combinator is defined as follows on a
smooth function f: C' x K — F"

LOlf](2, ) = lim LG = S(Z0)

t—=0 t

We now prove the converse of Proposition 5.5 and show that from a system of lineariz-
ing combinators one can build a differential combinator. The construction is a general-
ization of the differential combinator found in [1]. The construction can also be described
in terms of smooth functions. Consider the polynomial function f(z) = 2 + z, then:

fa+y)=(@+y>’+r+y=2>+32%y+32y* + v  + o +y

The linearization of f(z + y) in terms of y is 3z%y + y which is precisely the directional
derivative D[f](x,y). Therefore, the derivative of f can be defined by linearizing in context
f precompose by the addition map.

5.13. PROPOSITION. FEvery Cartesian left additive category with a system of linearizing
combinators LC is a Cartesian differential category with differential combinator Dy defined
as follows on a map f: A— B:

D.[f] == L* [®af] (15)
where @4 is defined as in Lemma 2.5. Furthermore,
(i) For every map f: A—= B, D_[f] is LA-linear;
(i) A map f: C x A—= B is linear in its second argument if and only if f is LC-linear.

(iii) L = Lp,, where Lp, is the induced linearizing combinator from Proposition 3.6 and
L is the induced linearizing combinator from Proposition 5.2.

PrROOF. We must show that D satisfies [CD.1] to [CD.7].
[CD.1] D[f + g] = D[f] 4 DL[g] and D.[0] = 0

Dulf +g] = LY [®alf + 9)]
= LY [@af + Day]

LA [@af] + L [©ag] [L.1]
= Di[f] + D[]

DL0] = L [640]
= L[]
_ 0 [L.1]
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[CD.2] (1 x @4)Di[f] = (L x 70)De[f] + (1 x m1)DL[f] and (1,0)D.[f] =

(1 x @a)DL[f] = (1 x @)L [Baf]
= (I xm)L [@af] + (1 x )L [Baf]
= (1 x m)DL[f] + (1 x m1)DL[f]
(1,)DL[f] = (1,00L" [®af]
=0

[CD.3] D.[1] = 71, Dy[mo] = mmo, and D [m] = mm

Di[1] = L [@4]

= L4 [my + m]

= L4 [mo] + L[]
0+ L4 [m]

™

Dilm] = LYP [®axpm]
— LB (g 4 )
LA*B [mom; + mym;]
= LB [mym] 4+ LB [y
0 + LB [ 7;]

USWY

[CD.4] DL[{f,9)] = (Dc[f], De[g])

Do [(f,9)] = L*[®a(f,9)]

= L [(®af, Bag)]
(L' [@af], L [®ag])
(DL[f], Ddlg])

[CD.5] D[fg] = (mof, DL[f])DL[g]

Dilfg] = L [®afd]

= L4 [(mo, ®af)m ]
(mo, L [ af]

= (mo, L* [®af]
(mo, L* [®af]

) LA [{mo, 1 + (m0,0) D f) m1g]
) L4 [(m1 + (70, 0) @4 f) g]
) LA [(m + m0(1,0) @4 f) ]

0
[L.2]
[L.2]
[L.1]
(Lemma 5.3.(1))
[L.3]

(m; is additive)
[L.1]

(Lemma 5.3.(i))
[L.3]

[L.4]

[L.5]



LINEARIZING COMBINATORS

= (mo, L [@Baf]) L [(m1 + 7o f) g]
= (mo, L [@af]) LY [((f x Dm + (f x 1)mo) g]
= (mo, LA [@af]) LA(f x 1) (m1 + 7o) g]
= (mo, L*[@af]) LA[(f x 1) (mo + m1) g]
= (mo, A[EBA ML x 1) @pg]
(mo, LY [@af)(f x VLY [©5g]
= (mof,LY [®af]) L? [Bpyg]
= (mof, DL[f])De[g]
[CD.6] (D [D.[f]] = Di[f]

(DL [DLf]] = £ LY [@4,aDL[f]]
= L[l ®axa DL[f]]
= L4 [Du[f]]
= L[ [@af]]

L4 [©af]

D[f]

[CD.7] ¢ D [D[f]] = Dr [D[f]]

¢ DLDLS) = ¢ LY [Baxal?[@af]]
= c LY [e(@a x @)L [®af]]
= LM [C LAXA[(@A X @a) Da fH
= LY e LYY e(@4 X ©a) Ba f]]
= LY e LYY (@4 x @a) ©a []]
= | AxA [C(@A X EBA)LA[@Af]]

L AxA [EBAxALA[@AfH

413

(Lemma 2.3.(i))

[L.8]

(Lemma 5.3.(i))
(Lemma 2.3.(ii))

[L.6]

(Lemma 2.3.(ii))
(Lemma 5.3.(iii))
[L.7.a]

(Lemma 2.3.(i))
(Lemma 5.3.(iii))
(Lemma 2.3.(ii))

[L.6]

D [Do[f]]
So we conclude that Dy is a differential combinator. Next, it follows immediately from
[L.6] that:
LADf)] = LA [@af]]
= LY[®af]
= Di[f]

Therefore, D, [f] is L4-linear. Now suppose that a map f : ¢ x A—= B was L%linear,

that is, L[f] = f. Then we compute that:
(DL[f] = LY DBewaf]
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= LU Dexa f] (Lemma 5.3.(ii))
= LOf] (Lemma 2.3.(i1))
= f (f is L%linear)

Then by Lemma 4.6.(i), f is linear in its second argument. Conversely, suppose that
f:C x A— B is linear in its second argument, that is, /D [f] = f. Then we have that:

L[f] = LU ®exa f) (Lemma 2.3.(ii))
= (LY Boxaf] (Lemma 5.3.(ii))
= (D[f]
= f (f is linear in its second argument)

Therefore, f is LS-linear. Lastly, we show that, in this case, the constructions of the
linearizing combinators from Proposition 5.2 and Proposition 3.6 are the same:

LDL [f] = <07

[
LT[(0x 1) @4 f] [L.8]
L' ) (o + 1) f]

LT[((0 x 1)mo + (0 x 1)my) f]

L [(0+ 1) f]

L

So we conclude that L = Lp,. n

We may now state the main result of this paper.

5.14. THEOREM. For a Cartesian left additive category, there is a bijective correspon-
dence between:

(i) Differential combinators;
(ii) Systems of linearizing combinators.

Therefore, a Cartesian differential category is precisely a Cartesian left additive category
equipped with a system of linearizing combinators.

ProOOF. It suffices to show that the constructions of Proposition 5.13 and Proposition 3.6
are inverses of each other. Starting with a differential combinator D, we first show that
DLD = D:

Di,lf] = Lp[®af] (15)
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= (D[®af] (11)
= (D4 x Ba)Df] (Cor. 2.7(iv) + Lem. 2.6.(ii))
— D[f] (Lemma 2.3.(ii))

Next, starting with a system of linearizing combinators L®, we show that LSL = L%

L5, [f] = ¢ DL[f] (11)
=/ LCXA[EB(]XAf] (15)
= LY/ @oxa f] (Lemma 5.3.(ii))
= LY[f] (Lemma 2.3.(ii))

Thus, differential combinators and systems of linearizing combinators are in bijective
correspondence. Therefore, we conclude that a Cartesian differential category is precisely
a Cartesian left additive category equipped with a system of linearizing combinators. m

It is worth pointing out that the bijective correspondence between differential combi-
nators and systems of linearizing combinators is analogous to the bijective correspondence
between deriving transformations and coderelictions for differential categories [2, Theo-
rem 4] (or as explained in Example 2.14). Indeed, recall that from a codereliction 7, one
defines a deriving transformation as d = (1®7)V. In the coKleisli category, the multipli-
cation V plays the role of pre-composing by addition & (since ! is an additive bialgebra
modality [2, Definition 5]), while 1 ® n plays the role of linearizing the second argument,
that is, the linearizing combinator in context LY. The converse construction is explained
in Example 3.12. The keen eye reader may note that the “partial” codereliction 1 ® n
can easily be defined from the “total” codereliction. The reason for this is the presence of
the Seely isomorphisms !(C' x A) = 1C' ® ! A which allows us to split off the context part
and then bring it back afterwards. Unfortunately, as previously mentioned, this does not
work in arbitrary Cartesian differential categories. To do so, we require the base category
to be Cartesian closed, which we discuss in the next section.

We conclude this section by providing an example of a Cartesian left additive category
which has a total linearization but does not have partial linearization. This means that
it is not possible, in general, to derive partial linearization from the presence of a total
linearizing combinator.

5.15. EXAMPLE. Recall that a function F' : R"—R"™, which is a tuple F' = (f1,..., fi)
of functions f; : R"—=R, is a C* function if for each f;, all partial derivatives 37’2_ exists and

are continuous. Then define C'-DIFF be the category whose objects are the Euclidean real
vector spaces R™ and whose maps are C! functions F' : R* —=R™ between them. C'-DIFF
is a Cartesian left additive category in the obvious way, and note that SMOOTH is a sub-
Cartesian left additive category of C'-DIFF. Notice that C'-DIFF has a (total) linearizing
combinator L defined in the same way as the linearizing combinator in SMOOTH, that is,
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for a C! function F = (fy,..., fm):

L[F](f):<. af Z(%l >

However, this category, while having a total linearizing combinator, does not have partial
linearization. If C'-DIFF had partial linearization then C*-DIFF would also have a differ-
ential combinator, but this can’t be since the derivative of C! functions are not necessarily
C! functions.

Explicitly, consider the function f : R—=R, f(z) = |#|2, which is a C! function since

its derivative f'(z) = 2% exists and is continuous. If partial linearization was possible,
then we would be able to define D[f] : R x R—R as follows:

3y

Wm%szka@+@MD=2|ﬂ

However, this linearization is not a C! function (since its derivative is undefined at 0) and
so not a map in C-DIFF. So we conclude that C*-DIFF has a total linearizing combinator,
however, it is not induced by a differential combinator and, therefore, the category does
not have partial linearization.

6. Linearizing Combinators in the Closed Setting

We would like to prove the converse of Proposition 5.2, that is, we would like to define
partial linearization from total linearization. As previously discussed, in general this is not
necessarily possible. However in the setting of a Cartesian closed category, it is possible to
construct a system of linearizing combinators from a linearizing combinator on the base
category. The key to this construction is the ability to curry and uncurry maps, which
allows us to move the context of a map from its domain to its codomain. Indeed, given
amap f: C x A— B, to linearize A while keeping C' in context, one takes the total
linearization of its curry A(f) : A—=[C, B] and then uncurry to obtain L[f] : C'x A—B.
For this to work, one must also require that the linearizing combinator be compatible with
the closed structure, which we call an exponential linearizing combinator. Furthermore,
we will also show that Cartesian closed differential categories are precisely Cartesian closed
left additive categories equipped with an exponential linearizing combinator.

We begin this section by setting up notation for Cartesian closed categories and re-
viewing some basic, but very important, properties (see [22, Part I] for a more detailed
introduction on Cartesian closed categories). For a Cartesian closed category X, we de-
note the internal-hom by [C, A], the evaluation map by ec 4 : C' x [C, A]— A (from now
on we will omit the subscripts and simply write ¢ when there is no confusion), and the
curry of a map f : C' x A— B as the map A(f) : A—[C, B], that is, A(f) is the unique
map such that:

(IxA(f))e=f
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Conversely, define the un-curry of a map of type g : A—=|[C, B] as the map A\~!(g) :
C x A— B which is defined as:

A Hg) == (1 x g)e

Therefore, A (A7 (g)) = g and A" (A(f)) = f.

Next we review the notion of Cartesian closed differential categories. As the name sug-
gests, Cartesian closed differential categories are Cartesian differential categories whose
underlying category is also Cartesian closed and such that the differential combinator is
compatible with the curry operator. Furthermore, Cartesian closed differential categories
provide suitable models to interpret differential A-calculus [15]. Cartesian closed differ-
ential categories are also sometimes called differential A categories. For a more in-depth
introduction to Cartesian closed differential categories, we refer the reader to [7, 12, 24].

We must first discuss the notion of Cartesian closed left additive categories:

6.1. DEFINITION. A Cartesian closed left additive category [}, Section 1.4] is a
Cartesian left additive category which is also a Cartesian closed category such that the
currying operator preserves the additive structure, that is, N(f + g) = M f) + A(g) and
A0) =0 (note that this implies that X™*(f + g) = A"1(f) + A1 (g) and A\71(0) =0).

As shown in [12, Lemma 4.10], there are two equivalent ways of expressing compat-
ibility between the closed structure and the differential combinator: one in terms of the
curry operator and one in terms of the evaluation map.

6.2. DEFINITION. A Cartesian closed differential category [12, Section 4.6] (also
known as a differential \ category [7, 24]) is a Cartesian differential category which
1s also a Cartesian closed left additive category such that one of the following additional
axioms hold:

[CD.\] For every map f: C x A—= B, D[A(f)] = A (DY[f]), where D is defined as in
(5)-
or equivalently,

[CD.ev| Ewvaluation maps € : C x [C, A]—= A are linear in their second argument (Defi-
nition 4.5), that is, D¢[e] = (1 x )¢, or equivalently by Lemma 4.6.(i), {Dle] = e.

Here are now some examples of Cartesian closed differential categories.

6.3. EXAMPLE. Every model of the differential A-calculus [15] induces a Cartesian closed
differential category [12, Theorem 4.3|, and conversely every Cartesian closed differential
category gives rise to a model of the differential A-calculus [7, Theorem 4.12].

6.4. EXAMPLE. Let X be a differential storage category such that X is also a symmetric
monoidal closed category, where we denote the internal-hom in X as A — B. Then the
coKleisli category X, is a Cartesian closed differential category [3, Theorem 4.4.2]. The
internal-homs in the coKleisli category X, are defined as [A, B] = !A — B. Examples of
such coKleisli categories are discussed in [7, Section 5], which include the relational model
and the finiteness space model.
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6.5. EXAMPLE. CONy, is a differential storage category such that CONy;, is symmetric
monoidal closed [6, Theorem 4.2]. Therefore, since CON is isomorphic to the coKleisli
category of the comonad ! on CONy,, it follows that CON is also a Cartesian closed differ-
ential category (see [21, Theorem 3.12] for its Cartesian closed structure). In particular,
for convenient vector spaces E and F, if we let L(E, F') denote the set of (smooth) linear
function between E and F' and C*(FE, F') the set of all smooth functions between E and
F,then C*(E,F) = L(!E, F) [6, Theorem 6.3].

We now turn our attention to the main objective of this section: on how to define
partial linearization from total linearization in the setting of a Cartesian closed left addi-
tive category. To do so, we introduce the notions of linearizing combinators and systems
of linearizing combinators which are compatible with the closed structure. We begin
with closed systems of linearizing combinators, which are the Cartesian closed differential
category version of systems of linearizing combinators.

6.6. DEFINITION. A closed system of linearizing combinators on a Cartesian
closed left additive category X is a system of linearizing combinators L on X such that
the following extra axiom holds:

[L.A] For every map f: C x A— B, LIA(f)] = X (LO[f]), where L is defined as in (6).

As we will see in Theorem 6.12, to give a Cartesian closed differential category is pre-
cisely to give a closed system of linearizing combinators. As such, [L.}A] is the linearizing
combinator analogue of [CD.A]. Therefore, the extra axiom of a closed system of lin-
earizing combinators can equivalently be defined in terms of the evaluation map, [L.ev],
which is the linearizing combinator analgoue of [CD.ev].

6.7. LEMMA. [L.\] is equivalent to the following:
[L.ev] Evaluation maps ¢ : C x [C, A|—= A are LC-linear, that is, L[] = e.

PROOF. Suppose that [L.\] holds. Since e = A7!(1), we have that:

LTe] = A1 (A (L9[e)))
= A (LA () [L.A]
= A7 (L))
= A1) [L.3]
= ¢
So LYle] = ¢, and so € is L%linear. Conversely, suppose that [L.ev] holds. Then we

compute:

ML) = A (LA
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A ((mo, LY[mA(f)]) €) ([L.ev] +Lem.3.4.(iv))
A ({(mo, mLIA(f)]) €) (Prop.5.2.(1))
A (1 L[ (F)De)
AT (LAD)
= LP\(f)]

So LIA(S)] = A (LE[f]). "

We now define exponentiable linearizing combinators, which from a system of linear
maps perspective is the analogue of an exponentiable system of maps [3, Definition 2.2.1].
To do so, we must first review the canonical monads of the form [C,—] in a Cartesian
closed category. For a pair of maps f : C — D and g : A—= B, define the map

[f,g] : [D, A]—[C, B] as:

[f 9] = A ((f x 1)eg)

Intuitively, [f,g] is the map which pre-composes by f and post-composes by g. In par-
ticular, note that [—, —] is contravariant in its first argument and covariant in its second
argument, that is:

[fh, kg] = [h, K][f, g]

For each object C, define the functor E¢ : X — X on objects as E¢(A4) = [C, A] and
on maps EY(f) = [1, f]. E® is a monad [22, Part I, Section 7] where the monad unit
n§ : A—[C, A] and the monad multiplication u§ : [C,[C, A]] — [C, A] are defined
respectively as follows:

0 = A1) 14 = A ({7, €)e) (16)

Once again, as to not overload notation, we will omit the subscripts and superscripts and
simply write n and p when there is no confusion.

6.8. DEFINITION. An exponentiable linearizing combinator L on a Cartesian closed
left additive category X is a linearizing combinator L on X such that the following extra
three axioms hold:

[EL.1] L[n] =n and L[u] = p
[EL.2] L[[f, 9]l = [, L]g]]
[EL.3] For a map f: Ax B—=C, define Ly[f] : Ax B—C and L4[f] : Ax B—C

respectively as follows:

Lo[f] := TAH (LIA (7)) Li[f]:= A7 (LX)

where T was the canonical symmetry isomorphism defined in (1). Then for every

map f: Ax B—=C, Lo[Li[f] = Li[Lo[f]].
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As we will see in Proposition 6.11, from an exponentiable linearizing combinator we
will be able to construct a closed system of linearizing combinators by uncurrying the
linearization of the curry. In other words, we will be able to define total linearization
from partial linearization. We first show that, as expected, a Cartesian closed left addi-
tive category with a closed systems of linearizing combinators is in fact a Cartesian closed
differential category, and its induced linearizing combinator is an exponentiable lineariz-
ing combinator. Alternatively, we could have instead shown that the induced linearizing
combinator and system of linearizing combinators of a Cartesian closed differential cate-
gory are respectively exponentiable and closed. Therefore, a Cartesian closed differential
category is precisely a Cartesian closed left additive category with a closed system of
linearizing combinators.

6.9. PROPOSITION. For a Cartesian closed left additive category with a closed system of
linearizing combinators L :

(i) The induced linearizing combinator L from Proposition 5.2 is an exponentiable lin-
earizing combinator and LE[f] = A1 (LIA(f)]).

(ii) The induced differential combinator Dy from Proposition 5.13 satisfies [CD.\] (or
equivalently [CD.ev]) and D [f] = X1 (LIN(@4f)]).

Therefore, a Cartesian closed left additive category with a closed system of linearizing
combinators is a Cartesian closed differential category.

PROOF. First note that LE[f] = A=' (L[A(f)]) follows immediately from [L.A], and there-
fore we also have that D [f] = A7! (L[A(®af)]). Next we show that L satisfies [EL.1],
[EL.2], and [EL.3].

[EL.1]: L[p] =n and L[x] = p

L[n] = L{A(m)]
= A(Lm)) [L.A]
— A(m) [L.3]
=1

= A(L[({mo, €)€)]) [L.A]
= X({mo, €)e) ([L.ev] + Lem.3.4.(viii))

[EL.2]: L[[f,g]] = [f, Llgll:

L{If,gll = LIA(S x Deg)]
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= A (LY(f x 1)eg])

= A x DL [eq) [L.8]
_ A((fx L ’[<w0,e>mg])

_ ((f o 1)<W076>ch[mg]> ([L.ev] + Lem.3.4.(iii))
= A((f x 1){m, e)mL[g]) (Prop.5.2.(1))
= A((f x 1)eL[g])

= [f.Lgl]

[EL.3]: Lo[Li[f]] = Li[Lo[f]]:

Note that by [L.\], 71 (L[f]) = LE]A\7Y(f)]. As such, it immediately follows that the
Lo and L, as defined in [EL.3] are precisely the same as Ly and L; defined in Proposition
5.2.(iv). Therefore [EL.3] is precisely Proposition 5.2.(iv).

So we conclude that L is an exponentiable linearizing combinator. Next we must check
that Dy satisfies [CD.)] or equivalently [CD.ev]. By [L.ev] , € is Llinear and so by
Proposition 5.13.(ii), € is linear in its second argument. Therefore, [CD.ev] holds and we
conclude that a Cartesian closed left additive category with a closed systems of linearizing
combinators is a Cartesian closed differential category. [

6.10. COROLLARY. For a Cartesian closed differential category with differential combi-
nator D:

(i) The induced system of linearizing combinators LS from Proposition 5.5 is a closed
system of linearizing combinators.

(ii) The induced linearizing combinator Lp from Proposition 3.6 is an exponential lin-
earizing combinator.

PROOF. We must show that L§ satisfies [L.A] or equivalently [L.ev]. By [CD.ev] , € is
D-linear in its second argument, and so by Proposition 5.5.(ii), € is L§-linear. Therefore,
[L.ev] holds and we conclude that L§ is a closed system of linearizing combinators. By
Proposition 6.9.(i), the induced linearizing combinator from Proposition 5.2 is an exponen-
tiable linearizing combinator. However by Proposition 5.13.(iii), the induced linearizing
combinator from Proposition 3.6 is precisely the same as the one from Proposition 5.2.
Therefore, Lp is an exponentiable linearizing combinator.

u

We now prove the converse of Proposition 6.9, that in the closed setting we may define
partial linearization from total linearization, that is, we will show that an exponentiable
linearizing combinator induces a closed system of linearizing combinators. As a conse-
quence, it follows that a Cartesian closed differential category is precisely a Cartesian left
additive category with an exponentiable linearizing combinator.
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6.11. PROPOSITION. For Cartesian closed left additive category X with an exponential

linearizing combinator L:

(i) X comes equipped with a closed system of linearizing combinators LC defined as

follows for a map f:C x A— B:

and the resulting induced linearizing combinator from Proposition 5.2 is precisely L.

(i) X is a Cartesian closed differential category with differential combinator Dy defined

as follows for a map f: A— B:

DLlf] = A" (LIM®af)])

and furthermore, this differential combinator is precisely the induced differential

combinator from Proposition 5.13.

Therefore, a Cartesian closed left additive category with an exponential linearizing com-

binator is a Cartesian closed differential category.

PROOF. First, here are some useful identities which hold in any Cartesian closed category

22, Part I, Section 3]:

A((f x g)hk) = gA(h)[f, K]

[L.1]: LY[f + g] = LO[f] + L¢[g] and L€[0] = 0

LY[f + 9] = AN (LM +9))
= AT LA + Ag)]
= AL
= AL
= LYIf]+ L]

LE[0] = A" (LIA(0)])
= A7 (L[0])
= A7 (0)
_

(f x g)A" W)k

Now we show that L satisfies [L.1]-[L.8] and [L.ev]:

AT (gl K]) (17)

[L.1]

[L.1]

[L.2]: (1 x ®@a)LC[f] = (1 x mo)LE[f] + (1 x m;)LE[f] and (1,0)LE[f] = O:

(1 x @A)L[f] = (1 x @)X (L))



(1,0)LE[f]
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AT H(@ALIA)])

1 I |
e

“HmLAA)]) + AT (mLIA)))
1x 7o) A" (LI + (1 x m) AT (LIA(S)])
(1 x 7T1)|-C[f]

[L.3]: L9m] = m and LY [mm] = mym:

L [m]

LC [71'171'2']

[L.4]: LY[(f, 9)] = (L[1],

s> >
5 3
= 3
[
ﬁ\/

|
— =
—_ o
3
-
SN— ~
-

S

.
Akl —

I—
=

[
pa—
~—

—_ =

—_ — = —_ — = —_ —

.
o~ o~ o~ o~ o~ o~ o~ o~

—
—_
3
—
~—

> > > > > > >
> I I I3 r r —
:].—.—.
S~—

2

~—
~— -

(17)
[L.2]

[EL.1]

(17)

([EL.1] + Lem.3.4.(iii))

[EL.2]
[L.3]

(17)

Recall that in any Cartesian closed category, we always have that [C, A x B] = [C, A] x

|[C,B]. Solet Ocap :
as follows:

0 := X({(1 x m)e, (1 x m)e))

[C, A] x [C, B] —[C, A x B] be the natural isomorphism defined
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with inverse 9571& 5 [C, A x B]—|[C, A] x [C, B] defined as follows:
Ocap = ([1,m), [1,m])
To not overload notation, we will omit the subscripts of  and 0=*. We first compute that:

Lo~ = LL[L, o], [1,m])]

= <L [[17 7TOH L [[1’ 71—1]]> [L4]
= ([1,L{mo]], [, L [m]]) [EL.2]
= ([L, mo], [1,m]) [L.3]

Therefore, ! is L-linear. Since ! is an isomorphism, by Lemma 3.4.(xiii), it follows
that 6 is also L-linear. Next observe that in any Cartesian closed category, the following
equalities holds [22, Part I, Section 2]:

A({f:9)) = (A(f), Ag)) 0 (ATHR), AT (R)) = A7 ((ha k) 0) (18)
which follows from [C) A x B] = [C, A] x [C, B]. As such, we can compute that:
L[ )] = A7 (LIS, )

= AT (LI, Al9))e]) (18)
= ML), Mg))] 0) (0 is L-linear 4+ Lem.3.4.(iv))
= A (LIMALL LM 0) [L.4]
= ATHLAOD AT LMD (18)
= (L[f1 L))

First note that in a Cartesian closed left additive category, since post-composition pre-
serves the additive structure, it follows that we always have the following equalities:

[f,0] =0 [fs9+h]=1f 9]+ [f.}] (19)

Next, note that by [EL.1], n and p are L-linear. So in particular, by Lemma 3.4.(ii), n
and p are also additive. Also, recall that the monad identities are:

ppe = [1, plp nu=1=[1,nlu (20)
Lastly, note that we have the following equality in any Cartesian closed category:
A((mo, f)g) = AL Ag)]w AT (R KJp) = (mo, ATH(R)ATH(R) - (21)

which follows from the fact the Kleisli category of E is isomorphic to the simple slice
category X[C] [22, Part I, Section 7]. Therefore, we compute:

L [(mo, g = A7H (LA ({mo, f)g)])
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Mmoo v = v~~~ DT AN aSe =00 o)
~ A VMVl [ = — rwr = ST Wﬂﬂ g
/I\(.m_(m O”LM(\ " — ~— ) ( ] — - (/l\( .m.
= ERE=I> 3 = CINS! kS ap)
g o & o > £ =H B =
.m = = = UC.LM = ,m
i 2 5 & ' = +.ﬂm E I
+ 2 : gt 5 s+
— I - g kS —
= z = 2 2 4
A, = -z =FFHEE = B -
—~ _ = - _— -~ —~ Py
T =15 2EREe=== T Idto= o9 =
= 1T == —=< =22 — == =3 S —
T=25 TS @2 o= <= == "= === — - =
(\W!/\A(l(N\A([ b -~ -~ S oD o oy & \I/—HO ~<
= < = - = = - - TSSO = ~
To TS ol g RS s s S5 A 454 21 - =
SEET=S22ISSS558 23838 g5 =22
< ~ oW oo X oo o oo oo o < € = < o=
- =~ < = =~ X O ~ - ~ -~ e e e e e - O _|_.“_.\A
— = e <= < — X - — ©o o © o o o o o + Z = _ [
P s P A N e~ E & & EEEEE - =< g (\/Iu_\/lu_\ﬂ
»0\A < T T ~ FM[/\ — >
\)\)WA\ ITI_II_II_II_IO\A\A\Il/l — - = H  H - E = l_| ~< < <
—= < 3 E & & kK E kR & & k ~ —
— =4 S § 5 5 5= S = =< < < < < < < < < ~< -
S S A S S S S s ST O=c€ —
XA === == == = DS - - S - —~ =
O U [ [ o = = == = =0 0
S SssEnEEnEEE S =Zo2s O
e T T Hl e e e e e Wl e Nl e e e T e T Ve Fl e e e TR PR S
T T o e e S — - L% o
I S T L L A A A N N N T T T Toe e ﬂ_
< <K< <<<<<<<~< < < < < < < < < =< £k
1 | | 1 1 | A | | | | R [ | R | 1 >~
Q
=
Q
_
<
=,

[C'x A, B].

~

LG LT [£]]

[L.7]: LYLF[/]]
Recall that in any Cartesian closed category, we always have that [A, [C, B]]
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So let pacp 1 [A,[C,B]] —[C x A, B] be the natural isomorphism defined as follows:
(bA,C’,B =\ (ofl(l X 6)6)

As before, as to not overload notation, we will omit the subscripts of ¢. We first note
that we could have also expressed ¢ is terms of p and [—, —] as follows:

¢ = [ﬂ-l? [71—07 1]] H (22)

Therefore, we can compute that:

Ldl = L{fm, [ro, 1] (22)
= L{[my, [m0, 1]]] p ([EL.1] + Lem.3.4.(iv))
= [m, L{lmo, ] 1 [EL.2]
= [m, [mo, LI 1 [EL.2]
= [m, [mo, 1] [L.3]
= ¢ (22)

So ¢ is L-linear. Next observe that for a map f : C x (A x B)—= D (or a map g :
B —[A,[C, D]]) we can apply the curry operator (or uncurry operator) twice and the
following equalities hold in any Cartesian closed category (which we leave to the reader
to check for themselves):

Ao = A" f) AT (AT (g) = arH(g9) (23)

M) o =AB7S) AT (9) = BT (99) (24)

As such, we can compute the following:

L5 [f] = BLTP[B7H 1]

_ A (LME )
= B (LA (RA) ) (21)
= BAH(LN(TA())]9) (¢ is L-linear + Lem.3.4.(iv))
= AT (PATH LI (AD) (24)
= A7 (LA

L7 [f] = aLCXA[ '
= ol (LA (a7 )
= aA ™ (LIAA()g)) (23)
= a\ (L [)\()\( Nlo) (¢ is L-linear + Lem.3.4.(iv))

_— ( LLIMAUD) (23)
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= A (LD

So we have the following equalities:

L5 [f] = A7 (Lo[A(AD LY [f] = A7 (LA (25)

Then we have that:

LYLG T = A7 (L A (A (LoUNHD)]) (25)
= A7 (L1 [Lo[AHT)
= A7 (Lo [LiAHT]) [EL.3]
= A (Lo A (AT AHOD)])
= L5 (LY (25)
[L.8]: (h x DLY[f] = LE[(h x 1) f]
We first observe that for any map h:
L[h, 1] = [h, L[1]] [EL.2]
= [h,1] [L.3]
Therefore, [h, 1] is L-linear.
(A x DLY[f] = (hx DA (LD
= AT (LIAD]A, 1]) (17)
= AN H(LAHIR, 1) ([h,1] is L-linear + Lem.3.4.(iv))
= A (LI ((h x DS)]) (17)
= L(h x 1)f]
[L.ev]: L] = ¢
L] = A7 (L[A(e)])
= AN (L[]
= A1) [L.3]

So we conclude that LY is a closed system of linearizing combinators. We also have that:

0, DL [mfl= (0, DA (LA f)])
= (0, AT (L [A(m)[L, £1]) (17)
= (0, )A" (L [n[1, f1])
= (0, D)X (n L1, f]]) ([EL.1] + Lem.3.4.(iii))



428 ROBIN COCKETT AND JEAN-SIMON PACAUD LEMAY

= (0, DA (n [L,LLA) [EL.2]
= (0, 1>)‘71 (A1) [1, L[])
= (0. DA (A (miL[f])) (17)
= (0, 1)mL[f]

]

Therefore, L[f] = (0, 1)L [m; f] and so L is precisely the induced linearizing combinator
from Proposition 5.2. Next we must show that D, is a differential combinator which also
satisfies [CD.\] (or equivalently [CD.ev]). However, we have that:

Dif] = A (LM@af)))
= LY ®4f]

Therefore, Dy is precisely the induced differential combinator from Proposition 5.13. Fur-
thermore, by Proposition 6.9.(ii), D satisfies [CD.\] (or equivalently [CD.ev]). So we
conclude that a Cartesian left additive category with an exponential linearizing combina-
tor is a Cartesian closed differential category. n

We conclude this paper by stating the second main result of this paper.

6.12. THEOREM. For a Cartesian closed left additive category X, there is a bijective
correspondence between:

(i) Differential combinators D on X which satisfy [CD.A] (or equivalently [CD.ev]);
(ii) Closed systems of linearizing combinators LC on X;
(iii) Ezponentiable linearizing combinators L on X.

Therefore, a Cartesian closed differential category is precisely a Cartesian closed left addi-
tive category equipped with a exponentiable linearizing combinator or equivalently a Carte-
sian closed left additive category equipped with a closed system of linearizing combinators.

ProoF. That (i) and (ii) are in bijective correspondence follows from Theorem 5.14,
Proposition 6.9.(ii), and Corollary 6.10.(i). On the other hand, that (ii) and (iii) are in
bijective correspondence follows form Proposition 6.9.(i) and Proposition 6.11.(i) (which
when put together shows that their respective constructions are inverses of each other).m

7. Concluding Remarks

The main purpose of this paper is to establish in detail an alternative axiomatization for
Cartesian differential categories using a system of linearizing combinators. This was mo-
tivated by the existing techniques of Goodwillie’s functor calculus and, in particular, the
example of the abelian functor calculus, which focused on the processes of linearization
and Taylor approximation rather than differentiation per se [1]. Regarding the abelian
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functor calculus, a question which now should be answered is whether, in fact, its lin-
earization combinator is exponentiable and if HoAbCatc, is a Cartesian closed differential
category.

While an alternative axiomatization for Cartesian differential categories is, of course,
always of theoretical interest, in this case it was motivated by a practical example in
which the alternative axiomatization using linearization arose quite naturally. Notably
the axiomatization presented here gives an algebraic face to the classical relationship
between linear approximation and differential. However, the weakness of this alternative
axiomatization should not be overlooked. The problem is that one needs to assume partial
linearization at the outset: this is a significant requirement. On top of the required
equalities which must be established, checking that linearizing works in context increases
the overhead for checking that one has a Cartesian differential category. In this regard the
total differential combinator has a clear advantage. Example 5.15 of C!-DIFF, however,
indicates an important aspect of linearization: it can exist for functions which are not
infinitely differentiable and these are definitely in the purview of classical analysis. This
suggests that linearization could play a significant role in providing a broader categorical
approach for non-smooth analysis.

It is worth emphasizing the discussion at the end of Section 5. In the development
of differential categories, tensor differential categories have always had a guiding role:
they provide an important source of examples of Cartesian differential categories by ap-
plying the coKleisli construction (indeed, even tangent categories can often be produced
by applying the coEilenberg-Moore construction [13]). Thus, it is worth understanding
how linearization appears in tensor differential categories. Somewhat surprisingly it is
the correspondence between deriving transformations and the coderelictions for tensor
differential categories. This correspondence becomes, under translation into the coKleisli
category, the correspondence between differential combinators and systems of linearizing
combinators:

®-differential categories | Cartesian differential categories
Deriving transformations Differential combinators D
f:A—B
d:1 A A—1A D[f]:Ax A—B
Coderelictions Linearizing Combinators L
f:A—B
n:A—14 L[f]:A—B

Linearizing combinators, thus, should also provide equivalent axiomatizations for gen-
eralizations of Cartesian differential categories including generalized Cartesian differential
categories [14], differential restriction categories [10], and even tangent categories [9]. In
each setting the precise form that linearization takes needs to be developed: hopefully this
development, centred as it is on Cartesian differential categories, will be a useful guide.
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