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ERRATUM TO
“EXACT SEQUENCES IN THE ENCHILADA CATEGORY”

M. ERYÜZLÜ, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. In this note we correct two propositions from the paper “Exact sequences
in the enchilada category”. Moreover, we present our further investigation on monomor-
phisms and epimorphisms in the enchilada category.

1. Introduction

[1] concerns the enchilada category of C∗-algebras, in which morphisms are isomorphism
classes of (nondegenerate) C∗-correspondences. Propositions 3.6 and 4.6 in that paper
state characterizations of split monomorphisms and split epimorphisms as Hilbert bimod-
ules that are full on the left or right, respectively. However, we subsequently realized
that there are split monomorphisms and split epimorphisms that do not have a bimodule
structure. In this erratum we present examples of such morphisms. There is no real harm
done, because the main results of [1] do not depend upon the incorrect characterizations
of split mono- or epimorphisms.

2. Split Monomorphisms and Split Epimorphisms

[1, Proposition 3.6] states that a morphism [AXB] is a split monomorphism in the enchilada
category if and only if it is a left full Hilbert bimodule. However, here we show that there
exists a split monomorphism [AXB] in the enchilada category such that AXB does not
have a Hilbert bimodule structure.

2.1. Proposition. The Enchilada category has a split monomorphism that is not the
isomorphism class of a Hilbert bimodule. However, if the isomorphism class of a Hilbert
bimodule AXB is a split monomorphism, then AXB has to be left full.

Proof. Let X be the injective C− C2 correspondence associated to the homomorphism
a 7→ (a, a), and let Y be the C2−C correspondence associated the homomorphism (a, b) 7→
a. Then, we have

C(X⊗C2Y )C ∼= CCC.

However, the correspondence C(X)C2 is not a Hilbert bimodule.
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To prove the second half of the proposition, let AXB be a Hilbert bimodule such
that [AXB] is a split monomorphism in the enchilada category. Then, there exists a
correspondence BYA such that

AXB ⊗B BYA
∼= AAA.

Then the C∗-correspondence A(X ⊗B Y )A must be right full, i.e,

⟨Y, ⟨X,X⟩B · Y ⟩A = A.

Let Z = BXY . Note that

X ⊗B Y = X ⊗BX
Y = X ⊗BX

Z

as A− A correspondences. Thus

X̃ ⊗A X ⊗B Y = X̃ ⊗A X ⊗BX
Y

∼= BX ⊗BX
Y

∼= BXY

= Z

as B − A correspondences.
Thus

AX
∼= AX ⊗A A

∼= X ⊗B X̃ ⊗A X ⊗B Y
∼= X ⊗B Z

= X ⊗B Y
∼= A

as A− A correspondences. Therefore the ideal AX must be all of A.

Proposition 2.1 has a dual counterpart:

2.2. Proposition. The Enchilada category has a split epimorphism that is not the iso-
morphism class of a Hilbert bimodule.

Proof. Let K = K(H) for an infinite-dimensional Hilbert space H, and let K̃ be the
(minimal) unitization, so in this case K + C1H . Then we have a short exact sequence of
C∗-algebras:

0 K K̃ C 0.
q

Let X be the K̃ − C correspondence given by the quotient map q in the usual way. We
first show that X is a split epimorphism. Let Y be the C − K̃ correspondence given by
the inclusion map of the nondegenerate C∗-subalgebra C of K̃. Let

Φ : Y ⊙X → C
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be the unique linear map associated with the bilinear map

(y, λ) 7→ q(y)λ.

If we can verify that Φ preserves inner products and left C-module actions, then we will
be able to conclude that it canonically determines an isomorphism Y ⊗

K̃
X ≃ C of C−C

correspondences:

⟨Φ(y ⊗ λ),Φ(z ⊗ µ)⟩C = ⟨q(y)λ, q(z)µ⟩C
= λ̄ q(y)q(z)µ

= λ̄q(y∗z)µ

= ⟨λ, ⟨y, z⟩
K̃
· µ⟩C

= ⟨y ⊗ λ, z ⊗ µ⟩C,

and of course Φ preserves left C-module actions because q is linear.
On the other hand, to see that X is not a Hilbert bimodule notice that K̃ does not

have an ideal isomorphic to C, because the only nontrivial proper ideal is K. (Note that
as a Hilbert module, X is just the standard one determined by the C∗-algebra C, and so
K(X) = C.)

[1, Proposition 3.6] states that in the enchilada category every monomorphism is
injective. We now show that the converse is not true in general:

2.3. Proposition. There exists an injective C∗-correspondence that is not a monomor-
phism in the enchilada category.

Proof. Let H be an infinite dimensional Hilbert space. Then we may view H as an
injective C∗-correspondence over C. Consider the usual Hilbert spaces C and C2. We
have the isomorphism

C⊗C H ∼= C2 ⊗C H,

but C and C2 are not isomorphic as C− C correspondences.

References
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be


	Introduction
	Split Monomorphisms and Split Epimorphisms

