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A MODULAR FUNCTOR FROM STATE SUMS FOR FINITE
TENSOR CATEGORIES AND THEIR BIMODULES

JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

Abstract. We construct a modular functor which takes its values in the monoidal
bicategory of finite categories, left exact functors and natural transformations. The
modular functor is defined on bordisms that are 2-framed. Accordingly we do not
need to require that the finite categories appearing in our construction are semisimple,
nor that the finite tensor categories that are assigned to two-dimensional strata are
endowed with a pivotal structure. Our prescription can be understood as a state-sum
construction. The state-sum variables are assigned to one-dimensional strata and take
values in bimodule categories over finite tensor categories, whereby we also account for
the presence of boundaries and defects. Our construction allows us to explicitly compute
functors associated to surfaces and representations of mapping class groups acting on
them.
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1. Introduction

Finite tensor categories are linear rigid monoidal categories obeying certain finiteness
conditions. They arise in various contexts in representation theory, e.g. as categories
of finite-dimensional representations of finite-dimensional Hopf algebras, or as represen-
tation categories of suitable vertex algebras or nets of observable algebras. They also
appear naturally in rigorous approaches to low-dimensional conformal and topological
quantum field theories. Fusion categories, i.e. finite tensor categories that are semisimple,
form an important subclass. They occur e.g. in the classification of subfactors and in
topological field theory and its applications, such as the description of local invariants of
knots and links, the study of topological phases of matter, and quantum gravity, and as
renormalization group fixed points of string net models.

By now a comprehensive body of mathematical results – which one may collectively
refer to as “categorified representation theory” – has been built around finite tensor
categories. Remarkably, many results in categorified representation theory do not require
semisimplicity, but rather rely on the finiteness properties. Let us illustrate what we
mean by categorified representation theory: Thinking of finite tensor categories as a
categorification of rings, it is natural to study their module and bimodule categories.
Direct applications of these are in the description of defects and boundaries in topological
field theories. On the mathematical side, module and bimodule categories lead to a
rich algebraic structure. Specifically, invertible (not necessarily semisimple) bimodule
categories give rise to a (higher categorical variant) of a group, the Brauer–Picard group,
which plays a central role in the construction of equivariant modular functors and thus of
orbifold theories. The bicategory of module categories leads to a bicategorical variant of
Morita theory.

An important structure in categorified representation theory is the Drinfeld center.
For instance, Morita equivalent finite tensor categories have equivalent Drinfeld centers,
and the Brauer–Picard group can be computed in terms of braided autoequivalences
of the Drinfeld center [DN, Thm. 4.1]. While finite tensor categories can be endowed
with interesting additional features, e.g. with a pivotal structure, a braiding, or a ribbon
structure, it is worth pointing out that there is a rich theory already without assuming
any such extra features. Accordingly we take finite tensor categories without additional
structure as the starting point of the present paper.

A comprehensive algebraic theory calls for an organizing principle. Indeed, modular
functors should provide such a principle. (For the precise notion of modular functor we
are using in this paper, see Definition 2.14.) This is not surprising; many algebraic the-
ories turn out to have organizing principles that can be expressed in terms of geometric
structure. For instance, when working with associative algebras it is helpful to be aware of
aspects of rooted trees, while the theory of Frobenius algebras becomes very transparent
in the light of two-dimensional oriented topological field theory. In a similar vein, for
categorified representation theory it is commonly agreed that variants of extended three-
dimensional topological field theories based on state-sum constructions should play a role.
For our purposes, we have an (extended) topological field theory or – for more general
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input data that are not required to be semisimple – a modular functor in mind that is
set up at the level of bicategories: it assigns to one-dimensional structures categories,
to two-dimensional structures functors, and to elements of mapping class groups natural
transformations. Such topological field theories or modular functors are of intrinsic math-
ematical interest and have at the same time a lot of applications, ranging from physics to
computer science.

On the other hand, the standard approach to state-sum constructions, as pioneered
by Turaev–Viro [TV′] and Barrett–Westbury [BaW], is unsatisfactory when it comes to
“explaining” categorified algebra:

• The Turaev–Viro–Barrett–Westbury construction is based on fusion categories that
are pivotal (and even spherical). In contrast, various non-trivial aspects of categorified
representation theory do not require a pivotal structure, which should therefore better
be treated as an additional feature. (This point of view is also advocated in [DSS].)

• Turaev–Viro theory based on a fusion category A assigns to a circle the Drinfeld
center Z(A). The fusion category A itself, on the other hand, is effectively invisible,
in the sense that Morita equivalent spherical fusion categories give the same extended
topological field theory at the bicategorical level.

• As already pointed out, much of categorified representation theory works beyond the
realm of fusion categories, for the larger class of finite tensor categories which enjoy
analogous finiteness properties as fusion categories, but are not necessarily semisimple.

The central goal we achieve in this paper is a geometric framework that governs the
categorified representation theory of finite tensor categories and their finite (bi)module
categories. To overcome the shortcomings of conventional state-sum constructions, we
work in the following setting:

• To allow for finite tensor categories that are not semisimple, we construct a modular
functor rather than a 3-2-1-extended topological field theory. Specifically, we do not
formulate a theory for arbitrary three-manifolds with corners, but restrict ourselves to
surfaces and to actions of their mapping class groups. The idea that non-semisimple
categories only allow one to deal with a restricted class of three-manifolds (or with
three-manifolds having additional structure, see e.g. [BCGP, Def. 3.3]) – in our case,
at least cylinders twisted by the action of an element of the mapping class group – is
not new, see e.g. [DSS].

• One way to make the finite tensor category itself, rather than merely its Drinfeld
center, visible in the construction, is to consider the extension of the theory to the
point [DSS]. In our construction we expose the finite tensor category, as well as its
module and bimodule categories, by instead extending the category of cobordisms to
include boundaries and defects. This modification is not new either. Indeed, it is
known [FuSV] that boundary conditions for a topological field theory of Reshetikhin–
Turaev type based on a modular tensor category C correspond to Witt-trivializations,
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i.e. to braided equivalences C ≃Z(A) to the Drinfeld center of some fusion category
A, which, in turn, has a direct interpretation as a category of Wilson lines associated
with a specific boundary condition.
That we include defects has a further benefit: There are defects between any two
topological field theories of Turaev–Viro type, and hence our construction encompasses
in a single theory the Turaev–Viro theories for all choices of fusion categories.

• Finally, in order to do without a pivotal structure on the algebraic side, we supplement
structure on the geometric side and work with 2-framed manifolds rather than with
oriented ones. 1 Again, this approach has been advocated before, see [DSS] as well as
[Ku]. In [DSS] the existence of a framed theory is shown with the help of the cobordism
hypothesis. This approach is non-constructive and thus difficult to compare with
other approaches. Our approach is in the framed setting, too, but it is constructive.
We expect it to be the 2-1 framed defect theory with mapping class group actions
(sometimes called a (2+ϵ)-theory) that extends to a framed fully extended defect 2-d
theory.

Several frameworks for addressing our goal may come to mind, such as factorization
algebras, Kitaev-type state-sum models, or constructions based on fully extended topo-
logical field theories that invoke the cobordism hypothesis. The approach taken in the
present paper provides an explicit state-sum construction in a purely categorical setting.
This avoids the introduction of extra structure, and it does not invoke the cobordism
hypothesis, but has structural similarities with constructions familiar from factorization
algebras. Indeed one might even hope that our construction, for instance Proposition
C.13, will allow one to compare state-sum models, factorization algebras and the fully
local theory in our concrete setting.

Our construction is tailored to the specific target bicategory of finite tensor categories
with the Deligne product as the monoidal structure and with left exact (or, alternatively,
right exact) functors as 1-morphisms, and uses the full power of that structure. Defects are
built in from the start, as the carriers of the state-sum variables. Being very concrete, our
approach leads directly to fully explicit computational prescriptions for specific situations
of interest. Our findings are in line with the results, conjectures and expectations in
other approaches, albeit the direct comparison between different frameworks is far from
straightforward.

Even given the clear program outlined above, the right definitions and a full construc-
tion still turn out to be subtle. Accordingly, in a sense, our first important insight is
Definition 2.11: it specifies a monoidal bicategory Borddef

2 of 2-framed defect cobordisms
that suits our purposes. The description of a modular functor in Definition 2.14 is then
standard, and it follows from our general goal that we aim for a modular functor with
values in the monoidal bicategory S =LEX , having finite categories as objects, left exact

1In Remark 5.28 we sketch how our construction should be adapted so as to apply to a monoidal
bicategory of oriented cobordisms.
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functors as 1-morphisms, and the Deligne product as the monoidal structure. (There is
also a variant that instead uses as target the bicategory of finite categories with right
exact functors.) Theorem 2.15, the main result of this paper, then asserts the existence
of such a modular functor, i.e. of a symmetric monoidal bifunctor

T : Borddef
2 −→ S . (1.1)

The unsuspicious words “symmetric monoidal bifunctor” specify quite a lot of struc-
ture and properties. (This partly explains the length of the present paper.) It includes,
for instance – in the form of the horizontal composition of 1-morphisms – factorization of
the modular functor under the gluing of surfaces, see Theorem 5.27.

Let us now summarize the main line of our arguments:

• We have to assign a finite linear category to each object of Borddef
2 , i.e. to certain one-

manifolds with additional structure. These finite categories are suitable generalizations
of Drinfeld centers. This is the topic of Section 3.

• Next we must assign a left exact functor to each 1-morphism of Borddef
2 , i.e. to bor-

disms with extra structure, which we call defect surfaces. This is achieved in the form
of a state-sum construction and follows the standard three-step pattern of such con-
structions: For a surface with boundary, one first constructs a “big” vector space –
actually, a linear functor. We call this functor the pre-block functor.

That we work with categories that are not necessarily semisimple forces us to work
systematically with natural notions from category theory. Specifically, to construct
left exact functors, we use Hom functors and implement the sum over states by tak-
ing coends. Indeed we would raise the claim that the systematic use of category-
theoretic concepts allows for a substantial conceptual clarification, even when dealing
with semisimple categories.

The construction of pre-block functors occupies the first part of Section 4.

• The second step in a state-sum construction consists in imposing an appropriate flat-
ness condition. It is one of the novel insights of this paper that when making use of the
2-framing on the surfaces, one can enforce flatness of holonomies without assuming the
existence of a pivotal structure on the finite tensor categories. To be able to impose
flat holonomy, the defect network of the surface must be such that each of its 2-patches
has the topology of a disk; we call a surface of this type a fine defect surface. The
solution of the flatness condition on the pre-block functor for a fine surface Σ gives
another left exact functor, which assigns to Σ in a functorial way subspaces of the big
vector spaces (which one might think of as ‘spaces of ground states’). Constructing
these functors for all fine surfaces is the second main subject of Section 4.

• A modular functor must, of course, assign a functor to any defect surface, not just
to fine ones. In Section 5 we explain how to define such functors, which we call block
functors, to surfaces with a defect network that is not necessarily fine. To this end we
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introduce the notion of a refinement of a defect surface. We show that refinements to
fine surfaces exist, and then proceed to set up, first for disks, a system of isomorphisms
for functors associated to fine refinements in such a manner that we can define the
block functors for disks as limits. The block functors for general defect surfaces are
then constructed from the block functors for disks. We also show that the so defined
block functors obey factorization and study actions of mapping class groups.

• When combined, these results imply our main Theorem 2.15. A concise summary of
the proof is given in Section 5.43.

Instead of taking finite tensor categories with left exact functors as the target bicate-
gory of the modular functor, we could have chosen the bicategory of finite tensor categories
with right exact functors. Each of these two bicategories is monoidal, with the Deligne
product as a symmetric monoidal structure. A duality between the left and right exact
functors is provided by the Eilenberg–Watts functors that were studied in [Sh, FSS2].
According to this duality, the left exact Hom functor gets replaced by the vector space
dual of the Hom functor, which is right exact, and coends in the state-sum construction
must be replaced by ends. Beyond this aspect, the Eilenberg–Watts calculus also plays a
significant role in our approach and in interpreting our results. For instance, it makes it
easy to describe how the modular functor provides, via the fusion of boundary insertions,
a composition on Deligne products M⊠N (see Proposition 4.7); for other applications,
see e.g. Example 4.5 or Corollary 4.32.

Several complementary results help to make block functors computable. For instance,
in Theorem 4.43 we show that the fusion of defect lines corresponds to a relative Deligne
product of bimodule categories (which depends on the framings involved), while Proposi-
tion 4.25 tells us that a pair of gluing boundaries can be combined to a single one, in a way
that is described by the composition of functors (see the picture (4.15) below), without
changing the block functor. As a consequence, a specific simple defect surface, which we
call the ‘straight disk’ (displayed in picture (4.7)), is of particular importance; we show
that its pre-block spaces consist of natural transformations (see formula (4.11)) and that
its block spaces are the corresponding module natural transformations (Corollary 4.32).
The occurrence of module natural transformations is the simplest instance in which our
construction contributes to the program of geometrically realizing categorified representa-
tion theory. Also, in view of the construction of block functors for general defect surfaces
from those for disks, one may think of block functors as giving spaces that constitute a
huge generalization of spaces of module natural transformations.

We also provide details for a few situations of specific interest, a sample being the
following: The functors of braided induction (or α-induction) appear naturally in the
block functor for disks with a free boundary (Example 5.11); the ‘transmission functor’
which was considered in [ENOM, Sect. 5.1] is obtained as the block functor for a cylinder
with a circumferential defect line (Example 5.29); a variant of the twist (involving the
double-dual functor) on objects of a braided monoidal category appears in the natural
transformation that is obtained from a Dehn twist on the cylinder over a circle (Propo-
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sition 5.52); the block functor for a two-sphere with one circular defect line and any
number of insertions (Example 4.35) has bimodule natural transformations as its values;
and a pair of pants (Example 4.41) realizes, via the Eilenberg–Watts equivalences, the
composition of bimodule functors as well as, in the situation that all defects involved
are transparent, the tensor product in the Drinfeld center (which is the functor that also
the standard Turaev–Viro construction assigns to a pair of pants). As examples for the
actions of mapping class groups, we consider a braiding move on a three-punctured sphere
(Proposition 5.47) and a Dehn twist (Proposition 5.52).

2. Framed defect manifolds

In this section we define a bicategory Borddef
2 of two-dimensional 2-framed bordisms with

labeled defects. To this end we introduce in a first step a geometric bicategory Borddef,0
2

having unlabeled defects. All manifolds considered below are assumed to be smooth and
oriented.

2.1. Framed defect bordisms.We consider manifolds which can have boundaries and
corners and can contain defect lines, and which in addition are endowed with a framing.
Before describing the bicategory Borddef,0

2 of all such manifolds, we first consider a sub-
bicategory Borddef,0

2,cl of manifolds without corners. We start by giving representatives for
the morphisms of this sub-bicategory.

Denote by I = [0, 1] the standard interval and by S1 the standard circle; both endowed
with their standard orientation. We write

I⊔n := I ⊔ I ⊔ . . . ⊔ I and

(S1)⊔n := S1 ⊔S1 ⊔ . . . ⊔S1
(2.1)

for the corresponding finite disjoint unions, with n∈Z≥0 and with I⊔0 and (S1)⊔0 being
the empty set. Let Σ be a compact oriented surface, possibly with boundary. We endow
Σ with further structure that accounts for defect lines and a compatible framing. To
this end we first introduce the additional datum of an embedding δ : I⊔n ⊔ (S1)⊔m→Σ
for some m,n∈Z≥0 that is subject to the following restrictions: We require that the end
points of each interval are mapped to the boundary, i.e. δ({0, 1}⊔n)⊂ ∂Σ; that all other
points of the image of δ lie in the interior of Σ; and that each connected component of
∂Σ must contain at least one end point of one of the intervals. 2

We call the image of δ in Σ and, by abuse of language, also the map δ itself, the (set of)
unlabeled defect lines of Σ. Note that each of the defect lines inherits an orientation from
the standard orientation of the interval I or the circle S1, respectively. As an illustration,
the following picture shows a situation in which the underlying surface Σ is a sphere with

2The reason for imposing this requirement will become clear once we decorate the intervals with
algebraic data.
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three holes and in which Σ contains three unlabeled defect lines:

(2.2)

We allow only for pairs (Σ, δ) of surfaces with defect lines that can be endowed with
the additional structure of a 2-framing, that is, with a non-vanishing vector field χ on Σ
that along each defect line is parallel to it and whose direction matches the orientation
of the defect line. Together with the orientation of Σ, the vector field χ determines a
trivialization of the tangent bundle ofΣ, unique up to homotopy, hence the term 2-framing
for χ.

2.2. Definition.

(i) An unlabeled defect surface without corners is a triple (Σ, δ, χ) consisting of a com-
pact oriented surface Σ without corners, and with unlabeled defect lines δ and a
2-framing χ on (Σ, δ).

(ii) An unlabeled defect surface (Σ, δ, χ) is called fine iff each connected component of
Σ \{δ} is topologically a disk.

(iii) A fine unlabeled defect surface (Σ, δ, χ) is called gluable fine iff the boundary of
every connected component of Σ \{δ} contains at most one connected component of
the boundary of Σ.

2.3. Remarks.

(i) That we here augment the terminology by the qualification unlabeled is due to the
fact that we will want to be able to distinguish between different types of defect lines
and accordingly will decorate them, in Section 2.9, with suitable labels.

(ii) We do not allow for junctions of defect lines. Instead, any putative point in Σ at
which defect lines would meet is realized as a boundary circle on which those defect
lines end. Hereby we avoid the use of stratified manifolds which e.g. appear in the
approach of [CMS, CRS]. (The size of such a boundary circle is immaterial, though.
If we imagine to shrink it to a point, we could assign the category that any given
modular functor associates to the boundary circle instead also to a vertex at which
the defect lines meet, compare Section 2.4 of [CRS].)
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(iii) The construction presented in this paper is a state-sum construction. We exhibit
(in Sections 3 and 4) what it assigns to decorated one- and two-manifolds. State-
sum constructions are generally believed to extend down to the point, to which in
our case they should assign an object in a symmetric monoidal tricategory. Now
obviously, a point will have a decoration as well, namely a finite tensor category A.
It is thus natural to expect that the relevant tricategory is the tricategory of finite
tensor categories and their bimodule categories. This tricategory is also the one
used in [DSS], see Remark 2.16(i). In the present paper we refrain from introducing
tricategorical concepts and therefore do not investigate this issue any further.

(iv) The unlabeled defect surface resulting from the gluing of two fine unlabeled defect
surfaces is not necessarily fine. In contrast, the unlabeled defect surface resulting
from the gluing of two gluable fine unlabeled defect surfaces is again gluable fine.

As an illustration, the following picture indicates a framing for a closed defect surface
whose underlying surface is an annulus and which has two defect lines (here and below,
the surface is embedded in the plane and is taken to inherit the standard orientation of
the plane):

(Σ, δ, χ) = (2.3)

To introduce the objects of the category Borddef,0
2,cl , we consider the restriction of the

so defined structure to the boundary circles (together with little collars around them).
A point on the boundary ∂Σ is said to be marked iff it is in the image of δ, i.e. is the
end point of a defect line. We label a marked point by +1 and call it a positive point if
it is the image of an initial point 0∈ I of a defect line, and label it by −1 and call it a
negative point if it is the image of an end point 1∈ I. We also call a marked point on ∂Σ
– or, more generally, on a one-manifold – together with a sign ±1 an (unlabeled) defect
point, and the closure of the interval along a boundary circle between two neighboring
defect points a segment s. To determine the structure induced on the boundary ∂Σ by
the 2-framing of an unlabeled defect surface, we make use of the fact that in order to glue
bordisms of smooth manifolds along boundary circles, the circles need to be endowed with
collars. Concretely, a connected component of ∂Σ is to be considered with (the germ of)
an embedding S1× I→Σ. Thus we obtain a non-vanishing vector field on S1× I as the
pullback of a 2-framing χ on (Σ, δ). Note that at each defect point on ∂Σ the framing
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vector field χ on Σ provides a non-vanishing vector; by our requirement that near any
defect line δ the vector field χ is parallel to δ with matching direction, the so obtained
vector at a defect point p∈ δ ∩ ∂Σ is outward-pointing iff δ is oriented towards ∂Σ, i.e.
iff p is a negative point.

Further, it is natural to allow also for one-manifolds with boundary, and as a conse-
quence admit corresponding defect surfaces (see below) as well, which then have (one-
dimensional) boundaries and corners. Denoting by R the trivial 1-dimensional vector
bundle with oriented fiber over a given base, we then arrive at

2.4. Definition.

(i) An unlabeled defect one-manifold is a triple L=(L, ϵ, χ) consisting of an oriented
compact one-manifold L, possibly with boundary, a finite set ϵ⊇ ∂L of defect points,
and a non-vanishing vector field χ∈Γ(TL⊕R).
Further, at each defect point p∈ ϵ the component of χ(p) in TL is required to vanish,
and the component of χ(p) in R must be positive iff p is a positive point.

(ii) A closed unlabeled defect one-manifold is an unlabeled defect one-manifold with
empty boundary.

(iii) A morphism of unlabeled defect one-manifolds is a diffeomorphism of manifolds that
preserves the non-vanishing vector field.

Let us illustrate a few typical situations of unlabeled defect one-manifolds by pictures.
In such pictures we use the following conventions. We draw a one-manifold L as embedded
in the paper plane R2. For the tangent space TpL at any point p∈L we adopt the standard
convention to depict it as the tangential affine line in R2.

To graphically represent a section in the bundle TL⊕R we must in addition specify
the direction of R; it suffices to do this for an interval and for a circle. For an interval
embedded horizontally in the plane and oriented from left to right, we take the positive
direction of R to point upwards. Thus at any positive marked point on the interval the
vector fields we consider point upwards, and at any negative marked point they point
downwards; in particular, between a positive and a negative point the vector field is
tangential in at least one point. The following picture shows examples of unlabeled defect
intervals:

+ +

− −

+

− −
+

(2.4)

For a circle embedded in R2 we fix conventions by requiring that the trivial bundle R is
outward-pointing. Then the vector fields of our interest point outwards at any positive
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marked point and inwards at any negative one. Again, between a positive and a negative
point the vector field has to be tangential in at least one point. Here are simple examples
of 2-framed circles:

+

+

−

−

+

−

−

+

(2.5)

Up to homotopy keeping the vector field χ transversal at the defect points, χ is deter-
mined by its winding between neighboring defect points. When counted in units of π in
the direction of the orientation, the winding is an integer. We call this integer the framing
index of the segment s and denote it by

indχ(s) ∈ Z . (2.6)

The index is an even integer if the neighboring defect points have the same sign, and odd
otherwise. As an illustration, the values of the index for the intervals in (2.4) are

indχ

( )
= 0 =

+ +
indχ

( )
,− −

indχ

( )
= −1 ,

+

− indχ

( )
= 1 ,−

+

(2.7)

Similarly, the index of both segments of the first two circles in (2.5) is zero and the index
of both segments of the other two circles in (2.5) is equal to 1, while the index of the
single segment of each of the two circles

−

+

and (2.8)



A MODULE FUNCTOR FROM STATE SUMS 447

is equal to 2.
To capture the information contained in the indices of the segments of a defect one-

manifold we introduce the following concept:

2.5. Definition. Let ϵ=(ϵi)i=1,2,...,n be an n-tuple of signs, which we consider as either
linearly or cyclically ordered. An n-tuple κ=(κi)i=1,2,...,n ∈Zn of integers is said to be a
tuple of framing indices associated with a linearly ordered n-tuple ϵ of signs iff, for every
i∈{1, 2, ... , n− 1}, κi is even if the product ϵi+1 ϵi is positive, while κi is odd if ϵi+1 ϵi is
negative. If ϵ is considered as cyclically ordered, then we impose in addition the same rule
on κn as a function of the product ϵn ϵ1.

Later on, only the homotopy class of the vector field will matter; accordingly, the
datum χ of an unlabeled defect one-manifold is equivalent to the datum of a tuple κ
of framing indices for the signs ϵ of the defect points. (This motivates the terminology
‘framing index’; compare also Remark 4.16 below.) Accordingly, we will also use the
notation (L, ϵ, κ) in place of (L, ϵ, χ) for 2-framed defect one-manifolds.

We still have to introduce the general unlabeled defect surfaces that can have general
unlabeled defect one-manifolds as their boundary components. This is done as follows.
Again we start with a compact oriented surface Σ, now possibly with corners. Again there
is an embedding δ : I⊔n ⊔ (S1)⊔m→Σ as an additional structure. But now we allow for
more general embeddings than before: the image of an interval or a circle is also allowed
to be contained in a connected component of the boundary ∂Σ. (Thus the intersection
of the image of an interval with ∂Σ is either empty, equal to the image of the end points,
or equal to the image of the interval.) If this is the case, then we call the image of
the interval or circle an unlabeled free boundary. The end points of a free boundary
interval are corners of Σ; they constitute additional marked points of Σ, to which we still
refer as defect points. Still at each defect point on ∂Σ the vector field χ on Σ provides
a non-vanishing vector; for δ a free boundary the so obtained vector at a defect point
p∈ δ ∩ ∂glueΣ is outward-pointing iff δ is oriented towards ∂glueΣ, i.e. iff p is a negative
point. If a circle is not mapped by δ to a boundary component of Σ, then its image has
again to be contained in the interior of Σ.

Further, suppose that a connected component of ∂Σ contains at least one free bound-
ary segment. A connected component of the complement of the union of the free bound-
aries of that connected component is then called a gluing interval (see the picture (2.9)
below). A connected component of ∂Σ that does not contain any free boundary is called
a gluing circle. If an interval is not mapped by δ to a boundary component of Σ, then
its end points must be mapped to a gluing circle or gluing interval, and its interior to
points in the interior of Σ. The images of the latter types of circles and intervals, which
have non-empty intersection with the interior of Σ, are called unlabeled defect lines. As
an illustration, the following picture shows a defect surface whose underlying surface is
a sphere with four holes and which has one unlabeled defect line, one unlabeled free
boundary interval and one unlabeled free boundary circle, and one gluing interval and
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two gluing circles:

defect line
free boundary

gluing circle
gluing interval

(2.9)

A 2-framing on a general surface Σ containing defect lines δ is a non-vanishing vector
field χ on Σ that is parallel to, and has the same direction as, each defect line and each
free boundary. (On the other hand, there is no such condition restricting the vector field
near gluing segments.)

We can now generalize Definition 2.2(i) to

2.6. Definition. An unlabeled defect surface is a triple (Σ, δ, χ), where Σ is a compact
oriented surface, possibly with boundary and possibly with corners, δ is the union of unla-
beled defect lines in Σ and of unlabeled free boundary intervals on the boundary ∂Σ, and
χ is a 2-framing on (Σ, δ).
An isomorphism φ : (Σ, δ, χ)→ (Σ ′, δ′, χ′) of unlabeled defect surfaces is a diffeomorphism
of the underlying manifolds that respects the orientations and the vector fields and that
maps defect lines bijectively to defect lines.

A corner of Σ is necessarily one of the end points of a free boundary interval; as a
consequence, the vector field at a corner is parallel to that free boundary.

Given an unlabeled defect surface (Σ, δ, χ), we split its boundary as

∂Σ = ∂glueΣ ∪ ∂freeΣ (2.10)

into the two parts that consist of gluing segments and of free boundary segments, respec-
tively. (Each of the two parts can be empty; their intersection ∂glueΣ ∩ ∂freeΣ= ∂(∂freeΣ)
is the set of corners of Σ.) We refer to ∂glueΣ as the gluing boundary of Σ. The gluing
boundary ∂glueΣ becomes in the following manner an unlabeled defect one-manifold. The
embedding ι : ∂Σ ↪→Σ gives rise to an embedding Tp(∂Σ) ↪→ ι∗(TpΣ) of the tangent space
at every point p∈ ∂Σ. Further, by using the inward-pointing normal np (with respect to
some chosen auxiliary metric on Σ) at p one can then identify (0, ξ)∈Tp(∂Σ)⊕R with
ξnp ∈ ι∗(TpΣ). This provides an isomorphism of the tangent bundle of Σ, restricted to
the boundary, with T (∂Σ)⊕R. This way the 2-framing on Σ induces a 2-framing on the
boundary, whereby in particular the gluing boundary ∂glueΣ is endowed with the structure
of a (not necessarily connected) 2-framed defect one-manifold. We denote the so obtained
unlabeled defect one-manifold by ∂glue(Σ, δ, χ).

Instead of using the inward-pointing normal np, yielding ∂inward(Σ, δ, χ)≡ ∂glue(Σ, δ, χ)
we could as well use the outward-pointing normal −np. This would yield another unla-
beled defect one-manifold ∂out(Σ, δ, χ) that differs from ∂inward(Σ, δ, χ) by replacing the
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vector field ψ on ∂glue(Σ, δ, χ) by ψoutward :=ψ, where the overbar denotes a flip of the
R-coordinate, i.e.

ψ(p) = (α,−ξ) :⇐⇒ ψ(p) = (α, ξ) ∈ T (∂Σ)⊕R . (2.11)

This motivates the following

2.7. Definition. The opposite (L, ϵ, χ) of an unlabeled defect one-manifold (L, ϵ, χ) con-
sists of the manifold L taken with opposite orientation, which we denote by L, the same
marked points but with flipped signs, and of the flipped vector field in the sense of (2.11),
i.e.

(L, ϵ, χ) := (L,−ϵ, χ) . (2.12)

The following picture shows examples of a defect circle and a defect interval to-
gether with their opposites (recall that only the homotopy class of the vector field mat-
ters):

(L, ϵ, χ) =

−

−

+

=⇒ (L, ϵ, χ) =

+

+

−

(L, ϵ, χ) =
+

−
=⇒ (L, ϵ, χ) =

−
+

(2.13)

To summarize, we have obtained two bicategories Borddef,0
2 and Borddef,0

2,cl :

• Objects of Borddef,0
2 are unlabeled defect one-manifolds, objects of Borddef,0

2,cl are closed
unlabeled defect one-manifolds. (Recall that an unlabeled defect one-manifold is ori-
ented and endowed with a 2-framing.)

• A 1-morphism L→L′ in Borddef,0
2 is an unlabeled defect surface Σ together with a

boundary parametrization, i.e. an isomorphism ∂glueΣ
∼=−−→L′ ⊔L of unlabeled defect

one-manifolds that extends to a small collar over ∂glueΣ. The 1-morphisms of Borddef,0
2,cl

are those of Borddef,0
2 for which the unlabeled defect surface Σ is closed.

• Composition of 1-morphisms is given by gluing an incoming boundary and an outgoing
boundary which are each others’ opposites. These boundaries can consist of gluing
circles or gluing intervals; the gluing has to account for the parametrizations of the
boundaries.
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• A 2-morphism φ : Σ→Σ ′ in Borddef,0
2 between two 1-morphisms is represented by an

isomorphism φ of unlabeled defect surfaces that respects the boundary parametriza-
tions. Two isomorphisms φ0, φ1 : Σ→Σ′ represent the same 2-morphism if and only if
there is an isotopy h : Σ× [0, 1]→Σ′ with h(−, 0)=φ0 and h(−, 1)=φ1 that satisfies
δ′=h(−, t)(δ) and χ′=(ht)∗(χ) for all t∈ [0, 1]. 2-morphisms in Borddef,0

2,cl are defined
accordingly.

• The vertical composition of 2-morphisms is induced by composition of isomorphisms.
The horizontal composition of morphisms is given by gluing of surfaces along gluing
circles or gluing intervals.

These bicategories are symmetric monoidal, with the monoidal structure given by disjoint
union. (See [Scho] for the definition of a symmetric monoidal bicategory, and Section 3.1.4
therein for an outline of how to construct the symmetric monoidal bicategory Borddef,0

2 .)
The full subcategories of Borddef,0

2 and Borddef,0
2,cl consisting of fine unlabeled defect surfaces

(with and without corners, respectively) are symmetric monoidal as well.
The values of the modular functor on 2-morphisms provide us with representations of

the relevant mapping class groups of defect surfaces. This will be analyzed in detail in
Section 5.39.

2.8. Remarks.

(i) To get a well-defined horizontal composition of 2-morphisms, we should work with
collars. This is standard [Ko, Thm. 1.3.12], and nothing new happens in our context.
Accordingly we suppress this issue.

(ii) By definition of the 2-morphisms, in case the unlabeled defect surface Σ does not
have a free boundary and does not have any defects, the 2-morphisms from Σ to
itself form the framed mapping class group of Σ.

(iii) Consider a defect surface (Σ, δ, χ) with defects δ and 2-framing χ, and the same
underlying surface with the same defect lines but with another 2-framing χ′, to-
gether with a homotopy χt from χ to χ′, that is, χt is a smooth family χt : Σ→TΣ
of framing vector fields for t∈ [0, 1], such that χ0=χ and χ1=χ′. Then (Σ, δ, χ)
and (Σ, δ, χ′) are isomorphic in Borddef,0

2 , i.e. there exists an automorphism φ of Σ
which preserves δ and satisfies Tφ(χ)=χ′. This can be seen by considering the
cylinder Σ× [0, 1] over Σ with the vector field χ̃=(χt, t): Since Σ× [0, 1] is com-
pact, the vector field χ̃ has a complete flow φt : Σ∼= (Σ, 0)→ (Σ, t)∼=Σ, which is a
1-parameter family of automorphisms of Σ that preserve δ (since each χt is tan-
gential to δ) with φ0= idΣ. It follows from the flow equation d

dt
φt
∣∣
t=0

=χt that

Tφ1(χ0(p))=
d
dt
φ1(φt(p))

∣∣
t=0

= d
dt
φ1+t(p)

∣∣
t=0

=χ1(p).

(iv) Since, as noted in Remark 2.3(iii), gluable fine defect surfaces compose to a gluable
fine defect surface, there is a symmetric monoidal sub-bicategory Borddef,0,fine

2 whose
1-morphisms are gluable fine defect surfaces.



A MODULE FUNCTOR FROM STATE SUMS 451

2.9. Labels for defect bordisms.We are now going to assign an additional algebraic
datum to each connected component of the complement of the defect lines and boundaries
in a defect surface. Afterwards we also assign a corresponding datum to each defect line
and to each free boundary segment. Before formulating this prescription, several further
concepts need to be recalled. All algebraic categories of our interest are assumed to be
finite, abelian and linear over a fixed algebraically closed field k. Similarly we require
functors and natural transformations to be linear, unless specified otherwise. For the
notion of a finite tensor category see e.g. [EGNO]. We will heavily use that every object
of such a category has a left and a right dual; we do not assume any relation between the
two duals. Our conventions concerning dualities of a rigid category C are as follows. The
right dual of an object c is denoted by c∨, and the right evaluation and coevaluation are
morphisms

evrc ∈ HomC(c
∨ ⊗ c,1) and coevrc ∈ HomC(1, c⊗ c∨) , (2.14)

while the left evaluation and coevaluation are

evlc ∈ HomC(c⊗ ∨c,1) and coevlc ∈ HomC(1,
∨c⊗ c) (2.15)

with ∨c the left dual of c.
Further recall that a (left) module category over a finite tensor category A (or, for

short, an A-module), is a finite linear category M=AM together with a bilinear functor,
exact in the first variable, from A×M to M, which we call the action of A and just
denote by a dot ‘.’, as well as with natural isomorphisms µ and λ with components
µa,b,m ∈HomM((a⊗ b).m, a.(b.m)) and λm ∈HomM(1A.m,m) that satisfy pentagon and
triangle relations analogous to the associator and unit constraint of a monoidal category.
Right A-modules and A-B-bimodules are defined analogously. For ease of notation, we
will use the symbol M both for module and for bimodule categories. It is natural to
consider a bimodule category AMB as a 1-morphism A→B in the tricategory FınCatl.e.⊗
that has finite tensor categories as objects, finite bimodule categories as 1-morphisms,
and categories LexA,B(AMB,ANB) of left exact bimodule functors and bimodule natural
transformations as 2- and 3-morphisms, respectively. (Alternatively, one could consider
a tricategory with categories RexA,B(AMB,ANB) of right exact bimodule functors as 2-
and 3-morphisms. In this paper we focus on the formulation with left exact functors.)

There is then an obvious notion of a composable string of bimodule categories, and
likewise it is clear what a cyclically composable string of bimodule categories is. We can
also allow for left and right modules, respectively, as the ends of a string of composable
bimodule categories, by considering a left A-module as an A-vect-bimodule and a right
B-module as a vect-B-bimodule; thus e.g. a right module category MA, a bimodule cat-
egory ANB and a left module category BK form a composable string that constitutes a
1-morphism vect→ vect in FınCatl.e.⊗ .

Let now Σ be a surface with defect lines δ. We denote by

Σ(1) := δ ∪ ∂Σ (2.16)

the union of the defect lines and the boundary of Σ.
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2.10. Definition. By a 2-patch of Σ we mean a connected component of the complement
of Σ(1) in Σ together with the adjacent subset of Σ(1).

A defect surface is called fine iff the underlying unlabeled defect surface is fine, i.e.
iff every 2-patch is topologically a disk. A defect surface is called gluable fine iff the
underlying unlabeled defect surface is gluable fine.

We make the following assignments, which are in line with existing literature (see e.g.
Table 1 in [KK]):

• To a 2-patch we assign finite tensor category. 3

• To a defect line that separates 2-patches labeled by finite tensor categories A and B
we assign an A-B- or B-A-bimodule category, depending on the relative orientations
of the defect line and the adjacent 2-patches (see the picture (2.17) below).

• Similarly, to a free boundary we assign a left or right module category over the monoidal
category associated to the adjacent 2-patch.

The following picture fixes uniquely our convention for the bimodule categories assigned
to defect lines:

AMB

BA
(2.17)

Similarly, for free boundaries our convention is fixed by the following pictures:

MB

B

AN

A
(2.18)

The labeling of the building blocks of Σ induces a labeling of the segments of ∂glueΣ
and thereby determines an assignment of labels for defect one-manifolds: Defect points are
labeled by bimodule categories, and free boundary segments as well as their end points by

3It is worth noting that we do not require the existence of a pivotal structure on these categories.
The additional geometric structure of a framing allows us to dispense with pivotal structures; compare
Remark 3.2. Also note that we do not make any assumption about the topology of the 2-patches; see
however the notion of a fine defect surface in Definition 2.2.
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module categories, in such a way that, together with the orientation of the defect points,
the labels form a composable string of bimodule categories.

We summarize our prescriptions in

2.11. Definition. Borddef
2 is the following symmetric monoidal bicategory:

(i) Objects of Borddef
2 , called defect one-manifolds, are tuples L=

(
L, ϵ, χ, {Mj}

)
given

by an unlabeled defect one-manifold together with an assignment {Mj} of labels to
its marked points, consisting of a bimodule category for each defect point forming
the end of a defect line, and a module category for each defect point at the end of
a free boundary segment, in such a way that the finite tensor categories involved in
consecutive marked points match (when taking orientations into account).

(ii) 1-morphisms L→L′ of Borddef
2 , called defect surfaces, are tuples

Σ =
(
Σ, δ, χ, {Ak,Ml}

)
(2.19)

consisting of an unlabeled defect surface and an assignment of labels, together with

an isomorphism ∂glueΣ
∼=−−→L⊔L′ of defect one-manifolds, such that the labels in the

interior and on the boundary of Σ match.

(iii) A 2-morphism from a 1-morphism L→L′ given by Σ=
(
Σ, δ, χ, {Ak,Ml}

)
to a 1-

morphism with the same source and target given by Σ′ =
(
Σ ′, δ′, χ′, {A′

k,M′
l}
)
is

represented by an isomorphism φ : Σ→Σ ′ of unlabeled defect surfaces that preserves
the labels {Ak,Ml} of the various strata. We call such an isomorphism a morphism
of defect surfaces. Two morphisms φ, φ′ : Σ→Σ′ are equivalent iff they are equivalent
as morphisms of unlabeled defect surfaces.

(iv) The vertical composition of 2-morphisms is induced by composition of isomorphisms.
The horizontal composition of morphisms is given by gluing of surfaces along gluing
circles or gluing intervals.

(v) The monoidal structure is given by disjoint union.

2.12. Remarks.

(i) We write generically {Ai,Mj} etc. for the relevant sets of finite tensor and (bi)module
categories. For brevity, below we will usually suppress these additional data (which
are objects and 1-morphisms, respectively, of the tricategory FınCatl.e.⊗ ) in our nota-
tion.

(ii) Analogously as for unlabeled surfaces (see Remark 2.3(iii)), gluing two gluable fine
defect surfaces gives again a gluable fine defect surface. Borddef

2 has thus a symmetric
monoidal full sub-bicategory Borddef,fine

2 whose 1-morphisms are gluable fine defect
surfaces.

The notion of opposite one-manifold extends as follows from the unlabeled to the
labeled case:
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2.13. Definition. The opposite L of a (labeled) defect one-manifold L is the opposite
(L, ϵ, χ) of the underlying unlabeled manifold (L, ϵ, χ) together with the same assignment
of labels.

Two defect surfaces Σ1 and Σ2 can be glued along a defect one-manifold L if and
only if the corresponding defect one-manifold L1⊂Σ1 and L2⊂Σ2 are opposite to each
other. To be able to work with smooth manifolds, gluing is actually along collars. This is
demonstrated in the following picture which shows the situation locally around a defect
point on a gluing segment:

AMB

A

B

−
A

B
AMB

+ (2.20)

The main result of this article is the construction of two specific modular functors.

2.14. Definition. Let S be a symmetric monoidal bicategory. An S-valued framed mod-
ular functor (with decoration data in finite categories) is a symmetric monoidal 2-functor

T : Borddef
2 −→ S . (2.21)

Given the prescriptions for labels present in our setting, a natural choice of a target
bicategory S is LEX , i.e. the bicategory that has as objects finite k-linear categories, as 1-
morphisms left exact functors and as 2-morphisms natural transformations, with monoidal
structure given by the Deligne product. The restriction of functors to left exact ones is
due to the fact that the Deligne product of left exact functors is defined and provides the
symmetric monoidal structure at the level of 1- and 2-morphisms. The same also applies
to right exact functors, and indeed we could have chosen instead the symmetric monoidal
bicategory REX whose morphisms are right exact functors.

To summarize, we will show:

2.15. Theorem. There exists a state-sum construction that provides an explicit framed
modular functor with values in LEX , as well as a framed modular functor with values in
REX .

Several comments are in order:

2.16. Remarks.

(i) The existence of a similar functor for manifolds without defects has been shown in
[DSS, Cor. 5], invoking the cobordism hypothesis. Our approach is more direct and
and can be directly compared with state-sum constructions.
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(ii) The definition of a modular functor implies in particular that our construction is
compatible with factorization or, more specifically, with the gluing of defect surfaces
along gluing intervals or gluing circles. Indeed, the composition of two 1-morphisms
in Borddef

2 , i.e. defect surfaces Σ and Σ′, is by gluing the ‘outgoing’ part ∂+Σ of the
gluing boundary of Σ with the ‘incoming’ part ∂−Σ

′ of the gluing boundary of Σ′.
For details, see Section 5.1.

(iii) Our prescription may be seen as a kind of Turaev–Viro construction. Indeed, a
standard semisimple Turaev–Viro construction corresponds to specializing our pre-
scription by using only “transparent” labelings and assuming in addition the presence
of a pivotal structure (which allows one to eliminate the framing), see Remark 5.28.
Now in the standard Turaev–Viro situation a crucial property is the independence
of the choice of a triangulation. In contrast, the framed modular functor considered
here is defined on arbitrary defect surfaces for which all 2-patches are contractible,
without picking a triangulation.

However, as explained in Section 5.14, the construction of the modular functor does
make use of such “refining” triangulations, all parts of which are labeled by trans-
parent labels. As we show in Section 5.19, our construction is compatible with
transparency, in the sense that the structure we have at our disposal is sufficient
to define a block functor that is independent of the triangulation as a (co)limit.
(Thus not only the precise position of transparently labeled defects is irrelevant –
this invariance up to homotopy is valid for any topological defect – but not even
their combinatorial configuration, i.e. the particular choice of refining triangulation,
matters. These properties justify the qualification “transparent”.)

(iv) Mapping class group elements are specific 2-morphisms in Borddef
2 . Our construction

thus provides representations of mapping class groups. This is studied in Section
5.39. Note that since we are dealing with a state-sum construction, all mapping
class group elements are represented by genuine linear actions, so that there is no
need for a central extension of the mapping class groups.

(v) The decoration data of the modular functor are themselves categories, e.g. a bimodule
category M for a defect line. If we assign different bimodule categories M and M′ to
a defect line, the modular functor provides us with two functors. Given moreover a
bimodule functorM→M′, it is reasonable to ask how these two functors are related.
This relationship may be seen as a functoriality with respect to the decoration data;
it is indeed realized in our construction, but we will not discuss it in the present
paper.

(vi) The left exact version of the functor is compatible with operations on defect labels in
the following sense. As shown in Proposition 4.25, the contraction of a defect line is
implemented by a composition of functors, while Theorem 4.43 implies that the fusion
of two parallel defect lines corresponds to a variant of the relative Deligne product



456 JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

of bimodule categories, which is the composition of 1-morphisms in FınCatl.e.⊗ . Thus
in particular our construction is compatible with the identities in FınCatl.e.⊗ . This, in
turn, is implicit in the construction of the functor via refining triangulations.

3. Assigning categories to defect one-manifolds

The goal of this section is to define our modular functor on objects, that is, to associate to
any defect one-manifold L a finite k-linear category T(L). We call these categories gluing
categories, because they are assigned to boundary segments of defect surfaces along which
these can be glued together to form more complicated defect surfaces. The gluing category
T(L) will be defined as the category of objects in a Deligne product, endowed with the
additional structure of balancings. More concretely, we first take the Deligne product of
all categories that are assigned to the marked points of L. We then take objects in this
Deligne product together with a balancing for each monoidal category that is assigned to
a segment of L. Such a balancing allows one to swap the action of objects in a monoidal
category from one (bi)module category in a composable string to a neighboring one.

3.1. Twisted bimodule categories. Let A1 and A2 be finite tensor categories and
M an A1-A2-bimodule category. The double left and right dual functors of a finite tensor
category have a natural monoidal structure, so that we can twist the left and right actions
on M by powers of the double left or right dual of A1 and A2, respectively. To describe
these twisted actions comfortably, we introduce the following notation. Given an object
a of a finite tensor category A, we use the shorthand [κ]a, for κ∈N, for the κ-fold left
dual ∨∨...∨a of a, and analogously a[κ] for the κ-fold right dual; we also write [0]a= a= a[0].
Thus the double left dual functor maps objects as a 7−→ ∨∨a= [2]a. Further, in view of
the canonical isomorphisms ∨(a∨)∼= a∼= (∨a)∨ it is natural to extend these definitions by
taking [−κ]a for κ∈N to be the κ-fold right dual, [−κ]a= a[κ], and vice versa,

Now for any pair (κ1, κ2)∈ 2Z× 2Z we denote by κ1Mκ2 the bimodule category for
which the left and right actions on M are twisted by the κ1- and κ2-fold left and right
dual, respectively, i.e. A1 acts as m 7→ [κ1]a1.m and A2 as m 7→m.a

[κ2]
2 . We also abbreviate

κM0≡ κM and 0Mκ≡Mκ. Similarly, for every pair of odd integers κ1 and κ2, the opposite
category Mopp can be endowed with the structure of an A2-A1-bimodule by setting

a2 .m := m. [κ1]a2 and m. a1 := a
[κ2]
1 .m . (3.1)

Here we write x for the object x∈M seen as an object in Mopp . Whenever convenient
we will from now on also use the notation X for the opposite category of any category X ,
as well as

X ϵ :=

{ X for ϵ=+1 ,

X for ϵ=−1 .
(3.2)

Further, we denote the bimodule categories with actions (3.1) by κ1Mκ2 , and analogously
for left and right modules. Note that the so obtained Z×Z-torsor of bimodule categories
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does not have a natural section. Allowing also for the modules κ1Mκ2 , we can consider
cyclically or linearly composable strings of the more general form (Mϵi

i )1≤i≤n.

3.2. Remark. A pivotal structure on a finite tensor category A, if it exists, furnishes a
monoidal equivalence ?∨∨⇒ IdA and thus allows one to identify all the module categories
that result from twists by powers of the double dual. But we do not assume the existence of
a pivotal structure and accordingly use all twisted bimodule structures κ1Mκ2 and κ2Mκ1

in our construction. However, as will be explained in Section 3.22, there is a canonical
4-periodicity in the so obtained family of bimodule categories.

3.3. Balancings for bimodule categories.A connected defect one-manifold L with
n> 0 marked points comes by definition with an n-tuple of bimodule categories (Mi)1≤i≤n
such that the string (Mϵi

i )1≤i≤n is either cyclically or linearly composable. To be able
to introduce the k-linear category associated to a defect one-manifold L, one further
ingredient is needed: twisted balancings for strings of composable bimodules categories.

3.4. Definition.

(i) Let A be a monoidal category and M an A-bimodule. A balancing for an object
m∈M is a natural family (σ=(σa : a.m→m.a)a∈A) of isomorphisms in M such
that σ1= idm (up to structure isomorphisms) and such that the diagram

(a⊗a′) .m m . (a⊗a′)

a .m . a′

σaa′

a.σa′ σa.a′
(3.3)

commutes for all a, a′ ∈A. (For brevity we omit the constraint morphisms of the
bimodule category M.)

(ii) The category ZA(M) of objects with balancings for an A-bimodule category M has
as objects pairs (m,σ) consisting of an object of M and a balancing.

The morphisms HomZA(M)((m,σ), (m
′, σ′)) are those morphisms m

f−→m′ in M for
which the diagram

a .m m . a

a .m′ m′. a

σ

a.f f.a

σ′

(3.4)

commutes for all a∈A.

3.5. Remark. In case A has a duality we actually do not have to require that balancings
are isomorphisms. Indeed, if M is a bimodule category over a monoidal category A with
right duals, then any natural morphism σ satisfying the tensoriality (3.3) for m∈M has
a two-sided inverse given by σ′

a := (a.m.evra) ◦ (a.σa∨ .a) ◦ (coevra.m.a). This can be verified
directly by combining (3.3) and the naturality of σ.
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3.6. Definition.

(i) Let (Mϵi
i )i=1,...,n be a string of n cyclically composable bimodule categories, and let

κ be an n-tuple of framing indices associated with ϵ. Then the κ-framed center (or
framed center, for short), denoted by

Mϵ1
1

κ1
⊠Mϵ2

2

κ2
⊠Mϵ3

3

κ3
⊠ · · ·

κn−1

⊠Mϵn
n

κn
⊠ , (3.5)

is the category of twisted balancings: Objects are objects of ⊠iMϵi
i (cyclically com-

posable) together with a balancing for each action of a finite tensor category involved.

For an object of ⊠iMϵi
i of the form mϵ1

1 ⊠m
ϵ2
2 ⊠ · · · ⊠mϵn−1

n−1 ⊠m
ϵn
n and for the case

of even values κi and ϵ1= ϵi= ϵi+1= ϵn=1, the balancing consists of coherent bimod-
ule isomorphisms (which also take care of hexagon-type constraints)

mi.a⊠mi+1

∼=−−→ mi ⊠ [κi−2]a.mi+1 for i∈{1, 2, ... , n−1} and

m1 ⊠ · · ·⊠mn.a
∼=−−→ [κn−2]a.m1 ⊠ · · ·⊠mn .

(3.6)

In case ϵi= ϵi+1=−1, the balancing is a.mi⊠mi+1

∼=−−→mi⊠mi+1.[κi+2]a, and anal-
ogously if ϵ1= ϵn=−1. If κi is odd, then we either have ϵi=−1 and ϵi+1=1 and deal
with an object of the form mi⊠mi+1, and it is then understood that the isomorphism
is a.mi⊠mi+1

∼=mi⊠ [κi]a.mi+1, or else ϵi=1 and ϵi+1=−1 and the isomorphism is
mi.a⊠mi+1

∼=mi⊠mi+1.[κi]a.

Morphisms in the category are morphisms of ⊠iMϵi
i that are compatible with the

balancings.

(ii) Similarly, for a collection (Mϵi
i )i=1,...,n of linearly composable bimodule categories,

and for κ an n-tuple of integers that refines the signs ϵ, the κ-framed center is again
defined as the corresponding category of twisted balancings, with only n−1 balancings
involved.

3.7. Remarks.

(i) We slightly abuse notation by omitting the bracketing for objects in multiple ordinary
Deligne products. This is unproblematic because different bracketings are related by
canonical coherent isomorphisms.

(ii) It is sufficient to specify, as done in (3.6), the balancings only for objects that are
of ⊠-factorized form. Below we will often analogously use ⊠-factorized objects as
placeholders for generic objects.

(iii) In the special case that M=A is a finite tensor category, regarded as a bimodule

category over itself, a balancing is a half-braiding and A
2

⊠=Z(A) is the Drinfeld
center of A. This justifies the terminology “framed center”. Applying the tensor
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product of A to two objects bi ∈A
κi
⊠ gives an object in A

κ1+κ2−2

⊠ . In particular, only

the category Z(A)=A
2

⊠ is monoidal, while for general κ there are mixed tensor

products
(
A

κ1
⊠
)
⊠
(
A

κ2
⊠
)
→A

κ1+κ2−2

⊠ .

(iv) Instead of ordering the bimodule categories as Mϵ1
1 · · ·Mϵn

n we could as well order
them as Mϵn

n · · ·Mϵ1
1 . Accordingly for each pair of consecutive bimodules we can

interpret the balancing in two ways, namely as swapping the action of the relevant
finite tensor category from Mϵi

i to Mϵi+1

i+1 or from Mϵi+1

i+1 to Mϵi
i corresponding, re-

spectively, to the two pictures

MA

AN

and

MA

AN

(3.7)

(Here we also indicate defect lines attached at the defect points, in order to indicate
how the gluing segment may appear as part of the boundary of a defect surface.
This will be done analogously also in other pictures.) The orientation of the defect
one-manifolds provides us with one particular ordering, e.g. we swap from Mϵi

i to
Mϵi+1

i+1 in the situation shown in the picture (3.22) below.

(v) By direct calculation one checks that there is an equivalence

(M
κ

⊠N )opp ≃ N
−κ
⊠M (3.8)

for any pair of a right A-module M and left A-module N and any index κ.

The framed center for the case of a single bimodule will be particularly relevant, so
we give it a separate name:

3.8. Definition. Let A be a finite tensor category and M a finite A-bimodule. For κ∈
2Z, the κ-twisted center Zκ(M)≡Zκ

A(M) is the category that has as objects pairs (m,σ)

consisting of an object m∈M and a twisted balancing σ=(σa) with σa : a.m
∼=−→m.a[κ−2],

i.e. Zκ(M)=M
κ

⊠ .

The forgetful functor Zκ(M)→M is an exact functor of finite categories, hence it has
a left and a right adjoint. It is convenient to express the adjoints using the language of
(co)ends, which we review in Appendix B.1. A right adjoint is given by the co-induction
functor

I[κ] : M −→ Zκ(M) ,

m 7−→
∫
a∈A a .m . a[κ−1] ,

(3.9)

and a left adjoint by the corresponding induction functor I [κ], see Corollary B.5.
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3.9. Remarks. The following statements about these categories follow directly from the
definitions:

(i) For even κ we have Zκ+2
A (M)=Z(Mκ), i.e. the twisted center is the ordinary Drin-

feld center for the A-module for which the right A-action is twisted by the κ+2-fold
dual.

(ii) The notation fits with the conventions for the twisted actions: for κ∈ 2Z we have

NA
κ+2

⊠ AM = Z(N κ
A ⊠AM) = Z(NA⊠A

κM) . (3.10)

Similarly, for odd κ one finds (using the notation (3.1)

N
κ

⊠M = Z(N ⊠ κM) (3.11)

for two right modules NA and MA, and analogously

N
κ

⊠M = Z(N κ⊠M) (3.12)

for left modules.

(iii) Let A be a monoidal category with a right duality. Let M be a left A-module and N
a right A-module, whereby their Deligne product N ⊠M is an A-bimodule. Then
the category

N
0

⊠M ≃ N ⊠A M (3.13)

is the relative Deligne product (see e.g. [FSS1, Sect. 2.5] for the definition). This

category can also be realized as the category of modules over
∫ a∈A

a⊠ ∨a, which
has a natural structure of a Frobenius algebra A in A⊠A. In this description the
universal induction functor is the induction functor for the algebra A. Recall [FSS1]
that (contrary to statements in the literature) N ⊠AM is not the center of N and

M, but rather the twisted center N
0

⊠M, which with our conventions has objects
n⊠m equipped with balancing n.a⊠m∼=n⊠ a∨∨.m .

(iv) More generally, for an A-bimodule category B, the category Z2
A(B)≃BZA is the

category-valued trace of the bimodule category B, see [FSS1, Sect. 3].

(v) Just like the category-valued trace of a bimodule is defined via a universal property
with respect to balanced functors [FSS1, Defs. 3.2& 2.7], the twisted center Zκ(M)
of a bimodule categoryM can be characterized by the universal property that for any
finite category X , pre-composition with the co-induction I[κ] gives a distinguished
equivalence

Lex(Zκ(M),X )
≃−→ Lexκ(M,X )

F 7−→ F ◦ I[κ]
(3.14)
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with Lexκ(M,X ) the category of κ-balanced functors, i.e. (compare Definition B.3)
functors F : M→X with coherent isomorphisms F (c.m)∼=F (m.c[κ]) (see Proposi-
tion B.8 for the precise statement). A similar statement holds for the induction
functor I [κ], with right exact functors that are κ−2-balanced.

(vi) For M a right and N a left A-module, it follows from the definitions that there are
distinguished equivalences

Mκ
κ′

⊠N ≃ M
κ+κ′

⊠ N ≃ M
κ

⊠ κ′N (3.15)

for any pair κ, κ′ of even integers, and similar equivalences if κ or κ′ are odd, for

instance Mκ
κ′

⊠N ≃M
κ+κ′

⊠ N in case M and N are left modules, κ is odd and κ′

even,

3.10. Balancing and (co)monads. Framed centers (which will play the role of gluing
categories) were introduced in Definition 3.6 as categories of balancings. It turns out that
in order to check that these categories have desirable features, such as cyclic invariance, it
is convenient to express them with the help of suitable (co)monads and their (co)modules.

Recall that for any monad one can consider a category of modules. If the monad is
defined over a monoidal category and is given by tensoring with some algebra A, then
a module over the monad is the same as a module over the algebra A. An analogous
statement is valid for comodules over a comonad (for some details see Appendix B.1). Of
particular interest to us is the central comonad, i.e. the endofunctor

Z : b 7−→
∫
a∈A

a⊗ b⊗ a∨ (3.16)

of a finite tensor category A, as well as the central monad b 7−→
∫ a∈A

a⊗ b⊗ ∨a (these
(co)ends exist, see [Sh, Thm. 3.4]). The Drinfeld center Z(A) is canonically equivalent
[BV] to the category of modules over the central monad and to the category of comodules
over the central comonad. This description is based on the observation that if A is a
monoidal category with right dualities, then a natural family of isomorphisms x.a→ a.x
amounts to a dinatural family of morphisms a∨.x.a→x.

The construction generalizes to A-bimodule categories M as follows. Since all cate-
gories involved are finite, the end ZA(m) :=

∫
a∈A a.m . a∨ and coend

∫ a∈A
a.m .∨a exist for

every m∈M and provide endofunctors of M that have a natural structure of a comonad
and a monad, respectively. It is natural to generalize this construction further by allowing
for twisted balancings: Thus let A be a finite tensor category and M a finite A-bimodule
category. Then for any κ∈ 2Z we have a comonad on M given by the endofunctor

Z[κ] : m 7−→
∫
a∈A

a .m . a[κ−1] , (3.17)

such that Z[2]=ZA, and a monad given by the endofunctor

Z [κ] : m 7−→
∫ a∈A

a .m . a[κ−3] . (3.18)
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As is shown in Corollary B.5(ii) in the Appendix, the categories of Z[κ]-comodules
and of Z [κ]-modules are both equivalent to the κ-twisted center Zκ

A(M) introduced in
Definition 3.8. In particular, the category MZA of ZA-comodules is equivalent to the
category ZA(M) of objects with balancings.

Now on the Deligne product that arises for the gluing category assigned to a connected
2-framed one-dimensional defect manifold L we have to deal with several balancings,
each of which is of the form (3.6), namely one for each consecutive pair of bimodule
categories in the relevant string of composable bimodule categories. It is not hard to see
that the associated comonads (as well as the corresponding monads) commute, meaning
that there are distributive laws, i.e. natural transformations ℓ : Z ′ ◦Z⇒Z ◦Z ′ compatible
with the comonad (respectively monad) structure. (This amounts to two triangle and two
pentagon identities. The corresponding structural data are either trivial or induced from
the structure morphisms of the bimodule category.) Now for Z and Z ′ comonads, a
distributive law endows the endofunctor Z ◦Z ′ again with the structure of a comonad,
with comultiplication

Z ◦ Z ′ ∆◦∆′
−−−−→ Z ◦ Z ◦ Z ′ ◦ Z ′ Z◦ℓ◦Z′

−−−−−→ Z ◦ Z ′ ◦ Z ◦ Z ′ (3.19)

and with counit Z ◦Z ′ ε◦ε′−−−→ id, where ∆, ∆′ and ε, ε′ are the coproduct and counit of
Z and Z ′, respectively. Since the Deligne product of finite categories is symmetric, the
independence of the category T(L, ϵ, σ) on the linear order chosen is thus obvious.

Let us describe more explicitly how we can write the framed center as a category of
comodules over commuting comonads, restricting for simplicity to the case of the framed

center Mϵ1
1

κ1
⊠Mϵ2

2 of just two categories. Denoting the (left or right) actions of A on
these categories by ▷1 : A→End(M1) and ▷2 : A→End(M2), we have a functor

▷ϵ11 ⊠
(
▷2 ◦ [f(κ1)](−)

)ϵ2 : A⊠A → End(Mϵ1
1 ⊠Mϵ2

2 ) (3.20)

with the function f given by f(κ1)=κ1+1−2ϵ1 for even κ1 (i.e. for ϵ1= ϵ2) and by
f(κ1)=κ1+1 for odd κ1. Taking the end of this functor defines the comonad Z[κ1] on
Mϵ1

1 ⊠Mϵ2
2 ; for even κ1 this is a special case of the comonad Z[κ] in (3.17). Applying

Proposition B.4(ii) now gives

3.11. Lemma. The category of comodules over the comonad Z[κ] on Mϵ1
1 ⊠Mϵ2

2 is equiv-

alent to the framed center Mϵ1
1

κ

⊠Mϵ2
2 .

In this context it is worth recalling that the κ-twisted center Zκ(M) of an A-bimodule
introduced in Definition 3.8 comes with a universal functor M→Zκ(M), namely the co-
induction functor (3.9) which is right adjoint to the forgetful functor Zκ(M)→M. The
comonad associated with this adjunction is precisely Z[κ], and analogously the left adjoint
corresponds to the monad Z [κ]. Moreover (see part (iii) of Proposition B.8), for A a finite
tensor category and M an A-bimodule category we have an isomorphism∫ z∈Zκ(M)

z ⊠ z ∼=
∫ m∈M

m⊠ Z[κ](m) (3.21)
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of objects in the category Zκ(M)⊠Zκ(M). In particular, the object on the right hand
side of (3.21) is canonically an object in this category.

3.12. Gluing categories. We have now provided all algebraic ingredients needed for
introducing the gluing categories.

3.13. Definition. The gluing category T(L) that is assigned to a defect one-manifold
L=(L, ϵ, χ, {Mi}) is defined as follows.

(i) If the one-manifold L underlying L is connected, as in

L =

Mϵ3
3

Mϵ2
2

Mϵ1
1

κ3

κ1

κ2

(3.22)

then the gluing category is the corresponding κ-framed center introduced in Definition
3.6 :

T(L) := Mϵ1
1

κ1
⊠Mϵ2

2

κ2
⊠Mϵ3

3

κ3
⊠ · · · . (3.23)

(ii) If L is a disjoint union of connected defect one-manifolds Li, then T(L) is the Deligne
product ⊠iT(Li) of the κ-framed centers T(Li).

Implicitly, the prescription for the gluing categories assigned to gluing intervals is
completely determined by the prescription for gluing circles: just regard left and right
A-modules as A-vect- and as vect-A-bimodules, respectively. In the sequel we will tacitly
make this identification whenever convenient.
As an illustration, consider the following situations.

3.14. Example. Consider the following defect one-manifolds L and L′:

L =

+

ANB

−
AMB

L′ =
+
KA

−BMA −
NB

(3.24)
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Here the two intervals of L both have index +1. Accordingly we associate to L the
category

T(L) = AMB

1

⊠ANB
1

⊠ . (3.25)

Thus we deal with the two balancings a.m⊠n ∼= m⊠ ∨a.n and m⊠n.b ≃ m.∨b⊠n. In
the case of L′, the first segment has index −1 and we have

T(L′) = KA
−1

⊠ BMA

0

⊠NB . (3.26)

In view of Lemma 3.11 our prescription for associating categories to defect one-mani-
folds can be concisely summarized as follows:

• Consider the Deligne product of the (bi)module categories involved in a composable
string.

• On the so obtained category there is a comonad, specified by the values of the indices,
whose comodules describe the relevant balancings. Take the category of comodules
over this comonad.

The defect one-manifold L in Example 3.14 and its variant with reversed orientation
actually play a fundamental role: they arise in particular when one modifies a defect
surface locally by replacing a piece of line defect by a new gluing circle that is regarded
as an incoming or outgoing boundary circle, respectively; pictorially, in the case of L we
have

⇝ (3.27)

In this situation the new gluing circle inherits a 2-framing, and this is precisely the one
of L in Example 3.14. Similarly, when a defect line ends at a gluing circle with a single
defect point and the vector field is analogous to the one in (3.27), the 2-framing of that
gluing circle (when suitably oriented) has index 2. This observation justifies the following
convention, to be used in the sequel throughout: If to a gluing circle with a single defect
point no index label is attached, then it is meant to constitute a circle of index +2; any
other gluing segment to which no index label is attached is meant to constitute a segment
of index +1. In pictures,

2 1

1

≡ and ≡ (3.28)
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It remains to describe the category for the opposite, in the sense of Definition 2.13, of
a defect one-manifold:

3.15. Lemma. The gluing category assigned to the opposite of a defect one-manifold is
the opposite category, i.e. we have

T(L) =
(
T(L)

)opp
(3.29)

for any defect one-manifold L.

Proof. In view of the definition of the opposite manifold, it is sufficient to understand
what happens for a single gluing segment (i.e. the situation displayed e.g. in picture (3.7)).

In that situation one deals with the balanced product MA
κ

⊠AN of just two factors, and
for such a product the statement boils down to the isomorphism that was already observed
in formula (3.8).

3.16. Example. The κ-twisted center appears as a specific gluing category – it is the
category assigned to a circle with one defect point and framing index κ, for κ even,
i.e.

T
(

κ

)
= Zκ(AMA) .

AMA

(3.30)

3.17. Canonical equivalences between gluing categories. The following con-
siderations can be used to considerably reduce the number of defect one-manifolds that we
have to examine in detail: We analyze what happens when the orientation of a free bound-
ary segment is flipped, and when two neighboring defect points are fused. Concerning the
former issue we have

3.18. Proposition. Let M and K be left modules over a finite tensor category A. Let N
be a right A-module, and denote by #N ≡ 1N the left A-module with 1-twisted left action
(in the convention of (3.1)). Up to canonical equivalence, the gluing category associated to
a defect one-manifold does not change if the orientation of a free boundary segment labeled
by N is flipped, in the sense that N is replaced by #N and simultaneously the orientation
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of the boundary segment is inverted, corresponding to locally replacing the situation

κ

κ′

K

M

N
by

κ+1

κ′−1

K

#N

M

(3.31)

Proof. By definition, the action of A on the left A-module #N is determined through
its action on N by a . n :=n.∨a. For the lower gluing segment in (3.31) we thus have an
equivalence

AM
κ

⊠NA ≃ AM
κ+1

⊠ 1
AN : (3.32)

in both categories the balancing is

a.xM⊠xN ∼= xM⊠
[κ+1]a.xN = xM⊠xN .[κ+2]a . (3.33)

Similarly there is an equivalence

NA
κ′

⊠AK≃ 1
AN

κ′−1

⊠ AK (3.34)

for the upper gluing segment.

As an illustration, the following picture shows the framing with indices κ=0 and
κ′=2 on the left hand side of (3.31) that results in the straight framing on the right hand
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side:

(3.35)

3.19. Corollary. Let A and B be finite tensor categories. Let M and K be A-B-
bimodules and N a B-A-bimodule. If we locally replace the situation

κ

λ

κ′

λ′

K
A B

M

N
by

κ+1

λ+1

κ′−1

λ′−1

K
A B

M

1N 1
(3.36)

then up to canonical equivalence, the gluing category associated with the disjoint union of
the two defect one-manifolds remains unchanged.

Proof. A statement analogous to Proposition 3.18 holds for right modules. Combining
the two results for free boundary segments immediately gives the stated result for the flip
of the orientation of a defect is line.
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Also note that in (3.36) it is inessential that the gluing circles have only two defect
points. Indeed we can likewise replace the situation

κ

λ

κ′

λ′

K1 Kk

Mm M1

N by

κ+1

λ+1

κ′−1

λ′−1

K1 Kk

Mm M1

1N 1 (3.37)

for any numbers m of incoming and k of outgoing defect points.
Furthermore, by applying Proposition 3.18 twice we see that the same gluing category

is obtained when changing the framing in such a way that indices κ, κ′ on consecutive glu-
ing segments along a defect one-manifold (as in (3.31)) get replaced by the pair κ+2, κ′−2
and the category labeling the defect line gets twisted with the corresponding double dual,
thus e.g. replacing N in (3.31) by N−2) (see also Appendix A).

Next we describe the effect of ‘fusing’ two neighboring defect points on a defect one-
manifold. In the pictures below we display – as we already did in the picture (3.30) –
defect lines that are attached to defect points, even though for now we only deal with
defect one-manifolds (this will be convenient when using our results later on to discuss
the fusion of defect lines).

3.20. Proposition. For any triple (i, j, k) of framing indices there are canonical equiv-
alences

T
( )

≃j

k

i

BNCAMB

AKC

T
( )

j

k

AKC

M
−i
⊠N

(3.38)
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and

T
( )

≃
k

j

i

AKC

AMB BNC

T
( )

k

j

M
i

⊠N

AKC

(3.39)

of gluing categories.

Proof. The category on the left hand side of (3.38) is K
k

⊠N
i

⊠M
j

⊠, while the one on

the right hand side is K
k

⊠ [M
−i
⊠N ]opp

j

⊠. We have

K
k

⊠N
i

⊠M
j

⊠ ≃ K
k

⊠ (N
i

⊠M)
j

⊠ ≃ K
k

⊠ [M
−i
⊠N ]opp

j

⊠ , (3.40)

where the first step uses the distributive law and the second step Lemma 3.15. Canonical
functors realizing these equivalences are provided by the functors which come with the
universal property (3.14) of the respective twisted centers. The proof of the equivalence
(3.39) is analogous.

These results about gluing categories tell us that the fusion of defect points provides
a well defined operation for the associated categories. They also suggest that the same
holds for defect lines, with the fusion of two defects labeled by bimodule categories CMA
and ANB and separated by a strip with winding i realizing a single defect labeled by

the C-B-bimodule M
−i
⊠N . To see that this is indeed the case we will have to define

the functors assigned to defect surfaces, not just the categories assigned to the gluing
segments on their boundary; this will be done in Section 4.42. Analogous equivalences as
in Proposition 3.20 hold for the gluing categories of circles with more than three defect
points. We have for instance

3.21. Example. There is a canonical equivalence

T
( )

≃

i

−j

N
j

⊠KM

M
i

⊠N K

T
( )

M
i

⊠N
j

⊠K

M
i

⊠N
j

⊠K

(3.41)
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Both gluing categories are equivalent to the category LexA,B(M
i

⊠N
j

⊠K ,M
i

⊠N
j

⊠K).

As described in Appendix B.6, the Eilenberg–Watts equivalences that will be formu-
lated in the next subsection can be lifted to twisted centers. A common feature of the
gluing categories in Example 3.21 is that they are canonically equivalent to categories
of endofunctors. Thereby each of these twisted centers contains a distinguished object,
namely the one that corresponds to the respective identity functor. We refer to those
objects as distinguished fusion objects.

3.22. Balanced pairings for bimodule categories. We denote, for finite cate-
gories N and M, by Lex(N ,M) and Rex(N ,M) the finite category of left and right
exact functors, respectively, from N to M. It will be convenient to re-express the gluing
categories associated with defect one-manifolds, which we have introduced via Deligne
products, in terms of such functor categories. This is achieved with the help of a Morita
invariant formulation of Eilenberg–Watts type results, which exhibits explicit equivalences
from Lex(N ,M) and Rex(N ,M) to N ⊠M. More specifically, there are (two-sided)
adjoint equivalences [Sh, FSS2]

Φl ≡ Φl
N ,M : N ⊠M ≃−−→ Lex(N ,M) , n⊠m 7−→ HomN (n,−)⊗m,

Ψl ≡ Ψl
N ,M : Lex(N ,M)

≃−−→ N ⊠M , F 7−→
∫ n∈N

n⊠F (n) ,
(3.42)

and

Φr ≡ Φr
N ,M : N ⊠M ≃−−→ Rex(N ,M) , n⊠m 7−→ HomN (−, n)∗⊗m,

Ψr ≡ Ψr
N ,M : Rex(N ,M)

≃−−→ N ⊠M , G 7−→
∫
n∈N n⊠G(n) ,

(3.43)

where (−)∗ denotes the dual vector space. We refer to these pairs of adjoint functors
as Eilenberg–Watts functors. These equivalences of categories are compatible with the
structure of bimodule categories over finite tensor categories [FSS2, Sect. 4]. For instance,
the (right exact) Nakayama functor

Nr :=

∫ m∈M
HomM(−,m)∗⊗m, (3.44)

i.e. the image Φr◦Ψl(idM) of the identity functor, regarded as a left exact functor, in
Rex(M,M), is a bimodule functor from M to 2M2 [FSS2, Thm. 4.5], and similarly for
the left exact Nakayama functor Nl =Φl◦Ψr(idM).

For later use we collect some properties of the left exact Nakayama functor of a finite
category M. We have∫

m∈M
m⊠m = Ψr(idM) ∼= Ψl◦Φl◦Ψr(idM) ∼= Ψl(Nl) =

∫ m∈M
m⊠Nl(m) . (3.45)
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Further, in caseM=A is a finite tensor category, we can express Nl as [FSS2, Lemma4.10]
Nl(a)=DA⊗ ∨∨a withDA the distinguished invertible object [ENO, Def. 3.1] ofA, and thus∫

a∈A
a∨∨⊠DA⊗ a ∼=

∫ a∈A
a⊠ a (3.46)

and ∫
a∈A

a⊠ a ∼=
∫ a∈A

a⊠DA⊗ ∨∨a . (3.47)

By the category-theoretic version of Radford’s S4-theorem, the invertible object DA comes
[ENO, Thm. 3.3] with coherent isomorphisms DA⊗ a∼= a∨∨∨∨⊗DA and can thus be re-
garded canonically as an object of the −2-twisted center,

DA ∈ Z−2(A) . (3.48)

It follows that acting with DA is an equivalence

DA .− : κ+4M ≃−−→ κM (3.49)

of A-modules for κ∈ 2Z. Hence there is a distinguished 4-periodicity in the family of
bimodule categories κ1Mκ2 indexed by (κ1, κ2)∈ 2Z× 2Z, and similarly for odd κ. More-
over,

a[κ] ⊗D⊗n
A

∼= D⊗n
A ⊗ a[κ−4n] (3.50)

for all κ, n∈Z, and owing to invertibility ofDA, there is a canonical isomorphismD∨∨
A

∼=DA.

The Eilenberg–Watts equivalences allow us to switch back and forth between Deligne
products and categories of half-exact functors and thereby to understand features of the
former type of categories in terms of the latter, and vice versa. One application that
will turn out to be crucial below (see e.g. the calculation needed in Example 4.12) is the
following. Every left exact module functor F : NA→MA yields a balanced pairing

HomM(−, F (−)) : MA ⊠NA → vect , (3.51)

with the balancing obtained by combining the module structure of F and the duality of
A: Hom(n, F (m.a))∼=Hom(n.∨a, F (m)). This balancing is coherent with respect to the
monoidal structure ofA. Moreover, since F ist left exact, the Eilenberg–Watts equivalence
(3.42) yields a natural isomorphism

HomN⊠M(n⊠m,Ψl(F ))∼=HomN (n, F (m)) , (3.52)

i.e. the pairing (3.51) is representable by the object Ψl(F ). The balancing of the pairing
transports to a balancing of the representing object, thus yielding the following result,
which one may think of as specific kinds of substitution of variables rules for coends and
ends:
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3.23. Lemma. For a left exact bimodule functor F : M→N between B-A-bimodules M
and N , the coend Ψl(F )=

∫ m∈M
m⊠F (m)∈M⊠N comes with coherent isomorphisms∫ m∈M

m⊠F (m).a ∼=
∫ m∈M

m.∨a⊠F (m) and∫ m∈M
m⊠ b.F (m) ∼=

∫ m∈M
b∨.m⊠F (m) .

(3.53)

Analogously, for a right exact bimodule functor G : M→N the end Ψr(G)=
∫
m∈Mm⊠

G(m) is equipped with coherent isomorphisms∫
m∈M

m⊠G(m).a ∼=
∫
m∈M

m. a∨⊠G(m) and∫
m∈M

m⊠ b.G(m) ∼=
∫
m∈M

∨b.m⊠G(m) .

(3.54)

Proof. With the help of the representing object Ψl(F ) we define the balancing by the
requirement that the diagram

HomM⊠N (m.a⊠n,Ψl(F )) HomN (n, F (m.a))

HomM⊠N (m⊠n.∨a,Ψl(F )) HomN (n.∨a, F (m))

(3.55)

as well as the corresponding diagram for the left action commute. This produces directly
the isomorphisms in (3.53). The case of a right exact bimodule functor is shown analo-
gously via its representing property of the dual Hom functor.

From this statement we obtain two types of balancings for the identity bimodule
functor. We record them for later use:∫

m∈M
m.a⊠m ∼=

∫
m∈M

m⊠m.a∨ and

∫
m∈M

b.m⊠m ∼=
∫
m∈M

m⊠ ∨b.m . (3.56)

By applying the Eilenberg–Watts equivalence Φl from (3.42) to the result in Lemma
3.23 we get

3.24. Corollary. For bimodule categories AMB and ANB, the Eilenberg–Watts equiv-
alences induce an equivalence

M
1

⊠N
1

⊠ ≃ LexA,B(M,N ) . (3.57)

of categories.

In particular, for the regular bimodule category AAA we obtain

A
1

⊠A
1

⊠ ≃ LexA,A(A,A) ≃ Z(A) . (3.58)
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3.25. Remark. Using the equivalence (3.43) instead of (3.42), we could as well have
expressed framed centers through categories of right exact instead of left exact module
functors. The resulting expressions would, however, be somewhat more complicated than
the one obtained in (3.57), owing to the additional occurrence of double duals. For

instance, M
1

⊠N
1

⊠ ≃RexA,B(M, 2N 2) .

3.26. Remark. The equivalences among framed centers obtained in formula (3.15) can
be combined with other results so as to yield various further distinguished equivalences.
Specifically, together with Corollary 3.24 we arrive at distinguished equivalences

M
κ

⊠N
κ′

⊠ ≃ LexA,B(1−κM1−κ′ ,N ) ≃ LexA,B(M, κ−1N κ′−1) . (3.59)

4. Assigning functors to defect surfaces

Our construction of the framed modular functor on the level of 1-morphisms involves
several different collections of left exact functors and proceeds in three steps: We first in-
troduce, in Section 4.1, auxiliary functors Tpre(Σ), to which we refer as pre-block functors.
In Section 4.19, in a second step we impose constraint to construct fine block functors
Tfine(Σ) from the pre-block functors. As indicated by the terminology this procedure only
makes sense if the surface Σ is fine in the sense of Definition 2.2. To get the actual block
functors T(Σ) – which then furnish a modular functor in the sense of Definition 2.14 – for
arbitrary, not necessarily fine, surfaces we introduce a notion of refinement of a surface
(Section 5.14) and obtain T(Σ) as a limit over all refinements of Σ (Section 5.19).

The functors Tpre(Σ), Tfine(Σ) and T(Σ) are, a priori, functors from T(∂−Σ) to T(∂+Σ),

with ∂−Σ⊔−∂+Σ= ∂glueΣ. However, as explained in Appendix B.1 (see Equation (B.7)),
for finite categories we have equivalences

Lex(M,N )
≃−−−→ Lex(M⊠N , vect) . (4.1)

Accordingly, we will focus our attention to the case that ∂+Σ= ∅, in which we deal with
functors from T(∂glueΣ) to vect. The general case is then obtained directly by invoking
the equivalences (4.1).

4.1. Pre-block functors. To obtain the pre-block functor for a defect surface Σ with
∂+Σ= ∅ we start from a Hom functor whose covariant arguments come from the gluing
categories for the gluing boundaries of Σ. The Hom functor pairs every such covariant
variable with a contravariant one; we take a coend over each of the latter variables.

In more detail, the pre-block functors are constructed as follows. The boundary ∂glueΣ
is a defect one-manifold. According to (3.23) the gluing category T(L) assigned to a

connected defect one-manifold L is a κ-framed center of the formMϵ1
1

κ1
⊠Mϵ2

2

κ2
⊠Mϵ3

3

...

⊠ · · · .
We denote by U(L) the category obtained from the gluing category for a defect one-ma-
nifold L by forgetting the balancings of the framed center, and by UL : T(L)→U(L) the
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corresponding forgetful functor, i.e. U(L)=Mϵ1
1 ⊠Mϵ2

2 ⊠ · · · . Specifically, we consider
the forgetful functor U : T(∂glueΣ)−→U(∂glueΣ); U is an exact functor. Now note that, by
construction, in the image of U each of the categories Mi assigned to an edge appears
‘twice’ – that is, once as the category itself and once as its opposite – namely once at
either end of the connecting defect line. Thus we have U(∂glueΣ)=⊠iMi⊠⊠iMi. We
can then give

4.2. Definition. The pre-block functor assigned to a defect surface Σ is the left exact
functor

Tpre(Σ) : T(∂glueΣ) → vect (4.2)

from the gluing category associated with the boundary of Σ to the category of vector spaces
that is constructed in the following manner: For each factor Mi in T(∂glueΣ) we insert
an object mi⊠mi ∈Mi⊠Mi as a contravariant variable in a Hom functor and take the
coend

Tpre(Σ)(−) :=

∫ m1,m2,...,mn

Hom(m1⊠m1⊠ · · · ⊠mn⊠mn , U(−)) (4.3)

over these variables in the finite category of left exact functors; here the contravariant
and covariant arguments of the Hom functor are matched according to the combinatorial
configuration of Σ.

It follows directly from the definition that the pre-block functors depend on the defect
surface Σ only via the incidence combinatorics of the gluing and free boundaries and
defect lines of Σ , and that they satisfy

Tpre(Σ⊔Σ′) = Tpre(Σ)⊠ Tpre(Σ′) . (4.4)

4.3. Remark. We require the (pre-)block functors we are working with to be left exact.
In particular, as explained in Appendix B.1, ends and coends are taken in categories of
left exact functors. The reason for doing so is as follows. Once we have constructed pre-
block functors for connected surfaces, the pre-block functors for a general surface have to
be defined on Deligne products of finite categories. To achieve this we need to use the
universal property of the Deligne product. This property, in turn, holds for left exact
functors, and likewise for right exact functors. In contrast, it does not hold for general
functors, nor does it hold when both left exact and right exact functors are admitted
simultaneously.
We could thus alternatively work with right exact functors only and their Deligne product.
For a finite category M, the Hom functor Hom: M⊠M→ vect is left exact, while the
‘dual Hom’ functor

H̃om : M⊠M −→ vect ,

m⊠ n 7−→ Hom(n,m)∗
(4.5)

(with the star denoting the vector space dual) is right exact. Accordingly, right exact
pre-block functors can be defined by the end

T̃pre(Σ)(−) :=

∫
m1,m2,... ,mn

H̃om(U(−),m1⊠m1⊠ · · · ⊠mn⊠mn) . (4.6)
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Thus, in agreement with the Eilenberg–Watts equivalences (3.42) and (3.43), working
with right exact functors instead of left exact ones boils down to replacing coends and
Hom functors by ends and dual Hom functors.

4.4. Remark. Taking the coend makes it legitimate to refer to these variables as state-
sum variables. Indeed, in case that the categories are finitely semisimple, this reduces to
a sum over isomorphism classes of simple objects (or of “spins”, in the parlance of part of
the physics literature). Accordingly we refer to coends of the form appearing in (4.3) also
as state-sum coends and regard our prescription as a state-sum construction. This fits
with the fact that in state-sum models, vector spaces associated to closed surfaces, also
called block spaces or spaces of conformal blocks, are constructed as subspaces of auxiliary
vector spaces that need to be introduced first; we call the latter pre-block spaces.
Such a two-step procedure is also the basis of the use of state-sum models in the construc-
tion of quantum codes where, however, typically a space bigger than the pre-block space
is used. In that case, the essential idea is to obtain the block space for a surface Σ as the
image of the projector that the three-dimensional Turaev–Viro topological field theory
assigns to the cylinder Σ× [−1, 1]. In our construction we impose instead the condition
of flat holonomy for every contractible 2-patch of a defect surface, see Section 4.19.

4.5. Example. Consider a defect surface D↑
A,M,N whose underlying surface is a disk,

with two free boundary intervals labeled by A-modules AM and AN for some finite
tensor category A and two gluing intervals, and with the 2-framing given by the constant
vector field pointing in the direction of the two free boundary intervals (and thus, as
needed, parallel to them):

−1

1

AN

AM

+

−

−

+

D↑
A,M,N = (4.7)

Here, and in similar pictures below, we draw the gluing segments as half-circles, to remind
of the fact that they amount to the presence of a ‘boundary insertion’, which often is
indicated by removing a half-disk from a two-manifold with boundary. (For instance, the
picture above is ‘half’ of the picture (2.3). Also recall that we are allowing for smooth
manifolds with corners.) Denoting the gluing interval on the right hand side of (4.7) by
L1 and the left one by L2, the relevant gluing categories are

T(L1) = M
1

⊠N and T(L2) = N
−1

⊠M . (4.8)
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The resulting pre-block functor is given by

x⊠ y 7−→
∫ m∈M,n∈N

HomM⊠N⊠N⊠M(m⊠n⊠n⊠m,xm⊠xn⊠ yn⊠ ym) (4.9)

with x=xm⊠xn ∈T(L1) and y= yn⊠ ym ∈T(L2). Using the convolution property (B.3)
of the Hom functor, this can be simplified to

Tpre(D↑
A,M,N )(x⊠ y) = HomM(xm, ym)⊗ HomN (yn, xn) . (4.10)

Also note that according to Proposition B.8(ii) there is a distinguished equivalence T(L1)≃
LexA(M,N ) mapping x∈T(L1) to the left exact functor Φl(x), while by Lemma 3.15
we have an equivalence T(L2)≃T(L1)

opp . Under these equivalences the pre-block space
becomes

Tpre(D↑
A,M,N )(x⊠ y) ∼= Nat(Φl(y),Φl(x)) . (4.11)

As will become clear in Corollary 4.26 below, the defect surface D↑
A,M,N (4.7) considered

in Example 4.5 is indeed the most basic surface for us. In view of the particular form of
the framing vector field on this surface, we will refer to D↑

A,M,N as the straight disk.
The results (4.10) and (4.11) express the pre-block functor as a Deligne product of

Hom functors and as natural transformations, respectively. This is no coincidence, but
is a generic feature of the construction, which is a first hint at the power of the modular
functor to produce algebraically interesting quantities. To pinpoint this issue, let us also
have a look at slightly more complicated surfaces.

It is worth pointing out that the framing enters the definition of the pre-block only
via the gluing categories. Thus, as a direct consequence of the canonical equivalence of
gluing categories in Proposition 3.18, we obtain

4.6. Lemma. There is a canonical isomorphism between the pre-block functors for the
configurations

κ

κ′
K

M

N
and

κ+1

κ′−1

K

1N

M

(4.12)

involving a local change of the framing, as well as, more generally, for z ∈ 2Z+1 an iso-
morphism with κ+z, κ′−z and 2−zN in place of κ+1, κ′−1 and 1N on the right hand
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side. Similarly, there is a canonical isomorphism between the pre-block functors for the
configurations

κ

κ′
K

M

N
and

κ+1

κ′−1

K

N 1

M

(4.13)

Our construction of pre-blocks is compatible with composition of left exact functors
via the Eilenberg–Watts correspondence

Ψl : Lex(M,N ) → M⊠N . (4.14)

Explicitly we have the following ‘fusion of boundary insertions’:

4.7. Proposition. There is a canonical isomorphism between the pre-block functors for
the configurations

Ψl(F )

Ψl(G)

K

N

M

and

Ψl(G◦F )

K

M

(4.15)

involving a local replacement of segments around a disk, with the framing near the segments
being along the positive y-axis.
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Proof. Consider left exact bimodule functors F : M→N and G : N →K for B-A-
bimodules M,N ,K. The composite of the isomorphisms (see [FSS2, Cor. 3.7])∫ n∈N

Hom(m⊠ n⊠ n⊠ k,Ψl(F )⊠Ψl(G))

∼=
∫ n∈N

Hom(m⊠ n,Ψl(F ))⊗ Hom(n⊠ k,Ψl(G))

∼=
∫ n∈N

Hom(n, F (m))⊗ Hom(k,G(n))
(B.4)∼= Hom(k,G◦F (m))

(4.16)

provides the desired isomorphism between the pre-block functors for the left and right
hand sides of (4.15).

Proposition 4.7 illustrates how the modular functor realizes algebraic structures: the
fusion of boundary insertions provides the composition of functors and thus, via the
Eilenberg–Watts calculus, a composition on the Deligne product M⊠N . In particular,
for any module category M it yields a distinguished object in M⊠M, namely the one
that acts like a unit for the type of local replacement considered in (4.15).

4.8. Example. The generalization of Example 4.5 to a disk with any number N of gluing
and free boundary segments, with the former oriented as induced by the orientation of the
disk and the latter of arbitrary orientation, and with any indices is immediate. First, by
invoking Proposition 3.18 we can restrict our attention to any specific choice of orientations
of the free boundary segments, say one of them oriented counter-clockwise and all others
clockwise, as indicated for N =4 in the picture

M4

M2

M3

M1κ1

κ3

κ2
κ4

(4.17)

(with a left A-module M1 and right A-modules M2, M3, M4, for some finite tensor
category A), Next we can use Proposition 4.7 to reduce the number of gluing and free
boundary segments by one, at the same time composing the functors that the Eilenberg–
Watts equivalence assigns to the objects at the gluing segments. Doing so iteratively we
end up with pre-blocks given by

Tpre(x1⊠x2⊠ · · · ⊠xN) ∼= Nat
(
Φl(x1),Φ

l(xN) ◦Φl(xN−1) ◦ · · · ◦Φl(x2)
)
, (4.18)
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with xi ∈T(Li), such that U(xi)∈Mi+1⊠Mi, thereby generalizing (and using analogous
notation as in) formula (4.11).

As this example indicates, by combining the Propositions and 4.7 and 3.18 one obtains

4.9. Corollary. The pre-block functor for any disk without defect lines and with an
arbitrary number of free boundaries and gluing segments can be reduced to the pre-block
functor for the straight disk (4.7).

4.10. Example. For A and B finite tensor categories, M1 and M4 right B-modules, M2

and M3 right A-modules, and K an A-B-bimodule, consider the defect surface

M4

M1
M2

M3

K

A B

κ′1 κ
1

κ3
κ
′
3

κ2
κ4Σ = (4.19)

Applied to objects

z1=x2⊠u⊠ y1 ∈ M2

−κ′1
⊠ K

−κ1
⊠M1 ,

z2=x3⊠ y2 ∈ M3

−κ2
⊠M2 ,

z3=x4⊠ v⊠ y3 ∈ M4

−κ′3
⊠ K

−κ3
⊠M3 ,

z4=x1⊠ y4 ∈ M1

−κ4
⊠M4

(4.20)

of the gluing categories for the four gluing intervals, the pre-block functor gives

Tpre(z1⊠ z2⊠ z3⊠ z4) =

∫ m1∈M1,m2∈M2,m3∈M3,m4∈M4,k∈K

Hom(m1⊠m1⊠m2⊠m2⊠m3⊠m3⊠m4⊠m4⊠ k⊠ k ,

x1⊠ y1⊠x2⊠ y2⊠x3⊠ y3⊠x4⊠ y4⊠u⊠ v) .

(4.21)

By a multiple application of the variant (B.3) of the Yoneda lemma, this reduces to

Tpre(z1⊠ z2⊠ z3⊠ z4) = HomM1(y1, x1)⊗HomM2(y2, x2)

⊗HomM3(y3, x3)⊗HomM4(y4, x4)⊗HomK(v, u) .
(4.22)
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This result may again be written in terms of natural transformations. There are now two
distinguished ways to do so, one corresponding to fusing the K-defect to the M2- and
M3-defects (this process of fusion will be discussed in detail in Section 4.42 below), and
one corresponding to fusing it to the M1- and M4-defects. Let us write out the resulting
expression for the former case: one gets the natural transformation

Tpre(z1⊠ z2⊠ z3⊠ z4) = Nat(Φl(z4), G(z1, z2, z3)) (4.23)

of functors in Lex(M1,M4), where Φl is the Eilenberg–Watts equivalence (3.42) and G
is the composition

G(z1, z2, z3) := Φl(z3)
(
[Φl(z2)⊠ IdK](Φ

l(z1))
)
. (4.24)

In fact, the pre-block spaces for any arbitrary defect surface can be expressed as tensor
products of morphism spaces, analogously as in (4.22). The so obtained expressions
are, however, not particularly illuminating. Expressing them through spaces of natural
transformations can be more informative, e.g. it often allows for a direct characterization
of what subspaces of pre-blocks furnish the block spaces.

4.11. Holonomy. The pre-block functors do not see the framing of a defect surface and
do not take the topology of the 2-patches of a defect surface into account. The proper
block functors T(Σ) that we are going to introduce will, on the other hand, depend on the
framing, and in their definition 2-patches with the topology of a disk will play a crucial
role. To proceed from the pre-blocks to the block functors, we first define holonomy
operations on pre-blocks. For doing so we will restrict our attention to the subclass of
surfaces that can be patched together from disks.

Recall from Definition 2.2(ii) that a defect surface Σ is called fine iff every 2-patch
(in the sense of Definition 2.10) is contractible. From now on we assume that the defect
surface Σ under consideration is fine. Then we have one holonomy operation for each 2-
patch of Σ. The formal definition of these holonomy operations is notationally somewhat
intricate. Instead of spelling out the details, we explain these operations through concrete
examples.

4.12. Example. Let us give full details for the straight disk D↑
A,M,N described in Example

4.5. In this case we have two gluing intervals L1 and L2, and the pre-block functor
on objects x∈T(L1) and y ∈T(L2) in the gluing categories is given by formula (4.9).
For a∈A, the holonomy hola,x of a starting at x=xm⊠xn is defined to be the natural
isomorphism between functors on A⊠T(L1)⊠T(L2) that in terms of its components at
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y ∈T(L2) is the composite∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym)

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym) Eq. [(B.5)]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠ a∨.n⊠n⊠m,xm⊠xn⊠ yn⊠ ym) [right duality]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠ a.n⊠m,xm⊠xn⊠ yn⊠ ym) [Lemma3.23]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠m,xm⊠xn⊠ a∨.yn⊠ ym) [right duality]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠m,xm⊠xn⊠ yn⊠ a

∨∨.ym) [balancing of y]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠ a∨∨∨.m, xm⊠xn⊠ yn⊠ ym) [right duality]

∼=−−→ Hom(
∫
m∈M,n∈N a∨∨.m⊠n⊠n⊠m,xm⊠xn⊠ yn⊠ ym) [Lemma 3.23]

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠m, a∨∨∨.xm⊠xn⊠ yn⊠ ym) [right duality] .

(4.25)

Thus the holonomy is a distinguished isomorphism hola,x with components

(hola,x)y :

∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym)

∼=−−→
∫ m∈M,n∈N

Hom(m⊠n⊠n⊠m, a∨∨∨.xm⊠xn⊠ yn⊠ ym)
(4.26)

of left exact functors.
The rationale behind this prescription is simple: we proceed – counterclockwise, by con-
vention – along the boundary of the 2-patch and use alternatingly a duality to jump
between a covariant and a contravariant argument of the Hom and a balancing in one
of the two arguments. In the contravariant state-sum variable, the balancing is given by
Lemma 3.23 with F =Id; in the covariant argument coming from a gluing boundary, it
is part of the structure given by the gluing categories. In the latter, the index resulting
from the 2-framing enters.
On the other hand, the balancing of the variable x∈T(L1) gives an isomorphism

µa,x :

∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym)

∼=−−→ Hom(
∫
m∈M,n∈N m⊠n⊠n⊠m, a∨.xm⊠xn⊠ yn⊠ ym)

(4.27)
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for any y ∈T(L2). In the following picture we indicate graphically how the holonomy
(4.26) and the isomorphism (4.27) for the straight disk D↑

A,M,N arise:

−1

h
ola

,x

1

AN

AM −1

1

AN

AM

µ
a
,x

(4.28)

This prescription generalizes as follows to disks with an arbitrary number n of gluing inter-
vals, which denote by Lj with j=1, 2, ... , n (and, to be precise, with their free boundary
segments oriented, without loss of generality, in the way displayed in the picture (4.36)
below). Select one of the gluing intervals, say Li for some i∈{1, 2, ... , n}. Then for any
x∈T(Li) and any a∈A we define a balancing isomorphism µa,x in the same way as in
(4.27). Also, by iterating the procedure in (4.25), we can again define a holonomy hola,x
which, as a natural transformation, will now have components (hola,x)yi+1,yi+2,...,yi−1

, where
yj ∈T(Lj) for each j= i+1, i+2, ... , i+n−1 (each label taken modulo n).

As explained in the Introduction, we will obtain the block functor from the pre-block
functor by imposing “flatness along the disk”. This amounts to considering an equalizer
of two morphisms that are built from the isomorphisms (4.26) and (4.27). A precise
description will be given – for general fine defect surfaces – in Definition 4.21.

By Proposition 3.18, the defect surface of Example 4.12 gives, up to canonical equiva-
lence, the same gluing category as a disk with two free boundary segments having opposite
orientations and indices 2 and −2. The following example generalizes this situation to
the case of arbitrary even indices.

4.13. Example. Consider the following disk having a framing with indices ±κ∈ 2Z along
its two gluing segments, continued as a cylinder along the direction of the free boundary
intervals:

κ

−κ

MA AN (4.29)

The gluing categories for the lower and upper segment are, respectively, T1 :=M
κ

⊠N
and T2 :=N

−κ
⊠M. Hence we have again T2

∼=T1, and for objects xm⊠xn ∈T1 and
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yn⊠ ym ∈T2 the pre-block space is∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠xn⊠ yn⊠ ym) . (4.30)

Starting the holonomy of a∈A at xn counterclockwise, and suppressing the balancing of
the canonical objects

∫ m
m⊠m, we arrive schematically at the situation

κ

−κ

MA AN

xm.a
[κ] a.xn

ym.a[κ−1] a∨.yn

(4.31)

This gives the holonomy∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym)

∼=−−→
∫ m∈M,n∈N

Hom(m⊠n⊠n⊠m,xm⊠xn⊠ a∨.yn⊠ ym)

∼=−−→
∫ m∈M,n∈N

Hom(m⊠n⊠n⊠m,xm⊠xn⊠ yn⊠ ym.a[κ−1])

∼=−−→
∫ m∈M,n∈N

Hom(m⊠n⊠n⊠m,xm.a
[κ]⊠xn⊠ yn⊠ ym) .

(4.32)

The powers of duals appearing in the so obtained expressions for the holonomy turn out
to be significant: they will allow us to define the block functors as equalizers (Definition
4.21).

4.14. Definition.We say that the holonomy problem for a disk labeled by a finite tensor
category A is well-posed iff for any a∈A and any object x in the gluing category associated
with a gluing segment of the boundary the holonomy hola,x and the isomorphism µa,x
provided by the balancing of x coincide up to a double right dual in the same way as the
isomorphisms (4.26) and (4.27) in the example of the straight disk D↑

A,M,N .
The holonomy problem for a fine defect surface Σ is said to be well-posed iff the holonomy
problem for every 2-patch of Σ is well-posed.

By inspection, the holonomy is well-posed both in Example 4.12 and in Example 4.13.
Our next task will be to show that also in the general situation of a fine defect surface all
holonomy problems are well-posed. To see this, we make use of the following statement
about framing indices.

4.15. Lemma. Let D be a 2-framed disk with N gluing boundary segments si which are
oriented as induced by the orientation of D. Then

N∑
i=1

ind(si) = N − 2 . (4.33)
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Proof. Consider the standard disk Dstd⊂R2 with marked points on its boundary that
divide ∂Dstd into segments. That the disk has Euler characteristic 1 implies that for any
non-vanishing continuous vector field on Dstd the sum of the indices of all segments on
the boundary ∂Dstd is −2 when all segments are oriented counterclockwise. To be able to
apply this fact to the situation at hand, we must smoothen out the framing at the corners
of the defect disk D, at which a free boundary interval is adjacent to a gluing boundary.
Thus we replace the two allowed situations

M

−

and M

+

(4.34)

by the smoothened versions

M

−

and M

+

(4.35)

respectively, in which the free boundary segments are suitably deformed. Similarly, in
case we deal with a defect line, labeled by M, in the interior of D rather than a free
boundary interval, we temporarily think of the defect line as a pair of parallel free bound-
ary intervals and apply the procedure above to both parts. Both of the situations (4.34)
and (4.35) contribute, in a counterclockwise sense, −1

2
. Since there are two arcs per seg-

ment, each segment gets an additional contribution −1. This way we obtain the equality
−2=

∑N
i=1

(
ind(si)− 1

)
, thus proving (4.33).

4.16. Remark. In fact, vector fields on D up to homotopy are in bijection with collections
of indices that obey the relation (4.33). To see this, let D be a disk whose boundary is
either a gluing circle (in case that N =0) or consists of N ≥ 1 free boundaries and N
gluing segments si. All gluing segments are endowed with the induced orientation. The
orientation of the free boundaries adds signs to the points at which free boundaries and
gluing intervals meet. Let κ be a tuple of framing indices for these signs such that∑N

i=1 κi−N =−2. Then there exists a vector field on D that is continuous on D, parallel
to the free boundaries and has the given index on the gluing segments, i.e. ind(si)=κi
for each segment.

4.17. Proposition. The holonomy problem of any labeled 2-framed disk D is well-posed.
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Proof. Consider a disk D. We invoke the line flip of Proposition 3.18 to assume without
loss of generality that all free boundary segments on ∂D are oriented as induced by the
orientation of D. It is straightforward to see that the holonomy problem is well-posed for
one collection of indices satisfying the sum rule (4.33) iff it is well-posed for any other. It
follows that we can restrict our attention to the situation

−1

M1

M2

M3

Mn−1

Mn

(4.36)

corresponding to a framing given by the constant vector field pointing upwards (recall
that the index of all unlabeled oriented gluing intervals is +1). Now for this situation
well-posedness follows from Example 4.12 together with the observation that for each
i∈{1, 2, ... , n−1} we have (abbreviating M=Mi and N =Mi+1)

N

M

− a.xm

+ ∨a.xn

− a.yn

(4.37)
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so that no double duals arise in the part of the holonomy along the gluing segments with
index 1.

An immediate consequence is

4.18. Corollary. The holonomy problem of any disk D in any defect surface Σ is well-
posed.

In particular, the holonomy problems for the straight disk in Example 4.12 and for
the disks discussed in Example 4.13 are well-posed.

4.19. Block functors for fine surfaces.We are now in a position to set up functors
that will eventually provide us with the block functors for fine defect surfaces. Since the
holonomy problem for the straight disk in Example 4.12 is well-posed, the holonomy
operators

Tpre(xm⊠ a.xn⊠ yn⊠ ym) =

∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m,xm⊠ a.xn⊠ yn⊠ ym)

hola,x−−−−→∼=

∫ m∈M,n∈N
Hom(m⊠n⊠n⊠m, a∨∨∨. xm⊠xn⊠ yn⊠ ym)

= Tpre(a∨∨∨. xm⊠xn⊠ yn⊠ ym) (4.38)

allow us to formulate holonomy equations and thus to define blocks Tfine for fine defect
surfaces as equalizers, see Definition 4.21 below. In contrast, for non-fine surfaces this is
no longer possible. As a consequence, to define the block functor T for an arbitrary defect
surface Σ we will have to take a limit over suitable ‘fine refinements’ of Σ; we relegate
this to Definition 5.24. In case Σ is already fine, the functor Tfine(Σ) from Definition 4.21
can be taken as a distinguished representative of the limit T(Σ). This justifies an abuse
of language: we refer also to the functor Tfine(Σ) as the block functor for Σ.

The following result will later allow us to relate certain spaces of blocks to natural
transformations.

4.20. Lemma. Let T : C→C be a monad on a linear category, with category CT of mod-
ules, and denote by U : CT →C the forgetful functor. Then for any pair m=(Um, ρm) and
n=(Un, ρn) of objects of CT , with actions ρm and ρn, respectively, there is an equalizer
diagram

HomCT (m,n) −−→ HomC(Um,Un)
φ1−−−−−−⇒
φ2

HomC(T (Um), Un) , (4.39)

where on a morphism γ : U(m)→U(n) the maps φ1,2 are defined by φ1(γ) := γ ◦ ρm and
φ2(γ) := ρn ◦T (γ), respectively.
Similarly, for S a comonad on C and x=(Ux, δx) and y=(Uy, δy) objects in the category
CS of S-comodules, there is an equalizer diagram

HomCS(x, y) −−→ HomC(Ux, Uy)
ψ1−−−−−−⇒
ψ2

HomC(Ux, S(Uy)) (4.40)

with ψ1(γ) := δy ◦ γ and ψ2(γ) :=S(γ) ◦ δx for γ : U(x)→U(y).
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Proof. It follows from the definition that HomCT (m,n) is the kernel of φ1−φ2: γ is a
module map if and only if φ1(γ)=φ2(γ). The statement for the comonad follows by the
same type of reasoning.

We now consider, for a disk labeled by a finite tensor category A, for any a∈A the
composite

Tpre(... xm⊠xn⊠ y)
coevl∗−−−−→ Tpre(... xm⊠ (∨a⊗ a) . xn⊠ y)

hol−−−→∼= Tpre(... a∨∨. xm⊠ a.xn⊠ y)
(4.41)

of the post-composition with the left coevaluation of a and the holonomy hol∨a,a.xn of ∨a
around the disk. It is important to note that these maps are dinatural in a and thus
factorize over the end. We thus obtain a morphism of left exact functors

holx : Tpre(... xm⊠xn⊠ y) −→
∫
a∈A

Tpre(... a∨∨. xm⊠ a . xn⊠ y) (4.42)

furnishing a well-posed holonomy problem. On the other hand, combining the right
coevaluation and the comodule structure of xm⊠xn that expresses the balancing provides
us with a morphism xm⊠xn→

∫
a∈A a

∨∨. xm⊠ a . xn, which defines another map

(µx)∗ : Tpre(... xm⊠xn⊠ y)
coevr∗−−−−→

∫
a∈A

Tpre(... xm⊠ (a⊗ a∨) . xn⊠ y)

∼=−−→
∫
a∈A

Tpre(... a∨∨. xm⊠ a . xn⊠ y)
(4.43)

(the end over A commutes with all coends in the pre-block functor, since those can be
pulled in the first argument of the Hom). We can thus define the block space as the
equalizer of the maps holx and (µx)∗. More precisely, we impose one such relation for
each 2-patch (which, as the surface is assumed to be fine, is a disk) and select for each
2-patch Pp a starting point vp among the defect points on ∂Pp.

4.21. Definition. Let Tpre be the pre-block functor associated with a fine defect surface.
The functor Tfine associated with the surface is the equalizer

Tfine(... xm⊠xn⊠ y) −−→ Tpre(... xm⊠xn⊠ y)∏
holx

−−−−−−−−−−⇒∏
(µx)∗

∏
p

∫
a∈Ap

Tpre(... a∨∨. xm⊠ a . xn⊠ y) ,
(4.44)

where the product is over all 2-patches Pp of the defect surface and Ap is the finite tensor
category labeling Pp.

As mentioned above, we call Tfine the block functor for the defect surface, albeit a
complete formulation that is valid for arbitrary defect surfaces will require to define the
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actual block functor T as a limit. While the pre-blocks for a defect surface Σ only depend
on the incidence combinatorics of boundary segments and defect lines of Σ, the blocks
also depend, via the holonomy, directly on the framing on the 2-patches of Σ.

A priori the block functor Tfine =Tfine,(v) for a defect surface Σ depends on the choice
(v)= {vi} of a starting point vi for each disk Di in Σ. However, in fact it depends on
these choices only up to canonical coherent natural isomorphism. To see this, we provide
an alternative characterization of the equalizer: Composing Equation (4.41) with the
balancing of x, we obtain a morphism

h̃ola,x : Tpre(... xm⊠xn⊠ y) −→ Tpre(... xm⊠ (∨a⊗a) . xn⊠ y) , (4.45)

which has as parallel morphism the composition with coevla at xn. Again, these morphisms
factorize over the end, and by composing the defining equation (4.44) with the balancing
of x we see that the block space is also the equalizer

Tfine,(v)(... xm⊠xn⊠ y) −→ Tpre(... xm⊠xn⊠ y)∏
h̃olx

−−−−−−−−−−−−⇒∏
(coevl)∗

∏
x

∫
a∈A

Tpre(..., xm⊠ (∨a⊗a) . xn⊠ y) .
(4.46)

We use the latter description of the block space to show

4.22. Lemma. The block functor depends on the choice of a starting point per disk only
up to canonical coherent natural isomorphism.

Proof. We define canonical natural isomorphisms

Γv′,v : Tfine,(v)(... , xm⊠xn⊠ y) −→ Tfine,(v′)(... , xm⊠xn⊠ y) , (4.47)

for each pair of starting points v, v′ per disk, that satisfy the coherence relation Γv′′,v′ ◦Γv′,v
=Γv′′,v. For a given disk with a choice of starting points v, v′ there is an isomorphism

γv′,v : Tpre(... , xm⊠ (∨a⊗ a) . xn⊠ y)
∼=−−→ Tpre(... , xm⊠xn⊠ (∨a⊗ a) . y) , (4.48)

to which we refer as the parallel transport operation from v to v′. Here the first action of
∨a⊗ a is at the defect point v and the second at v′, which is constructed using the balanc-
ings precisely as in the holonomy operation following a positive path along the boundary
of the disk from v to v′. The latter ensures that the parallel transport operations γv′,v are
coherent, and it also implies that there are two commuting triangles of isomorphisms

Tpre(... , xm⊠xn⊠ y) Tpre(... , xm⊠ (∨a⊗ a) . xn⊠ y)

Tpre(... , xm⊠xn⊠ (∨a⊗ a) . y

h̃ola,v

coevl

h̃ola,v′

coevl
γv′,v (4.49)

Thus we obtain Γv′,v as the universal isomorphism between the corresponding equalizers
and it inherits the coherence from γv′,v.
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This result justifies to disregard the dependence of Tfine on the choice of starting points
in the sequel. More conceptionally, one can define Tfine(... , xm⊠xn⊠ y) as the direct limit
over the isomorphisms Γv′,v defined in (4.47).

The definition also implies directly that isomorphic defect surfaces give identical block
functors:

4.23. Lemma. Let ϕ : Σ→Σ′ be an isomorphism of fine defect surfaces. Then the block
functors for Σ and Σ′ are equal on the nose,

Tfine(Σ) = Tfine(Σ
′) . (4.50)

Proof. We can identify the defects and the vector fields of Σ with those of Σ′ via the
isomorphism ϕ. Thus the pre-block functors as well as the holonomy operations for Σ
and Σ′ coincide: they only depend on the incidence relations of the patches of various
dimensions, and these are not changed by an isomorphism.

Next we use Lemma 4.20 to show that block spaces produce spaces of natural trans-
formations in specific situations. We first note that the boundary-segment-flipping lemma
4.6 for pre-blocks extends to blocks:

4.24. Proposition. There is a canonical isomorphism between the block functors for the
two configurations (4.12) that appear in Lemma 4.6.

Proof. We know from Lemma 4.6 that the two pre-block functors are canonically iso-
morphic. Moreover, the balancings on the segments labeled by N and by 1N , respectively,
agree by the definition of the respective actions. Thus the block functors are isomorphic
as well.

Similarly, our construction is compatible with composition of left exact functors via
the Eilenberg–Watts correspondence and thus with the fusion of boundary insertions not
only at the level of pre-blocks, but also for blocks:

4.25. Proposition. The isomorphism between the pre-block functors for the two config-
urations (4.15) established in Proposition 4.7 is compatible with the holonomy operators
and hence induces a canonical isomorphism of the corresponding block functors.

Proof. For left exact bimodule functors F : M→N and G : N →K for B-A-bimodules
M, N and K, on the level of pre-blocks the isomorphism is described by the composite
(4.16). By the definition of the balancings of Ψl(F ) and Ψl(G) according to Equation
(3.55), the first two isomorphisms in this composite are compatible with the holonomy
operation. We need to show that the isomorphism∫ n∈N

Hom(k,G(n))⊗ Hom(n, F (m)) ∼=
∫ n∈N

Hom(Gl.a.(k), n)⊗ Hom(n, F (m))

∼= Hom(Gl.a.(k), F (m)) ∼= Hom(k,G◦F (m)) (4.51)
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is compatible with the balancing structures. Therefore we consider the diagram∫ n∈N
Hom(k,G(n))⊗ Hom(n, F (m.a)) Hom(k,GF (m.a))

∫ n∈N
Hom(Gl.a.(k), n)⊗ Hom(n, F (m).a) Hom(Gl.a.(k), F (m).a)

∫ n∈N
Hom(Gl.a.(k).∨a, n)⊗ Hom(n, F (m)) Hom(Gl.a.(k).∨a, F (m))

∫ n∈N
Hom(k, ∨a.G(n))⊗ Hom(n, F (m)) Hom(k.∨a,GF (m))

(4.52)

of isomorphisms. Here the horizontal arrow in the top and bottom row are variants of the
isomorphism (4.51); the commutativity of the inner rectangle is the definition in Equation
(3.55) of the balancing structure of the coend over N , and all other arrows are composites
of the dualities and the module structures of F and G. It thus follows directly that the
whole diagram commutes and hence (4.16) is compatible with the holonomy operation.

Analogously, the distinguished isomorphism used in Corollary 4.9 is compatible with
the holonomy operators and hence induces an isomorphism of the block functors. Thus
we have

4.26. Corollary. The block functor for any disk without defect points and with an ar-
bitrary number of free and gluing segments is isomorphic, by a distinguished isomorphism,
to the block functor for the straight disk (4.7).

Next we develop a conceptual formulation of the holonomy operations, which will in
particular prove to be helpful later on, when we explore refinements of defect surfaces.
When doing so we must account for the possibility that when performing a holonomy
operation we move along one and the same defect line twice, in opposite directions. This
is achieved by keeping track of normal directions, in the following manner. It suffices
to consider the case of a single disk D in a defect surface Σ. We then consider the set
ED consisting of all defect points and all free boundary segments of D, where the latter
may result from defect lines in Σ, and where each defect point and segment is in addition
equipped with the choice of a normal direction into the disk. As an illustration, consider
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the annulus

X

M

N

D = (4.53)

In this example the elements of ED are, besides the defect points, the two free boundaries
labeled by M and N , each with a single (namely, inward) normal direction, and twice
the defect line labeled by X , with two different choices of normal direction.

Each element of ED is a possible start and end point of one of the parallel transport
operations on D. Recall that

∫
a∈A a⊠ a∈A⊠A is a coalgebra, with comultiplication

induced by the monoidal structure of A, and with counit ϵ :
∫
a∈A a⊠ a→1⊠1 given

by the component at 1 of the universal dinatural transformation of the end. Recall
further that forgetting the balancings provides a functor T(∂D)→U(∂D), with T(∂D) the
Deligne product of the gluing categories for the gluing segments on ∂D. Now for a disk
D the pre-block functor is just the Hom functor on U(∂D)opp ⊠U(∂D), and each x∈ED
corresponds to a Deligne factor in U(∂D)opp ⊠U(∂D). We define a coaction of

∫
a∈A a⊠ a

on U(∂D)opp ⊠U(∂D) as follows. In U(∂D)opp there are Deligne products Ms⊠Ms and
Mt⊠Mt corresponding to xs and xt. There are four cases to consider, depending on
whether Ms and Mt are left or right A-modules. In each case the coaction takes place
on an object m⊠n∈Ms⊠Mt, and depends on two integers µ and l, where µ=

∑l
i=1 µi

is the sum of the framing indices counted clockwise from xs to xt and l is the number of
gluing segments along that path. We define the coaction in the four cases as

m⊠n 7−→



∫
a∈A a.m⊠ a

[µ−l+1].n if Ms and Mt are left modules,∫
a∈A a.m⊠n.a

[l−ν] if Ms is a left and Mt a right module,∫
a∈Am.a⊠ a

[l−µ]n if Ms is a right and Mt a left module,∫
a∈Am.a⊠n.a

[l−µ−1] if Ms and Mt are right modules,

(4.54)

respectively.

4.27. Proposition. Let D be a disk and A the finite tensor category labeling its interior.
Denote by U(∂D) the category that is obtained by taking the Deligne product over the labels
at all defect points of D. Let xs and xt be any two elements of the set ED that correspond
to defect lines.

(i) The A-coactions (4.54) yield a canonical comonad ZD,xs,xt on Lex(U(∂D)opp ⊠U(∂D),
vect).



492 JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

(ii) The clock- and counterclockwise parallel transport operations from xs to xt provide
two structures

γcD,xs,xt , γ
cc
D,xs,xt : Tpre(D) −→ ZD,xs,xt(T

pre(D)) (4.55)

of a ZD,xs,xt-comodule on the functor Tpre(D).

(iii) The fine block functor Tfine(D) is the equalizer of γcD,xs,xt and γ
cc
D,xs,xt. It depends on

the choice of xs, xt ∈ED only up to a canonical isomorphism.

In case the start and end of the parallel transport are clear from the context, we just
write γcD for γcD,xs,xt , and analogously γccD = γccD,xs,xt .

Proof. (i) By pre-composition (in the same way as in (B.19)) we obtain from (4.54) a
coaction of the coalgebra

∫
a∈A a⊠ a on the functor category Lex(U(∂D)opp ⊠U(∂D), vect).

This way the coactions ofA on the defects xs and xt provide canonically a comonad ZD,xs,xt
on Lex(U(∂D)opp ⊠U(∂D), vect).
(ii) We define the morphism γcD,xs,xt as follows. The pre-block functor on D is given by

Tpre(D)(−) =

∫ ms∈Ms
∫ mt∈Mt

· · · Hom(ms⊠ms⊠mt⊠mt⊠ . . . ,−) , (4.56)

where the ellipsis accounts for the additional defect lines on D. Consider the first case in
the list (4.54). Then the component γcD,xs,xt(

∨a) of the parallel transport γcD,xs,xt at
∨a∈A

is defined as the composite

γcD,xs,xt(
∨a) : Tpre(D)(−)

(evl)∗−−−−→
∫ ms∈Ms

∫ mt∈Mt

· · · Hom(ms⊠ (a⊗∨a).ms⊠mt⊠mt⊠ · · ·,−)

γxs,xt (
∨a)

−−−−−−→
∫ ms∈Ms

∫ mt∈Mt

· · · Hom(ms⊠ a.ms⊠ a
[µ−l+1].mt⊠mt⊠ · · ·,−) .

(4.57)

Here γcxs,xt(
∨a) are (a slight generalization of) the parallel transport operations in Lemma

4.22, which are now allowed to start and end at the variables corresponding to the defect
lines; we consider them in the clockwise version, i.e. the first isomorphism in γcxs,xt(

∨a) is

induced by the isomorphism
∫ msa.ms⊠ms

∼=
∫ msa.ms⊠ a∨.ms. Then γcD,xs,xt is defined

by taking the end over all γcD,xs,xt(
∨a). γccD,xs,xt is defined analogously by using the coun-

terclockwise parallel transport operations instead.
Together with Proposition 4.17 these prescriptions imply that, in all four cases, both γcD
and γccD are indeed natural transformations from Tpre(D) to ZD,xs,xt(T

pre(D)).
To show that γcD is a comodule structure, we first note that composing it with the counit ϵ
of ZD,xs,xt yields the identity on Tpre(D), since the parallel transport of 1 on Tpre(D) is the
identity. Next consider, for a, b∈A, the component γcD,a⊗b of the parallel transport from
xs to xt. In each step involved in the parallel transport operation we use either adjunction
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morphisms or a balancing, and both of these are compatible with the monoidal structure
of A, i.e. can be split into the composite of corresponding steps for γcD,a and γ

c
D,b. In both

cases the morphisms commute (up to changing their arguments accordingly), and after
passing to the end we obtain that indeed γcD is a comodule structure for Tpre(D). The
proof for γccD is analogous.

(iii) The statement follows from the use of the parallel transport operations, analogously
as in the proof of Lemma 4.22.

Analogous statements as in Proposition 4.27 still hold in the situation that one or
both of xs and xt in the Lemma is a general element of the set ED: There is a comonad
ZD,xs,xt , defined again case by case, on Lex(U(∂D)opp ⊠U(∂D), vect) such that the parallel
transport operations provide comodule structures for Tpre(D) over ZD,xs,xt and the block
functor is the corresponding equalizer.

As in Section 4.1 we denote the Deligne product over labels for all boundary segments
of a defect surface Σ by U(∂Σ). The comonad ZD,xs,xt on Lex(U(∂D)opp ⊠U(∂D), vect)
induces a corresponding comonad on the functor category Lex(U(∂Σ)opp ⊠U(∂Σ), vect),
which for simplicity we denote again by ZD,xs,xt . Clearly, Tpre(Σ) becomes a comodule
over the latter comonad ZD,xs,xt . We call the comonads ZD,xs,xt the parallel transport
comonads.

4.28. Blocks as module natural transformations. In this subsection we express
the block spaces for the prototypical example of the straight disk (4.7) considered in
Example 4.5 as spaces of module natural transformations. Recall that the pre-block
functor in this example is given by formula (4.10) or, equivalently, by the space (4.11) of
natural transformations, and that the holonomy is described in (4.26).

According to Lemma 4.20, for comodules w, x∈MT over a comonad T on M, with
coactions δw and δx, the vector space HomMT (w, x) of comodule morphisms can be de-
scribed as the equalizer of the two maps

ψ1, ψ2 : HomM(U(w), U(x)) −→ HomM(U(w), T (U(x))) (4.58)

that are given by ψ1(f)= δx ◦ f and ψ2(f)=T (f) ◦ δw, respectively. The properties of an
adjunction readily imply

4.29. Lemma. If the comonad T on M is left exact, then the map ψ2 in (4.58) equals
the composite

HomM(Uw,Ux)
(δl.a.w )∗−−−−−→ HomM(T l.a.(Uw), Ux)

∼=−−→ HomM(Uw, T (Ux)) (4.59)

of the pre-composition with the image δl.a.w of δw under the adjunction HomM(Uw, T (Uw))
∼=HomM(T l.a.(Uw), Uw) and the map provided by the adjunction.

In the situation considered in Example 4.5 we deal with the two categories (4.8), i.e.

T(L1)=M
1

⊠ N and T(L2)=N
−1

⊠M≃T(L1)
opp . By Lemma 3.11, T(L1) is equivalent

to the category of comodules over the comonad Z[1] onM⊠N , while T(L2) corresponds to
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the comodules over the comonad Z[−1] on N ⊠M. Now note that (N ⊠M)opp ≃M⊠N .
By direct computation, using the dualities of the finite tensor category A and the fact
that taking the opposite interchanges coend and end, we then have

4.30. Lemma. The comonads on Z[1] on M⊠N and Z[−1] on N ⊠M are related as

Z[−1]
∼= Z l.a.

[1] , (4.60)

where the overline indicates the opposite functor (compare Eq. (B.9)).

To highlight the power of our modular functor for producing higher algebra, we now
describe the block functor for the situation of Example 4.12.

4.31. Proposition. The block functor for the straight disk D↑
A,M,N (4.7) is isomorphic

to the Hom functor for the category of comodules over the comonad Z[1], i.e. we have

Tfine(D↑
A,M,N )(x⊠ y) ∼= HomZ[1]

(y, x) (4.61)

for any pair of objects x∈T(L1) and y ∈T(L2). Hence the block space can be seen as a
space of module natural transformations.

Proof. (i) The main idea is to invoke Lemma 4.20 which characterizes the morphisms
of comodules over a comonad as an equalizer. To this end we have to match the two
morphisms (4.40) in that Lemma with the two parallel arrows in the Definition 4.21 of
the block functor. In the situation at hand, the block space is the equalizer

Tfine(x⊠ y) −→ Tpre(x⊠ y)
holx−−−−−−⇒
(µx)∗

Tpre(Z[1](x)⊠ y) . (4.62)

According to (4.10) the pre-blocks of our interest are given by Tpre(x⊠ y)∼=HomM⊠N (y, x).

In this description the map (µx)∗ amounts to the map

Hom(y, x) −→ Hom(y, Z[1](x)) ,

f 7−→ µx ◦ f.
(4.63)

According to Lemma 4.30, the comodule structure δy on y gives the module structure
Z l.a.

[1] y→ y as the image δl.a.y of δy under the adjunction Hom(y, Z[−1](y))∼=Hom(Z l.a.
[−1](y), y).

(ii) To obtain (4.61), by Lemma 4.29 we are thus left with showing that the morphism
holx corresponds to the composite

Hom(y, x)
(δl.a.y )∗

−−−−→ Hom(Z l.a.
[1] (y), x)

∼=−−→ Hom(y, Z[1](x)) , (4.64)

where the first map is pre-composition with δl.a.y and the second one is provided by the
adjunction. To show that this is the case, we consider for a∈A the following two maps.
First, the map

ga : Tpre(xm⊠xn⊠ yn⊠ ym)
(evr)∗−−−−→ Tpre(xm⊠xn⊠ (a∨ ⊗ a) . yn⊠ ym)

∼=−−→ Tpre(xm⊠xn⊠ a∨.yn⊠ a
∨.ym) ,

(4.65)
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composed from an evaluation in the contravariant argument of the pre-block functor and
the balancing of y. And second, the isomorphism

ha : Tpre(xm⊠xn⊠ a∨.yn⊠ a
∨.ym)

∼=−−→ Tpre(a∨∨. xm⊠ a . xn⊠ yn⊠ ym) (4.66)

that is analogous to the composition of the second, third and fourth maps in the chain
(4.25) of isomorphisms. Together with the component (holx)a of the holonomy we thus
have a diagram

Tpre(xm⊠xn⊠ yn⊠ ym) Tpre(a∨∨.xm⊠ a.xn⊠ yn⊠ ym)

Tpre(xm⊠xn⊠ a∨.yn⊠ a∨.ym)

(holx)a

ga ha (4.67)

By a straightforward, albeit lengthy, computation using the definition of the holonomy
holx, the dualities of A and the balancings (3.56) of the object

∫
m
m⊠m, it can be seen

that this diagram commutes.
Next we take the end over a∈A in the diagram (4.67). Then in the top row we get the
holonomy, while∫

a

ga : Tpre(x⊠ y) −→ Tpre(x⊠
∫
a

a∨.yn⊠ a
∨.ym) ∼= Tpre(x⊠

∫
a

a.yn⊠ a.ym) . (4.68)

Moreover, by the adjunction obtained in Lemma 4.30 we have

Tpre(x⊠
∫
a

a.yn⊠ a.ym) = Tpre(x⊠Z[−1](y))
∼=−−→ Hom(Z l.a.

[1] (y), x) . (4.69)

It follows that we have a commuting diagram

Hom(Z l.a.
[1] (y), x) Hom(y, Z[1](x))

∫
a∈ATpre(xm⊠xn⊠ a∨.yn⊠ a∨.ym)

∫
a∈A Tpre(a∨∨. xm⊠ a . xn⊠ yn⊠ ym)

∼=

∼= ∼=

∼=

(4.70)

This concludes the proof of the first statement of the Proposition.

(iii) Due to Corollary B.10, there is an equivalence T(L1)≃LexA(M,N ).

Combining the result (4.61) with the equivalence T(L1)≃LexA(M,N ), we get (sim-
ilarly as for the formula (4.11) for the pre-block functor):

4.32. Corollary. The block spaces for the straight disk D↑
A,M,N (4.7) are given by the

spaces
Tfine(D↑

A,M,N )(x⊠ y) ∼= NatA(Φ
l(y),Φl(x)) . (4.71)

of module natural transformations between the module functors Φl(y) and Φl(x).
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4.33. Example. Consider a disk with any number N of gluing and free boundary seg-
ments, as studied in Example 4.8, imposing in addition the sum rule

∑
iκi=N−2 from

Lemma 4.15 on the framing indices. Then Proposition 4.31 implies that the block functor
is given by

Tfine(x1⊠x2⊠ · · · ⊠xn) ∼= NatA
(
Φl(x1),Φ

l(xn) ◦Φl(xn) ◦ · · · ◦Φl(x2)
)
, (4.72)

where the module structure on the module functors Φl(xi) is determined by the framing
indices of the adjacent gluing intervals.

In particular, the result of Proposition 4.31 for the block functor of the straight disk
generalizes to the case of disks of the form (4.29). This, in turn, can be used to give the
block functor for any cylinder that is built out of such disks, i.e. for all defect surfaces of
the form

Σ =

κ1

−κ1

κ2 −κ2

κ3

−κ3

κ4

−κ4

κ5

−κ5

M1

M2

M3

M4M5

M6

A1

A2

A3

A4

A5

(4.73)

We refer to surfaces of the form (4.73), as well as to their counterparts based on a gluing
interval instead of a gluing circle, as defect cylinders.

4.34. Corollary. Let Σ be defect cylinder as shown in picture (4.73). Denote the inner
boundary circle of Σ by S1 and the outer one by S2. We have T(S1)∼=T(S2)

opp.
Regarding Σ as a bordism from S1 ⊔S2 to ∅, the block functor for Σ takes the values

Tfine(Σ)(F ⊠G) = HomT(S2)(F,G) (4.74)

for F ∈T(S1) and G∈T(S2). Regarding the surface Σ instead as a bordism from T(S1)
to T(S2)

opp ∼=T(S1), Tfine(Σ) is just the identity functor on T(S1).

4.35. Example. For finite tensor categories A and B, an A-B-bimodule M1 and any
finite number of A-B-bimodules Mi, i=2, 3, ... , n, consider a sphere with one circular
defect line that is interrupted by gluing circles (with arbitrary admissible framing indices,
which we suppress in the picture) which cut it into intervals labeled by the bimodules
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Mi:

M1 Mn

M
2 M n−

1

B

A

(4.75)

This can be recognized as the defect surface Σ that is obtained when gluing a disk of the
type considered in Examples 4.8 and 4.33 along its boundary to an oppositely oriented
disk of the same type. Accordingly, the pre-block spaces – which only depend on the
incidence relations of Σ(1) (i.e. defect lines and the boundary of Σ) – are given by the same
expression (4.18) as the pre-block spaces for one of those disks, albeit with their arguments
now being objects in different categories, which are assigned to gluing circles rather than
gluing intervals. Imposing flat holonomy for the upper and lower disk, respectively, then
amounts, in the formulation with left exact functors, to requiring that the so obtained
natural transformations are module natural transformations with respect to the right A-
and left B-action, respectively. Imposing both of these (where the order does not matter)
thus yields A-B-bimodule natural transformations:

Tfine(x1⊠x2⊠ · · · ⊠xn) ∼= NatA,B
(
Φl(x1),Φ

l(xn) ◦Φl(xn−1) ◦ · · · ◦Φl(x2)
)
. (4.76)

Of particular interest is the special case that all defects are transparent, i.e. that B=A
and Mi=A for each i, and that the framing indices on the two segments of all gluing
circles, except for the circle between the M1- and Mn-line, are equal to 1. Then the
gluing categories for all other circles are given by

A
1

⊠A
1

⊠
(3.58)
≃ LexA,A(A,A) ≃ Z(A) , (4.77)

and the composition of functors in (4.76) amounts to the tensor product in the Drinfeld
center Z(A).

4.36. Contraction along a defect path. Recall from Proposition 4.25 the result
about the fusion of boundary insertions, i.e. that there is a canonical isomorphism be-
tween the block functors for the configurations shown in the picture (4.15). These two
configurations are related by contracting a single defect line between two gluing bound-
aries. In this subsection we obtain a vast generalization of this procedure; we provide the
behavior of the block functor under “contraction along a path of defect lines”.
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By a path of defect lines in a defect surface Σ we mean an ordered collection

γ = (δ1, δ2, ... , δn) (4.78)

of defect lines such that each pair (δi, δi+1) shares a common gluing boundary; we denote
the latter by Li,i+1. Such a path can be open or closed. In the following we first assume
for simplicity that all the gluing boundaries Li,i+1= Si,i+1 are gluing circles ; the situation
that also gluing intervals are present will be briefly discussed afterwards. Given a path
γ of defect lines, we consider a fattening of γ to a tubular neighborhood Nγ ⊂Σ which is
sufficiently large such that its interior contains all gluing boundaries Si,i+1 on the path and
sufficiently small such that it does not meet any other gluing boundaries of Σ. Paths γ of
defect lines come in several types, which are distinguished by the form of the boundary
∂Nγ of their tubular neighborhood:

(i) ∂Nγ consists of a single embedded circle in Σ.

(ii) ∂Nγ is the disjoint union of of two embedded circles ∂Nγ,1 and ∂Nγ,2, both of which
meet at least one defect line of Σ.

(iii) ∂Nγ is the disjoint union of of two embedded circles ∂Nγ,1 and ∂Nγ,2, and precisely
one of them does not meet any defect line of Σ.

(iv) ∂Nγ is the disjoint union of of two embedded circles ∂Nγ,1 and ∂Nγ,2, none of which
meets any defect line of Σ.

If Σ is fine, then in the cases (iii) and (iv) γ is a loop that encloses a disk D in Σ. The
following pictures give examples for a path of type (i) and a path of type (ii), each con-
sisting of two defect lines:

δ1

δ2

type (i) :

(4.79)
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δ1

δ2

∂Nγ,1

∂Nγ,2

type (ii) :
(4.80)

For paths of type (i) and (ii), the boundary ∂Nγ has a natural structure of a defect
one-manifold, with framing inherited from the given vector field on Σ. We denote by
T(∂Nγ) its gluing category; thus in case (ii), T(∂Nγ)=T(∂Nγ,1)⊠T(∂Nγ,2). In cases (iii)
and (iv), in which ∂Nγ is not a proper defect one-manifold, we still define T(∂Nγ) to be
T(∂Nγ,1)⊠T(∂Nγ,2) where, however, now by definition we assign to a component ∂Nγ,i

that does not meet any defect line on Σ the category T(∂Nγ,i) := vect.
Let now γ=(δ1, δ2, ... , δn) be a path of defect lines in a fine defect surface Σ, and

denote the bimodule category labeling δi by Mi. Denote by

T(N̊γ) :=⊠
n−1
i=1 T(Si,i+1) (4.81)

the gluing category for the defect one-manifold that is the disjoint union of all glu-
ing boundaries inside Nγ, and (analogously as at the beginning of Section 4.1)) by

U(N̊γ)=⊠
n−1
i=1 U(Si,i+1) the category obtained from T(N̊γ) by forgetting all balancings

of the framed centers. It follows from our conventions that

U(N̊γ) ∼=
(
⊠n

i=1 Mi⊠Mi

)
⊠ U(∂Nγ) . (4.82)

For an object x∈T(N̊γ) that has the form x=x◦⊠x∂ with U(x◦)∈⊠iMi⊠Mi and
U(x∂)∈U(∂Nγ) we define

x̂ :=

∫ m1∈M1,...,mn∈Mn

HomM1⊠M1⊠···⊠Mn⊠Mn

(
m1⊠m1⊠ · · ·⊠mn⊠mn , U(x◦)

)
⊗U(x∂) .

(4.83)
This is by construction an object in U(∂Nγ).

4.37. Lemma. For x∈T(N̊γ), the object x̂ defined by (4.83) comes naturally with balanc-
ings which endow it with the structure of an object in the gluing category T(∂Nγ).
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Proof. The required balancings are fully determined by the balancings of the object
x∈T(N̊γ) and the parallel transport operations (4.47) for the 2-patches in Nγ. To see
this, let us write x=⊠i xi,i+1 with xi,i+1 ∈T(Si,i+1). Consider any two neighboring defect
points P1 and P2 on a component ∂Nγ,i of ∂Nγ. If P1 and P2 correspond to neighboring
defect points on one and the same gluing boundary Si,i+1, then the balancing on the
object x̂ is directly provided by the balancing of xi,i+1 ∈T(Si,i+1). Otherwise P1 and P2

correspond to defect points that lie on different gluing boundaries which are connected
by a sub-path (δj, ... , δj′) of γ. In this case the parallel transport operations (4.47) give
the relevant balancing. That these balancings are indeed those for the category T(∂Nγ)
follows directly from the definitions.

It follows that the prescription (4.83) provides a functor from T(N̊γ) to T(∂Nγ), pro-
vided that the path γ is of the type (i) or (ii). In case of the type (iii) or (iv), γ is a
closed path, and we apply after the prescription (4.83) in addition the block equalizers
(see (4.44)) for all disks that are enclosed by γ. The balancings given in the proof of
Lemma 4.37 are not affected by applying these block equalizers, so that we end up again
with a functor from T(N̊γ) to T(∂Nγ):

4.38. Definition. Let γ be a path of defect lines in a defect surface Σ.

(i) The excision functor for the path γ is the functor

Eγ : T(N̊γ) −→ T(∂Nγ) (4.84)

that is obtained by the prescription given above.

(ii) The contraction of Σ along γ, denoted as Σγ, is the following defect surface:
For γ of the type (i) or (ii), we take Σγ :=Σ \Nγ to be the complement of Nγ, with
∂Nγ as a new gluing boundary component for type (i), respectively ∂Nγ,1 ⊔ ∂Nγ,2 as
two new gluing boundaries for type (ii). For γ of the type (iii), Σγ is the component
of Σ \Nγ whose boundary contains the boundary component ∂Nγ,i of Nγ that meets
at least one defect line of Σ. Finally, in case γ is of the type (iv) we set Σγ := ∅.

The terminology ‘excision functor’ suggests that this functor is related to locality
properties of our construction. Indeed it will play a role when describing a factorization
structure for the modular functor (see the proof of Theorem 5.3).

We also call the object Eγ(x) the contraction of x along γ. The following picture shows
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the contraction Σγ for the path of type (ii) that is shown in the picture (4.80):

(4.85)

4.39. Lemma. Let γ be a path of defect lines in a defect surface Σ. There is a canonical
isomorphism

φγ : Tfine(Σ)
∼=−−→ Tfine(Σγ) ◦ (Eγ ⊠ Id) (4.86)

of functors, where the identity functor is applied to the gluing categories for all gluing
boundaries of Σ that are not met by γ (and where in the case of γ being of type (iv), the
canonical equivalence vect⊠M≃M for any finite category M is used implicitly on the
right hand side).

Proof. For types (i) and (ii) there is even a corresponding isomorphism involving pre-
block functors which holds by construction. Moreover, by definition of the balancings of
the objects (4.83), all holonomy operations for Σ and for Σγ agree. Thus the isomorphism
follows for all types (i) – (iv).

If we allow γ to contain also free boundaries, and thus some of the gluing boundaries
Si,i+1 are gluing intervals, then the tubular neighborhood Nγ looks as indicated in

δ3

Nγ

δ2

δ1

(4.87)
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The definition of contraction of Σ along γ, as well as the statements of Lemma 4.37
and Lemma 4.39 generalize to this case accordingly.

4.40. Remark. The construction can be further generalized to the case of an arbitrary
graph Γ formed by defect lines of Σ. Taking a tubular neighborhood NΓ that encloses
all gluing boundaries met by Γ we obtain analogously categories T(N̊Γ) and T(∂NΓ), an
excision functor EΓ : T(N̊Γ)→T(∂NΓ) between these, and a defect surface ΣΓ together
with an isomorphism Tfine(Σ)→Tfine(ΣΓ) ◦ (EΓ⊠ Id). If we take the graph Γtot formed by
all defect lines of Σ, we obtain this way a canonical isomorphism

Tfine(Σ) ∼= EΓtot (4.88)

between the block functor for Σ and the excision functor for the graph of all defect lines
of Σ.

4.41. Example. We use excision to compute the block functor for the following defect
surface Σ:

Nl

N2

N1

Mn

M2

M1

X

ρ 1

ρ
n−

1

κ2

κ1

S1

µ 1
µ
l−1

κ4
κ3

S2

Σ = A B

κ
2 +
κ
4 −

1κ 1
+
κ 3
−
1

(4.89)

We regard Σ as a pair of pants with S1 and S2 as incoming boundary circles. Consider first

the case that κ1=κ2=κ3=κ4=1. Then using the notation M⃗
ρ⃗

⊠ :=M1

ρ1
⊠ · · ·

ρn−1

⊠Mn ,
by Corollary 3.24 we obtain

T(S1) ∼= LexA,B(M⃗
ρ⃗

⊠ ,X ) and T(S2) ∼= LexA,B(X , N⃗
µ⃗

⊠ ) . (4.90)
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For the path γ of defect lines in Σ that consists just of the defect line with label X , the
neighborhood Nγ encloses the gluing circles S1 and S2. For F ∈T(S1) and G∈T(S2) we
then compute Eγ(F ⊠G)∈T(∂Nγ)∼=T(S3)

opp
by invoking the formula (4.83):

Eγ(F⊠G) =

∫ x∈X
Hom

(
x⊠x ,

( ∫ z∈M⃗
ρ⃗
⊠

z⊠F (z)
)
⊠
( ∫ y∈X

y⊠G(y)
))

∼=
∫ z∈M⃗

ρ⃗
⊠∫ y∈X∫ x∈X

Hom(x, F (z))⊗k Hom(y, x)⊗ z ⊠G(y)

∼=
∫ z∈M⃗

ρ⃗
⊠

z ⊠G ◦F (z) .

(4.91)

Under the Eilenberg–Watts equivalence, this amounts to the functorG ◦F ∈LexA,B(M⃗
ρ⃗

⊠ ,

N⃗
µ⃗

⊠ ). Invoking Corollary 4.34 we thus we conclude that

Tfine(Σ) : T(S1)⊠T(S2) −→ T(S3) (4.92)

is the functor that corresponds to the composition of bimodule functors. (This is a simple
instance of the way in which algebraic structure, here composition of left exact functors,
can be extracted from our framed modular functor.) The case of general values of κ1, κ2, κ3
and κ4 is reduced to the one considered above by the equivalence obtained in Remark 3.26.
When all defects involved are transparent, then via the Eilenberg–Watts isomorphisms the
composition of functors gives the tensor product in the Drinfeld center (compare Example
4.35); note that this functor is the one that also the standard Turaev–Viro constructions
assigns to a pair of pants.

4.42. Fusion of defect lines along 2-patches. We will now show that the block
functor for a defect surface remains unchanged if two parallel defect lines are fused, mean-
ing that two neighboring defect lines are replaced by a single one with appropriate label.
To see this, consider two parallel defect lines labeled by MA and AN that end on two
gluing segments with framing of index ±κ for κ∈ 2Z. For our discussion only the right
and left module structure, respectively, matters (and is displayed), so that we are in the
situation of Example 4.13. We will see that locally we can replace this combinatorial con-

figuration by a single defect line labeled by the framed center MA
κ

⊠AN ; schematically,

κ

−κ

MA AN
⇝

MA
κ

⊠AN
(4.93)
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This replacement is meant to happen locally within a generic defect surface, with all data
in the parts not involved in the replacement remaining unchanged. In particular, the glu-
ing segments on which the defect lines end will typically be part of gluing circles or gluing
intervals that contain further defect points. This is indicated in the following picture:

κ

−κ

MA AN
⇝

M
A

κ⊠
A N

(4.94)

We refer to this procedure as the fusion of the defect lines along a constantly framed
2-patch.

4.43. Theorem. There is a canonical isomorphism between the block functors associated
with the two combinatorial configurations (4.94).

Proof. First note that there is a canonical equivalence between the gluing categories
for the gluing segments on which the two defect lines on the left hand side of (4.93)

end. Consider objects y ∈M
κ

⊠N and x∈N
−κ
⊠M in the relevant gluing categories. After

fusion, the disk D between the two lines has disappeared and there is just one defect line
left; the latter gives rise to the block functor in the upper left corner of the following
diagram:

∫ z∈M κ
⊠N

Hom
N

−κ
⊠M⊠M

κ
⊠N

(z⊠ z, x⊠ y) Hom
M

κ
⊠N

(x, y)

∫ m∈M∫ n∈N
HomN⊠M⊠M⊠N (n⊠m⊠m⊠n, U(x)⊠U(y)) HomM⊠N (U(x), U(y))

∫ m∫ n
HomN⊠M⊠M⊠N (n⊠m⊠m⊠n,∫

a
a. U(x) .[κ+3]a⊠U(y)) HomM⊠N (Z[κ](U(x)), U(y))

f

(4.95)

In this diagram each of the horizontal morphisms is a variant of the convolution property
(B.3) of the Hom functor. The equalizer of the two morphisms on the bottom left of this
diagram is by definition the block functor before fusion. The left column of the diagram



A MODULE FUNCTOR FROM STATE SUMS 505

is of the form of (4.40) and is thus an equalizer diagram.
This diagram (4.95) commutes: That the upper square commutes is (after using that
the coend over M⊠N can be expressed as a double coend over M and N , see [FSS2,
Cor. 3.12]) just the definition of the morphism f , while commutativity of the two lower
squares follows from the definition of the holonomy operation.
Together it follows that the right column is an equalizer diagram as well, and thus that
indeed also the situation with the fused defect line describes the block functor.

Iterating the procedure (4.94), one can analogously fuse any number of neighboring
defect lines. Thus in particular there is a distinguished isomorphism between the block
functors associated with the two situations

µ

κ1 κ2

λ

ν1

K1
K2 Kk

Nn N2
N1

and
µ

λ

K

N

Nn N1

K1 Kk

∗

∗

(4.96)

for any numbers n of incoming and k of outgoing defect points, with K=K1

κ1
⊠ · · ·

κk−1

⊠ Kk

and N =N1

ν1
⊠ · · ·

νn−1

⊠Nn. Here the asterisk at the additional gluing circles on the right
hand side (for which, for better readability, we omit the orientation and labelings) in-
dicates that when calculating a block functor they have to be evaluated on the relevant
distinguished fusion objects (as introduced after Example 3.21).

5. The modular functor

5.1. Factorization. We now study how our description of block functors fits together
with the gluing of defect surfaces, assuming for now that both the initial and the glued
surface are fine. In the literature, this issue is often formulated as the behavior of blocks
under factorization, and we adopt this term here. Our bicategorical setting makes it
manifest that factorization amounts to a structure, rather than being a property. We will
show that such a structure exists, but will not investigate its uniqueness in the present
paper. The general case of factorization for not necessarily fine defect surfaces will follow
from the definition of the block functor of a non-fine surface as a limit, see Theorem 5.27.

According to Definition 2.11, the horizontal composition of morphisms in the bicate-
gory Borddef

2 is given by the gluing of surfaces. A 2-functor comes with additional data,
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implementing the compatibility of horizontal composition. The purpose of the present
subsection is to exhibit these data for the block functor T. We refer to the resulting
structure as the factorization structure of the 2-functor.

To define this factorization structure, consider the situation that the boundary of a
gluable fine defect surface Σ contains gluing boundary components L1=L and L2=L.
Denote by ∪L(Σ) the (fine) defect surface that results from gluing L and L, that is, by
identifying the boundary components corresponding to their parametrizations. In case
that the defect surface is a disjoint sum Σ=Σ1 ⊔Σ2 and that L⊆ ∂Σ1 and L⊆ ∂Σ2, the
surface ∪L(Σ)=Σ2 ◦Σ1 is the (partial) horizontal composition of the 1-morphisms Σ1 and
Σ2 in Borddef

2 .
We will show below that there is a canonical isomorphism that expresses the block

functor for the surface ∪L(Σ), by taking a coend in the gluing category T(L):

Tfine(∪L(Σ)) ∼=
∫ z∈T(L)

Tfine(Σ)(−⊠ z⊠ z) . (5.1)

Here on the right hand side we evaluate the block functor on objects z and z in the
gluing categories for the gluing boundaries L and L, respectively. We select this canonical
isomorphism as the definition of the factorization structure of the modular functor.

To identify this canonical isomorphism, we first recall the notion of a defect cylinder,
see e.g. the picture (4.73). It follows directly from the definition that any defect cylinder
Σ satisfies

∪L(Σ⊔Σ) = Σ . (5.2)

5.2. Proposition. Let Σ be a defect cylinder over a defect one-manifold. Then the
endofunctor Tfine(Σ) is a strict idempotent under horizontal composition:

Tfine(Σ) ◦ Tfine(Σ) = Tfine(Σ) . (5.3)

Proof. This follows directly from the Eilenberg–Watts calculus: according to Corollary
4.34, the block functor (with values in vect) for a defect cylinder is a Hom functor, which
via the Eilenberg–Watts equivalences corresponds to the identity functor. When working
instead with Deligne products, the isomorphism is provided by the variant (B.3) of the
Yoneda lemma: Denoting the two copies of Σ by Σ1 and Σ2, such that ∂Σ1=L⊔L and
∂Σ2=L⊔L, and fixing objects y ∈T(L)∼=T(L)opp and w∈T(L) in the gluing categories
for L⊂Σ1 and L⊂Σ2, respectively, we have

(
Tfine(Σ1) ◦ Tfine(Σ2)

)
(y⊠w)

(B.4)∼=
∫ x∈T(L)

Tfine(Σ⊔Σ)(y⊠x⊠x⊠w)
(4.74)∼=

∫ x∈T(L)
HomT(L)(y, x)⊗HomT(L)(x,w)

(B.3)∼= HomT(L)(y, w) = Tfine(Σ)(y⊠w) .

(5.4)
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When combined with the results of Section 4.36, we obtain an analogous canonical
isomorphism also in more general situations:

5.3. Theorem. Let Σ be a fine defect surface with gluing boundary components L and L
such that the glued surface ∪L(Σ) is again fine. There is a canonical isomorphism∫ x∈T(L)

Tfine(Σ)(−⊠x⊠x) ∼= Tfine(∪L(Σ))(−) (5.5)

of functors.

Proof. Consider the subset of defect lines of Σ, to be called the link γL of the boundary
component L, that arises as follows: Consider all 2-patches that have a common boundary
with L and take all the defect lines on any of these 2-patches that do not have an end
point on L. The following picture shows the link γL, indicated by the thickened defect
lines, for a sample boundary component L:

L

γL

(5.6)

Contracting Σ along the the graph γL in the way described in Section 4.36 results in
a disconnected defect surface ΣγL

such that the component of ΣγL
that contains L is a

defect cylinder over L. Performing the same construction also over the gluing boundary
L of ΣγL

then gives another defect surface (ΣγL
)γL , among the components of which there

are the defect cylinders over L and L, which are identical as defect surfaces (each having
boundary L⊔L). Applying Proposition 5.2 to the so obtained defect cylinders, it follows
that ∫ x∈T(L)

Tfine(Σ)(−⊠x⊠x) ∼=
∫ x∈T(L)

Tfine

(
(ΣγL

)γL
)
(−⊠x⊠x)

∼= Tfine(∪L
(
(ΣγL

)γ
L

)
)(−) ∼= Tfine(∪L(Σ))(−) .

(5.7)

Here the first and last isomorphisms hold by the canonical isomorphism involving the exci-
sion functor as obtained in Lemma 4.39, and we also use that ∪L

(
(ΣγL

)γL
)∼= (

(∪L(Σ))γL
)
γL
.
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It follows directly from the locality of the factorization in Theorem 5.3 that factoriza-
tions performed on several boundary components commute:

5.4. Corollary. Let (Σ1,Σ2,Σ3) be an ordered triple of fine defect surfaces that can
composed in the given order. Then the two isomorphisms

Tfine(Σ3) ◦ Tfine(Σ2) ◦ Tfine(Σ1)
∼=−−−−⇒ Tfine(Σ3 ◦Σ2 ◦Σ1) (5.8)

that correspond to either first gluing the surfaces Σ3 and Σ2 and then the resulting surface
with Σ1, or else first gluing Σ2 and Σ1 and then the result with Σ3, are equal.

5.5. Transparent defects and fillable disks. To be able to define the modular
functor also on defect surfaces that are not fine, we need a suitable notion of refinement
of surfaces. This will be introduced in Section 5.14. As a preparation, in the present
subsection we provide two notions that will be convenient in that context: a subclass of
defect lines that we will call transparent defects, and a subclass of defect surfaces that we
will call fillable disks.

We start with

5.6. Definition. Let L be a gluing circle or gluing interval of a defect surface Σ, and
regard Σ as a bordism with domain L. (In case L is an interval, it is convenient to think
of it concretely as a half-circle, as we have done before, e.g. in Proposition 4.7.) We say
that L is fillable iff there exists a defect surface DL : ∅→L such that its underlying surface
DL has the topology of a disk (not containing any additional gluing circles).

If a gluing boundary L is fillable in this way, we call the defect surface Σ ◦DL a filling
of Σ by the disk DL. The filling of a defect surface by any finite number of disks is defined
analogously.

If a gluing circle or gluing interval is fillable, then it has necessarily an even number of
defect points, coming in pairs which carry the same label and have opposite orientation.
The following picture shows an example of a fillable circle L and a fillable interval L′ and
of corresponding disks DL and DL′ that fill them:

M

M

N
+

N
−

L = M
N

−

+

DL =
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+
K

+

M

−N

+N −
M

−
K

L′ = K

M
N

−
−

+

−
+

+

DL′ = (5.9)

By abuse of terminology, we apply the notion of fillability also to circles that do not
contain any defect point and thus are not proper defect one-manifolds.

Next we introduce a convention which will be used later on:

5.7. Definition. For any finite tensor category A and any even integer κ we call the
A-bimodule

Iκ := −κA (5.10)

the κ-transparent defect label (of type A). A defect line labeled by Iκ is called a κ-
transparent defect (of type A).
For brevity, in case that κ=0, we call I0=A just the transparent defect label (of type
A), and a defect line labeled by I0 just a transparently labeled defect.

This notation and terminology is justified by the fact that Iκ behaves like a unit for
the κ-twisted center: according to formula (B.29) and Lemma B.12 for an A-bimodule
category M there are specified equivalences Iκ≃A−κ and

M
κ

⊠ Iκ ≃ M ≃ Iκ
κ

⊠M . (5.11)

5.8. Remark. For any κ, κ′ ∈ 2Z the double dual induces an equivalence

κIκ′0 ≃ Iκ+κ′0 , (5.12)

in particular
κI−κ

0 ≃ I0 . (5.13)

Together with formula (3.15), this implies that for any κ∈ 2Z we have

M
κ

⊠ I0

−κ
⊠N ≃ M

0

⊠ κI−κ
0

0

⊠N ≃ M
0

⊠ I0

0

⊠N ≃ M
0

⊠N . (5.14)

5.9. Example. The equivalences (5.11) lead to distinguished objects in certain gluing
categories: Let A be a finite tensor category and M an A-bimodule. Via the Eilenberg–
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Watts equivalences (3.42) the gluing categories for the defect one-manifolds

I↗κ (M) :=

κ

M

IκM

I↙κ (M) :=

−κ

M

MIκ

I↖κ (M) :=

κ

M

MIκ

I↘κ (M) :=

−κ

M

IκM

(5.15)

are canonically equivalent to the category LexA,A(M,M) of bimodule endofunctors: we
have

T(I↗κ (M)) = M
1

⊠M
κ

⊠ Iκ
1

⊠

(3.57)
≃ LexA,A(M,M

κ

⊠Iκ)
(5.11)
≃ LexA,A(M,M) and

T(I↙κ (M)) = M
−κ
⊠ Iκ

1

⊠M
1

⊠

(3.8)
≃ Iκ

κ

⊠M
1

⊠M
1

⊠ ≃ M
1

⊠M
1

⊠
(3.57)
≃ LexA,A(M,M) ,

(5.16)

and similarly for the other two gluing circles. The so obtained endofunctor categories
have the identity functor as a distinguished object.

5.10. Remark. The pre-images of the identity functor under the equivalences (5.16)
constitute distinguished objects in the respective gluing categories. Using the precise
form of the equivalences (5.11) (see the proof of Lemma B.12), one can express these
distinguished objects as the subtle compounds∫ m∈M

m⊠Z[κ](m⊠1) =

∫ m∈M∫
a∈A

m⊠m.a⊠ [κ−1]a ∈ T(I↗κ (M))

and∫ m∈M
Z[κ](m⊠DA)⊠m =

∫ m∈M∫
a∈A

a.m⊠DA.[κ+3]a⊠m

=

∫ a∈A∫ m∈M
m⊠ a⊠ [κ+1]a.m ∈ T(I↙κ (M))

(5.17)
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of ends and coends. Here the last equality follows from
∫ a
a⊠DA⊗ [κ+3]a∼=

∫
a
a⊠ [κ+1]a∈

A⊠A (compare (3.46)).

Next we recall the so-called braided induction. Given a left A-module M and a right
A-module N , consider, for z ∈Z(A), the endofunctors

Fz(n) := n.z and zF (m)= z.m (5.18)

of N and M, respectively. The half-braiding on z endows the functors Fz and zF with the
structure of a module functor. By assigning to z these functors we obtain two monoidal
functors

F• : Z(A) −→ LexA(N ,N ) and •F : Z(A) −→ LexA(M,M) . (5.19)

These are the functors of braided induction, also termed α-induction, see e.g. [Os, Sect. 5.1]
for the categorical formulation used here. (Alternatively one may use the inverse half-
braiding, which gives another pair of such functors.)

5.11. Example. For A a finite tensor category, M a left A-module and N a right A-
module, consider the following defect surfaces D1 and D2:

A

M

M

−1

2

0

D1 :=

A

N

N

−1

2

0

D2 :=

(5.20)

Here, and in all pictures below, defect lines that are transparently labeled are drawn in a
lighter color. Both surfaces have the same inner boundary circle L; we denote the outer

boundary circle of Di by Li, for i=1, 2. We have T(L)=Z(A) and T(L1)=M
−1

⊠M
(3.59)
≃

LexA(M,M), while T(L2)=N
−1

⊠N
(3.59)
≃ LexA(N ,N ). The block functors for the disks

D1 and D2 are given by

Tfine(D1)(G⊠ z) = LexA(G,Fz) and

Tfine(D2)(G⊠ z) = LexA(G, zF ) ,
(5.21)

respectively, for G∈LexA,A(A,A) and z ∈Z(A), and thus, by the Yoneda lemma, rep-
resent the braided inductions. In the case of D1 this is seen as follows (the computation

of T(D2) is analogous). Consider the object z̃ in M
−1

⊠M that for z ∈T(L1) results from
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contracting the defect line that is connected to L1. Using the formulas given in Example
C.7 we obtain

z̃ =

∫ m∈M∫ a∈A
HomA(a, z)⊗m⊠ a.m ∼=

∫ m∈M
m⊠ z.m . (5.22)

Under the Eilenberg–Watts correspondence this object gives the bimodule functor Fz.
The claimed result for Tfine(D1) then follows from Corollary 4.32.

Combining the notion of transparent defect with the one of fillable circles and intervals
allows us to introduce a particular type of defect surfaces. Topologically these specific
surfaces are disks with holes, but since the holes are fillable and their gluing categories
contain distinguished objects, for brevity we abuse terminology and refer to these defect
surfaces just as “disks”.

5.12. Definition. Let X be a defect surface such that the underlying surface X is a disk
and ∂X contains at most one free boundary segment.

(i) A fillable disk (DX, δtr, ∂outer) of type X is a defect surface DX with having following
structure:

1. Every boundary circle of DX is oriented as induced by the orientation of the sur-
face.

2. DX contains a set δtr of distinguished transparent defect lines on DX, as well as
one distinguished gluing boundary component ∂outer ⊆ ∂glueDX, which we call the
outer boundary of DX.

3. Deletion of all transparent defect lines that belong to δtr results in a defect surface
for which all gluing circles and gluing intervals, except for ∂outer, are fillable by a
disk in the sense of Definition 5.6, and the so obtained filling is isomorphic to the
defect surface X.

(ii) We depict a fillable disk DX as a subset of the plane, with the non-fillable boundary
circle (or interval, in case X has a free boundary) forming the outer boundary, while
the fillable gluing circles and intervals are referred to as inner boundary circles or
intervals.

It follows that every defect line on DX is either a distinguished transparent defect or
corresponds to a defect of X, possibly interrupted by fillable gluing boundaries. Note that
a fillable disk is in general not topologically a disk. As an illustration, the following is an
example of a fillable disk (the non-fillable gluing boundary of DX is the interval labeled
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as L, various other labels are omitted):

DX =

M

M

M

N

N

L

A
B

for X =
M

N

A

B

(5.23)

We also consider fillable disks for which, while they are proper defect surfaces themselves,
the corresponding surface X is improper in the sense that it does not contain any defect
lines or free boundaries. In this case we call the disk a transparent disk and denote it just
by Dtr; the following is an example of a transparent disk:

Dtr = for X =

(5.24)

By definition, all defect lines of a transparent disk Dtr of type A are labeled by the
transparent defect label I0=A for one and the same tensor category A. The framing of a
fillable disk DX has the following property: since by definition every inner gluing segment
is fillable by a disk, the indices on the outer boundary ∂outerDX must add up to the value 2
(thus ∂outerDX is not fillable). Moreover, the label of every defect line of X appears an even
number of times as a label of a defect point on ∂DX. (The latter criteria are, however,
not sufficient for the existence of a fillable disk with a given boundary: If the cyclically
ordered string of bimodules for the boundary ∂X contains a string (M,N ,M,N ) with
generic bimodules M and N , then there does not exist a corresponding fillable disk.)

Let us also mention that the gluing categories for fillable circles and intervals can
often conveniently be described as functor categories, whereby one can in particular iden-
tify certain distinguished objects in such gluing categories. Also, in Lemma C.6 in the
appendix, we exhibit distinguished objects for all fillable circles and intervals.
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5.13. Example.

(i) The gluing categories in (5.15) are fillable if and only if κ=0.

(ii) Consider, for A a finite tensor category, the defect one-manifold

Jκ :=
1+κ

1−κ

I0

I0

(5.25)

with κ∈ 2Z. It follows from (5.14) that there is a distinguished equivalence

T(Jκ) = I0

1+κ

⊠ I0

1−κ
⊠

(5.14)
≃ I0

1

⊠ [κ]I [−κ]
0

1

⊠
(5.13)
≃ I0

1

⊠ I0

1

⊠
(3.59)
≃ LexA,A(I0, I0) . (5.26)

Thus in T(Jκ) there is a distinguished object, given by the pre-image of the iden-
tity functor in LexA,A(I0, I0) under the equivalence (5.26). It is given explicitly by∫ a∈A

a⊠ [κ]a∈T(Jκ), with balancing determined by the one of
∫ a∈A

a⊠ a.

(iii) Similarly, for the defect one-manifolds that coincide with Jκ as manifolds, but have
general framings, i.e. with general indices κ and κ′, the gluing category is canonically
equivalent to LexA,A(Iκ0 , Iκ

′
0 ). If κ=κ′, then this functor category is equivalent to the

Drinfeld center and is thus monoidal; if κ−κ′ =2, then it is equivalent to the category
of objects x∈A together with coherent natural isomorphisms a⊗x∼= x⊗ a∨∨ for all
a∈A, which is in general not monoidal (e.g., the monoidal unit of A might not have
the structure of an object in this category). The categories for all other cases are
equivalent to one obtained for the latter two cases, determined by κ−κ′ mod 4,
using the distinguished invertible object in A as in Equation (3.49).

We take this observation as an opportunity to remark that in [DSS] the framing on
a circle (without defect points) is described with the help of a corona instead of an
index. For instance, the three framed manifolds shown in Table 3 of [DSS] correspond
to κ+κ′=2, 0 and −2, respectively.

5.14. Refinement of defect surfaces. In Section 4.1 we have assigned a pre-block
functor Tpre(Σ) to any arbitrary defect surface Σ. In contrast, the block functor T(Σ)

could so far be defined only for surfaces that are fine in the sense of Definition 2.2(ii). To
complete the definition of the modular 2-functor, this restriction must be removed. As a
first step towards this end we are going to construct, for any defect surface Σ, a family of
fine defect surfaces Σref, to be called fine refinements of Σ. In the present subsection we
introduce the notion of refinement and show that fine refinements exist for any surface.
Later on we will use the family of fine refinements of a given surface Σ to define the
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functor T(Σ); in case Σ is already fine itself, this must coincide with the functor given by
Definition 4.21.

We need a precise notion of refinement of defect surfaces:

5.15. Definition. Let Σ and Σ′ be two defect surfaces, both not necessarily fine. A
refinement from Σ to Σ′ is a triple (Σ;Σ′;φ), with distinguished sets I′ of transparent
defect lines, S′ of gluing circles and L′ of gluing intervals in Σ′, such that the following
holds:

1. Both end points of each of the defect lines in I′ are contained in S′ ∪L′.

2. When removing all defect lines in I′ from Σ′, each of the modified gluing circles S′′
j

that result from some S′
j ∈S′ and modified gluing intervals L′′

k that result from some
L′
j ∈L′ is fillable.

3. The resulting filling Σ′′ of Σ′ is isomorphic as a defect surface to Σ, with isomorphism
φ : Σ→Σ′′.

We denote the subset of the gluing boundary ∂glueΣref of the surface Σref consisting of those
gluing circles and gluing intervals that are not inherited from the gluing boundary ∂glueΣ
of Σ by ∂fillΣref. We usually suppress the isomorphism φ from the notation and denote
the refinement just by (Σ;Σ′); if (Σ;Σ′) is a refinement, then we also say that Σ can be
refined to Σ′, and that Σ′ refines Σ.

The definition implies that each defect line δ of Σ corresponds either to a single defect
line of Σ′ with the same label as δ, or else splits into several defect lines of Σ′ that all carry
the same label as δ and which are interrupted by fillable gluing circles that are not present
in Σ. Moreover, the gluing boundaries of Σ correspond to identical gluing boundaries of
Σ′. As an illustration, the following picture shows the refinement (D;D′) of a one-holed
disk D for which D′ has three additional gluing circles:

D =
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D′ = (5.27)

5.16. Remark.

(i) For any refinement (Σ;Σref), by definition every gluing boundary of Σref that is not
a gluing boundary of Σ is fillable.

(ii) It is worth comparing the notion of refinement with Definition 5.12 of a fillable disk
of type X: It is easily seen that for every refinement (X,Xref) with X a defect surface
for which the underlying surface X is a disk and which has at most one free boundary
segment, the refined surface Xref is a fillable disk of type X. On the other hand, the
converse is not true, because in general the outer boundary of a fillable disk of type
X contains more defect points (transparently labeled) than the boundary of X.

(iii) It follows directly that the gluing of any two refinements is again a refinement, i.e.
that for any two refinements (Σ1; Σ

′
1) and (Σ2; Σ

′
2) for which Σ1 and Σ2 can be glued,

the same holds for Σ′
1 and Σ′

2 and the pair (Σ1 ◦Σ2; Σ
′
1 ◦Σ′

2) is a refinement as well.
Moreover, if Σ′

1 and Σ′
2 are gluable fine refinements, then Σ′

1 ◦Σ′
2 is gluable fine, too.

(iv) If (Σ;Σref) is a refinement, then for any defect surface Σ′
ref that is isomorphic to Σref,

(Σ; Σ′
ref) is a refinement of Σ as well.

We proceed to show that fine refinements exist. From Definition 5.15 it follows imme-
diately that any refinement Σ′ of Σ can be obtained by separately refining every 2-patch
of Σ, in any order. Now like any two-manifold with boundary, a 2-patch admits pair-of-
pants decompositions, i.e. as a manifold it can be obtained by gluing a finite number of
disks, annuli, and pairs of pants (or trinions). Since in the situation of our interest we are
working with framed surfaces, we must in addition account for the framing. Moreover,
unlike for manifolds without defects and boundaries we also have to consider 2-patches
whose boundary contains free boundary segments. These still admit generalized pair-of-
pants decompositions with a larger number of building blocks (compare [LP, Prop. 3.8]).
It is not hard to see that indeed any 2-patch of any defect surface can be obtained by
gluing a finite number of the following specific two-manifolds:
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• a disk with boundary being a gluing circle without defect points and with framing
index −2;

• an annulus with boundary components being gluing circles without defect points and
with framing indices ±κ∈ 2Z;

• a pair of pants with boundary components being gluing circles without defect points
and with framing indices κ, κ′ ∈ 2Z and 2−κ−κ′, respectively;

• a disk whose boundary is the union of one free boundary and of one gluing interval
that does not have any defect points in its interior and has framing index −1;

• a disk whose boundary is the union of three free boundaries and of three gluing intervals
that do not have any defect points in their interior and have framing indices κ, κ′ ∈Z
and 1−κ−κ′, respectively;

• an open-closed pipe: an annulus such that one boundary component is the union of one
free boundary and of one gluing interval without defect points in its interior and with
framing index κ∈Z, while the other boundary component is a gluing circle without
defect points and with framing index −1−κ.

It is worth recalling that a defect one-manifold in the sense of Definition 2.11 contains
at least one defect point. Thus those of the building blocks in this list which have a gluing
circle without defect points as a boundary component are themselves not defect surfaces.
However, our prescription implies that any fine surface that results from the refinement
of any (proper) defect surface is again a proper defect surface.

We are now in a position to show

5.17. Theorem. Every defect surface can be refined to a fine defect surface.

Proof. We will construct a fine refinement for an arbitrary 2-patch; combining the re-
finements of all 2-patches of a defect surface Σ then provides a fine refinement of Σ. Thus
consider a 2-patch P of a defect surface. Take any (generalized) pair-of-pants decom-
position Pp.o.p. of P, with building blocks of the form just described, making sure that
the curves on Σ that define Pp.o.p. intersect all defect lines on Σ transversally (this can
be achieved by applying, if necessary, a small isotopy to any chosen set of curves). The
resulting building blocks come in two kinds: either they contain a gluing boundary of Σ
or they do not. We first retrict our attention to building blocks of the first kind. We
would now like to define standard refinements of these building blocks of Pp.o.p. that glue
together to a refinement of Σ. However, to do so, we need to alter also gluing boundaries
in the building blocks of Pp.o.p., namely those that do not correspond to gluing boundaries
of Σ. We account for this by allowing for generalized refinements, which are defined in
the same way as refinements, except that there is no restriction on the end points of the
defect lines I′i. (This is not in conflict with the rationale of our construction, because the
block functor is only applied after gluing such generalized refinements to genuine ones.)
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Thus for each of the building blocks of Pp.o.p. we now provide a standard fine generalized
refinement that is chosen in such a manner that gluing together any two of the thereby
obtained fine defect surfaces results in a defect surface that is fine as well.

Let us first present our prescription in much detail for the case that the building block in
question is an annulus A (without defect points on its boundary). Denote by ±κ∈ 2Z the
framing indices of the boundary circles of A. We refine A in two steps. In the first step we
add a single transparent defect line if κ=0, while for κ ̸=0 we add |κ| transparent defect
lines of alternating orientation that connect the two boundary circles, in such a way that
we obtain a fine defect surface Aref,0 each of whose 2-patches is a straight disk. This is
illustrated in the following picture:

−κ

κ

+

+

−

−

+

+

−

−

+

+

−
−

1

−1

1
−1

1

−1
1

−1

1

−1

⇝ =: Aref,0 . (5.28)

While the so obtained surface Aref,0 is already fine, gluing it to another fine surface can
still result in a defect surface that is no longer fine. The second step of the prescription
eliminates this unwanted feature: We refine Aref,0 further by suitably inserting additional
transparent defects together with transparent gluing circles with three defect points that
are of the form shown in the picture (5.15) with κ=0 and M= I0; thereby we obtain a
fine (generalized) refinement (A;Aref) of the form indicated in in the following picture (for
better readability we omit the defect points and orientation of the gluing intervals of the
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transparent gluing circles as well as the orientation of some of the defect lines):

Aref =
0

0

0

0

0

0

(5.29)

The framing on the so obtained fine surface Aref is uniquely specified by the orientation
of the various defect lines together with the framing on Aref,0. Specifically, the framing
indices of the three segments of each of the new transparent gluing circles are 0, 1 and
1. We indicate the position of some of those segments that have framing index 0 in the
picture; the position of the index-0 segments for the other transparent gluing circles is
analogous.

The standard fine refinements for the other building blocks of a pair-of-pants decomposi-
tion are obtained in a similar manner as in the case of the annulus A. We content ourselves
to display the resulting fine refinements (B;Bref) and (U;Uref) for the cases of a pair of
pants B and of an open-closed pipe U. The standard fine refinement for B looks as follows:

Bref =

0

0

0
0

0

0
0

0

(5.30)
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Drawing the open-closed pipe U as on the right hand side of

U = =

(5.31)

its standard fine refinement looks as follows:

Uref =

1

0

0
0

0

0

0

0
0

0

0

1

1

1

1 0

1

−1

−1

−1

−1
0

(5.32)

Finally we consider a building block P of the Pp.o.p. of the second kind, i.e. one that
contains a gluing boundary of Σ. By picking, if necessary, a finer pair-of-pants decompo-
sition P′

p.o.p., we can assume that P is a cylinder. Consider first the case that the gluing
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boundary of Σ in question is a circle; then we deal with a defect surface of the following
form:

2

2

2

2

1
11

1

1

1 1

κ 1

κ
2

(5.33)

Here for each gluing segment with framing index κi of the outer circle there are |κi| − 1
additional boundary circles that are connected by a single transparent defect line to the
inner gluing circle in such a way that the framing index of each of the resulting new gluing
segments on the inner circle is +1 (as shown in the picture) if κi is positive and −1 if
κi is negative. This prescription is compatible with the previous treatment of building
blocks that do not meet the boundary of Σ, in such a way that the resulting refinement
of Σ is still fine. The case that the relevant gluing boundary of Σ is an interval is treated
similarly.

To summarize: Given a defect surface Σ we choose for each 2-patch P of Σ any pair-of-
pants decomposition Pp.o.p. and refine the building pieces of Pp.o.p. in the way described
above. Gluing the so obtained refined building pieces back together gives a fine refinement
(P;Pref) of P. Combining the fine refinements (P;Pℓ;ref) of all 2-patches Pℓ of Σ then
provides a fine refinement (Σ;Σref) of Σ, provided that the new transparent defect lines in
neighboring 2-patches are inserted in a coordinated fashion, which is easily accomplished.
Thus in short, each collection of pair-of-pants decompositions of the 2-patches of Σ defines
a specific fine refinement of Σ.

5.18. Remark. Consider the standard two-torus T= [0, 1]2/∼. It inherits a framing from
the standard framing of the plane R2. We denote the defect surface with this standard
framing by (T, χstd). Any other framing χ on T defines an isomorphic defect surface.
Indeed, for any non-vanishing vector field on T there exists a pair of closed curves with
zero winding number for the framing that generate the fundamental group π1(T) of the
torus. If we place transparent defect lines on T that follow these closed curves, except
that their intersection is resolved into two gluing circles each having three defect points,
we arrive at a valid defect surface whose gluing circles are of type (5.15) with κ=0, and
thereby at a fine refinement (T;Tref)χ of T; identifying (T;Tref)χ with a refinement of the
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standard framed torus yields the desired isomorphism.
Moreover, every automorphism φ of (T, χstd) is isotopic to the identity: We can assume
that φ preserves (0, 0). Since φ must preserve flow lines, it maps the generator corre-
sponding to (1, 0) to itself, and since it must preserves angles between tangent vectors, it
maps the (0, 1) generator to itself as well.

5.19. Block functors for non-fine surfaces. In Section 4.1 we have constructed
the pre-block functor Tpre(Σ) for any defect surface Σ, not necessarily fine. In contrast,
the block functor cannot be defined for Σ as in Section 4.19 unless the surface Σ is fine,
since the topology of the disk enters via the well-posedness, in the sense of Definition
4.14, for disks (see Corollary 4.18). Our goal is now to define the block functor T(Σ) for
an arbitrary defect surface Σ by making use of the existence of fine refinements of Σ that
was shown in Section 5.14.

Let (Σ;Σref) be a fine refinement from Σ to Σref. In the first place, Σref is just a
specific fine defect surface, which comes with its own pre-block functor Tpre(Σref) and

block functor T(Σref). Typically T(Σref) lies in a different functor category than the
desired functor T(Σ). In order to obtain a functor in the correct functor category, we

are going to assign to the refinement a left exact functor T̂(Σ;Σref) that is obtained from
the block functor Tfine(Σref) for the refined surface Σref by evaluating it on a distinguished
object in the gluing category for the part ∂fillΣref of the gluing boundary of Σref that is
not inherited from Σ. We call this (still to be defined) distinguished object in T(∂fillΣref)

the silent object of the refinement (Σ;Σref) and denote it by ℧Σ;Σref
, and call T̂(Σ; Σref)

the relative block functor for the fine refinement (Σ;Σref). Thus we set

T̂(Σ;Σref)(−) := T(Σref)(−⊠℧Σ;Σref
) : T(∂glueΣref\∂fillΣref) → vect . (5.34)

Further, we can identify the complement of ∂fillΣref in ∂glueΣref with the gluing boundary
of Σ, whereby the relative block functor becomes a left exact functor

T̂(Σ;Σref) : T(∂glueΣ) → vect , (5.35)

and thus an object in the same functor category in which also the block functor for Σ
should be an object. Of course, T̂(Σ; Σref) depends on both Σ and Σref, whereas the block
functor T(Σ) must only depend on Σ. We will therefore define T(Σ) as a limit of the

collection {T̂(Σ; Σref)} of functors over the refinements that refine the surface Σ which, as
we will show, can be endowed with the structure of a diagram with values in the category
of left exact functors. Addressing this issue, it still remains to specify the silent object
℧Σ;Σref

for any refinement. Since according to Remark 5.16(i) every component of ∂fillΣref

is fillable by a disk, it is sufficient to define a silent object ℧(L)∈T(L) for every fillable
gluing circle or gluing interval L. Given those objects, we set

℧Σ;Σref
:=⊠i℧(Li) , (5.36)

where the Deligne product is taken over all components Li of ∂fillΣref.
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To define, in turn, the objects ℧(L) we proceed in two steps. We first consider the
case that L is the simplest possible type of a fillable circle: for A a finite tensor cate-
gory and ϵ∈{±1}, a circle with a single defect point that is transparently labeled and
has orientation ϵ. We denote such a circle by QA

ϵ and refer to it as a tadpole circle.
Pictorially,

2

I0

QA
+ =

2

I0

QA
− = (5.37)

The relevant silent objects are obtained via a remarkable interplay between algebraic
structures in finite tensor categories and the geometry of framings. The gluing categories
for tadpole circles are canonically equivalent to (twisted) centers:

T(QA
+) = I0

2

⊠ ∼= Z(A) and T(QA
−) = I0

2

⊠ ∼= Z−4(A) (5.38)

(recall Definition 3.8 of the twisted center Zκ). Thus in particular they contain canonical
objects, namely the monoidal unit in Z(A) and the distinguished invertible object (see
page 471) in Z−4(A), respectively. We define the respective silent objects to be these two
specific objects:

℧(QA
+) := 1 ∈ Z(A)∼=T(QA

+) and ℧(QA
−) := DA ∈ Z−4(A)∼=T(QA

−) . (5.39)

In the second step we consider an arbitrary fillable gluing circle or interval L. There
exists (uniquely up to isomorphism) a defect surface Dtad

L which is a fillable disk (in the
sense of Definition 5.12) such that L is its outer boundary and each of its inner boundary
circles is a tadpole circle Qi (for a suitable finite tensor category) whose single defect point
is connected by a single (transparent) defect line with L. The following picture shows an
example of such a defect surface Dtad

L (involving a left A-module N and an A-B-bimodule
X ):

AA

B

N2

2

2
X

Dtad
L = for L =

NA

A

B

X

X

(5.40)
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We regard Dtad
L as a bordism Dtad

L :
⊔n
i=1Qi−→L and define the silent object for L to be

the image
℧(L) := T(Dtad

L )(℧(Q1)⊠ · · · ⊠℧(Qn)) ∈ T(L) (5.41)

of the silent objects for the inner boundary circles under the block functor for the fine
defect surface Dtad

L .
To summarize: For any fine refinement (Σ;Σref) the prescription (5.34) provides us

with a functor T̂(Σ;Σref) in the category Lex(T(∂Σ), vect) in which also the pre-block

functor Tpre(Σ) is an object. By construction, the relative block functor T̂(Σ;Σref) de-
pends both on Σref and on Σ. Now recall from Section 2.9 that we denote by LEX the
symmetric monoidal bicategory of finite k-linear categories, left exact functors and natural
transformations. We can thus collect the data of the relative block functor by considering
the following symmetric monoidal bicategory Γ̃: Objects of Γ̃ are defect one-manifolds.
For defect one-manifolds L and L′, a 1-morphism (Σ;Σ′) from L to L′ is a pair consisting
of a 1-morphism Σ: L→L′ in Borddef

2 , i.e. a defect surface, and of a fine defect surface
Σ′ that refines Σ. The composition is as in Borddef

2 , the only 2-morphisms are identity
morphisms, and the symmetric monoidal structure is disjoint union. Then from Equation
(5.35) and Theorem 5.3 we see that

T̂ : Γ̃ −→ LEX (5.42)

is a symmetric monoidal functor, since by construction the disjoint union of objects and
1-morphisms is mapped to the Deligne product of the corresponding objects in LEX .

We want the block functor of Σ ultimately to be a functor in Lex(T(∂Σ), vect) as well.
Accordingly we add more 2-morphisms to Γ̃:

5.20. Definition.

(i) The bicategory Γ of fine refinements of defect surfaces is the following symmetric
monoidal bicategory: Objects of Γ are defect one-manifolds. For defect one-manifolds
L and L′, a 1-morphism (Σ;Σ′) from L to L′ is a pair consisting of a 1-morphism
Σ: L→L′ in Borddef

2 , i.e. a defect surface, and of a fine defect surface Σ′ that refines

Σ. The only 2-morphisms of Γ are one single isomorphism (Σ;Σ′)
∼=−−→ (Σ;Σ′′) for

each pair of fine refinements that refine the same defect surface Σ. The composition
of 1-morphisms is given by the gluing of surfaces and of refinements. The symmetric
monoidal structure of Γ is given by the disjoint union of objects and of 1-morphisms.
Since the 2-morphisms are either 1-element sets or empty there is a unique way to
define the symmetric monoidal product of 2-morphisms.

(ii) A parallelization Π for the collection of relative block functors for all fine refinements
is a symmetric monoidal bifunctor

Π : Γ −→ LEX (5.43)

that maps objects and 1-morphisms according to (5.42), i.e. Π((Σ;Σ′)) := T̂(Σ;Σ′).
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Spelled out, a parallelization Π is a collection of natural isomorphisms

ΠΣ;Σ′,Σ′′ : T̂(Σ; Σ′) =⇒ T̂(Σ; Σ′′) (5.44)

of functors that is coherent in the sense that every diagram involving three refinements
commutes, ΠΣ;Σ2,Σ3

∗ΠΣ;Σ1,Σ2
=ΠΣ;Σ1,Σ3

and that is compatible with factorization in the
following sense: if Σ=Σ′ ◦Σ′′ is a defect surface obtained by gluing and we are given
refinements (Σ′; Σ′

i) and (Σ′′; Σ′′
i ), for i=1, 2, that start at Σ′ and at Σ′′, respectively,

then gluing the refined surfaces results in refinements (Σ;Σi) that start at Σ, and the
associated isomorphisms satisfy

ΠΣ;Σ1,Σ2
= ΠΣ′;Σ′

1,Σ
′
2
◦ ΠΣ′′;Σ′′

1 ,Σ
′′
2
. (5.45)

Our goal is now to define the block functor T(Σ) as the limit of a parallelization of
Σ. For this to make sense, we have to show that for any defect surface Σ at least one
parallelization exists. The rest of this subsection is devoted to the construction of such a
parallelization.

5.21. Remarks.

(i) The terminology ‘parallelization’ is chosen because this structure may be thought of
as a bicategorical analogue of the parallelization of a tangent bundle.

(ii) A limit construction similar to ours is also used in the standard Turaev–Viro con-
struction. In that case, parallelizations are provided by the unique natural transfor-
mations assigned to 3-manifolds that are cylinders over 2-manifolds (see e.g. [BalK]).
In our framework, in which we do not have a three-dimensional topological field the-
ory at our disposal, we are instead going to construct parallelizations in a purely
two-dimensional setting.

(iii) For any diagram α : Ξ→C in which every morphism α(ξ
g→ξ′) is an isomorphism, the

limit and colimit of α can be identified. (To see this, just note that for any repre-
sentative ξ0, α(ξ0) can be endowed with the structure of a colimit by the structure

morphisms α(ξ
g→ξ0), and with the structure of a limit by the structure morphisms

α(ξ0
g→ξ).) Thus the block functor T(Σ) is both a limit and a colimit of a paralleliza-

tion of the collection of relative block functors.

5.22. Construction of a parallelization. We now outline the construction of a
parallelization Π; the details of the arguments are deferred to Appendix C. Recall again
from Definition 5.12 the notion of a fillable disk D=DX of type X and its outer boundary.
We proceed in two steps. The first step addresses a local aspect of the construction, while
the second step deals with common subrefinements of defect surfaces so as to globalize
the local construction. We start by constructing a distinguished isomorphism between the
block functors for any two fillable disks of the same type. This amounts to a parallelization
for the subcategory of refinements (Σ;Σ′) for which Σ is a fillable disk. To achieve this
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goal, fix a defect one-manifold L=LX that can appear as the outer boundary of a fillable
disk D=DX of some type X, as introduced in Definition 5.12. We have already seen
that there exists a unique fillable disk Dtad

X with outer boundary L such that each inner
boundary circle of Dtad

X is a tadpole circle (see the picture (5.40)). In Appendix C.9 –C.12
we construct explicitly a canonical isomorphism

φD : Tfine(D)(℧(D))
∼=−−→ Tfine(Dtad

X )(℧(Dtad
X )) . (5.46)

Our construction of this isomorphism makes use of a combinatorial datum, namely a
spanning tree for the graph ΓD that has as edges those defect lines of D that come from
X, and as vertices the end points of these defect lines on ∂D together with the inner
boundary circles of D. But as we show in Lemma C.11 in the appendix, the isomorphism
(5.46) does not depend on this datum.

Having obtained the isomorphisms (5.46) we can define the desired isomorphism be-
tween the block functors for any two fillable disks D and D′ of the same type X (and thus
in particular with the same silent object ℧(D)) as the vertical composition

φD,D′ := φ−1
D′ ∗ φD : Tfine(D)(−⊠℧(D)) → Tfine(D′)(−⊠℧(D)) . (5.47)

We can then further show – see Proposition C.13 – that the so obtained family of natural
isomorphisms labeled by pairs of fillable disks of any given type X is coherent in the sense
that

φD,D′′ = φD′,D′′ ∗ φD,D′ , (5.48)

and that it satisfies the following factorization property : For a fillable disk D of the form
D=Y ◦ (D1 ⊔ · · · ⊔Dn), with D1, ... ,Dn non-intersecting fillable disks in D and Y the defect
surface that is obtained by removing all the Di from D, for any n-tuple of replacements
of the fillable disks Di by fillable disks D′

i of the same type Xi and with the same outer
boundary, the equality

φD,D′ = (φD1,D′
1
⊠ · · · ⊠φDn,D′

n
) ◦ Tfine(Y) (5.49)

of natural transformations holds, where D′ is the defect surface D′ :=Y ◦ (D′
1 ⊔ · · · ⊔D′

n)
and the symbol ‘◦’ stands for the horizontal composition (whiskering) of the natural
transformation ⊠iφDi,D

′
i
with the functor Tfine(Y). (Also, here Y is regarded as a bordism

from ∂gD to ∂gD1⊔ · · · ⊔∂gDn, with ∂g denoting the gluing part of the outer boundary,
so that we deal with a functor Tfine(Y) : T(∂D)→⊠iT(∂Di) and thus tacitly invoke the
equivalence (4.1).)

Note that the factorization property involves the manipulation of replacing a fillable
disk Di inside the defect surface Σ=Y by another fillable disk D′

i with the same boundary.
(That such a manipulation is possible rests on the factorization result of Theorem 5.27 be-
low.) We call the corresponding manipulation for a generic defect surface Σ a fillable-disk
replacement of D by D′ in Σ and denote the resulting defect surface by Φ(Σ)≡ΦD,D′(Σ).
(For an example of a fillable-disk replacement, see the picture (C.52).)
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By a refinement replacement from (Σ;Σ′) to (Σ;Σ′′) we then mean a sequence of (possi-
bly intersecting) fillable-disk replacements (Φ1, ... ,Φn) such that Φn(· · ·Φ1(Σ

′) · · · )=Σ′′.
Given any two refinements (Σ;Σ1) to (Σ;Σ2) one can construct a common subrefinement
(Σ;Σ1,2) and specific standard refinement replacements from (Σ;Σi) for i=1, 2 to (Σ;Σ1,2)
as a sequence of fillable-disk replacements of a very restricted type (compare Definition
C.15 and the pictures (C.50) and (C.51)). This implies in particular (see Lemma C.16)
that a refinement replacement exists between any two refinements that refine the same
defect surface. Moreover, it follows from the results about fillable disks in Proposition
C.13 that any refinement replacement (Φ1, ... ,Φn) from (Σ;Σ′) to (Σ;Σ′′) provides a dis-
tinguished natural isomorphism

φΣ′,Φn(···Φ1(Σ′) ··· ) : Tfine(Σ
′)(−⊠℧′) −→ Tfine(Σ

′′)(−⊠℧′′) . (5.50)

The second step of the construction of a parallelization uses these isomorphisms to
provide the natural isomorphisms (5.44). To this end we first show, with the help of a
suitable notion of common subrefinement, that for any two refinements (Σ;Σ′) and (Σ;Σ′′)
a refinement replacement (Φ1, ... ,Φn) from (Σ;Σ′) to (Σ;Σ′′) exists (Lemma C.16). Then
we show in Lemma C.19 that for any refinement replacement (Φ1, ... ,Φn) in a fine defect
surface there exists a refinement replacement (Φ′

1, ... ,Φ
′
n′) that induces the same natural

isomorphism and that involves only very specific types of fillable-disk replacements (which
are introduced in Definition C.15). This finally allows us to conclude, in Proposition
C.20, that any two refinement replacements (Φ1, ... ,Φn) and (Φ′

1, ... ,Φ
′
n′) between any

two given refinements (Σ;Σref1) and (Σ;Σref2) of an arbitrary defect surface Σ induce the
same natural isomorphism,

φΣref1
,Φ′

n′ (···Φ′
1(Σref1

) ··· ) = φΣref1
,Φn(···Φ1(Σref1

) ··· ) . (5.51)

Thus in the situation considered in Equation (5.44) we define a parallelization Π by picking
a refinement replacement between two given refinements Σ′ and Σ′′ of a defect surface Σ
and setting

ΠΣ;Σ′,Σ′′ := φΣ′,Φn(···Φ1(Σ′) ··· ) (5.52)

as in Equation (5.50). By the uniqueness result of Proposition C.20, it now follows directly
that Π is compatible with the composition of 2- and 1-morphisms of Γ in accordance with
the coherence condition 5.45. We summarize our findings in the

5.23. Theorem. There exists a parallelization Π for the collection of relative block func-
tors for all fine refinements of defect surfaces.

In fact, a parallelization not only exists, but it also satisfies a universal property with
respect to parallel transport operations, and is therefore uniquely characterized. Before
showing this universality, we have a look at consequences of the existence of Π. We start
by giving the
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5.24. Definition. The block functor T(Σ) for a (not necessarily fine) defect surface Σ
is the limit

T(Σ) := lim
Σ′

ΠΣ;Σ′ (5.53)

(or, equivalently, colimit) of the parallelization of Σ described above.

5.25. Remarks.

(i) The proof of Proposition C.20 in Appendix C relies on the details of the paral-
lelization only through Proposition C.13 which covers the case of fillable disks.
This shows that the datum of a modular functor can be obtained from a functor
Borddef,fine

2 →Lex, that is, from a functor that is defined on fine defect surfaces, and
that is equipped with a family of ‘transparent’ defects such that Proposition C.13
holds.

(ii) Thus the crucial input for the equivalence of refinement replacements stated in Propo-
sition C.20 is the corresponding assertion for disks in Proposition C.13. This aspect
of our construction is reminiscent of the way [Lu2, Sect. 5.5] in which factorization
homology allows one to extend locally constant factorization algebras from open
disks to arbitrary surfaces. Accordingly one may suspect that Proposition C.13 is
related to the structure of a factorization algebra on disks that is locally constant
with respect to the stratification given by the defects on fillable disks. A detailed
analysis of this idea is beyond the scope of the present paper. But it is reassuring
that analogs of defects can be treated in the setting of locally constant factorization
algebras for stratified manifolds [Gi, Sect. 6] and that factorization homology can be
extended to stratifications [AFT]. Moreover, transparent defects (in our language)
have appeared in this context as well, e.g. as a tool for defining a topological field
theory associated with an En-algebra [Sche].

It follows directly from Proposition C.2 that as a particular case of the parallelization
we have

5.26. Lemma. Let (Σ;Σref) be a refinement of a defect surface Σ such that the defect lines
in Σref\Σ together with ∂fillΣref form a tree γΣ;Σref

in Σ. Then the excision isomorphism
from Lemma 4.39 applied to γΣ;Σref

provides an isomorphism

Tpre(Σref)(−⊠℧Σ;Σref
) ∼= Tpre(Σ) (5.54)

already for the pre-block functors, and this isomorphism induces the parallelization iso-
morphism for the relative block functors.

Let us now come back to the factorization issue considered in Section 5.1, which so far
could be discussed only for fine surfaces. Our results on refinements allow us to extend
the results of Section 5.1 directly to the factorization of general defect surfaces.
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5.27. Theorem. Factorization: Let Σ be a defect surface with gluing boundary compo-
nents L and L. There is a canonical isomorphism∫ x∈T(L)

T(Σ)(−⊠x⊠x) ∼= T(∪L(Σ))(−) (5.55)

of left exact functors. Moreover, the canonical isomorphisms obtained this way with any
two distinct pairs (L1,L1) and (L2,L2) of gluing boundaries of Σ commute.

Proof. For notational simplicity we restrict our attention to the case that Σ=Σ1 ⊔Σ2

is the disjoint union of two defect surfaces Σ1 and Σ2 such that ∪L(Σ)=Σ2 ◦Σ1 is the
gluing of Σ1 and Σ2; the general case is covered by the same arguments. Let (Σ1; Σ

′
1) and

(Σ2; Σ
′
2) be fine refinements that refine Σ1 and Σ2, respectively. Then (Σ1 ◦Σ2; Σ

′
1 ◦Σ′

2) is
a fine refinement that refines Σ1 ◦Σ2. Theorem 5.3 thus provides us with an isomorphism

φ̃Σ′
2,Σ

′
1
: T̂(Σ2; Σ

′
2) ◦ T̂(Σ1; Σ

′
1)

∼=−→ T̂(Σ2 ◦Σ1; Σ
′
2 ◦Σ′

1) . (5.56)

By taking the limit over the fine refinements that refine Σ1 and Σ2 we then also obtain
an isomorphism

φΣ′
2,Σ

′
1
: T(Σ2) ◦ T(Σ1)

∼=−→ T̂(Σ2 ◦Σ1; Σ
′
2 ◦Σ′

1) . (5.57)

Now not every refinement (Σ2 ◦Σ1; Σ
′) of Σ2 ◦Σ1 is of the form (Σ2 ◦Σ1; Σ

′
2 ◦Σ′

1), since
Σ′ might also refine the gluing boundary L. However, we can compose φΣ′

2,Σ
′
1
with the

parallelization ΠΣ2◦Σ1;Σ
′,Σ′

2◦Σ′
1
of Σ2 ◦Σ1 so as to obtain a coherent family of isomorphisms

φΣ′ : T(Σ2) ◦ T(Σ1)
∼=−→ T̂(Σ2 ◦Σ1; Σ

′) , (5.58)

which does not any longer depend on the choice of Σ′
1 and Σ′

2, owing to the coherence
property (5.45) of Π. Thus by the universal property of the limit we get an isomorphism

T(Σ2) ◦T(Σ1)
∼=−−→ T(Σ2◦Σ1) . (5.59)

Note that the block functors are a priori functors to vect; thus in (5.58) we implicitly
use the Eilenberg–Watts calculus to turn the functors T(Σi) into functors from the gluing
category of the incoming to the one of the outgoing boundary, compare the discussion
around (4.1). The desired isomorphism (5.55) then follows from (5.58) by invoking the
compatibility of the Eilenberg–Watts calculus with the composition of functors, as ex-
pressed by the isomorphism (B.4).

Moreover, given three composable defect surfaces Σ1,Σ2,Σ3 and three corresponding fine
refinements (Σ1; Σ

′
1), (Σ2; Σ

′
2) and (Σ3; Σ

′
3) it follows from Corollary 5.4 that the order of

the factorizations does not matter. By standard arguments this property passes to the
limit.
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We have thus defined the behavior of block functors under the horizontal composition
of 1-morphisms in Borddef

2 , i.e. a factorization structure of the modular functor.

5.28. Remark. Let us comment on the relation of our construction to the standard
Turaev–Viro construction. The latter takes as an input a fusion category A with a
spherical structure, i.e. a pivotal structure such that left and right traces coincide. In its
standard incarnation [BaW, TV, BalK], the Turaev–Viro construction defines a symmetric
monoidal 2-functor

Bord3,2,1 −→ 2-vect , (5.60)

where 2-vect is the symmetric monoidal bicategory of finitely semisimple C-linear cate-
gories. Bord3,2,1 is a bicategory of bordisms, usually without defects. The manifolds in
this approach are oriented, rather than framed.
Since we do not assign natural transformations to arbitrary three-manifolds with corners,
a comparison with the Turaev–Viro construction can only be made at the level of the
gluing categories, the functors for two-manifolds with boundary, and the representations
of mapping class groups. Concerning the level of categories, we remark that the pivotal
structure allows one to canonically identify all twisted centers with the Drinfeld center
Z(A); this is indeed the category associated to a circle in the standard Turaev–Viro con-
struction. Similarly, in the presence of defects all twisted balancings (as introduced in
Definition 3.6) get identified and the κ-framed centers only depend on the orientation of
the defect lines.

To compare the functors assigned to surfaces without (visible) defects, we first sketch how
to assign in our setting a functor to an oriented surface Σ, possibly with boundary. Again
we must choose auxiliary data: a refinement (Σ;Σ′) of Σ as a surface together with a
framing on Σ′ (it is not hard to convince oneself that this can indeed be found), and then
a refinement of the resulting framed surface. Given these data we get fine block functors
by the prescription in Section 4. The relevant index category Γ̃ has the same objects as Γ,
but more 1-morphisms than the one in Definition 5.20, since now framings are included
as auxiliary data. However, Γ̃ also has more 2-morphisms than Γ, because it is defined to
have precisely one morphisms between any two choices of framings. Thus the bicategories
Γ̃ and Γ are equivalent by construction.

Next one observes that any two framings with the same underlying orientation differ by a
suitable application of double duals. The pivotal structure should therefore give us enough
natural transformations to construct a parallelization also for the index category Γ̃. The
blocks for the oriented bordism category can then again be defined, as in Definition 5.24,
as (co)limits. Let us call them the oriented blocks. This prescription has the additional
advantage of exhibiting the oriented blocks as (co)limits over the framed blocks. Since
the orientation amounts to a tangential structure, this is in line with general expectations
within the framework of the cobordism hypthesis, compare [Lu1, Thm. 2.4.26].

By picking a framing we can represent an oriented block by the block obtained in our ap-
proach. (This is completely analogous to representing a block using a specific refinement.)
Thus in particular we know that the oriented blocks obey factorization. As a consequence
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it suffices to compare the oriented conformal blocks with the standard Turaev–Viro blocks
for the case of a three-punctured sphere. The standard Turaev–Viro blocks (see e.g. [BalK,
Ex. 8.6]) are invariants; that the same is true for our oriented blocks is a consequence of
Proposition 4.31.

5.29. Example. Consider for an A-B-bimodule ANB the following defect surface Σ:

ANB

A B
SN

SA
SB

Σ = (5.61)

We may think of Σ as describing how the situation in the region labeled by A is ‘trans-
mitted’ to the situation in the region labeled by B, and accordingly refer to the block
functor T(Σ) as a transmission functor. To calculate the transmission functor, we suit-
ably redraw Σ and pick a refinement (Σ;Σ′) with Σ′ having two additional transparent
gluing circles (to be evaluated at their respective silent objects), as shown in the following
picture:

N

N

N

℧

℧

SN

SA

SB

Σ′ = (5.62)

By using the isomorphisms from Lemma 5.26 to take care of the tadpole circles and
applying Example 5.11 to each of the two 2-patches of Σ′ we arrive at the description

T(Σ′) : T(SA)⊠T(SB) = Z(A)⊠Z(B) −→ LexA,B(N ,N ) = T(SN ) ,

x⊠ y 7−→ Fy ◦ xF
(5.63)
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of the (fine) block functor of Σ′; where we use the braided induction functors introduced in
(5.18), i.e. T(Σ′)(x⊠ y)(n)=x.n.y. In particular, when evaluating at the identity functor
Id∈LexA,B(N ,N ) in the gluing category for the outer circle SN we obtain the functor

Z(A)⊠Z(B) → vect , x⊠ y 7→ NatA,B(x.(−).y, Id) . (5.64)

Then by using the adjunctions we obtain a functor Z(A)→Z(B)opp ∼=Z(B). In case
that the bimodule N is invertible, it follows from [ENOM, Sect. 5.1] that the so obtained
transmission functor is an equivalence between the Drinfeld centers.

5.30. Remark. Ideally one would also like to compute the block functor for the defect
surface that is obtained from the surface (5.61) by omitting the gluing circle on the defect

line. This requires in particular to compute the block functor for the non-fine surface Σ̂
shown in the following picture:

AN

κ

A

Σ̂ = (5.65)

Here the framing index at the gluing circle is necessarily κ=0, and the block functor is a
functor

T(Σ̂) : A
0

⊠ −→ vect . (5.66)

Now A
0

⊠ is a twisted Drinfeld center, with objects consisting of an object z ∈A together
with a balancing z⊗ a∼= ∨∨a⊗ z for a∈A. Consider the refinement (Σ; Σ̃′), with Σ̃′ the
following surface:

AN

0

0 1

A

Σ̃′ =
(5.67)
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As pre-block functor of this surface we get T̂pre(Σ̃′)(z)=
∫ n∈N

Hom(n, z.n). After invok-

ing the identity [FSS2, Eq. (3.52)]
∫ n∈N

n⊠n∼=
∫
n∈N n⊠Nr(n) (with Nr the Nakayama

functor (3.44)) this can be recognized as a space of natural transformations. The block
functor is then given by the corresponding module natural transformations,

T(Σ̃)(z) = NatA(N
r, z.−) , (5.68)

where we also the fact that both the Nakayama functor Nr and z.− are twisted module
functors. This shows that, in general, when omitting the gluing circle SN from the defect
surface in (5.61) one does not obtain the transmission functor.

5.31. Universality of the parallelization. We are now going to show that the
parallelization Π whose existence was established in Theorem 5.23 can be uniquely char-
acterized, namely by a universal property with respect to the parallel transport operations
that were introduced in Section 4.11. This observation demonstrates that the choice of
parallelization Π obtained by our construction is distinguished. Moreover, it will allow
for concrete computations of the parallelization isomorphisms by working with pre-block
functors.

Recall the parallel transport comonad ZD,xs,xt on Lex(U(∂D)opp ⊠U(∂D), vect) that
was considered in Proposition 4.27, for D a disk in a defect surface Σ and xs, xt elements
of the set ED defined there. Also, just as the relative block functor T̂(Σ;Σ′) : T(Σ)→ vect
introduced in (5.34) is the block functor for a refinement Σ′ of Σ evaluated on silent

objects in ∂fill(Σ
′), we can define a relative pre-block functor T̂pre(Σ;Σ′) : Tpre(Σ)→ vect

as the pre-block functor on Σ′ with silent objects inserted in ∂fill(Σ
′), according to

T̂pre(Σ;Σ′) := Tpre(Σ′)(−⊠℧Σ;Σ′) . (5.69)

The following result shows that applying the parallel transport comonad to the pre-
blocks for Σ provides the pre-blocks for a refined surface Σ′:

5.32. Lemma. Let D be a disk in a defect surface Σ and xs, xt ∈ED defect lines of D.

(i) There is (unique up to isomorphism) a refinement (Σ;Σ′) such that Σ′ differs from
Σ by a new transparent defect line that connects xs to xt in their normal directions
and such that one framing index at xs in Σ′ is 0.

(ii) With Σ′ defined this way, there is a canonical isomorphism

ZD,xs,xt(T
pre(Σ))

∼=−−→ T̂pre(Σ′) (5.70)

of functors.

(iii) Conversely, let (Σ;Σ′) be a refinement and δ a transparent defect line in Σ′ that
is not a defect line of Σ such that (Σ;Σ′′), with Σ′′ the defect surface obtained by
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deleting δ, is still a refinement of Σ. Then for xs, xt ∈EΣ′′ corresponding to (choices
of) two defect points on the gluing boundaries at the start and end of δ, as indicated
in

δ
Σ′ =

Σ′′ =

S1

S2

possible
choices for xs

possible
choices for xt

(5.71)

there is a canonical isomorphism

ZD,xs,xt(T̂
pre(Σ′′))

∼=−−→ T̂pre(Σ′) . (5.72)

Proof. (i) D is a disk having xs and xt as parts of its boundary. Connecting xs and
xt by an additional defect line leads to four new gluing boundaries; setting one of the
corresponding new framing indices to 0 uniquely fixes the other three. On the disk any
other defect line from xs to xt would be isotopic to the chosen one, hence all refinements
that arise this way are isomorphic, compare Remark 2.8(iii).

(ii) We compute Tpre(Σ′) for the first case in the proof of Proposition 4.27: The local

situation at the new defect line in Σ′ is as indicated in the following picture:
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[κ−1]a.n
AN

n

b.m m AM

a

δ

b

κ

0

xs∫ n∫
a

xt

∫ m∫ b

(5.73)

Here the labels at the defect lines together with the (co)ends indicate the relevant silent
objects. In the pre-block functor we can use the Yoneda lemma for a, b, so as to obtain
the relative pre-block functor

T̂pre(Σ′)(−) =

∫ n∈N∫ m∈M∫
a∈A

Hom(n⊠ [κ−1]a.n⊠ a.m⊠m · · ·,−) , (5.74)

where the ellipsis indicates the remaining defect lines of Σ′. With µ the sum of the framing
indices counted clockwise from xs to xt and l the number of the gluing segments along

that path, it follows that κ= l−µ and thus T̂pre(Σ′) is isomorphic to ZD,xs,xt(T
pre(Σ))

according to the definition of the comonad in Proposition 4.27.

(iii) Consider the silent objects ℧(Si) in the gluing categories for S1 and S2 for Σ′′. The
only case that is not already covered by (ii) above is the situation that the relevant fram-
ings on Si are not both ±1 (this can happen if the adjacent defect lines are transparent,
see the case of the defect surfaces considered in Proposition 5.52). However, the trans-
parent objects are explicitly known (see Example 5.13(ii)), so that we can proceed as in
the proof of statement (ii).

Denote, as above, the new transparent defect line on Σ′ featuring in Lemma 5.32 by
δ. Consider the situation shown in the following picture:

xs

xt

D ⇝ δD2 D1

(5.75)
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The defect line δ in Σ′ splits the disk D in two disks D1 and D2, which we label in such a
way that the counterclockwise path from xs to xt lies in D1. We start with the following

5.33. Lemma. Let D, D1 and D2 be disks as in the situation shown in (5.75). Then
γccD2

= γcD1
.

Proof. We show that under the isomorphism T̂pre(Σ′)∼=ZD1,xs,xt(T
pre(Σ′)) (with xs and

xt the defect lines appearing in (5.75)), the morphisms γccD2
and γcD1

both coincide with the
comultiplication ZD1,xs,xt(T

pre(Σ′))→Z2
D1,xs,xt

(Tpre(Σ′)). To this end we first note that

the comultiplication of the coalgebra
∫
a∈A a⊠ a∈A⊠A is given by the end over b∈A of

the composite morphisms∫
a∈A

a⊠ a
coevlb−−−−→

∫
a∈A

a⊠ (a⊗ ∨b⊗ b)
∼=−−→

∫
a∈A

b⊗ a ⊠ (a⊗ b) , (5.76)

where the second morphism is obtained from the canonical central structure of the end.
The end over these morphisms equals the end over the morphisms∫

a∈A
a⊠ a

coevrb−−−−→
∫
a∈A

a⊠ (b⊗ b∨⊗ a)
∼=−−→

∫
a∈A

b⊗ a ⊠ (a⊗ b) . (5.77)

According to Proposition 4.27, the comonad ZD1,xs,xt(T
pre(Σ′)) is given by acting with∫

a
a⊠ a on U(∂D)opp ⊠U(∂D). It follows that the two morphisms above are mapped to

the morphisms γcD1
and γccD1

, respectively. Thus the statement follows.

We now define canonical morphisms between the pre-block functors on Σ and Σ′ that
corresponding to the creation and deletion of δ, respectively. To this end we make uses of
the following fact (which is weaker than the statement that morphisms between diagrams
induce morphisms between their limits, but is still elementary):

5.34. Lemma. For C an abelian category, let E1
ι1−−→A1 be the equalizer of a pair of mor-

phisms f1, f2 : A1→A2 in C, and E2
ι2−−→A2 the equalizer of morphisms g1, g2 : B1→B2.

Let a : A1→B1 and b : A2→B2 be such that for every i∈{1, 2} there is a j ∈{1, 2} so
that gi ◦ a ◦ ι1= b ◦ fj ◦ ι1. Then by restriction a induces a unique morphism from E1 to
E2.

Proof. It follows directly that the morphism a ◦ ι1 equalizes the pair (g1, g2), and thus
the morphism from E1 to E2 exists by the universal property of the equalizer E2. In
particular, the induced morphism does not depend on the choice of b that fulfills the
assumption.

Note that, in terms of diagrams, in

E1 A1 A2

E2 B1 B2

ι1

f2

f1

a b

ι2

g2

g1

(5.78)
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it is not required that all four right squares commute. As a special case, we see that if in
the situation of the Lemma for i∈{1, 2} there is a j ∈{1, 2} so that gi ◦ a= b ◦ fj, then
there is a unique induced morphism between the equalizers.

If for a morphism a : A1→B1 as in this lemma there exists a morphism b : A2→B2 that
fulfills the condition stated in the lemma, we say that a is compatible with the equalizers.
It turns out that such a compatibility is present for the parallel transports γcD and γccD on
the pre-blocks in the situation treated in Lemma 5.32:

5.35. Proposition. Let Σ be a defect surface and (Σ;Σ′) the refinement described in
Lemma 5.32.

(i) The clock- and counterclockwise parallel transports

γcD, γ
cc
D : Tpre(Σ) → ZD,xs,xt(T

pre(Σ)) ∼= T̂pre(Σ′) (5.79)

are compatible with the equalizers to the block spaces for all parallel transport op-
erations on Σ and on Σ′. Both morphisms induce the same morphism between the
corresponding fine block functors.

(ii) Let now Σ′ and Σ′′ be as in Lemma 5.32(iii). The counit ϵ of the comonad ZD,xs,xt
defines a morphism

ϵD : T̂pre(Σ′) ∼= ZD,xs,xt(T
pre(Σ)) −→ Tpre(Σ) (5.80)

which is compatible with the equalizers to the block spaces for all parallel transport
operations on Σ and on Σ′.

Proof. For brevity of the exposition, we identify ZD,xs,xt(T
pre(Σ)) with T̂pre(Σ′) via the

canonical isomorphism (5.70).

(i) Consider again the situation shown in Figure (5.75). We treat the case of γccD : Tpre(Σ)→
T̂pre(Σ′); the proof for γcD is analogous. We consider the parallel transports on the disks D1

and D2. For D1 we deal with the morphisms γcD1
and γccD1

and find corresponding parallel
transports for Σ as in Lemma 5.34. This gives rise to the diagrams

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

γccD

γccD ZD,xs,xt (γ
cc
D )

γccD1

and

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

γccD

γccD ZD,xs,xt (γ
cc
D )

γcD1

(5.81)

The first of these diagrams commutes directly. The second diagram commutes as well,
owing to the fact that, according to Proposition 4.27, γccD provides a comodule structure.
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The corresponding diagrams for the disk D2 are

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

γccD

γccD ZD,xs,xt (γ
cc
D )

γccD2

and

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

γcD

γccD ZD,xs,xt (γ
cc
D )

γcD2

(5.82)

Here the first diagram commutes because γccD is a comodule structure, while the second
diagram commutes because the parallel transports take place in different disks. It follows
analogously that γcD is compatible with the equalizers, and this induces another morphism

from T(Σ) to T̂(Σ′). Since, by Proposition 4.27(iii), T(Σ) is the equalizer of both parallel
transports, it follows that the two induced morphisms between the block functors agree.

(ii) We use the counit ϵ of ZD,xs,xt , which by definition of the comonad is given by
the component at 1 of the dinatural transformation of the end. Then, with Σ′ as in

Figure (5.75), we have T̂pre(Σ′)∼=ZD,xs,xt(T
pre(Σ)), and it follows that ϵ defines a natural

transformation ϵD : T̂
pre(Σ′)→Tpre(Σ). For the parallel transports γcD and γccD we need

to provide corresponding parallel transports for one disk of Σ′ such that the condition of
Lemma 5.34 is satisfied. Consider the diagrams

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

γcD2

ϵD ZD,xs,xt (ϵD)

γcD

and

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

Tpre(Σ) ZD,xs,xt(T
pre(Σ)).

γccD2

ϵD ZD,xs,xt (ϵD)

γccD

(5.83)

The left diagram commutes directly. In contrast, the right diagram does not, in general,
commute. Let us compose the right diagram with the equalizer of the block functor for
Σ′ to obtain

T̂(Σ′)

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

Tpre(Σ) ZD,xs,xt(T
pre(Σ)).

ι

γccD2

ϵD ZD,xs,xt (ϵD)

γccD

(5.84)

where the unlabeled arrows are defined as the corresponding composites. Consider the
outer square in this diagram. From Lemma 5.33 we conclude that γccD2

= γcD1
, while the

fact that ι is the equalizer of the parallel transports implies that γcD1
◦ ι= γccD1

◦ ι. Since
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the diagram

T̂pre(Σ′) ZD,xs,xt(T̂
pre(Σ′))

Tpre(Σ) ZD,xs,xt(T
pre(Σ))

γccD1

ϵD ZD,xs,xt (ϵD)

γccD

(5.85)

commutes directly, it follows directly that the outer square in (5.84) commutes. We can
now invoke Lemma 5.34(ii) we obtain a morphism between the block functors.

We denote the induced morphisms between the block functors from part (i) and (ii)

of Proposition 5.35 by ΓΣ : T(Σ)→ T̂(Σ′) and ϵ̂Σ : T̂(Σ
′)→T(Σ). To show that these

morphisms agree with the parallelizations we require a compatibility with factorization:
Let Σ=Σ1 ◦Σ2 be a fine defect surface that is the composite of two fine defect surfaces
along a common boundary component S. Assume that xs, xt ∈ED are two defect lines
that intersect S, i.e. they lie in both Σ1 and Σ2. We then obtain morphisms

ΓΣ1 : T(Σ1) → T̂(Σ′
1) and ΓΣ2 : T(Σ2) → T̂(Σ′

2) , (5.86)

with Σ′
i the respective refinements.

5.36. Lemma. In the situation just described we have isomorphisms

Σ′
1 ◦Σ2

∼=−−→ Σ1 ◦Σ′
2

∼=−−→ Σ′ (5.87)

of defect surfaces, where (Σ;Σ′) is the refinement of Σ that corresponds to to the pair
xs, xt. Furthermore, the morphisms on the block functors satisfy

Γ1 ◦ T(Σ2) = T(Σ1) ◦ Γ2 = ΓΣ . (5.88)

Proof. Consider the following situation:

xs

xt

γ
c

Σ
1γ

cc
Σ
2

Σ =
Σ1

Σ2

(5.89)
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Since by Proposition 5.35 the morphisms Γi do not depend on the choice of parallel
transport in Σi, we may just consider the parallel transports γccΣ2

and γcΣ1
. By factorization

for pre-blocks we have

Tpre(Σ1) ◦ Tpre(Σ2) ∼= Tpre(Σ1)⊠Tpre(Σ2)
(∫ z∈T(S)

z⊠ z
)
, (5.90)

and the parallel transports γccΣ2
and γcΣ1

correspond to post-composition with the canonical

morphism
∫ z∈T(S)

z⊠ z→
∫ z∈T(S)∫

a∈A a.z⊠ a.z. It follows that Γ1 ◦T(Σ2)=T(Σ1) ◦Γ2.
Using again that ΓΣ is independent of the choice of clock- or counterclockwise parallel
transport, it follows that both of these are also equal to ΓΣ.

Next we show that the induced morphisms between the block functors are identical
to the parallelization morphisms from Theorem 5.23, which implies in particular that the
morphisms ΓΣ and ϵ̂Σ are indeed isomorphisms.

5.37. Proposition. The morphisms ΓΣ : Tfine(Σ)→Tfine(Σ
′) and ϵ̂Σ : Tfine(Σ

′)→Tfine(Σ)
that are induced by the morphisms (5.79) and (5.80) are the same as the parallelization
isomorphisms.

Proof. Consider first the situation that the defect surfaces Σ1 and Σ′
1 are as in the

following picture:

I

I

1

DA

Σ1 =

I
Σ′

1 = (5.91)

As start xs and end xt of the parallel transport we select the two vertical defect lines.

Then by Lemma 5.32 we identify ZΣ1,xs,xt(T
pre(Σ1)) with T̂pre(Σ′

1). Then the claim follows
by observing that the diagram

T(Σ1) Tpre(Σ1)

T̂(Σ′
1) T̂pre(Σ′

1)

ΠΣ1;Σ1,Σ
′
1

γcΣ1
(xs,xt) (5.92)

commutes by Lemma C.4.
For the case of a general defect surface Σ, with start xs and end xt of the parallel transport,
take the defect surface Σ′ as on the right hand side of (5.75), and the defect surface Σ̃,
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with factorization into Σ1 and Σ2, as indicated in

Σ̃ = Σ1

Σ2

(5.93)

Then consider the diagram

T(Σ) Tpre(Σ)

T(Σ̃) Tpre(Σ̃)

T̂(Σ′) T̂pre(Σ′)

Π
Σ;Σ,Σ′ γccΣ

ΠΣ1;Σ1,Σ
′
1

γcΣ1

(5.94)

where all horizontal arrows are the canonical morphisms from the block to the pre-block
functor, the vertical arrows in the upper square are obtained from Lemma 5.26. This
diagram commutes: Commutativity of the upper square follows from excision, while com-
mutativity of the lower square is a consequence of factorization and commutativity of the
diagram 5.92 above. The subdiagram to the left commutes by definition of the paral-
lelization, and the subdiagram to the right by Lemma 5.36. It follows that ΓΣ=ΠΣ;Σ,Σ′

is in particular invertible.
The morphism ϵ̂Σ is by construction right inverse to γccΣ (xs, xt): For the relative pre-

preblock functor T̂pre(Σ′), the equality γccΣ (xs, xt) ◦ ϵ = id holds by construction. Thus
it follows that ΓΣ ◦ ϵ̂= id, and since ΓΣ is invertible, ϵ̂ its two-sided inverse, which thus
agrees with the inverse of the parallelization morphism.

5.38. Remark. Proposition 5.37 provides a more conceptual understanding of the par-
allelization Π. Our specific construction of Π has, in contrast, the virtue that it is more
local and thereby allows one to establish the coherence properties of the parallelization.

5.39. Actions of mapping class groups. The structures we have defined provide
us directly with a representation of the mapping class group of a defect surface Σ by
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isomorphisms of the block functor T(Σ). To make this precise we define the value of the
block functor on the 2-morphisms of the bicategory Borddef

2 (recall the description of the
latter in Definition 2.11).

For the present purposes it is convenient to record all the structure of a defect surface
Σ in the notation. Thus we write Σ= (Σ, ρ, δ, χ), where Σ is the underlying surface,
whose boundary is parametrized according to the parametrization ρ, δ is the set of defect
lines on Σ, and χ is the framing. Recall from Section 2.1 that a 2-morphism

φ : (Σ1, ρ1, δ1, χ1) −→ (Σ2, ρ2, δ2, χ2) (5.95)

in Borddef
2 is an isotopy class of isomorphisms from Σ1 to Σ2 preserving all the structure,

i.e. it is a diffeomorphism relative to the boundary parametrizations, it respects the defect
lines, and the push-forward vector field φ∗χ1 is equal to χ2. In particular, given an iso-
morphism φ : Σ1→Σ2, with (Σ1, ρ1, δ1, χ1) a defect surface, there is the induced structure
(Σ2, φ(ρ1), φ∗(δ1), φ∗(χ1)) of a defect surface on Σ2 such that φ represents a morphism
of defect surfaces. In case that φ : Σ→Σ is an automorphism of the underlying surface
Σ of Σ= (Σ, ρ, δ, χ), it can happen that (Σ,φ(ρ), φ∗(δ), φ∗(χ)) is not the same object
as Σ in Borddef

2 : the boundary parametrization might have changed and/or the induced
vector field may not be homotopic to the original one. We will exhibit examples of both
phenomena later.

Based on the parallelization and on the definition of the block functor T as a limit (see
Definition 5.24) we can directly specify the value of T on the 2-morphisms in Borddef

2 :

5.40. Lemma. Let φ : (Σ1, ρ1, δ1, χ1)→ (Σ2, ρ2, δ2, χ2) be a morphism of defect surfaces.
For every fine refinement (Σ1; Σ

′
1), the image φ∗(δ

′
1) of the defects in Σ′

1 provides a fine
refinement of Σ2. As a consequence, φ induces a unique isomorphism

T(φ) : limΠΣ1;Σ
′
1

∼=−−→ limΠΣ2;Σ
′
2

(5.96)

of block functors. Moreover, if φ1 and φ2 are composable morphisms of defect surfaces,
then T(φ2 ∗φ1) = T(φ2) ∗T(φ1).

Proof. The first statement is geometrically obvious. As in Definition 5.20 we denote by
Γ(Σi) the category of fine refinements of the surface Σi, so that we have

T(Σi) = lim
Σ′

i

ΠΣi
(Σ′

i) , (5.97)

where ΠΣi
: Γ(Σi)→Lex(T(∂Σi), vect) with ΠΣi

(Σ′)=ΠΣi;Σ′ the parallelization on Σi.

The push-forward along φ provides an equivalence φ∗ : Γ(Σ1)
≃−→Γ(Σ2). Since the bound-

aries agree, we have T(∂Σ1)=T(∂Σ2). Next we will show that there is a strict equality
ΠΣ1 =ΠΣ2 ◦φ∗ : Γ(Σ1)→Lex(T(∂Σ1), vect) of functors. It then follows by standard ar-
guments for limits that there is a unique induced isomorphism T(φ) as in 5.96.

To verify our claim, consider a refinement (Σ1, ρ1, χ1; Σ
′
1) of Σ1, i.e. an object in Γ(Σ1).

Since the block functor is determined entirely by the combinatorial data of the fram-
ing indices and the incidence relations of the defect lines, and since these data agree on
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the two defect surfaces (Σ2, ρ2, χ2;φ(Σ
′
1)) and (Σ1, ρ1, χ1; Σ

′
1), it follows that the functors

ΠΣ1(Σ1; Σ
′
1) and ΠΣ2(Σ2;φ(Σ

′
1)) are equal. Thus the functors ΠΣ1 and ΠΣ2 ◦φ∗ agree

on objects. Moreover, every local fillable-disk replacement on Σ′
1 corresponds to a local

fillable-disk replacement under φ∗. Therefore the functors agree on morphisms as well.
Finally, the uniqueness of the induced morphisms between the limits directly implies that
T is compatible with the composition of 2-morphisms.

5.41. Definition. The value of the modular functor T on a 2-morphism φ in Borddef
2 is

the isomorphism (5.96) described in Lemma 5.40.

To determine the isomorphism T(φ) in practice, one picks representatives for the block
functors on Σ1 and Σ2 by choosing fine refinements (Σ1; Σ

′
1) and (Σ2; Σ

′
2) and uses the cone

isomorphisms T(Σ1)∼= T̂(Σ1, ρ1, δ1, χ1; Σ
′
1) and T(Σ2)∼= T̂(Σ2, ρ2, δ2, χ2; Σ

′
2) to identify the

block functors with the latter representatives. Then T(φ) can be computed as follows:

5.42. Lemma. The functor T(Σ2, ρ2, χ2;φ(Σ
′
1)) is equal to the functor T(Σ1, ρ1, χ1; Σ

′
1).

The isomorphism T(φ) is given by

T(φ) = ΠΣ2;φ(Σ′
1),Σ

′
2
:

T̂(Σ1, ρ1, δ1, χ1; Σ
′
1) = T̂(Σ2, ρ2, χ2;φ(Σ

′
1)) −→ T̂(Σ2, ρ2, χ2; Σ

′
2)

(5.98)

on the chosen representatives for the block functors.

Proof. The first statement follows from the proof of Lemma 5.40. The second statement
follows from the definition of T(φ) as the universal arrow between the limits, given that
we chose representatives for the limits.

With Lemma 5.42 at hand we can finally collect our results to complete the proof of
our main Theorem about a modular functor.

5.43. Proof of Theorem 2.15. We collect the data and axioms of a modular functor
T: Borddef

2 −→Lex: The gluing category assigned to a defect one-manifold is given in
Definition 3.13, the block functor for a defect surface is in Definition 5.24, and the value
on a 2-morphism, i.e. an isomorphism of defect surfaces, is given in Definition 5.41. The
coherence data of T with respect to the symmetric monoidal product are trivial: By
construction, the disjoint union of objects, 1- or 2-morphisms in Borddef

2 is mapped to the
Deligne product of the respective structures. The coherence isomorphism with respect to
the composition of 1-morphisms is provided by factorization as proven in Theorem 5.27.
For the compositions with units we have again trivial coherence data for the symmetric
monoidal product (to the disjoint union with the empty set there is assigned an identity
morphism), and as shown in Corollary 4.34, the assignment for a cylinder is an identity
1-morphisms in Lex.
Concerning the axioms of a symmetric monoidal functor, the only non-trivial statement to
be checked is the pentagon axiom for four composable 1-morphisms. That this is satisfied
is shown in Theorem 5.27.



544 JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

5.44. Explicit actions of mapping class group elements. For the computation
of mapping class group representations we need to derive explicit descriptions of the
parallelization isomorphisms. As a preparation we introduce the following graphical con-
ventions. First, a tadpole circle Q± inside a defect surface is drawn as an unlabeled small
circle, according to

IQ+ = and
IQ− = (5.99)

respectively, whenever this facilitates the description. Further, in case we deal with a block
functor for some surface Σ that is to be evaluated at the silent object ℧(Q+)=1∈Z(A)∼=
T(Q+) or ℧(Q−)=DA ∈Z−4(A)∼=T(Q−) of a tadpole circle, we introduce a further con-
vention that allows us to omit the argument ℧(Q±) of the block functor: we attach instead
the silent object as a label to that tadpole circle:

I
1

T
( )

:=
I

T
( )

(−⊠℧(Q+))

I
DA

and T
( )

:=
I

T
( )

(−⊠℧(Q−))

(5.100)

(Moreover, later on we will sometimes want to refrain from specifying whether a tadpole
circle is of the form Q+ or Q−. We then just use ℧ as a generic symbol for the silent
object of such a circle. Likewise we treat the appearance of silent objects for other gluing
circles, such as for the trivalent gluing circles in the picture (5.106) below.)

In order to discuss the braid group representation, we now consider the following two
situations:

I

I

D1 :=

I

γ1

γ2

1

DA

D2 :=

L1

L2
(5.101)

As indicated in the picture for D2, we denote by L1 and L2, respectively, the inner
and outer gluing circle (which are the same for the two disks D1 and D2), and by
γi, for i=1, 2, the defect line that connects Li to a tadpole disk. Invoking Corollary
4.34 we see that the block functor for D1 is given by T(D1)(G⊠F )=NatA,A(G,F ) for
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F ∈T(L1)≃LexA,A(A,A) and G∈T(L2)≃T(L1). Recall that for F ∈LexA,A(A,A), the
object F (1) ∈ A carries a canonical structure of an object in Z(A), using the structure
of F as a bimodule functor. This structure is used in

5.45. Lemma.

(i) The block functor T(D2) is canonically isomorphic to the functor

T(L1)⊠T(L2) ∋ F ⊠G 7−→ HomZ(A)(G(1), F (1)) ∈ vect . (5.102)

(ii) The parallelization isomorphism ΠD1;D1,D2 is given by

NatA,A(G,F ) −→ HomZ(A)(G(1), F (1))

µ 7−→ µ1 ,
(5.103)

and its inverse is provided by applying the braided induction (5.18) to morphisms.

Proof. (i) We denote by Eγ1 : LexA,A(A,A)→Z(A) and by Eγ2 : LexA,A(A,A)→Z(A)
the excision functors (as introduced in Definition 4.38) that are associated to the defect
lines γ1 and γ2 in the disk D2, respectively. Lemma 4.39 provides us with a canonical

isomorphism T(D2)(G⊠F )
∼=−−→HomZ(A)(Eγ2(G),Eγ1(F )). Moreover, by the Eilenberg–

Watts equivalences we have Eγ1(F )=
∫ a∈A

HomA(a,1)⊠F (a)∼=F (1), while for Eγ2 we

can use that
∫ a∈A

G(a)⊠ a=
∫
a∈AG(a)⊠ a in T(L2) and obtain

Eγ2(

∫
a∈A

G(a)⊠ a) =
∫
a∈A

HomA(D, a)⊗G(a)

∼=
∫ a∈A

HomA(D,D⊗∨∨a)⊗G(a)

∼=
∫ a∈A

HomA(1,
∨∨a)⊗G(a)

∼=
∫ a∈A

HomA(1, a)⊗G(a) ∼= G(1) .

(5.104)

Here we use in the first step that G is exact and then make use of the isomorphism (3.47).

(ii) The prescription (5.103) indeed defines an isomorphism. The local fillable-disk re-
placement from D1 to D2 is covered by the situation analyzed in Lemma C.4: We find
sub-disks of D1 and D2 which are of the same type as the ones on the left and on the right
of 5.106. Thus in view of Lemma C.4, what we need to show is that (5.103) comes from
the corresponding morphism between the pre-block functors. The latter is given by the
dinatural morphism from an end and in our case is given by

Nat(G,F ) ∼=
∫
a∈A

HomA(G(a), F (a)) −→ HomA(G(1), F (1)) . (5.105)

This proves the claim.



546 JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

We now consider in detail two specific types of isomorphisms φ: the exchange of two
boundary circles on a three-holed sphere and the Dehn twist on a cylinder over a circle.
These are of particular interest, because Dehn twists generate the mapping class groups,
while manipulations analogous to the one for the three-holed sphere generate a braid
group, which is a prominent example of (a subgroup of) a mapping class group.

To deduce the action of the first of these two types of isomorphisms we start with the
following fillable disk D:

I

I

DA

D := (5.106)

Now consider the two refinements (D;D1) and (D;D2) with

I

I

DA

℧

℧

I
D1 :=

I

I

DA

℧

℧

ID2 :=

(5.107)

We denote the outer and inner gluing circles (of both D1 and D2) by L and L′, re-
spectively, and regard the block functors for D1 and D2 as functors from T(L)⊠T(L′) to
vect.
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5.46. Lemma.

(i) The block functors for the defect surfaces (5.107) are canonically isomorphic to

Tfine(D1)(G⊠ z) = LexA(G,Fz) and

Tfine(D2)(G⊠ z) = LexA(G, zF ) ,
(5.108)

respectively, for G∈LexA,A(A,A)=Tfine(L) and z ∈Z(A)=Tfine(L′), with Fz and

zF the braided-induced functors in LexA,A(A,A), see (5.18).

(ii) The braiding Fz(y)= y⊗ z
cy,z−−→ z⊗ y provides a bimodule isomorphism Fz ∼= zF and

the parallelization isomorphism ΠD;D1,D2 is given by post-composing with this isomor-
phism.

Proof. (i) Similarly to Example 5.11 we use for z ∈Z(A)=Tfine(L′) the excision functors
to obtain the situation of the left hand side of (5.101) with object Fz in the inner boundary.
Thus the block functors are given by

T(D1)(G⊠ z) = LexA,A(G,Fz) and T(D2)(G⊠ z) = LexA,A(G, zF ) (5.109)

for G∈T(L)=LexA,A(A,A). and z ∈T(L′)=Z(A).

(ii) To compute the natural isomorphism ΠD;D1,D2 : T(D1)→T(D2), we factor it through
the disk D, which is possible because D is already fine. This is achieved by the fillable-disk
replacement that replaces the disk D1 by the left hand side of

DA

I
I

DA

≃ = D .

(5.110)

By Lemma 5.45 there is a canonical isomorphism T(D)(G⊠ z)
∼=−−→HomZ(A)(G(1), z) and

the parallelization isomorphism ΠD;D1,D : T(D1)→T(D) is given by

LexA,A(G,Fz) ∋ µ 7−→ µ1 ∈ HomZ(A)(G(1), z) . (5.111)

Analogously ΠD;D2,D : T(D2)
∼=−−→T(D) is given by evaluation on 1∈A which has the

braided induction zF as a quasi-inverse functor. The claimed expression for ΠD;D1,D2

now follows directly from ΠD;D1,D2 =Π−1
D;D2,D ◦ΠD;D1,D.
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Consider now a braiding move on a three-punctured sphere (Σ, ϱ) with boundary
parametrization ϱ, i.e. a diffeomorphism §φ : (Σ, ϱ, χ)→ (Σ, τ ◦ ϱ, χ) that changes the
boundary parametrization to τ ◦ ϱ, where τ is the symmetric monoidal braiding on Borddef

2

as indicated in

ϱ ϱ
ϱ

φ−−→

τ◦ϱτ◦ϱ τ◦ϱ

(5.112)

Note that the framing φ∗(χ) is homotopic to χ. Thus we can consider the two refinements
of (Σ, ϱ, χ; Σ1) and (Σ, τ ◦ ϱ, χ; Σ2) depicted in

0

S1 S2

S3

Σ1 =

0≃
S0

S1 S2

(5.113)
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and

0

Σ2 = (5.114)

respectively. The gluing categories for the inner gluing circles S1 and S2 are Z(A), while
the one for the outer gluing circle S3 is Z(A).

5.47. Proposition.The block functors for Σ1 and Σ2 evaluated at the objects x∈T(S1)=
Z(A), y ∈T(S2)=Z(A) and z ∈T(S3)=Z(A) are

T(Σ1)(x⊠ y⊠ z) = HomZ(A)(z, x⊗ y) and

T(Σ2)(x⊠ y⊠ z) = HomZ(A)(z, y⊗x) ,
(5.115)

respectively. The isomorphism corresponding to the value T(φ) of the block functor on the
diffeomorphism φ is given by composition with the braiding of x and y.

Proof. First we use again the excision functors to reduce the situation to the one on the
right hand side of Equation (5.113). We then contract the objects in the gluing categories
for the circles S1 and S2 in Σ1 with the silent object for the transparent gluing circle S0

in the diagram on the right hand side of (5.113); the latter circle is the one denoted by
I↙0 (M), with M set to A, in (5.15), and its silent object is recorded in Equation (C.32).
Hereby we obtain the object∫ b∈A∫ a∈A

HomA(a, x)⊗k HomA(b, y)⊗ a.b ∼= x⊗ y ∈Z(A) . (5.116)

This gives the claimed expression for the block functor on Σ1. Analogously we compute
the block functor for Σ2. Next consider the result of applying the diffeomorphism φ to
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the refined surface Σ1, which results in the refinement φ(Σ1) in the first of the following
pictures:

0φ(Σ1) =

D
S2

S1

0

≃

(5.117)

We factor the computation of φ(Σ1) through the disk D to obtain the isomorphism (com-
pare the proof of Lemma 5.40)

T(φ(Σ1))(x⊠ y⊠ z) = T(Σ1)(x⊠ y⊠ z)

= HomZ(A)(z, x⊗ y) ∼= HomZ(A)(z, xF (y)) .
(5.118)

Next we perform the refinement change from the first to the second picture in (5.117)
and apply Lemma 5.46 so as to obtain the isomorphism xF (y)∼=Fx(y), which is given by
the braiding of x and y. From the pictures it is evident that the resulting refinement is
isotopic to Σ2. Thus the functor we have computed is indeed T(φ).

5.48. Remark. Recall the comparison with the standard Turaev–Viro construction in
Remark 5.28. It remains to compare the representations of the mapping class groups.
To this end we observe that an oriented modular functor is completely determined by
a Lego-Teichmüller game (compare e.g. [BakK, FuS1]). As a consequence it suffices to
compare the modular functors on n-holed spheres, which has been discussed in Remark
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5.28, and on 5 elementary moves between specific surfaces. A detailed comparison of all
these moves in the present and standard Turaev–Viro approaches is beyond the scope of
this paper. But note that the braiding move is covered by Proposition 5.47. We leave
a detailed analysis of all moves, in particular of the S-move, which involves surfaces of
genus one, to future work.

Instead, let us now compute, besides the braiding move, also the value of the modular
functor on a Dehn twist. In this case we start with a non-fine defect surface (Σ, χ) given
by a two-punctured sphere, as shown in the following picture:

S1

S2

(5.119)

Here the framing is the one that corresponds to a straight cylinder. The gluing cate-
gories are T(S1)=Z(A) and T(S2)=Z(A). Consider the diffeomorphism φ : (Σ, χ) →
(Σ, φ∗(χ)) indicated in

φ7−→ (5.120)

The framings χ and φ∗(χ) are non-homotopic, as can e.g. be seen by realizing that the
the winding number along the dashed line on the right hand side of (5.120) is non-zero.

To compute the value of T on φ, we make use of the universal property of the par-
allelization that were developed in Proposition 5.35, which allows us to work entirely on
the level of pre-block spaces. Consider the refinements (Σ;Σi), with i∈{1, 2, 3}, of φ∗(Σ)
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shown in the following picture:

S1

S2

Σ1

δ1
0
v

3

−2
w

S1

S2

δ2

Σ2

3

−1

S1

S2

Σ3

f
7−→

g7−→

(5.121)

The change (Σ;Σ1)
f7−→ (Σ;Σ2) of refinements consists of adding the defect line δ1, while the

refinement change (Σ;Σ2)
g7−→ (Σ;Σ3) is the deletion of δ2. For obtaining a representative

for the value of the block functor on φ∗(Σ) we pick the refinement (Σ;Σ3). With the help
of Lemma 5.40 we then get

T(φ) = ΠΣ;φ(Σ),Σ3 : T̂(Σ) −→ T̂(φ∗(Σ); Σ3) . (5.122)

We first consider the pre-block spaces. The proof of the following statements follows di-
rectly by combining the canonical isomorphisms from the Yoneda lemma with the explicit
expressions for the silent objects of the two relevant gluing circles. As in (5.121) we denote
the latter circles by v and w, and choose the conventions

v =

0

b

c∨⊗bc

w =

−2

3

d⊗a∨∨

ad

(5.123)
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for the labels of these defect one-manifolds; hereby their silent objects take the form

℧v =

∫ b∈A∫
c∈A

c⊠ c∨⊗b⊠ b and ℧w =

∫ a∈A∫ m∈A
m⊗a∨∨⊠ a⊠m. (5.124)

5.49. Lemma. The (relative) pre-block spaces for the defect surfaces Σi shown in (5.121)
are

Tpre(Σ1)(y⊠x) =

∫ a∈A
Hom(y, a)⊗k Hom(a, x) ∼= Hom(y, x) ,

T̂pre(Σ2)(y⊠x) =

∫ b∈A∫
c∈A

∫ a∈A∫ d∈A
Hom(b, x)⊗k Hom(d, c∨ ⊗ b)

⊗kHom(a, c)⊗k Hom(y, d⊗ a∨∨)

∼=
∫ d∈A∫

c∈A
Hom(y, d⊗ c∨∨)⊗k Hom(c∨∨ ⊗ d, x)

∼=
∫ d∈A∫

c∈A
Hom(y, d⊗ c)⊗k Hom(c⊗ d, x) ,

T̂pre(Σ3)(y⊠x) =

∫ d∈A
Hom(y, d∨∨)⊗k Hom(d, x) ∼= Hom(y, x∨∨)

(5.125)

for x∈T(S1) and y ∈T(S2) (here all Hom spaces are morphism spaces in A).

With the results on the block functors given in Corollary 4.34 we then obtain

5.50. Lemma. The block functors for the defect surfaces Σ1 and Σ3 are, up to canonical
isomorphism, given by

T(Σ1)(y⊠x) = HomZ(A)(y, x) and T(Σ3)(y⊠x) = HomZ(A)(y, x
∨∨) , (5.126)

respectively.

We will not need an explicit expression for the block functor on Σ2.
The following notion is a direct generalization of the one of a ribbon twist in a ribbon

category:

5.51. Definition. The twist on an object x in a braided monoidal category C with right

duality is the isomorphism x
∼=−−→x∨∨ given by

x
coevr

x∨⊗idx
−−−−−−−→ x∨ ⊗x∨∨⊗x

idx∨⊗cx∨∨,x−−−−−−−−→ x∨ ⊗x⊗x∨∨
evrx⊗idx∨∨−−−−−−−→ x∨∨, (5.127)

with c the braiding in C.

In case C is actually ribbon, it is in particular pivotal, and the ribbon twist is the
composition of the twist (5.127) and the pivotal structure [BakK, Eq. (2.2.27)]. In the
situation at hand, we deal with the case that C=Z(A), with A not assumed to be pivotal.
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An ordinary ribbon twist is not monoidal, but rather obeys a compatibility condition
with the double braiding. Since this condition comes from a relation in the mapping class
group of a three-holed sphere, the twist in the sense of Definition 5.51 obeys a similar
compatibility condition, which can also be shown algebraically.

We proceed to compute T(φ).

5.52. Proposition. The value of T on the diffeomorphism φ from (5.120) is the natural
isomorphism

T(φ)(y⊠x) : HomZ(A)(y, x) → HomZ(A)(y, x
∨∨) (5.128)

that is given by post-composition with the twist (5.127) on x.

Proof.We are going to show that the morphism between the pre-block spaces for Σ1 and
Σ3 that is induced by the refinement changes in (5.121) is given by post-composition with
the twist on x. By the universal property of ΠΣ;φ(Σ),Σ3 =T(φ) obtained in Proposition
5.35 we can then conclude that T(φ) is the post-composition with the twist as well.

We first compute the morphism fpre : Tpre(Σ1)→ T̂pre(Σ2) that corresponds to the first

refinement change in (5.121). With the help of the parallel transport operations on Σ2

we see that fpre is the following composite:∫ a∈A
Hom(y, a)⊗k Hom(a, x) −→

∫
c∈A

∫ a∈A
Hom(y, ∨∨c⊗ a)⊗k Hom(c⊗ a, x)

∼=−−→
∫
c∈A

∫ a∈A
Hom(∨c⊗ y, a)⊗kHom(c⊗ a, x)

∼=−−→
∫ a∈A∫

c∈A
Hom(y⊗ ∨c, a)⊗k Hom(c⊗ a, x)

∼=−−→
∫ d∈A∫

c∈A
Hom(y, d⊗ c)⊗k Hom(c⊗ d, x)

∼=−−→ T̂pre(Σ2)(y⊠x) .

(5.129)

Here the first morphism is the comonad structure of
∫ m∈M

m⊠m∈M
1

⊠M
1

⊠, the second
and fourth are adjunction isomorphisms, and the third is obtained from the braiding of
y ∈Z(A); the last isomorphism holds by Lemma 5.49.

Next we compute the morphism gpre : T̂pre(Σ2)→ T̂pre(Σ3) that corresponds to the second

refinement change in (5.121), given by deletion of the defect line δ2. To this end we would
like to make use of the dinatural component at 1∈A of the end. Before we can do so we
must, however, first use the isomorphism∫ b∈A∫

c∈A
c⊠ c∨⊗b⊠ b ∼=

∫ b∈A∫
c∈A

b⊗c⊠ c∨⊠ b (5.130)

for the silent object at the gluing circle v in (5.121), which arises from the canonical

isomorphism
∫
c∈A c

∨⊗b⊠ c∼=
∫
c∈A c

∨⊠ b⊗c. When using the first expression for T̂pre(Σ2)
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in (5.125) we obtain the first isomorphism in the following composite, which is gpre :∫ b∈A∫
c∈A

∫ a∈A∫ d∈A
Hom(b, x)⊗kHom(d, c∨⊗ b)⊗k Hom(a, c)⊗kHom(y, d⊗ a∨∨)

∼=−−→
∫ b∫

c

∫ a∫ d

Hom(b, x)⊗k Hom(d, c∨)⊗k Hom(a, b⊗ c)⊗k Hom(y, d⊗ a∨∨)

∼=−−→
∫
c∈A

Hom(y, c∨ ⊗ (x⊗ c)∨∨) −→ Hom(y, x∨∨) .

(5.131)
Here the last morphism is the dinatural component of the end at 1.

Using repeatedly the Yoneda isomorphism, one can express the morphism gpre◦fpre as the
composite along the upper-right path from Hom(y, x) to Hom(y⊗x∨,1) in the diagram

Hom(y, x)
∫
c
Hom(y, ∨c⊗ c⊗x)

∫
c
Hom(c⊗ y, c⊗x)

∫
c
Hom(y⊗ c, c⊗x)

∫
c
Hom(y⊗ c⊗x∨, c)

Hom(x∨ ⊗ y,1) Hom(y⊗x∨,1)

∼=

∼=

∼= (5.132)

Here the first morphism in the upper row is given by the canonical morphism 1→
∫
c∈A

∨c⊗ c
that is obtained from the coevaluation of A. The subsequent morphisms are obtained
from the adjunction and the braiding of y, followed by the morphism induced from∫
c
c⊠ c⊗x∼=

∫
c
c⊗x∨⊠ c, while the final vertical morphism in this path is again the

dinatural component at 1. The left-lower path from Hom(y, x) to Hom(y⊗x∨,1) is pro-
vided directly by the adjunction and the braiding of y. It follows from the dinaturality
of the involved morphisms that the diagram commutes. Further, the naturality of the
braiding implies that composing the left-lower path with the adjunction isomorphism
Hom(y⊗x∨,1)∼=Hom(y, x∨∨) is the same as post-composition with the twist on x. Thus
we have shown that gpre ◦fpre is given by post-composition with the twist on x. Now post-

composing with the twist is even an isomorphism HomZ(A)(y, x)
∼=−−→HomZ(A)(y, x

∨∨), and
thus we have a commuting diagram

HomZ(A)(y, x) HomZ(A)(y, x
∨∨)

HomA(y, x) HomA(y, x
∨∨)

U U (5.133)
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where the horizontal arrows are post-composition with the twist on x and the verti-
cal arrows forget the half-braidings. By the universal property of T(φ), as obtained in
Proposition 5.35, we conclude that T(φ) is the post-composition with the twist.

A. Framing shifts

In this appendix we examine the operation of shifting the framing of a defect surface along
a defect line. As we will see, performing this operation simultaneously for all defect lines
yields canonical autoequivalences of the bicategory of unlabeled defect surfaces.

Recall the bicategory Borddef,0
2 of unlabeled defect surface defined in Section 2.1. A

homotopy χt between two framings χ1 and χ2 on an unlabeled defect surface is by defini-
tion required to be in particular a framing for each t, so the corresponding vector field has
to be parallel to the defect lines of Σ for all t. By Remark 2.8(iii) such homotopies yield
isomorphic defect surfaces, (Σ, χ1)∼= (Σ, χ2). If one would relax the condition, so that χt
is only required to be a non-vanishing vector field for all t, but not necessarily parallel
to the defect lines for t∈ (0, 1), many more framings would be related, but the resulting
1-morphisms in Borddef,0

2 would, in general, be non-isomorphic.
There is a local prototype for this kind of more general homotopy, which allows one to

relate different framings on the same unlabeled defect surface Σ: Consider a defect line δ
on a defect surface Σ with a local neigbourhood that looks like the left hand side of the
following picture (using the framing index to specify the vector field locally):

δ

µ
1ν1

µ2ν2

⇝
δ

µ
1−κ

1ν1−
κ2

µ2+
κ1ν2+κ2

(A.1)

For any (κ1, κ2)∈ (2Z+1)2 the surface shown on the right hand side of (A.1) has a unique
framing that differs only locally from the framing on the left hand side. An instance of
this operation in the analogous situation of a free boundary occurs in Proposition 3.18.
We call such operations on an unlabeled defect surface Σ the odd framing shifts at δi on Σ
and denote them by Sκ1,κ2(δi)(Σ). Analogously there are even framing shifts Sκ1,κ2(δi)(Σ)
at δi for (κ1, κ2)∈ (2Z)2, for which the orientation of δi does not change.

The so defined framing shifts amount to the following modification of the framings of
unlabeled defect one-manifolds L: For p a defect point on L and (κ1, κ2)∈ (2Z+1)2, the
one-manifold Sκ1,κ2(p)(L) is the unlabeled defect one-manifold for which the sign of p is
flipped and, if p is positive, the framing index on the segment preceding p is decreased
by κ2 while the one after p is decreased by κ1; if instead p is negative, the framing index
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on the segment preceding p is increased by κ1 and the one after p is increased by κ2. If
(κ1, κ2)∈ (2Z)2, the orientation of p is kept and the change on the framing indices is, with
the same notation as in Figure (A.1),

ν1 7→ ν1 − κ2 , µ1 7→ µ1 − κ1 , ν2 7→ ν2 + κ2 and µ2 7→ µ2 + κ1 . (A.2)

For (κ1, κ2)∈ (2Z)2 consider, for a given an unlabeled defect surface Σ, the unlabeled
defect surface

Sκ1,κ2(Σ) :=
∏
i

Sκ1,κ2(δi)(Σ) , (A.3)

where the product ranges over all defect lines of Σ. For an unlabeled defect one-manifold
L we define analogously Sκ1,κ2(L) :=

∏
i Sκ1,κ2(pi)(L), with product over all defect points

of L. We tacitly extend these prescriptions for defect lines and defect points to apply also
to free boundary segments and their end points, in which case only one instead of two
framing indices are shifted, without modifying the notation. The following statements
then follow directly from the definitions.

A.1. Lemma. Let (κ1, κ2)∈ (2Z)2. The assignments L 7→Sκ1,κ2(L) and Σ 7→Sκ1,κ2(Σ)
for unlabeled defect one-manifolds L and unlabeled defect surfaces Σ define a symmetric
monoidal functor Sκ1,κ2 : Bord

def,0
2 →Borddef,0

2 . This functor is an autoequivalence.

We call the symmetric monoidal functor Sκ1,κ2 : Bord
def,0
2 →Borddef,0

2 the (κ1, κ2)-
framing shift functor. For a defect surface Σ with labels we define Sκ1,κ2(Σ) by applying
Sκ1,κ2 to the underlying unlabeled defect surface and keeping the labels, and analogously
for labeled defect one-manifolds. Thereby we obtain, by composing with framing shifts,
a whole family of modular functors from a given one:

A.2. Proposition. Let T: Borddef
2 −→S be a modular functor. Then for every pair

(κ1, κ2)∈ (2Z)2, the functor
κ1Tκ2 := T ◦ Sκ1,κ2 (A.4)

is a modular functor as well.

We call the so obtained functor κ1Tκ2 the (κ1, κ2)-shift of T. This functor can also
be described in terms of T by shifting the labels instead of the framings: For each
(κ1, κ2)∈ (2Z)2 and bimodule Mi we define the bimodule

S̃κ1,κ2(Mi) :=
−κ1M−κ2 . (A.5)

For a defect surface Σ the defect surface S̃κ1,κ2(Σ) is now defined as the same unlabeled

defect surface Σ, but with S̃κ1,κ2 applied to the labels of each defect line of Σ. It follows

that S̃κ1,κ2(Σ) is again a defect surface, and extending the operation S̃κ1,κ2 in the obvious
way to defect one-manifolds yields a symmetric monoidal functor

S̃κ1,κ2 : Borddef
2 −→ Borddef

2 . (A.6)

It is straightforward to see that the analogue of Proposition 3.18 for defect lines holds.
Thus we conclude that
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A.3. Proposition. Let T: Borddef
2 −→S be a modular functor. For any pair (κ1, κ2)∈

(2Z)2 the modular functors κ1Tκ2 =T ◦Sκ1,κ2 and T ◦ S̃κ1,κ2 are canonically isomorphic.

B. Categorical constructions

In this appendix we briefly mention pertinent concepts and constructions on categories,
such as (co)monads, (co)ends and the Eilenberg–Watts calculus on finite linear categories.

B.1. General concepts.

Finite tensor categories. Throughout this paper, all categories appearing as labels
for defect manifolds are assumed to be enriched over finite-dimensional k-vector spaces,
with k a fixed algebraically closed field. A (k-linear) finite category is an abelian category
for which the set of isomorphism classes of simple objects is finite and for which every
object has finite length and a projective cover. A (k-linear) finite tensor category is a
finite k-linear monoidal category with simple monoidal unit and with a left and a right
duality. For A and B finite categories we denote by Lex(A,B) and Rex(A,B) the finite
categories of (k-linear) left exact and right exact functors from A to B, respectively.
Module categories. A right module category over a monoidal category A, or right
A-module, for short, is a category M together with a bilinear bifunctor M×A→A
(which we denote by “.”) that is exact in each argument, and with a natural family
of isomorphisms (m.a) . b→m. (a⊗b) for a, b∈A and m∈M obeying obvious coherence
axioms. Left A-modules are defined analogously. For A and B monoidal categories, an
A-B-bimodule is a category that is a left A-module and a right B-module together with
natural coherence isomorphisms connecting the left and right actions.

A (right) A-module functor (F, ϕ) between right A-modules M and N is a linear
functor F : M→N together with a natural family ϕ of isomorphisms F (m.a)→F (m).a,
for a∈A and m∈M, such that the obvious pentagon and triangle diagrams commute.
A module natural transformation η between right A-module functors (F, ϕF ) and (G, ϕG)
is a natural transformation η : F ⇒G such that ϕGm,a ◦ ηm.a=(ηm . ida) ◦ϕFm,a for all a∈A
and m∈M,

Ends and coends. A dinatural transformation from a functor F : C ×Copp→D to an
object d∈D is a family of morphisms φc : F (c, c)→ d for c∈C such that

φc′ ◦F (g, c′) = φc ◦F (c, g) (B.1)

for all g ∈HomC(c, c
′). A coend (C, ι) for F : C ×Copp→D is an object C ∈D together

with a dinatural transformation ι : F →C that is universal among all dinatural transfor-
mations φ from F to an object of D, i.e. for any such dinatural transformation there is
a unique morphism ϖ obeying φc=ϖ ◦ ιc for all c∈C. The coend (C, ι), as well as the

underlying object C, is denoted by
∫ c∈C

F (c, c). Dually, an end (E, ȷ)=
∫
c∈C F (c, c) for

F is a universal dinatural transformation from a constant to F . If a coend or end exists,
then it is unique up to unique isomorphism. When the categories in question are functor
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categories, one often wants specific properties of the functors to be preserved under taking
ends and coends. In the case of interest to us, the relevant property is representability.
Accordingly, we are considering left exact functors and impose the universal property for
ends and coends within categories of left exact functors. (Unlike e.g. in [Ly], we do not
use a separate symbol

∮
for such ‘left exact (co)ends’.) For more information on ends and

coends see e.g. [FuS2] and the literature cited there.
The Hom functor preserves and reverses ends in the sense that

HomD(−,
∫
c∈C F (c, c))

∼=
∫
c∈C

HomD(−, F (c, c)) and

HomD(
∫ c∈C

F (c, c),−) ∼=
∫
c∈C

HomD(F (c, c),−)

(B.2)

for any functor F : C ×Copp →D. Further, it follows from the (co-)Yoneda lemma (see
e.g. [FSS2, Prop. 2.7]) that for any linear functor F between finite linear categories A and
A′ there are natural isomorphisms∫ a∈A

HomA(a,−)⊗ F (a) ∼= F ∼=
∫
a∈A

HomA(−, a)∗ ⊗ F (a) (B.3)

of linear functors.
By considering the particular functor F =HomC(c,G(−)), it follows for instance that

for any pair H : B→A and G : A→C of composable linear functors between finite linear
categories and for any c∈C there is a canonical isomorphism

HomC(c,G ◦H(−)) ∼=
∫ a∈A

HomC(c,G(a))⊗k HomA(a,H(−)) . (B.4)

When dealing with Deligne products of finite linear categories one has in addition

HomC⊠D
(
− ,

∫ c∈C
c⊠F (c)

) ∼=
∫ c∈C

HomC⊠D
(
− , c⊠F (c)

)
(B.5)

for any left exact functor F ∈Lex(C,D), and a similar reversed isomorphism for right
exact functors [FSS2, Prop. 3.4]. These isomorphisms can e.g. be used, in conjunction
with the Eilenberg–Watts equivalences (3.42), to show that for any two finite categories
M and N the mapping

F 7−→ HomN (−, F (−)) (B.6)

defines an equivalence

Lex(M,N )
≃−−−→ Lex(M⊠N , vect) . (B.7)

An inverse equivalence Lex(M⊠N , vect)
≃−−→Lex(M,N ) is given by

G 7−→
∫ n∈N

G(−⊠n)⊗ n . (B.8)
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Monads and comonads. A monad M =(M,µ, η) on a category C is an algebra (or
monoid) in the monoidal category of endofunctors of C, that is, an endofunctorM together
with natural transformations µ=(µc)c∈C : M ◦M⇒M (product) and η=(ηc)c∈C : idC ⇒M
(unit) which satisfy associativity and unit properties, i.e. µc ◦ M(µc)=µc ◦µM(c) and
µc ◦M(ηc)= idM(c) =µc ◦ ηM(c). Analogously, a comonad on C is a coalgebra in the cate-
gory of endofunctors of C, i.e. an endofunctor W together with a coproduct W ⇒W ◦W
and counitW ⇒ idC satisfying coassociativity and counit properties. Every adjoint pair of
functors F and G (G right adjoint to F ) gives rise to a monad structure on the endofunctor
G ◦F and a comonad structure on F ◦G.

A (left) comodule over a comonadW on C (also called aW -coalgebra) is an object x∈C
together with a morphism δ : x→W (x) satisfying analogous compatibility conditions with
the coproduct ∆ and counit ε of W as a comodule over a comonoid, i.e. ∆x ◦ δ=W (δ) ◦ δ
and εx ◦ δ= idx. Right comodules and left and right modules over a monad are defined
analogously.

If W is a comonad on a category C, then the opposite functor

W : C → C (B.9)

is a monad on C. Further, if the adjoint functors W l.a. and W r.a. exist, then they are
monads on C, while the functors W l.a.,W r.a. : C→C are comonads on C. Moreover, if
x∈C is a comodule over W , then it is also naturally a module over the monads W l.a. and
W r.a., while the object x∈C is a module over the monad W and a comodule over the
comonads W l.a. and W r.a.. Analogous statements hold for monads on C.

B.2. The canonical κ-twisted (co)monads and their (co)modules. Here we
define various versions of κ-balanced functors and exhibit the framed center as a universal
category for κ-balanced functors, making use of corresponding κ-twisted (co)monads.

We consider a cyclically composable string (Mϵ1
1 ,Mϵ2

2 , ... ,Mϵn
n ) of bimodules with

corresponding balancings κi between Mi and Mi+1. There are four different situations to
be distinguished, indexed by the sequence {(ϵi, ϵi+1)}. The following definition captures
all cases:

B.3. Definition. Let (M−
1 ,M−

2 ,M+
3 ,M+

4 ) be a cyclically composable string of bimod-
ules with corresponding sequence κ⃗=(κ1, κ2, κ3, κ4) of balancings κi between Mi and
Mi+1. The category Lexbalκ⃗ ((M−

1 ,M−
2 ,M+

3 ,M+
4 ),X ) of κ-balanced functors to a finite

category X consists of functors F : M−
1 ⊠ · · · ⊠M+

4 →X with coherent isomorphisms

F (a.m1⊠m2⊠m3⊠m4)
∼=−−→ F (m1⊠m2.[κ1+4]a⊠m3⊠m4) ,

F (m1⊠ b.m2⊠m3⊠m4)
∼=−−→ F (m1⊠m2⊠ [κ2+2]b.m3⊠m4) ,

F (m1⊠m2⊠m3.c⊠m4)
∼=−−→ F (m1⊠m2⊠m3⊠ [κ3]c.m4) and

F (m1⊠m2⊠m3⊠m4.d)
∼=−−→ F (m1.[κ4+2]d⊠m2⊠m3⊠m4) .

(B.10)
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In accordance with the various situations, for each value of i there are four (related)
comonads Z[κi](M

ϵi
i ⊠Mϵi+1

i+1 ) on the category Mϵi
i ⊠Mϵi+1

i+1 , defined by

Z[κ1](M−
1 ⊠M−

2 )(m1⊠m2) :=

∫
a∈A

a.m1⊠m2.[κ1+3]a

Z[κ2](M−
2 ⊠M3)(m2⊠m3) :=

∫
b∈B

b.m2⊠
[κ2+1]b.m3

Z[κ3](M3⊠M4)(m3⊠m4) :=

∫
c∈C

m3.c⊠
[κ3−1]c.m4 and

Z[κ4](M4⊠M−
1 )(m4⊠m1) :=

∫
d∈D

m4.d⊠m1.[κ4+1]d ,

(B.11)

respectively. We can combine these comonads to a comonad on M⃗=(M−
1 ,M−

2 ,M+
3 ,M+

4 ).

We denote this comonad by Zκ⃗ = Zκ⃗(M⃗) and refer to it as the canonical κ⃗-twisted

comonad on M⃗. This terminology is justified by the following result:

B.4. Proposition. Let M⃗=(Mϵ1
1 , ... ,Mϵn

n ) be a string of cyclically composable bimod-

ules with balancings κ⃗. Denote by M⃗⊠ :=Mϵ1
1 ⊠ · · ·⊠Mϵn

n the Deligne product of the bi-

modules and by M⃗
κ⃗

⊠ :=Mϵ1
1

κ1
⊠Mϵ2

2

κ2
⊠Mϵ3

3

κ3
⊠ · · ·

κn−1

⊠Mϵn
n

κn
⊠ the corresponding framed cen-

ter, as in Definition 3.6.

(i) For any object x∈M⃗⊠ the object Z[κ⃗](x) has a canonical structure of an object in

the category M⃗
κ⃗

⊠, to be denoted by I[κ⃗](x).

This naturally defines a functor I[κ⃗] ∈Lexbalκ⃗ (M⃗⊠,M⃗
κ⃗

⊠) such that Z[κ⃗] =U ◦ I[κ⃗], with

U : M⃗
κ⃗

⊠→M⃗ the functor that forgets the balancing.

(ii) The framed center M⃗
κ⃗

⊠ together with the κ⃗-balanced functor I[κ⃗] is universal for
κ⃗-balanced functors: For any finite category X , pre-composition with I[κ⃗] is an equiv-
alence

Lex(M⃗
κ⃗

⊠ ,X )
≃−−→ Lexbalκ⃗ (M⃗⊠ ,X ) . (B.12)

Proof. Consider part (i) in the special case of a single bimodule M. For κ∈ 2Z the
comonad Z[κ] on M is given by the endofunctor

Z[κ] : m 7−→
∫
a∈A

a .m . a[κ−1]. (B.13)

Z[κ] can be viewed as acting with the object
∫
a∈A a⊠ a∈A⊠A ∼=Ψr(idA) on M (with

Ψr the Eilenberg–Watts equivalence (3.43)), after applying a suitable power of the double
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dual functor to it. The balancings of I[κ](m)∈M⃗
κ

⊠ with underlying object Z[κ](m) are
determined by invoking the coherent isomorphisms∫

a∈A
b⊗ a⊠ a ∼=

∫
a∈A

a⊠ ∨b⊗ a and

∫
a∈A

a⊗ b⊠ a ∼=
∫
a∈A

a⊠ a⊗ b∨ (B.14)

for b∈A; these are obtained by setting M=A in the isomorphisms (3.56). It follows that

this way we have defined a functor I[κ] : M→M⃗
κ

⊠ that satisfies U ◦ I[κ] =Z[κ]. The proof
of the general case follows by the same reasoning.

(ii) We first show that the framed center is equivalent to the category of comodules
over Zκ⃗: This follows in the case of a single bimodule M with the help of the linear
isomorphisms

HomM(m.a, [κ−2]a.m) ∼= HomM(m, [κ−2]a.m.a∨) (B.15)

after taking the end. The general case is treated analogously. The universal property
of the framed center now follows, analogously as the universal property of the center of
a bimodule category [GeNN], by observing that the left adjoint of a κ-balanced functor
takes values in the framed center.

Analogous considerations apply to monads: On a bimodule with framing κ we define
the monad Z [κ] by Z [κ](m) :=

∫ a∈A
a .m . a[κ−3]. Similarly there are monads in each of the

four types of situations for the framed center; explicit expressions for these are obtained
by replacing in the formulas (B.11) the end by an coend and κ by κ−2. The monads define
corresponding induction functors I κ⃗; these are the universal functors for κ−2-balanced
right exact functors.

B.5. Corollary.

(i) The forgetful functor U : Z κ⃗(M⃗)→M⃗ is left adjoint to the co-induction functor I[κ⃗]
and right adjoint to the induction functor I [κ⃗] that correspond to the endofunctors
Z[κ⃗] and Z

[κ⃗], respectively.

(ii) The category Zκ(M) is equivalent to the category of modules over the monad Z [κ],
and equivalent to the category of comodules over the comonad Z[κ].

B.6. Extensions of the Eilenberg–Watts calculus. We now collect a few use-
ful results which extend the Eilenberg–Watts calculus of [FSS2] that is recapitulated in
Section 3.22. We first present a mild generalization of the Eilenberg–Watts equivalences
(3.43) and (3.42):

B.7. Lemma. For finite categories M,K and N there are adjoint equivalences

Lex(M⊠K,N ) ≃ Lex(M,N ⊠K) (B.16)

and
Rex(M⊠K,N ) ≃ Rex(M,N ⊠K) . (B.17)
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Proof. This is a direct consequence of the equivalences

Lex(M⊠K,N ) ≃ M⊠K ⊠N ≃ M⊠ (K⊠N ) ≃ Lex(M,K⊠N ) , (B.18)

and of the corresponding chain of equivalences of categories of right exact functors. Here
the first and third equivalences are given by the Eilenberg–Watts functors (3.42). The
one in the middle follows by elementary associativity properties of the Deligne product.

The ordinary Eilenberg–Watts equivalences are recovered from this statement by tak-
ing M to be vect.

We next collect without proof a few statements that involve a lift of the Eilenberg–
Watts calculus to categories of (co)modules over a (co)monad on a functor category. A
proof of these statements is given in [FSS3], where a module Eilenberg–Watts calculus
is set up which e.g. allows for a novel perspective on the center of module categories.
The proof in [FSS3] makes use of the fact that for Φ: X ⇆Y : Ψ an adjoint equivalence
between categories and TX a (co)monad on X , the functor Φ ◦TX ◦Ψ=:TY is canonically
a (co)monad on Y . Also note that given a (co)monad T : M→M on a category M,
for any category X the functor category Fun(M,X ) inherits a (co)monad T ∗ by pre-
composition with T , i.e.

T ∗(F ) = F ◦ T (B.19)

for F ∈Fun(M,X ).

B.8. Proposition. Let M = AMA be a finite bimodule category over a finite tensor
category A and Zκ(M) its κ-twisted center, and let X be a finite linear category.

(i) The Eilenberg–Watts calculus provides explicit equivalences

Lexκ(M,X ) Lex(Zκ(M),X )

Zκ(M)⊠X

≃

Ψl Φl (B.20)

of linear categories. Moreover, the category Lexκ(M,X ) is equivalent to the category
of comodules over the comonad (Z[κ])∗ on Lex(M,X ),

Lexκ(M,X ) ≃ (Z[κ])∗-comod(Lex(M,X )) . (B.21)

(ii) For any left exact κ+2-balanced functor F : M→X there is an isomorphism∫ z∈Zκ(M)

z⊠ F̂ (z) ∼=
∫ m∈M

m⊠F (m) (B.22)

of objects in Zκ(M)⊠X , where F̂ :=Φl ◦Ψl(F ).
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(iii) Specifically, for the co-induction functor I[κ] : M→Zκ(M) that corresponds to the

comonad Z[κ], the corresponding functor Î[κ] : Zκ(M)→Zκ(M) is the identity func-
tor, whereby the isomorphism (B.22) reduces to∫ z∈Zκ(M)

z⊠ Id(z) ∼=
∫ m∈M

m⊠Z[κ](m) ∼=
∫ m∈M

m⊠
∫
a∈A

a.m.a[κ−1]. (B.23)

An analogous isomorphism holds for ends:
∫
z∈Zκ(M)

z ⊠ z ∼=
∫ m∈M

m⊠ Z [κ](m).

Combining these assertions with Lemma B.7 we arrive at

B.9. Lemma. The equivalences (B.16) induce equivalences

Lex(NA
κ

⊠AM,K) ∼= LexA(NA,K⊠M−κ+1
) (B.24)

for any κ∈ 2Z.

Proof. Using that NA
κ

⊠AM∼=ComodZ[κ]
(N ⊠M), Proposition B.8(i) implies that

Lex(NA
κ

⊠AM,K) ∼= Lex(ComodZ[κ]
(N ⊠M),K)

∼= Comod(Z[κ])
∗Lex(N ⊠M,K)

∼= ComodZ̃[κ]
Lex(N ,K⊠M) ,

(B.25)

where Z̃[κ] is the comonad on Lex(N ,K⊠M) that is induced by the equivalence from

Lemma B.7. We proceed to compute Z̃[κ]. For F ∈Lex(N ,K⊠M) and n∈N we have

Z̃[κ](F )(n) =
(
Ψ̂l(Z[κ])

∗(Φ̂l(F )
)
(n)

=

∫ m∈M∫
a∈A

HomM(a.m, F (n.a[κ+1]))⊠m

=

∫ m∈M∫
a∈A

HomM(m,F (n.a[κ+1]))⊠ a∨.m

∼=
∫
a∈A

∫ m∈M
HomM(m,F (n.a[κ+1]))⊠ a∨.m

∼=
∫
a∈A

a∨. F (n.a[κ+1]) ∼=
∫
a∈A

a . F (n.a[κ]) .

(B.26)

As a consequence, a Z̃[κ]-comodule structure on F consists of a coherent family of mor-
phisms F (n)→ a.F (n.a[κ]) for n∈N . By adjunction, this is equivalent to a family of

coherent natural isomorphisms F (n.a)
∼=−→ a[κ−1].F (n) which, in turn, is equivalent to F

belonging to the category LexA(NA,K⊠M−κ+1
).
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As a particular case we obtain

B.10. Corollary. For bimodule categories AMB and ANB, the Eilenberg–Watts equiv-
alences induce an equivalence

M
1

⊠N
1

⊠ ≃ LexA,B(M,N ) (B.27)

of categories.

Proof. For the A-action we have

AN
1

⊠AM ≃ Lex
(
N

1

⊠M, vect
)
≃ Lex(M

−1

⊠N , vect)

= Lex(M
0

⊠ [−1]N , vect) ≃ LexA(MA,NA) ,

(B.28)

where the last step uses Lemma B.9 as well as the canonical equivalence [−1]N
[1]

≃NA.
The B-action is treated analogously.

B.11. Twisted identity bimodules. Recall from Section 3.1 the twisted variant
κ1Mκ2 of a bimodule M, for any pair κ1, κ2 of even integers. If M = A is the regular A-
bimodule, the double duality functor (−)∨∨ (which is monoidal) provides a distinguished
equivalence

κ1Aκ2 ≃ κ1−2Aκ2+2, (B.29)

of bimodules, and thus by iteration we get in particular κM0≃ 0Mκ, i.e. κA≃Aκ. Fur-
thermore, we have

B.12. Lemma. Let A be a finite tensor category, M a right and N a left A-module, and
let κ∈ 2Z. The functors

ρ̃ : M⊠A −−→ M ,

m⊠ a 7−−→ m. a[κ]
(B.30)

and
λ̃ : A⊠N −−→ N ,

a⊠n 7−−→ a[−κ]. n
(B.31)

furnish distinguished equivalences

M
κ

⊠A−κ ≃−−→ M and −κA
κ

⊠N ≃−−→ N (B.32)

of module categories, given explicitly by

ρ : M
κ

⊠A −−→ M ,

m⊠ a 7−−→ HomA(DA, a)⊗km
(B.33)

and

λ : A
κ

⊠N −−→ N ,

a⊠n 7−−→ HomA(DA, a)⊗k n
(B.34)
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Proof. The linear functor (B.30) has a natural structure of a κ-balanced module functor,
i.e. we have ρ̃(m.x⊠ a)∼= ρ̃(m⊠ [κ]x.a). By the universal property of Z[κ] from Proposition

B.4, ρ̃ therefore induces a module functor ρ′ : M
κ

⊠A−κ→M; we claim that ρ′ = ρ is the
functor defined in (B.33). To this end, set ρ̃−1(m) :=m⊠1 and ρ−1 :=Z[κ] ◦ ρ̃−1 and
consider the diagram

M⊠A M⊠A

M
κ

⊠A−κ M M
κ

⊠A−κ

ρ̃

ρ̃−1◦ ρ̃

Z[κ] Z[κ]

ρ′ ρ−1

ρ̃−1 (B.35)

Since Z[κ] is κ-balanced, the functor

ρ−1 : M −→ M
κ

⊠A

m 7−→ Z[κ](m⊠1) =
∫
a∈Am.a

[κ−1]⊠ a
(B.36)

satisfies
m.a 7−→ Z[κ](m.a⊠1) ∼= Z[κ](m⊠ a

[−κ]) = Z[κ](m⊠1)⊗ a[−κ] (B.37)

and is thus a module functor. Moreover, the functors ρ′ and ρ−1 are quasi-inverse, hence ρ′

is an equivalence: By the balancing of Z[κ], the functor Z[κ] ◦ ρ̃−1 ◦ ρ̃ is isomorphic to Z[κ] as
a right A-module functor, and thus by the universal property of Z[κ] we have ρ

−1 ◦ ρ′ ∼= Id
as module functors. It is even more direct to see that ρ̃ ◦ ρ̃−1∼= idM as module functors,
so that we also have ρ′ ◦ ρ−1∼= Id.

We now compute the functor ρ′ explicitly. Denote by U : M
κ

⊠A→M⊠A the forgetful
functor and consider the diagram

M⊠Aκ M

M
κ

⊠A M⊠A

Z[κ]

ρ̃

U

HomA(DA, ?)⊗k? (B.38)

This diagram commutes up to a module natural isomorphism: By (3.47) there is a distin-

guished isomorphism
∫
a∈A a

∨∨⊗DA⊠ a ∼=
∫ a∈A

a⊠ a, and hence we obtain a distinguished
isomorphism(

Hom(DA,−)⊗−
)
◦ U ◦ Z[κ](m⊠ b) =

∫
a∈A

HomA(DA, a⊗ b)⊗km.a
[κ−1]

∼=
∫
a∈A

Hom(a∨∨⊗DA, b)⊗km.a
[κ]

∼=
∫ a∈A

Hom(a, b)⊗k a
[κ] ∼= m.b[κ]

(B.39)
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for any m⊠ b∈M⊠A. This shows that ρ′=HomA(DA, ?)⊗k ?≡ ρ, as claimed.

To show the second of the equivalences (B.32), consider the functor

N −→ −κA
κ

⊠N ,

n 7−→ Z[κ](1⊠n) =
∫
a∈A a

[κ−1]⊠ a.n .
(B.40)

This is an A-module functor, and it is straightforward to check that it is an equivalence
with a quasi-inverse given by the functor that is induced by the functor λ̃ as given in
(B.31), which is κ-balanced and is an A-module functor. The explicit form of λ follows
by analogous considerations as those leading to (B.39).

Next we consider the case that κ is odd. Recall that I0=A. We will construct an

equivalence M
κ

⊠ I0≃M, where MA is a right module as in the case of even κ, but now
the action on M gets balanced with the right action on I0, whereby the remaining action

on M
κ

⊠ I0 is a left A-action. Accordingly also on the right hand side we need to work
with a left A-action, which we obtain in the form a.m :=m.a[κ]. In accordance with the
notation in (3.1) we denote the resulting module by

[−κ]
AM. The analogous notation for

left modules AN is N [−κ]
A with n.a= [κ]a.n.

B.13. Lemma. Let A be a finite tensor category, M a right and N a left A-module, and
let κ∈ 2Z+1. There are canonical equivalences

M
κ

⊠ I0 ≃ [−κ]
AM and I0

κ

⊠N ≃ N [κ−2]

A (B.41)

of module categories.

Proof.We treat explicitly the case of a right module M, which is analogous to the proof
of Lemma B.12. Again we define a diagram

M⊠ I0 M⊠ I0

M
κ

⊠ I0 M M
κ

⊠ I0

ρ̃

ρ̃−1◦ ρ̃

Z[κ] Z[κ]

ρ ρ−1

ρ̃−1 (B.42)

of functors, where this time we set ρ̃(m⊠ a) :=m.(DA⊗ a[κ−2]). The functor ρ̃ is κ+2-ba-
lanced:

ρ̃(m.b⊠ a) ∼= m.(b⊗DA⊗ a[κ−2]) ∼= m.(DA⊗ [4]b⊗ a[κ−2])

∼= ρ̃(m⊠ a.[κ+2]b) .
(B.43)

The functor ρ̃ also obeys ρ̃(m⊠ b.a)∼= ρ̃(m⊠ a).b[κ−2] and thus is a left A-module functor

ρ̃ : M
κ

⊠ I0→ [κ−2]

AM. Hence by the universal property of the twisted center, ρ is a well
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defined module functor.

Further, we define
ρ̃−1(m) := m⊠DA ∈M⊠ I0 (B.44)

and set ρ−1 :=Z[κ] ◦ ρ̃−1. This is indeed a module functor, as

ρ−1(m.x) =

∫
a∈A

m.x.a⊠DA⊗ [κ+1]a

∼=
∫
a∈A

m.a⊠DA⊗ [κ+1](∨x⊗ a)

∼=
∫
a∈A

m.a⊠ [κ−2]x⊗DA⊗ [κ+1]a = [κ−2]x.ρ−1(m) .

(B.45)

Analogously as in the proof of Lemma B.12 it then follows that ρ and ρ−1 furnish an
equivalence of module categories, as required. Moreover, again analogously as above we
see that ρ is given explicitly by

ρ : M
κ

⊠ I0 −→ M
m⊠ a 7−→ HomA(a,1)⊗m.

(B.46)

The case of a left module follows directly by taking opposite categories.

C. Construction of a parallelization

In this appendix we provide details of the construction of a parallelization Π for the
collection of relative block functors for all fine refinements, as defined in Definition 5.20(ii).

C.1. Isomorphisms among block functors of fillable disks. As a preparatory
step we restrict our attention to a specific class of defect surfaces, namely fillable disks, and
construct a distinguished isomorphism between the block functors for any two such disks
of the same type. Recall from Definition 5.12 that a fillable disk of type X is a defect
surface DX together with a set δtr of transparent defect lines and with a distinguished
boundary segment ∂outer, called the outer boundary of DX. The removal of δtr from DX
gives a defect surface for which every gluing circle and gluing interval except for ∂outer
is fillable by a disk in the sense of Definition 5.6, and the corresponding filling of DX\δtr
yields a defect surface X with underlying surface being a disk and with ∂X containing at
most one free boundary segment.

For a fillable disk D=DX of arbitrary type X, denote by L := ∂glueD\∂fillD the gluing
part of the outer boundary of D. The prescription (5.41) provides a distinguished object

℧(L) ∈ T(L) , (C.1)

called the silent object for L, in the gluing category for L. We will use these silent
objects to specify particular isomorphisms between functors associated to fillable disks.
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For the construction of these isomorphisms we restrict our attention temporarily to the
situation that the outer boundary of D is a gluing circle S all of whose defect points are
transparently labeled. The assumption that D is fillable means that S is fillable in the
sense of Definition 5.6; also, each of its defect points is labeled either by I for one and the
same finite tensor category A or by A. In the sequel we write I for A in order to remind
us that it appears as a transparent label.

We denote such a gluing circle with n> 1 defect points and n-tuple κ=(κn, κn−1, ... , κ1)
of framing indices (and with corresponding orientations ϵi ∈{1,−1} of the defect points)
by Sn,κ, i.e.

Iϵ2

Iϵ1

Iϵn

κ2

κn

κ1

Sn,κ = (C.2)

Further, denote by S(i)
n,κ, for i∈{1, 2, ... , n}, the fillable circle that is obtained by removing

the ith defect point from the circle Sn,κ. Thus S(i)
n,κ is a circle of type Sn−1,κ′ with framing

indices κ′=(κn, ... , κi+2, κi+1+κi, κi−1, ... , κ1). Then for any possible choice of n, κ and i
we consider the two defect surfaces

κ i
κi+1

κ i+
κ i+1

Σ(i)
n,κ := (C.3)
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and

κ i
κi+1

κ i+
κ i+1

Σ̃(i)
n,κ := (C.4)

The boundary of Σ(i)
n,κ and of Σ̃(i)

n,κ is the union of the circles Sn,κ and S(i)
n,κ (respectively

their opposites) and of a tadpole circle Q±, i.e. a fillable circle with a single transparently
labeled defect point, as indicated in (5.37). We regard these surfaces as bordisms

Σ(i)
n,κ : Sn,κ ⊔Q+→ S(i)

n,κ and Σ̃(i)
n,κ : S(i)

n,κ ⊔Q−→Σ(i)
n,κ, (C.5)

respectively. We then consider the functors

G(i)
n,κ := T(Σ(i)

n,κ)(−⊠℧(Q−ϵi)) : T(Sn,κ)−→T(S(i)
n,κ) and

G̃(i)
n,κ := T(Σ̃(i)

n,κ)(−⊠℧(Qϵi)) : T(S(i)
n,κ)−→T(Sn,κ) ,

(C.6)

respectively, where ℧(Q±) are the silent objects (5.39) for the tadpole circles. These
functors which may be viewed as relative block functors of the form described in (5.34)
for two fine refinements (Σ;Σ′) for which Σ is a cylinder over a circle Sn−1,κ′ .

Let us describe the functor G(i)
n,κ in detail. First note that for zϵ11 ⊠ · · ·⊠ zϵnn ∈T(Sn,κ)

and ϵi=−1 the object

HomA(zi,1)⊗ zϵ11 ⊠ · · · ẑϵii · · · ⊠ zϵnn ∈ T(S(i)
n,κ) (C.7)

(with the symbol ẑ indicating that the factor z is to be removed from the expression)
comes canonically with the following balancings: For a∈A the balancing between zi−1

and zi+1 is, in case the orientations are as in the picture (C.3),

HomA(zi,1)⊗ zi−1.a⊠ zi+1 = HomA(zi,1)⊗ (zi−1 ⊗ a)⊠ zi+1

∼= HomA(zi ⊗ [κi]a,1)⊗ zi−1⊠ zi+1
∼= HomA(zi,

[κi−1]a)⊗ zi−1⊠ zi+1

∼= HomA(
[κi−2]a⊗ zi,1)⊗ zi−1⊠ zi+1

∼= HomA(zi,1)⊗ zi−1⊠ zi+1.[κi+κi+1]a ,

(C.8)

and similarly for other combinations of orientations. In these expressions we display only
the relevant part of the object, and we use the balancings of the object zϵ11 ⊠ · · ·⊠ zϵnn in
steps two and five, and the definition of the module structures on I in steps one and five.
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C.2. Proposition.

(i) The relative block functor G(i)
n,κ assigned to the defect surface (C.3) is an equivalence

G(i)
n,κ : T(Sn,κ)

≃−−→ T(S(i)
n,κ) . (C.9)

For ϵi=−1 this functor is given explicitly by

G(i)
n,κ(z

ϵ1
1 ⊠ · · ·⊠ zϵnn ) = HomA(zi,1)⊗ zϵ11 ⊠ · · · ẑϵii · · · ⊠ zϵnn (C.10)

for zϵ11 ⊠ · · ·⊠ zϵnn ∈T(Sn,κ) (with balancings as described in (C.8)), while for ϵi=1
it is

G(i)
n,κ(z

ϵ1
1 ⊠ · · ·⊠ zϵnn ) = HomA(DA, zi)⊗ zϵ11 ⊠ · · · ẑϵii · · · ⊠ zϵnn . (C.11)

(ii) Similarly, the functor G̃(i)
n,κ is an equivalence as well, and for ϵi=1 it is given by

G̃(i)
n,κ(z

ϵ1
1 ⊠ · · ·⊠ zϵnn ) = z1⊠ · · ·Zκi(z

ϵ1
i ⊠1)⊠ · · · ⊠ zϵnn , (C.12)

while for ϵi=−1 it is

G̃(i)
n,κ(z

ϵ1
1 ⊠ · · ·⊠ zϵnn ) = z1⊠ · · ·Zκi(z

ϵ1
i ⊠DA)⊠ · · · ⊠ zϵnn . (C.13)

Proof. (i) Clearly the object (C.7) with balancings (C.8) is an object in the gluing
category T(S(i)

n,κ), and prescribing G(i)
n,κ(z

ϵ1
1 ⊠ · · ·⊠ zϵnn )∈T(S(i)

n,κ) as in (C.10) defines a
functor H (i)

n,κ : T(Sn,κ)→T(S(i)
n,κ). That H

(i)
n,κ indeed coincides with G(i)

n,κ as defined in (C.6)
is seen as follows. Recall that we denote by

U : T(S(i)
n,κ)→U(S(i)

n,κ) = (Iϵ1)1⊠ (Iϵ2)2⊠ · · · (̂Iϵi)i · · · ⊠ (Iϵn)n (C.14)

the forgetful functor to the category that is obtained from the gluing category for S(i)
n,κ

by ignoring the balancings. With the help of U the pre-block functor for Σ(i)
n,κ, when

evaluated on the silent object of Q+, can be written as

Tpre(Σ(i)
n,κ)(z⊠℧(Q+)) = Hom

U(S(i)n,κ)
(U(−), UH (i)

n,κ(z)) (C.15)

for z ∈T(Sn,κ). Moreover, it follows directly from the definition of the balancing ofH (i)
n,κ(z)

that the forgetful functor provides the equalizer

Hom
T(S(i)n,κ)

(−, H (i)
n,κ(z)) → Hom

U(S(i)n,κ)
(U(−), UG(i)

n,κ(z)) (C.16)

for the parallel transport equations on Σ(i)
n,κ. As a consequence we also have

G(i)
n,κ(z) = Hom

T(S(i)n,κ)
(−, H (i)

n,κ(z)) , (C.17)
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and thus G(i)
n,κ=H (i)

n,κ, as claimed.

Further, the explicit form of the functor ρ in (B.46) (applied here to the case that M= I)
tells us that G(i)

n,κ can also be seen as coming from the equivalence M
κ

⊠ I −→M, with M
the bimodule labeling the defect point that is adjacent to the one labeled by I on Sn,κ;
thus in particular G(i)

n,κ is an equivalence.

The case ϵi=1 is treated analogously.

(ii) For analyzing the functor G̃(i)
n,κ in the case ϵi=1, we consider an object of the form z=

zϵ11 ⊠ · · · zϵi−1

i−1 ⊠z
ϵi+1

i+1 · · ·⊠ zϵnn ∈T(S(i)
n,κ). It is straightforward to see that via the balancing

of the comonad Z[κ] the object G̃(i)
n,κ(z) has a canonical structure of an object in T(Sn,κ).

The pre-block functor for Σ̃(i)
n,κ takes the values

Tpre(Σ̃(i)
n,κ)(x, z⊠℧(Q−))

= HomU(Sn,κ)(U(x), z
ϵ1
1 ⊠ · · ·⊠ zϵi−1

i−1 ⊠1⊠ zϵi+1

i+1 ⊠ · · ·⊠ zϵnn )
(C.18)

on objects x∈T(Sn,κ), where U(Sn,κ)= (Iϵ1)1⊠ (Iϵ2)2⊠ · · · ⊠ (Iϵn)n. Consider now the

category Ũ(Sn,κ) := (Iϵ1)1⊠ · · ·⊠
(
(Iϵi−1)i−1

κ

⊠(Iϵi)i
)
⊠ (Iϵi+1)i+1⊠ · · · ⊠ (Iϵn)n with cor-

responding forgetful functor Ũ : T(Sn,κ)→ Ũ(Sn,κ). Using co-induction gives an isomor-
phism

HomU(Sn,κ)(U(x), z
ϵ1
1 ⊠ · · · ⊠ zϵi−1

i−1 ⊠1⊠ · · · zϵnn )

∼= HomŨ(Sn,κ)
(Ũ(x), zϵ11 ⊠ · · · ⊠Z[κi](z

ϵi−1

i−1 ⊠1)⊠ · · · ⊠ zϵnn ) .
(C.19)

Next note that the forgetful functor Ũ may be regarded as a composition of forgetful func-
tors Ũj,j+1, each of which is applied to the twisted center associated with two adjacent

defect points (j, j + 1) on S(i)
n,κ; thus for every 2-patch of Σ̃(i)

n,κ there is a correspond-
ing pair of forgetful functors in the Hom functor on the right hand side of (C.19). It
therefore follows in the same way as in the case of G(i)

n,κ that the block functor is given

by T(Σ̃(i)
n,κ)(x, z⊠℧(Q−))=HomT(Sn,κ)(x, G̃

(i)
n,κ(z)), thus proving the explicit form of G̃(i)

n,κ

given in (C.12). Moreover, again as in the case of G(i)
n,κ(z), we see from the expression

(B.36) for the functor ρ−1 that G̃(i)
n,κ is an equivalence.

The case ϵi=−1 is treated analogously.

The boundary circles Sn,κ and S(i)
n,κ of the defect surfaces Σ(i)

n,κ and Σ̃(i)
n,κ, for which

all defect points are transparently labeled, can play the role of the outer boundary of a
transparent disk, i.e. a fillable disk of the type shown in (5.24). We now allow for general
fillable circles as well as for fillable intervals, which can play the role of the outer boundary
of a fillable disk of arbitrary type X, like e.g. the one shown in (5.23). There are then

obvious analogues Σ(i)
X and Σ̃(i)

X of the surfaces Σ(i)
n,κ and Σ̃(i)

n,κ. For instance, for X as in
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(5.23), an example of a defect surface ΣX : LX →L(i)
X is given by

N N

M

M A

B
(C.20)

where LX appears as the inner and L(i)
X as the outer boundary interval.

The obvious analogue of Proposition C.2 holds in this generic case, too. That is, the
functors

G(i)
X := T(Σ(i)

X )(−⊠℧(Q−ϵi)) and

G̃(i)
X := T(Σ̃(i)

X )(−⊠℧(Qϵi))
(C.21)

are equivalences and have similar expressions as in the transparent case. For example, for
an object z=xN ⊠ a⊠xM⊠ b⊠ yM⊠ yN in the gluing category

T(SX) = N ⊠A⊠M⊠A⊠M⊠N (C.22)

for the inner boundary interval of the surface (C.20) one has

G(2)
X (z) = HomA(a,1)⊗ xN ⊠xM⊠ b⊠ yM⊠ yN . (C.23)

We now establish further properties of the functors (C.21). Recall the convention
(5.100) for block functors evaluated at silent objects. We use this convention in the
following statement:

C.3. Lemma. There is a canonical isomorphism

I
Ξ : T

( ) ∼=−−−→ II
1DA

T
( )

(C.24)

of functors.
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Proof. Let us factorize the disk D that appears on the right hand side of (C.24) in the
way indicated by the dashed circle in

1

DA

D = (C.25)

With the help of the description of the functors G(i) and G̃(i) in Proposition C.2 we

see that T(D)=Z[1](1⊠DA)=
∫
a∈A a⊠DA.[2]a∼=

∫ a∈A
a⊠ a∈T(∂D), using the canonical

isomorphism (3.46) of objects in T(∂D). Noticing that
∫ a
a⊠ a is the value of the block

functor on the left hand side of (C.24) then establishes the isomorphism Ξ.

The so obtained isomorphism is a universal morphism in the following sense. Denote
by D1 and D2 the defect surfaces on the left and right hand sides of (C.24), respectively,
and by S their common gluing boundary, with gluing category

T(S) = A
−1

⊠A
−1

⊠ . (C.26)

Then the pre-block functors are given by

Tpre(D1)(G) =

∫ a∈A
HomA(G1, a)⊗kHomA(a,G2) and

Tpre(D2)(G) = HomA(G2,1)⊗k HomA(DA, G1) ,

(C.27)

respectively, for G=G1⊠G2 ∈T(S). Using first the isomorphism between coend and end
that follows from the isomorphism (3.47), and then the dinatural transformation of the
end, we obtain a canonical morphism

Tpre(D1)(G) =

∫ a∈A
HomA(G1, a)⊗k HomA(a,G2)

∼=
∫
a∈A

HomA(G1, a
∨∨)⊗kHomA(DA⊗ a,G2)

−→ HomA(G2,1)⊗k HomA(DA, G1) = Tpre(D2)(G) .

(C.28)
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C.4. Lemma.

(i) The canonical morphism (C.28) from Tpre(D1) to Tpre(D2) is compatible with all
parallel transport operations on D1 and D2, i.e. it commutes with hola,x for all objects
a∈A and starting points x.

(ii) The morphism (C.28) induces a morphism between the parallel transport equalizers,
i.e. between the corresponding block functors. The so obtained morphism between the
block functors is the isomorphism (C.24) in Lemma C.3.

Proof. (i) The compatibility with the parallel transport operations follows by direct
computation.

(ii) We obtain a morphism between the block functors by the universal property of the
equalizer. It is straightforward to check that applying the forgetful functor from blocks
to pre-blocks to the morphism (C.24) reproduces the morphism (C.28).

As a consequence of Lemma C.3 we have

C.5. Lemma. The isomorphism Ξ in (C.24) provides a distinguished adjoint equivalence

between the functors G(i)
X and G̃(i)

X for any type X.

Proof. We factorize the bordism Σ̃(i)
X ◦Σ(i)

X in such a way that one of the factors is
the disk D on the right hand side of (C.24). The isomorphism Ξ can then be used to

define a natural isomorphism G̃(i)
X ◦G(i)

X
∼= idSX . By Lemma B.12, the two functors are

inverse equivalences; as a consequence there is a unique way to define the isomorphism

G(i)
X ◦ G̃(i)

X
∼=−→ idS(i)X

in such a way that the equivalence is an adjoint equivalence.

Next we note that by successively applying the functors G̃(i)
n,κ with all possible values

of i to the transparently labeled gluing circle Sn,κ (C.2) we obtain a fillable disk Dn,κ each
of whose inner boundaries is a tadpole circle. This allows for the following description of
the silent object ℧(Sn,κ), as defined according to (5.41):

C.6. Lemma. The silent object ℧n,κ :=℧(Sn,κ) for any transparent gluing circle Sn,κ can

be recovered from the functors G̃(iℓ)
ℓ,κ with ℓ=2, 3, ... , n and with (i1, i2, ... , in) any permu-

tation of (1, 2, ... , n) as follows (for brevity we abuse notation by writing the same generic
label κ for all the tuples of framing indices involved): there is a canonical isomorphism

ρ : ℧n,κ

∼=−−→ G̃(℧(Qϵi1
)) with G̃ the composite

T(Qϵi1
)

G̃
(i2)
2,κ−−−−→ T(S2,κ)

G̃
(i3)
3,κ−−−−→ T(S3,κ)

G̃
(i4)
4,κ−−−−→ · · · · · · G̃

(in)
n,κ−−−−→ T(Sn,κ) . (C.29)

An analogous statement holds for the silent object for the outer boundary of any fillable
disk of arbitrary type X.
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Proof. This statement follows directly by applying the block functor to a situation
involving consecutive gluings each of which involves a single tadpole circle, as indicated
in the following picture

1

1

1 (C.30)

(in the situation shown we have n=3 and ϵ1= ϵ2= ϵ3=1).

It follows that explicit expressions for the silent object ℧D for the outer boundary ∂D
of a fillable disk D of type X can be obtained by the following procedure: For each defect
line δi in X take a pair of variables (mi,mi) in the categories Mi and Mi labeling the two
defect points on ∂D at the ends of the defect, together with the relevant silent objects
1Aj

and DAj
, respectively, for the tadpole circles in D. Build the Deligne product of these

objects and take the coend over the variables mi. Finally apply for every 2-patch of D,
having n gluing segments on ∂D with framings {κj}, the corresponding comonads T[κj ] for
n−1 of the gluing segments (up to canonical isomorphism it does not matter which one
of the n gluing segments is omitted). The following example illustrates this procedure:

C.7. Example. Consider the fillable disk

A

2
M

0

1

1

D = (C.31)
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Using Equation (3.47) and Lemma 3.23 we obtain

℧D =

∫ m∈M
T[0](m⊠DA)⊠m =

∫ m∈M∫
a∈A

a∨.m⊠D. [3]a⊠m

∼=
∫ m∈M∫ a∈A

a∨.m⊠ a⊠m ∼=
∫ m∈M∫ a∈A

m⊠ a⊠ a.m .

(C.32)

We have actually already encountered the defect one-manifold that constitutes the outer
boundary of the disk D: it is the defect circle I↙κ (M) in (5.15) with framing index κ=0.
Similarly we obtain the following list of defect one-manifolds and silent objects for all
other transparent disks with outer boundaries given by one of the circles (5.15):

I↗κ (M) : ℧ =

∫ m∈M∫
a∈A

m⊠m. a[κ−1]⊠ a =

∫ m∈M∫
a∈A

m⊠m. a⊠ [κ−1]a ,

I↙−κ(M) : ℧ =

∫ m∈M∫ a∈A
m⊠ a⊠ a[κ].m ,

I↖κ (M) : ℧ =

∫ m∈M∫
a∈A

m⊠ a⊠ [κ−1]a .m ,

I↘−κ(M) : ℧ =

∫ m∈M∫ a∈A
a⊠m⊠m.[κ]a .

(C.33)

Next we show

C.8. Lemma. The functors G(i) ≡G(i)
X : T(LX)→T(L(i)

X ) for fixed type X and different
values of i commute up to canonical natural isomorphism, i.e. for any pair i, j with i ̸= j
there is a canonical isomorphism γ(i,j) : G(i,j) ◦G(i) ∼=G(j,i) ◦G(j) (with obvious notation).
Moreover, these isomorphisms are compatible with the silent objects in the following sense:

For every i there is a canonical isomorphism ρ(i) : G(i)
X (℧(LX))

∼=−−→℧(i) :=℧(L(i)
X ), and

analogous isomorphisms relating the silent objects for the gluing boundaries L(i)
X and L(i,j)

X
etc., such that the diagram

G(i,j)◦G(i)(℧(LX)) G(i,j)(℧(i))

℧(i,j)

G(j,i)◦G(j)(℧(LX)) G(j,i)(℧(j))

G(i,j)(ρ(i))

γ(i,j)

ρ(i,j)

G(j,i)(ρ(j)) ρ(j,i)

(C.34)

commutes.
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Proof. That the functors G̃(i)
n,κ respect the silent objects is easily seen graphically. In the

transparent case, the relevant situation is

1

1
T
( )

= 1

1

T
( )

(C.35)

The case of generic type X is analogous.

The isomorphism γ(i,j) and the commutativity of (C.34) are seen graphically, by comparing
the following two situations, for which we clearly have T(Σ(ij))=T(Σ(ji)):

i

j

1

1

Σ(ij) := (C.36)
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and

j

i

1

1

Σ(ji) := (C.37)

In these pictures, all but the most relevant labels are omitted, while also the circle along
which the two bordisms are glued (including its defect points) is indicated as a dashed
circle.

C.9. Changing refinements. We now show that to a change of refinement from
(Σ;Σref) to (Σ;Σ′

ref) there is associated a canonical isomorphism between the respec-

tive relative block functors T̂(Σ;Σref) and T̂(Σ;Σ′
ref). This is achieved in two steps: first

we consider refinements of fillable disks, and afterwards refinements of arbitrary defect
surfaces. The following terminology will be convenient:

C.10. Definition. By a fillable-disk replacement ΦD,D′ from D to D′ we mean the op-
eration of replacing in a defect surface Σ a fillable disk D⊂Σ of some type X by a fillable
disk D′ of the same type with the same outer boundary.

Owing to the factorization result for fine defect surfaces in Theorem 5.3, such a ma-
nipulation is completely under control by canonical isomorphisms.

We start by recalling that for each fillable disk D=DX there exists a disk Dtad=Dtad
X

with the same outer boundary as D and with all inner boundaries being tadpole circles
(compare the example shown in (5.40)). We abbreviate by LD the gluing part of the outer
boundary of D.

We want to construct an isomorphism

φD(Γ) : T(D)(℧(D))
∼=−−→ T(Dtad)(℧(Dtad)) (C.38)

of functors from T(LD) to vect. The construction given below will a priori depend on a
combinatorial datum Γ that is defined as follows: Considering the inner boundary circles
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of D as (fattened) vertices, the set of inner boundary circles together with the defect lines
of D and their end points on the outer boundary circle or on generic defects of D form a
graph ΓD. Without loss of generality we assume that this graph is connected (otherwise
the arguments below are to be applied to every connected component separately, and the
order in which this is done is irrelevant). Then we select a subgraph Γ⊂ΓD that is a
spanning tree in ΓD, i.e. a rooted tree Γ with a minimal number of edges such that every
vertex of ΓD is met by Γ. (It is well known that a spanning tree exists for every graph.)
We can also take the root v0 of Γ to be lie on the outer boundary LD. As an example,
the following picture shows such a spanning tree Γ for the transparent disk Dtr shown in
(5.24):

e 0
1

Γ

v0

(C.39)

Here for clarity the vertices of Γ are drawn as encircled points, and also the remaining
defect lines that do not give rise to edges of Γ are indicated.

By the length of a path in a graph we mean the number of its edges. Then the depth
of a vertex v of Γ is defined as the length of the (unique) path from v to the root of Γ; in
particular the root has depth 0.

For any choice of spanning tree Γ⊂D, an isomorphism (C.38) is obtained by the
following prescription: Apply the canonical isomorphism Ξ from Lemma C.3 for every edge
e∈D\Γ; this results in a transparent disk with two new tadpole vertices for each defect

line not covered by Γ, which we denote by D̃(Γ). Next apply the canonical isomorphisms

ρ(i) from Lemma C.8 for every vertex and every edge of this disk D̃(Γ) (in arbitrary order),
whereby we end up with a tadpole disk Dtad(Γ). As an illustration, in the case of the
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spanning tree chosen in (C.39), the disks D̃(Γ) and Dtad(Γ) look as follows:

D̃(Γ) =

Dtad
X (Γ) =

(C.40)

Altogether this defines canonically an isomorphism φD(Γ) of the form (C.38). Next
we show that this isomorphism does in fact not depend on the choices made in its con-
struction:

C.11. Lemma.

(i) The isomorphism φD(Γ) : T(D)(−⊠℧(D))
∼=−−→T(Dtad)(−⊠℧(Dtad)) does not de-

pend on the order in which the isomorphisms ρ(i) are applied.

(ii) Let Γ and Γ′ be two spanning trees for D. Then φD(Γ)=φD(Γ
′).

Proof. (i) Obviously, any two isomorphisms ρ(i) commute if they are applied on two
different vertices. If they are applied on one and the same vertex, the statement follows
directly from Lemma C.8.

(ii) As above we assume without loss of generality that the graph Γtot on D that is formed
by the defect lines is connected and fix a spanning tree Γ for Γtot, with root vertex v0.
Denote by E0 the set of all edges of Γtot that have one of their ends on the outer bound-
ary LD. By construction, exactly one edge e01 ∈E0 (as indicated in the picture (C.39))
belongs to the spanning tree Γ. Removing e01 from Γ and replacing it by any other edge
e0i ∈E0 gives another spanning tree, with different root v0i, which we denote by Γ0i. For
instance, the following spanning tree Γ0i for the transparent disk (5.23) arises this way
from the spanning tree shown in (C.39):
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Γ0i

v0i

(C.41)

We are now going to show that φD(Γ)=φD(Γ0i). It is enough to assume that E0 has
precisely two elements. In this case the statement is implied by the following result:

C.12. Lemma. The natural isomorphisms between block functors that are indicated in the
following picture commute, for any choice of orientations of the (suppressed) transparent
defect lines in the fillable disk that is present in the two upper rows of the picture:

℧
℧

℧

℧

℧
℧

℧

℧
=

⇝Ξ ⇝Ξ

⇝ ρ ⇝

ρ

(C.42)
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(For concreteness, the picture shows the case that the outer boundary LD is a gluing circle,
but the statement applies to fillable disks of arbitrary type X.)

Proof. The functors ρ and Ξ are both defined using the adjoint equivalence between
the functors GX and G̃X that follow from Lemma C.3. If we factorize the block functors
into corresponding composites of GX and G̃X, then the statement reduces to the zigzag
identity for this adjoint equivalence.

We continue the proof of Lemma C.11 by induction on the depth of the vertices of Γ.
Consider the edges of Γ from the single depth-1 vertex v1 to the depth-2 vertices. Pick a
slightly smaller disk D1⊂D that does not contain the vertices v0 and v1, but contains all
other vertices of Γ of depth larger than 1, as indicated in the picture

v1
D1

(C.43)

Define the graph Γ1 as the graph obtained by erasing from Γ∩D1 the edges E0. This
graph has, in general, several components. In the sequel we assume for simplicity that
Γ1 is connected – if it is not, then each of its (finitely many) components is to be treated
analogously. With this assumption, Γ1 furnishes a spanning tree for the disk D1, with
root v′1 at the intersection of D1 and the edge of Γ that connects v1 with the (by the
assumption just made, unique) depth-2 vertex. Repeating the previous argument we
see that the corresponding isomorphism φD1 remains unchanged if we replace the edge
containing v′1 on the spanning tree Γ1 by a different edge. By iterating this process we can
reach any spanning tree Γ′. We can thus conclude that φD(Γ)=φD(Γ

′) for all spanning
trees Γ and Γ′ for D.

In view of this result from now on we just write φD for the isomorphism φD(Γ), for any
choice of spanning tree Γ. Next we observe that our construction is local, in the following
sense:

C.13. Proposition. Let D and D′ be two fillable disks of the same type. There is a
distinguished family

φD,D′ : T(D)(−⊠℧(D)) −→ T(D′)(−⊠℧(D)) (C.44)
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of natural isomorphisms, one for each fillable-disk replacement ΦD,D′ with the following
properties:

1. (Coherence): For any triple D, D′, D′′ of fillable disks of the same type the vertical
composition of the natural transformations φD,D′ and φD′,D′′ is given by

φD′,D′′ ∗ φD,D′ = φD,D′′ . (C.45)

2. (Factorization): Given a fillable disk that has the form D=Y ◦ (D1 ⊔ · · · ⊔Dn), with
D1,D2, ... ,Dn non-intersecting fillable disks in D (of types Xi) and Y the defect sur-
face that results from removing all the disks Di, i=1, 2, ... , n, from D, we have, for
any n-tuple of fillable-disk replacements

(
ΦDi,D

′
i

)
i=1,...,n

that do not change the outer

boundaries ∂outerDi, the equality

φD,D′ = (φD1,D′
1
⊠ · · · ⊠φDn,D′

n
) ◦ T(Y) (C.46)

of natural transformations, where D′ is the defect surface D′=Y ◦ (D′
1 ⊔ · · · ⊔D′

n) and
‘ ◦’ is the horizontal composition of natural transformations.

Proof. For any pair D and D′ of fillable disks of the same type X, we define the isomor-
phism φD,D′ by φD,D′ :=φ−1

D′ ◦φD, with φD : T(D)(−⊠℧(D))→T(Dtad)(−⊠℧(Dtad) the
isomorphism constructed above. It follows directly from this definition that φD,D′ satisfies
coherence. To establish factorization, we observe that there is a spanning tree Γ′ for Y
in D=Y ◦ (D1 ⊔ · · · ⊔Dn) that has exactly one vertex on each boundary component of Y.
We can complete this graph Γ′ to a spanning tree Γ of D in such a way that Γi :=Γ∩Di

is a spanning tree for Di for every i∈{1, 2, ... , n}. Since the order in which we apply the
isomorphisms ρ in the definition of φD is irrelevant, we readily see that the equality (C.46)
indeed holds.

Now recall the notion of a fillable-disk replacement ΦD,D′ inside a defect surface Σ
(which is e.g. implicit in the factorization property (C.46)). We denote the resulting
defect surface by Φ(Σ)≡ΦD,D′(Σ). Let Σ be an arbitrary defect surface and (Σ;Σref1) and
(Σ;Σref2) be any two refinements of Σ.

C.14. Definition.

(i) A refinement replacement from (Σ;Σref1) to (Σ;Σref2) is a sequence of (possibly
intersecting) fillable-disk replacements (Φ1,Φ2, ... ,Φn) such that

Φn(· · ·Φ1(Σref1) · · · ) = Σref2 . (C.47)

(ii) We call two refinement replacements (Φ1, ... ,Φn) and (Φ′
1, ... ,Φ

′
n′) from (Σ;Σref1) to

(Σ;Σref2) equivalent iff the induced natural isomorphisms agree.
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According to Proposition C.13, any fillable-disk replacement Φ in Σref1 provides us
with an isomorphism φΣ,Φ(Σ) : T(Σref1)(−⊠℧1)→T(Φ(Σref1)))(−⊠℧′

1), with ℧1 and ℧′
1

the silent objects for the respective fillable disks involved. Hence a refinement replacement
(Φ1, ... ,Φn) from (Σ;Σref1) to (Σ;Σref2) gives an isomorphism

φΣref1
,Φn(···Φ1(Σref1

) ··· ) : T(Σref1)(−⊠℧1) −→ T(Σref2)(−⊠℧2) . (C.48)

As we will see in Lemma C.16 below, a refinement replacement exists between any two
fine refinements that refine a given defect surface.

To proceed we introduce the notion of common subrefinement. Let (Σ;Σ1) and (Σ;Σ2)
be refinements that refine the same defect surface Σ. Then the common subrefinement
(Σ;Σ1,2) of (Σ;Σ1) and (Σ;Σ2) is constructed by combining all transparent defects from
Σ1 and from Σ2 in the following manner: First take the collection of all transparent defects
δ2 of Σ2 that are not part of Σ1. We can use the embedding of the defects δ2 in Σ2 to
embed δ2 in the surface Σ1 in such a way that any resulting intersections of transparent
defects are generic (if necessary, deform the defects slightly to achieve this, see Remark
5.16 (iv)). Denote the so obtained surface with defects by Σ̊1,2.

The following prescription makes Σ̊1,2 into a defect surface Σ1,2 endowed with a vector
field that (just like the representatives of the framings χ1 on Σ1 and χ2 on Σ2) is homotopic
to the one of Σ: Consider a tubular neighborhood N2 of all defects δ2 in Σ2, and take,
for each intersection v ∈ Σ̊1,2 of (the images of) a defect δ2 of Σ2 with a defect δ1 of Σ1, a
small circle Sv around v that intersects δ1 outside the image of N2, as indicated in

δ 1
δ
2

v

N2

δ 1
δ
2

Sv

⇝ (C.49)

Since Σ1 and Σ2 both refine Σ, there is a homotopy ht : TpΣ→TpΣ for t∈ [0, 1] and all
p∈Σ satisfying h0= id and h1(χ2)=χ1. Now let N ′

2⊂N2 be a smaller tubular neighbor-
hood of the defects δ2 and b : Σ→ [0, 1] a smooth monotonous function that is 0 on N ′

2

and 1 on Σ\N2. Then by setting χ1,2(p) :=hb(p)(χ2(p)) for p∈Σ we obtain a vector field

χ1,2 on Σ that looks like the framing of Σi, for i∈{1, 2}, around the defects of Σ̊1,2 that

correspond to the defects of Σi and thus defines a framing on Σ̊1,2 of the desired form.
To obtain a proper defect surface we still have to get rid of the intersections v between

defect lines. To this end we remove for each such point v the interior of the disk bounded
by Sv from Σ̊1,2 and replace Sv by a gluing circle, with appropriate defect points at the
intersection of Sv with δ1 and δ2. Now notice that the vector field χ1,2 is such that all the
thus obtained gluing circles Sv are fillable. This means that after forgetting all transparent
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defects the framing of Σ1,2 is by construction homotopic to the framing of Σ; hence we
have indeed constructed a refinement (Σ;Σ1,2) of Σ. Also, if Σ1 and Σ2 are fine, then so
is Σ1,2.

Moreover, each of the resulting ‘four-valent’ fillable gluing circles Sv in the common
subrefinement (Σ;Σ1,2) can be ‘resolved’ to a pair of two three-valent fillable gluing circles.
This can be done in two specific ways, as indicated in

⇝

⇝

δ2
δ2

δ 1
δ 1

Sv

δ 1
δ 1

δ 1

δ2

δ2

δ2 δ2 δ2
δ 1

δ 1

(C.50)

It will be convenient to have separate terminology for specific manipulations of defect
networks:

C.15. Definition. Let (Σ;Σ1) and (Σ;Σ2) be refinements refining the same defect sur-
face Σ, and (Σ;Σ1,2) a common subrefinement.

(i) We call the change of defect mesh shown in (C.50) the resolvement of the four-valent
gluing circle Sv to Σ1 and to Σ2, respectively.

(ii) We call a refinement replacement ΦD,D̃ of creation type, respectively of annihilation

type, iff the defects on D̃ are obtained by adding defects to, respectively deleting
transparent defects from, the disk D.

Given any two refinements (Σ;Σ1) and (Σ;Σ2) and a common subrefinement (Σ;Σ1,2),
we obtain a specific refinement replacement from (Σ;Σ1) to (Σ;Σ2) by the following two
steps: First, perform resolvements, in the sense of Definition C.15, of each four-valent
gluing circle that arises in the construction of Σ1,2 to Σ1. Next perform local creation-
type fillable-disk replacements by adding single Σ2-defects to Σ1, as indicated in the
following picture which shows disks that arise from a tubular neighborhood of the defect
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line in Σ2:

⇝ (C.51)

Finally use replacements of annihilation type to resolve back to the four-valent gluing
circles of Σ1,2. We refer to this procedure as a standard refinement replacement from
(Σ;Σ1) to (Σ;Σ1,2).

C.16. Lemma. For any two refinements (Σ;Σ1) and (Σ;Σ2) that refine the same defect
surface Σ there exists a refinement replacement (Φ1, ... ,Φn) from (Σ;Σ1) to (Σ;Σ2).

Proof. Choose any common subrefinement (Σ;Σ1,2) of (Σ;Σ1) and (Σ;Σ2). Composing
the standard refinement replacement from (Σ;Σ1) to (Σ;Σ1,2) with the inverse of the
standard replacement from (Σ;Σ2) to (Σ;Σ1,2) gives a refinement replacement from (Σ;Σ1)
to (Σ;Σ2) that factors through (Σ;Σ1,2).

We are now almost ready to show that any two refinement replacements are equivalent.
Before giving the proof we just introduce some further convenient terminology.

C.17. Definition. Let Σ be a defect surface.

(i) Let δ be a set of defect lines on Σ. We say that a fillable-disk replacement ΦD,D′

on Σ keeps the defects δ iff each of the defects in δ corresponds to a defect on
ΦD,D′(Σ), possibly interrupted by gluing circles that are not present in Σ (like e.g. in
the refinement shown in the picture (5.27)).

(ii) Analogously we say that a sequence of fillable-disk replacements keeps δ iff each of
its members keeps δ.

(iii) Let P be a 2-patch (in the sense of Definition 2.10) of Σ. A disk D on Σ is said to be
local with respect to P, or P-local, for short, iff D does not meet a gluing circle on
∂P and there are no defects in D \P. A fillable-disk replacement ΦD,D′ on a P-local
disk D is said to be P-local iff ΦD,D′ keeps the defects on ∂P and D′ is P-local as well
(that is, no defects are created in D \P).

(iv) Analogously we say that a sequence of fillable-disk replacements on Σ is P-local iff
each of its members is P-local.
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The following picture gives an example of a P-local fillable-disk replacement:

⇝P
D

(C.52)

C.18. Lemma. Let Σ be a fine defect surface and (Σ;Σref) be a refinement that refines
Σ.

(i) Any sequence (Φ1, ... ,Φn) of fillable-disk replacements from Σ to Σref that keeps the
defects of Σ is equivalent to a sequence that is local with respect to all 2-patches of
Σ.

(ii) Any two sequences (Φ1, ... ,Φn) and (Φ′
1, ... ,Φ

′
n′) of fillable-disk replacements from Σ

to Σref keeping the defects of Σ are equivalent.

Proof. (i) We “localize” (Φ1, ... ,Φn) as follows with respect to the 2-patches of Σ.
Consider any of the fillable-disk replacements Φj. Since, by assumption, Φj keeps the
defects on Σ, there is a sequence {Φj,s} of fillable-disk replacements that are local with
respect to the 2-patches of Σ, such that {Φj,s} is equivalent to Φj by the factorization
property of Proposition C.13. An illustration of this localization procedure is given in
the following picture, in which the disks D1 and D2 contain a pair of neighboring defect
circles that result from the resolvement of a circle with four defect points, with D1 being
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P1-local and D2 being P2-local, while D is neither P1- nor P2-local:

P1

P2

D
D1

D2

(C.53)

(ii) Owing to (i) we can without loss of generality assume that both sequences are local
with respect to the defects in Σ. It is then enough to consider a single 2-patch P of Σ.
Let (Φ1, ... ,Φp) and (Φ′

1, ... ,Φ
′
p′) be two P-local sequences of disk replacements. Since

by assumption Σ is fine, P is a disk which, in turn, implies that there is a disk D on
Σ such that both sequences lie entirely in D. Thus the two sequences are equivalent by
Proposition C.13. Again we give an illustrative example:

DΦi

Φ′
j

(C.54)

This picture shows the 2-patch P and indicates the disk D that encloses both P-local
fillable-disk replacements Φi and Φ′

j, which consist of one and three transparently labeled
defect lines, respectively.
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C.19. Lemma. Let Σ be a fine defect surface. Any sequence (Φ1,Φ2, ... ,Φn) of fine
fillable-disk replacements on disks {Di} in Σ is equivalent to a sequence (Φ′

1, ... ,Φ
′
n′) of

fillable-disk replacements on {Di} such that, for some 1≤ p< q≤n′ the fillable-disk re-
placements Φ′

1, ... ,Φ
′
p are replacements of creation type, Φ′

q, ... ,Φ
′
n′ are of annihilation

type, and Φ′
p+1, ... ,Φ

′
q−1 are resolvements of vertices.

Proof. We consider iteratively common subrefinements. We then need to show com-
mutativity of a diagram of the following form, in which the bottom row consists of the
original sequence (Φ1, ... ,Φn) (depicted for the case n=4):

T(Σ1,n)

T(Σ1,3) T(Σn−2,n)

T(Σ1,2) T(Σ2,3) T(Σn−1,n)

T(Σ1) T(Σ2) T(Σn−1) T(Σn)φ
Σ1,Φ1(Σ1)

... φ
Σn−1,Φn−1(Σn−1)

(C.55)

(In this diagram and in the rest of the proof, to save space we abuse notation by just writ-
ing T(Σ) in place of T(Σ)(−⊠℧).) We construct the diagram by proceeding from bottom
to top. First, the triangle above the arrow labeled by φΣi,Φi(Σi) is obtained by standard
refinement replacements on Φi: The arrow from T(Σi) to T(Σi,i+1) is a replacement of
creation type to the common subrefinement Σi,i+1 of Σi and Σi+1, while the arrow from
T(Σi,i+1) to T(Σi+1) is an analogous replacement of annihilation type. All three arrows
in the so obtained triangle are replacements inside one and the same disk, and hence the
triangle commutes by Proposition C.13.

Next consider a square above two consecutive triangles. It involves, besides Σi and the
subrefinements Σi−1,i and Σi,i+1, the common standard subrefinement Σi−1,i+1 of Σi−1,i

and Σi,i+1. The arrow from T(Σi) to T(Σi,i+1) keeps the defects from Σi, and likewise the
composite of the other three arrows (with the first of them to be inverted) is a sequence
of fillable-disk replacements from Σi to Σi,i+1 that keeps the defects from Σi. Since Σi is
by assumption fine, it follows from Lemma C.18 that the square commutes. For any of
the squares ‘higher up” in the diagram, we can likewise use the defects of the fine surface
at the bottom of the square to invoke Lemma C.18.

We have thus shown that all triangles and all squares in the diagram (C.55) commute,
and hence the whole diagram commutes. Moreover, by construction the diagram is of the
required type.

We are now finally in a position to state
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C.20. Proposition. Let (Σ;Σref1) and (Σ;Σref2) be two refinements that refine the same
defect surface Σ. Any two refinement replacements (Φ′

1, ... ,Φ
′
n′) and (Φ′′

1, ... ,Φ
′′
n′′) from

Σref1 to Σref2 are equivalent, i.e. they satisfy

φΣref1
,Φ′′

n′′ (···Φ′′
1 (Σref1

) ··· ) = φΣref1
,Φ′

n′ (···Φ′
1(Σref1

) ··· ) . (C.56)

Proof. We show that any sequence of refinement replacements (Φ′
1, ... ,Φ

′
n′) is equivalent

to the standard refinement replacement (Φ1, ... ,Φn), see Lemma C.16. By Lemma C.19 we
can assume that (Φ′

1, ... ,Φ
′
n′) consists first of replacements (Φ′

1, ... ,Φ
′
k), for k≤n′, of cre-

ation type to a refinement (Σ;Σ′
ref12

), then of annihilation type refinements (Φ′
l+1, ... ,Φ

′
n′)

k≤ l≤n′, and in between of resolvements of vertices. Likewise, the standard refine-
ment replacement consists first of creation type replacements (Φ1, ... ,Φp), for p≤n, to
the common subrefinement Σref12 of Σref1 and Σref2 and then of annihilation type replace-
ments (Φp+1, ... ,Φn) to Σref2 . The refinement Σ′

ref12
is necessarily a subrefinement of Σref12 ,

thus there exists a sequence of refinement replacements (Φq1 , ... ,Φqs) from Σref12 to Σ′
ref12

keeping the defects from Σref12 . Consider then the sequence

(Φ1, ... ,Φp,Φq1 , ... ,Φqs ,Φ
−1
qs , ... ,Φ

−1
q1
,Φp+1, ... ,Φn) (C.57)

of replacements from Σref1 to Σref2 . This sequence is clearly equivalent to the standard
refinement replacement, and (Φ1, ... ,Φp,Φq1 , ...Φqs) is a sequence of fillable-disk replace-
ments from Σref1 to Σ′

ref12
that keeps the defects of Σref1 , just like (Φ

′
1, ... ,Φ

′
k). By Lemma

C.18 they are thus equivalent. In the same way, the sequences (Φ−1
qs , ... ,Φ

−1
q1
,Φp+1, ... ,Φn)

and (Φ′
k+1, ... ,Φ

′
n′) both keep the defects from Σref2 and are thus equivalent as well (apply

Lemma C.18 to the inverses of the sequences). Thus the statement follows.
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592 JÜRGEN FUCHS, GREGOR SCHAUMANN, AND CHRISTOPH SCHWEIGERT

[BV] A. Bruguières and A. Virelizier, Quantum double of Hopf monads and categorical
centers, Trans. Amer. Math. Soc. 365 (2012) 1225–1279

[CMS] N. Carqueville, C. Meusburger, and G. Schaumann, 3-dimensional defect
TQFTs and their tricategories, Adv. Math. 364 (2020) 107024 1–58 [math.QA/

1603.01171]

[CRS] N. Carqueville, I. Runkel, and G. Schaumann, Orbifolds of n-dimensional defect
TQFTs, Geom. and Topol. 23 (2019) 781–864 [math.QA/1705.06085]

[DN] A. Davydov and D. Nikshych, The Picard crossed module of a braided tensor
category, Algebra & NumberTheory 7 (2013) 1365–1403 [math.QA/1202.0061]

[DSS] C.L. Douglas, C. Schommer-Pries, and N. Snyder, Dualizable tensor categories,
Memoirs Amer.Math. Soc. 268 (2020) No. 1308 i–vii+88 [math.QA/1312.7188]

[EGNO] P.I. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories (Amer-
ican Mathematical Society, Providence 2015)

[ENO] P.I. Etingof, D. Nikshych, and V. Ostrik, An analogue of Radford’s S4 for-
mula for finite tensor categories, Int. Math. Research Notices (2004) 2915–2933
[math.QA/ 0404504]

[ENOM] P.I. Etingof, D. Nikshych, V. Ostrik, and E. Meir, Fusion categories and homo-
topy theory, Quantum Topology 1 (2010) 209–273 [math.QA/0909.3140]

[FSS1] J. Fuchs, G. Schaumann, and C. Schweigert, A trace for bimodule categories,
Appl. Categ. Struct. 25 (2017) 227–268 [math.CT/1412.6968]

[FSS2] J. Fuchs, G. Schaumann, and C. Schweigert, Eilenberg–Watts calculus for finite
categories and a bimodule Radford S4 theorem, Trans. Amer. Math. Soc. 373
(2020) 1–40 [math.RT/1612.04561]

[FSS3] J. Fuchs, G. Schaumann, and C. Schweigert, Module Eilenberg–Watts calculus,
Contemp.Math. 771 (2021) 117–136 [math.CT/2003.12514]

[FuS1] J. Fuchs and C. Schweigert, Consistent systems of correlators in non-semisimple
conformal field theory, Adv. Math. 307 (2017) 598–639 [math.QA/1604.01143]

[FuS2] J. Fuchs and C. Schweigert, Coends in conformal field theory, Contemp. Math.
695 (2017) 65–81 [math.QA/1604.01670]

[FuSV] J. Fuchs, C. Schweigert, and A. Valentino, Bicategories for boundary conditions
and for surface defects in 3-d TFT, Commun. Math. Phys. 321 (2013) 543–575
[hep-th/1203.4568]



A MODULE FUNCTOR FROM STATE SUMS 593

[GeNN] S. Gelaki, D. Naidu, and D. Nikshych, Centers of graded fusion categories, Al-
gebra & NumberTheory 3 (2009) 959–990 [math.QA/0905.3117]

[Gi] G. Ginot, Notes on factorization algebras, factorization homology and applica-
tions, in: Mathematical Aspects of Quantum Field Theories, D. Calaque and Th.
Strobl, eds. (Springer Verlag, Berlin 2015), p. 429–552 [math.AT/1307.5213]

[KK] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Com-
mun. Math. Phys. 313 (2012) 351–373 [cond-mat/1104.5047]

[Ko] J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories (Cam-
bridge University Press, Cambridge 2003)

[Ku] G. Kuperberg, Non-involutory Hopf algebras and three-manifold invariants,
Duke Math. J. 84 (1996) 83–129

[LP] A.D. Lauda and H. Pfeiffer, Open-closed strings: Two-dimensional ex-
tended TQFTs and Frobenius algebras, Topol. Appl. 155 (2008) 623–666
[math.AT/0510664]

[Lu1] J. Lurie, On the classification of topological field theories, CDM (2008) 129–280
[math.CT/0905.0465]

[Lu2] J. Lurie, Higher algebra, available at www.math.harvard.edu/~lurie/papers/
HA.pdf

[Ly] V.V. Lyubashenko, Ribbon abelian categories as modular categories, J. Knot
Theory Ramif. 5 (1996) 311–403

[Os] V. Ostrik,Module categories, weak Hopf algebras and modular invariants, Trans-
form. Groups 8 (2003) 177–206 [math.QA/0111139]

[Sche] C. Scheimbauer, Factorization homology as a fully extended topological field
theory, Ph.D. thesis ETH Zürich 2014
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