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TWISTED ARROW CATEGORIES, OPERADS AND SEGAL
CONDITIONS

SERGEI BURKIN

Abstract. We introduce twisted arrow categories of operads and of algebras over
operads. Up to equivalence of categories, the simplex category ∆, Segal’s category Γ,
Connes cyclic category Λ, Moerdijk–Weiss dendroidal category Ω, and categories similar
to graphical categories of Hackney–Robertson–Yau are twisted arrow categories of sym-
metric or cyclic operads. Twisted arrow categories of operads admit Segal presheaves
and 2-Segal presheaves, or decomposition spaces. Twisted arrow category of an operad
P is the (∞, 1)-localization of the corresponding category Ω/P by the boundary pre-
serving morphisms. Under mild assumptions, twisted arrow categories of operads, and
closely related universal enveloping categories, are generalized Reedy. We also introduce
twisted arrow operads, which are related to Baez–Dolan plus construction.
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Introduction
The twisted arrow category Tw(C) of a category C, introduced by Quillen, is defined
uniquely by the following sequence of categories.

∆/C → Tw(C)→ Cop × C → Cop (∆)

We introduce twisted arrow categories of operads. The twisted arrow category Tw(P ) of
an operad P is defined uniquely by the lower row of the following diagram.
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CopP PROP (P )op

Ω/P Tw(P ) U(P ) cat(P )op

This lower row is the only natural generalization of the sequence (∆) to operads. The
categories in the diagram are: the category Ω/P of elements of the dendroidal nerve of
the operad P ([MW07]); the category CP introduced in [BdBW18] and related to op-
eradic categories ([BM15]) and to operator categories ([Bar18]); the PROP corresponding
to P ; the universal enveloping category U(P ) ([GK94]); and the category of operators
cat(P ) ([MT78]), on which the approach of Lurie to ∞-operads is based. The categories
Tw(P ) and U(P ) have wide subcategories Upper and Lower that form the strict factor-
ization system (Upper, Lower). The (Upper, Lower) strict factorization system generates
(Active, Inert) orthogonal factorization system. The categories CopP and PROP (P )op in
the diagram are the subcategories Upper of Tw(P ) and of U(P ) respectively.

The simplex category ∆, Segal’s category Γ and Moerdijk–Weiss category Ω are equiv-
alent to the twisted arrow categories of the operad uAs of monoids, the operad uCom of
commutative monoids, and the operad sOp of single-coloured symmetric operads ([BM07])
respectively.

We introduce Segal presheaves over twisted arrow categories of operads. There are two
possible definitions of Segal presheaves: one comes from the work of Chu and Haugseng
([CH21]), while another is a sheaf condition on restriction to the subcategory Lower or
Inert. Under mild conditions on the operad the two definitions are equivalent.

If an operad P is sufficiently nice, Segal presheaves over Tw(P ) can be seen as “multi-
object algebras over P”, partial P -algebras whose elements have “objects”, such that
composability of elements ai of an algebra A via an operation p in P and the objects
of this composition are determined by the objects of the elements ai. These objects will
be called petals. For any operad P the category of single-object (i.e. single-petal) Segal
presheaves over Tw(P ) is equivalent to the category of algebras over P (Theorem 3.3).

We also introduce 2-Segal presheaves over twisted arrow categories of operads. This
notion generalizes 2-Segal sets, or discrete decomposition spaces ([GCKT18a, GCKT18b,
GCKT18c, DK19]). For any operad P the category of 2-Segal presheaves over Tw(P ) is
equivalent to the category of special morphisms of operads into P , called decomposition
morphisms.

A palatable operad P is an operad such that Segal presheaves over Tw(P ) are 2-Segal.
For a palatable operad P a Segal presheaf X over Tw(P ) corresponds to the algebra X ′

over the operad PPl(X) constructed from the operad P and the petals of X. The operads
uAs and sOp are palatable. For any set of colours C and any C-coloured operad Q seen
as a Segal presheaf X over the category Ω ≃ Tw(sOp) the operad sOpPl(X) coincides with
the operad sOpC whose algebras are C-coloured operads.

We further generalize the functor Tw to algebras over operads. Twisted arrow cate-
gories of categories, of operads, of Segal presheaves over twisted arrow categories of palat-
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able operads, and of algebras over operads belong respectively to the sequences (Cat),
(Op), (SPsh) and (Alg).

Ω/(uAs, C)→ ∆/C ≃ Tw(uAs)/C →Tw(C) −→ U(C) = Cop × C (Cat)
Ω/(sOp, P )→ Ω/P ≃Tw(sOp)/P →Tw(P ) −→ U(P ) (Op)
Ω/(Q,X) −−−−−−−→ Tw(Q)/X −→ TwQ(X)→UQ(X) (SPsh)
Ω/(Q,A) −−−−−−−→ Tw(Q)/A −→ TwQ(A)→ UQ(A) (Alg)

The sequences increase in generality. The categories on the right are the enveloping
categories ([GK94]). The categories on the left are the categories of elements of dendroidal
nerves of operadic algebras. In the second column are the categories of elements of Segal
presheaves. The functors on the right are discrete opfibrations, with fibers corresponding
to morphisms, operations, and elements of algebras respectively. Up to equivalence of
categories, the functors on the left and in the middle are the localizations by the ac-
tive morphisms. The active morphisms in ∆ and Ω are the endpoint preserving and
the boundary preserving morphisms respectively. The opfibration property and the lo-
calization property define twisted arrow categories uniquely up to isomorphism or up to
equivalence.

The construction TwQ, the most general construction of this work, has another mean-
ingful definition. Recall that for any operad Q and Q-algebra A the Baez–Dolan plus
construction A+ ≡ (Q,A)+ of A ([BD98]) is the operad whose algebras are Q-algebras
endowed with a Q-algebra map to A, while the enveloping operad UOp(A) of A ([GJ94,
Fre98]) is the operad whose algebras are Q-algebras endowed with a Q-algebra map from
A. The enveloping category U(A) of A is the underlying category of the operad UOpQ(A).
Similarly, the twisted arrow category TwQ(A) of A is the underlying category of the op-
erad TwOpQ(A) that we call the twisted arrow operad of A. Algebras over the operad
TwOpQ(A) are equivalently Q-algebras endowed with a Q-algebra map from A and with a
Q-algebra map to A such that the composition of these maps is the identity map of A. The
twisted arrow operad construction can be seen as a composition of these two constructions
in two ways: there is an isomorphism TwOpQ(A) ∼= UOp(Q,A)+(idA) ∼= (UOpQ(A), idA)+

and there is a sequence (Q,A)+ → TwOpQ(A)→ UOpQ(A) that determines TwOpQ(A).
We attempt to understand why categories of elements and twisted arrow categories

of Segal presheaves appear in homotopy theory. Twisted arrow categories of categories
appear in category1 and homotopy theory as the middle term of the subsequences ∆/C →
Tw(C) → Cop × C of the sequences (Cat) and (∆). For example, Thomason, Baues–
Wirsching and Hochschild–Mitchell cohomology theories are based respectively on the
categories ∆/C, Tw(C) and Cop × C ([BW85, Wel, GCNT13]). For operads the situation
should be similar, while the case of algebras is more delicate, for the following reason.

Twisted arrow categories of algebras have 2-categorical nature. In general for a Q-
algebra A there is a strict 2-category TQ(A) similar to bicategories of correspondences and

1Twisted arrow categories of categories implicitly appear in (co)end calculus via the functor Tw(C)→
Cop × C. We do not know if there is an analogous theory for operads.
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such that, after inversion of 2-morphisms, TQ(A) is the (∞, 1)-localization of the category
Tw(Q)/A by the active morphisms. The homotopy category of this (∞, 1)-localization is
TwQ(A) (Theorem 4.4).

An operad Q is canonically decomposable if for any (equivalently, for the terminal) Q-
algebra A connected components of Hom-categories in TQ(A) have initial objects. If an
operad Q is canonically decomposable, then for any Q-algebra A the category TwQ(A) ad-
mits a simple description, and the functor Tw(Q)/A→ TwQ(A) is the (∞, 1)-localization
by the active morphisms. The operads uAs and sOp are canonically decomposable, and
the left functors in the sequences (Cat), (Op), (Alg) and (SPsh) and the middle functors
in the sequences (Cat) and (Op) are (∞, 1)-localizations. As a corollary, we get Theorem
3.0.1 of [Wal21], which implies Theorem 1.1 of [BdBM20] and the asphericity of Ω, proved
in [ACM19].

There is another connection with homotopy theory. For any operad P the twisted
arrow category Tw(P ) is endowed with orthogonal factorization system (R−, R+). The
factorization system (R−, R+), with the degree map equal to arity, is a generalized Reedy
structure if and only if the underlying category of P is a groupoid. There is a more general
statement for graded operads (Theorem 2.54). We also consider the analogous case of
the image of Tw(P ) in U(P ) (Theorem 2.56), and the cases where the generalized Reedy
structure behaves particularly well.

Related works. Twisted arrow categories of simplicial operads were introduced inde-
pendently by Truong Hoang ([Hoa20]) with the aim of generalizing Quillen cohomology
and cotangent complex from ∞-categories to ∞-operads. We give possible dendroidal
analogue: the construction of a simplicial set from a dendroidal set. This construction
has 2-categorical nature and sends the nerve of an operad to the nerve of its twisted arrow
category. Otherwise we consider only the discrete case.

Graphical categories of Hackney–Robertson–Yau are similar to twisted arrow cate-
gories of the operads whose algebras are generalized operads ([HRY15, HRY18, HRY19,
HRY20a, HRY20b, Ray18]). However, the categories U and Ũ of [HRY20a] are not twisted
arrow categories of operads. The closely related graded operad mOp is not palatable, and
its twisted arrow category is non-dualizable generalized Reedy. We show that this prob-
lem, and essentially the same problem considered in [Ray18, HRY20a, HRY20b], is caused
by the suboperad ciuAs of mOp, the operad of monoids with anti-involution and with
compatible bilinear form. We show that this problem does not arise for similar operads
iuAsTr and iuAsiT r: these operads are palatable and the corresponding twisted arrow
categories are dualizable generalized Reedy.

The starting point of the present work was the work of Dehling and Vallette ([DV21])
and the observation that, being central to homotopy theory of operads, the category Ω
should arise from some construction applied to the operad sOp.

The functor Tw(P )→ U(P ) has appeared implicitly in the definition of Hochschild and
cyclic homology as functor homology ([PR02]). The connection with functor homology
was also studied by Benoit Fresse: the enveloping category U(P ) of an operad P is the
opposite of the category Γ+

P introduced in [Fre14].
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Twisted arrow categories and enveloping categories of operads generate algebraic pat-
terns of Chu and Haugseng ([CH21]). The approach of Chu and Haugseng is closely
related to existing nerve theorems ([Lei04, Web07, BMW12]). This should imply that
any operad generates a category via the nerve theorems. However, for a general operad
P , including operads mOp and mOp(g,n), representable presheaves over Tw(P ) are not
Segal, thus the corresponding category obtained from P via the nerve theorems in general
should be different from Tw(P ).

Structure of the paper. In Section 1 we recall the operads whose algebras are gener-
alized operads and describe operads whose algebras are cyclic algebras over cyclic operads.
In Section 2 we define twisted arrow categories and operads, describe the canonical decom-
posability property that allows to compute twisted arrow categories in practice, provide
examples of twisted arrow categories of operads, including examples related to functor
homology and to categories of cobordisms, describe the structure on twisted arrow cate-
gories of operads that is used in the rest of the work, and give a criterion for twisted arrow
categories of operads to be generalized Reedy. In Section 3 we describe the equivalence be-
tween algebras over an operad and single-object Segal presheaves over the corresponding
twisted arrow category and describe the connection between the categories of elements of
single-object Segal presheaves and the twisted arrow categories of the corresponding alge-
bras. Then we give two possible definitions of Segal presheaves and explain the connection
between these definitions. We show that the cyclic nerve of a category is a part of Segal
condition. We introduce generalized decomposition spaces, or 2-Segal sets, and describe
their connection with special morphisms of operads. This connection is used to prove that
Segal presheaves over nice operads can be seen as algebras. This allows for a simple proof
that the twisted arrow category of the operad of single-coloured operads is equivalent to
the category Ω. In Section 4 we give another definition of twisted arrow category, give an
explanation for the concrete definition of canonical decomposability property, and show
that twisted arrow categories of algebras have 2-categorical nature. We show that twisted
arrow category of an operad is the ∞-localization of the category of elements of its den-
droidal nerve by the active morphisms. In Appendix A we recall basic facts about strict
factorization systems and prove lemmas used in the main part. In Appendix B we show
how to check if the twisted arrow category of an operad is a particularly nice generalized
Reedy category. In Appendix C we give a possible construction of twisted arrow set of a
dendroidal set.
Acknowledgements. I would like to thank Toshitake Kohno for his advice and sup-
port, and Anton Khoroshkin, Genki Sato, Christine Vespa, Michal Wasilewicz and Jun
Yoshida for helpful discussions. I would also like to thank the anonymous referee for sug-
gesting improvements. The work was supported by the Japanese Government (MEXT)
scholarship.
Notation and conventions. Operads are graded, coloured, symmetric, and have iden-
tity operations. Gradings of operads are always nice, see Definition 1.7. Symmetric groups
act on operations on the right. Free and forgetful functors are denoted by F and U . Ex-
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pressions p(a1, . . . , an) denote both elements (p, a1, . . . , an) in free algebras FU(A) and
their images in A. Free operads are constructed not from symmetric sequences, but from
N-sequences: symmetric groups act freely on operations of a free operad. The operad
whose category of algebras is the category of uncoloured operads ([BM07]) is denoted by
sOp, and the similar operad encoding C-coloured operads is denoted by sOpC .

1. Preliminaries
We recall graph-substitution operads, the symmetric operads that encode generalized op-
erads. We list all the graph-substitution operads that appear in the present work. Then
we describe the four symmetric operads that encode cyclic monoids.

Graph-substitution operads. Graph-substitution operads are the operads that en-
code generalized operads. In most cases the colours of these operads are the integers
n, n ≥ −1. The operations of non-zero arity are non-empty connected graphs with
half-edges, endowed with additional structure. The input colours of such an operation p
correspond to the vertices of the graph of p, with the colour of a vertex of degree n equal
to (n− 1). The operadic substitution p ◦i q is obtained by substitution of the graph of q
into the i-th vertex of the graph of p.

1.1. Definition. A graph with half-edges G = (V,H, t, inv) is a finite set of vertices V , a
finite set of half-edges H, an adjacency map t : H → V , and an involution inv : H → H.
A leaf of G is a fixed point of inv. An inner edge of G is a two-element orbit of inv. The
set of vertices V together with the set of inner edges is a graph, which may have loops and
multiple edges. This graph is always assumed to be non-empty and connected.

1.2. Definition. An operadic graph is a graph with half-edges (V,H, t, inv) endowed with
linear order on vertices, linear order on leaves, and, for every vertex v ∈ V , linear order
on the set t−1(v) of half-edges adjacent to v. Linear orders on half-edges will be given by
bijections with sets [n] = {0, . . . , n}. Linear order on vertices will be given by bijection
with a set {1, . . . , n}.

Two operadic graphs are isomorphic if there are bijections between their vertices and

1 2 3 4

2 0
1

Figure 1: An operadic graph, an element of mOp(3, 2, 3, 3; 2). For each vertex its adjacent
half-edges are ordered from left to right. The orders on leaves and on vertices correspond
to the indexing.
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1 1 1 2 1 2 1 11

0 1 1 00

Figure 2: The unique element id−1 of mOp(−1;−1), the unique element id0 of mOp(0; 0),
the unique element ν of mOp(1;−1), the only two elements β and β ◦2 ξ of mOp(1, 1;−1),
and the only two elements id1 and ξ of mOp(1; 1).

between their half-edges that respect all the structure maps and linear orders. Isomorphic
graphs will be treated as the same graph.

1.3. Definition. For any m > 0 and n0, n1, . . . , nm ≥ −1 the set mOp(n1, . . . , nm;n0)
is the set of operadic graphs with m vertices and with (n0 + 1) leaves, such that for all j
the degree of the j-th vertex vj is equal to (nj + 1). Define additionally mOp(; 1) to be
the singleton set with element µ0, called the exceptional edge, and mOp(;−1) to be the
singleton set with element ⃝, called the nodeless loop.

Examples of operadic graphs are given in Figures 1, 2 and 3. The last figure suggests
that mOp is an operad, somewhat similar to the little-disks operad D2. An example of
composition in mOp is given in Figure 4. Formally this composition is defined as follows.

1.4. Definition. Let p and q be operadic graphs, with the number of leaves of q equal to
the degree of vi, the i-th vertex of p. The operadic graph p ◦i q is the graph obtained by
substitution of the graph q into the vertex vi: the set of vertices Vp◦iq is the set Vq⊔Vp\{vi};
the set of half-edges Hp◦iq is the set (Hp ⊔ Hq)/∼, where ∼ identifies the j-th leaf of q
with the j-th half-edge of vi for all j; the adjacency map tp◦iq coincides with tq on Hq and
with tp on Hp◦iq \Hq; the involution invp◦iq coincides with invp on Hp and with invq on
Hp◦iq \Hp; the set of leaves of p coincides with the set of leaves of p ◦i q, and by definition
the orders on these sets are the same; the sets t−1

p◦iq
(v) always coincide with either t−1

p (v)
or t−1

q (v), and again by definition the orders on these sets are the same; the k-th vertex
of Vq is the (k + i − 1)-th vertex of Vp◦iq, and the k-th vertex of Vp is the k-th vertex of
Vp◦iq if k < i, and the (k + |Vq| − 1)-th vertex of Vp◦iq if k > i.

1 2

1 02

= 1 2

1
0 2

Figure 3: An operadic graph from mOp(1, 2; 2) and its alternative depiction.
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1 2 3

2 1 0
◦2 1 2 3

1 2 0 3 4
= 1 2 3 4 5

2 1 0

Figure 4: An example of operadic composition in mOp.

Let p be an operadic graph with at least two vertices, with the i-th vertex vi having
degree 2. The operadic graph p ◦i µ0 is obtained by replacing the i-th vertex of p with an
edge: the set Vp◦iµ0 is the set Vp \ {vi}; the set Hp◦iµ0 is the set t−1

p (Vp◦iµ0) = Hp \ t−1
p (vi);

the adjacency map tp◦iµ0 is the restriction of tp to Hp◦iµ0. Let t−1
p (vi) = {h1, h2}, h′

1 =
invp(h1), h′

2 = invp(h2). The map invp◦iµ0 coincides with invp outside of h′
1 and h′

2. If
h1 is a leaf, then h′

2 becomes a leaf, if h2 is a leaf, then h′
1 becomes a leaf, otherwise

invp◦iµ0(h′
1) is equal to h′

2. There is a bijection between the leaves of p ◦i µ0 and the leaves
of p. The orders are preserved.

Finally, let p be an operadic graph with only one vertex, of degree 2. If p has a loop,
then we define p ◦1 µ0 to be ⃝. Otherwise p ◦1 µ0 is µ0.

1.5. Proposition. The collection of sets mOp with partial composition as described
above is an operad.

Proof. Symmetric groups act on the order of vertices: a vertex indexed by j in p is
indexed by σ−1(j) in pσ. The identity operations idn are the graphs with one vertex and
(n+ 1) half-edges, with all half-edges being leaves, and with the order on Hidn as the set
of leaves equal to the order on Hidn as the set of half-edges adjacent to the same vertex.
In particular, id−1 ∈ mOp(−1;−1) is the vertex without half-edges. The operad axioms
of right group action, unitality and compatibility of partial composition with group action
are straightforward to check.

To see that parallel associativity holds, take any elements p, q, r of mOp and integers
i > j such that the composition (p ◦i q) ◦j r exists. The subsets t−1

p (vi) and t−1
p (vj) of Hp

do not intersect, and this implies the following. If both q and r have at least one vertex,
with r having k vertices, then H(p◦iq)◦jr = (Hp ⊔ Hq ⊔ Hr)/∼ = H(p◦jr)◦i+k−1q, and the
subsets Hq and Hr of this set do not intersect. Thus the maps inv and t of (p ◦i q) ◦j r
and of (p ◦j r) ◦i+k−1 q coincide. If r is equal to µ0, and q has at least one vertex, then
H(p◦iq)◦jµ0 = Hp◦iq \ t−1

p◦iq
(vj) = ((Hp ⊔ Hq)/∼) \ t−1

p (vj) = ((Hp \ t−1
p (vj)) ⊔ Hq)/∼ =

H(p◦jµ0)◦i−1q. The map t(p◦iq)◦jµ0 is the restriction of tp◦iq, and it coincides with tq on Hq

and with the restriction of tp on Hp \ t−1
p (vj), and thus this map is equal to t(p◦jµ0)◦i−1q.

The elements h′
1 and h′

2 of H(p◦iq)◦jµ0 from the definition of the composition with µ0 are
elements of Hp, which implies that inv(p◦iq)◦jµ0 = inv(p◦jµ0)◦i−1q. The case q = r = µ0 is
checked case by case: when vi and vj are not connected by an inner edge, when they are
connected by an inner edge and one of their adjacent half-edges is a leaf, and when all of
their half-edges belong to inner edges.

For sequential associativity, the case when the operation r in a composition p◦i (q ◦j r)
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has non-zero arity is simple. When r = µ0, either a new leaf in q is created by removing
the j-th vertex, or a new inner edge is created. Again, in both cases it is easy to see that
sequential associativity holds.
The list of graph-substitution operads. Many important operads are closely re-
lated to the operad mOp. We call these operads graph-substitution operads. Below we
list the graph-substitution operads that appear in the present work. Unless stated oth-
erwise, these operads contain the exceptional edge µ0. Up to this additional operation,
graph-substitution operads are defined as follows.

Several versions of the operad encoding modular operads:

• The operad mOp(g,n), with colours given by pairs (g, n) with g ≥ 0 and n ≥ −1.
The operations are operadic graphs, as in mOp, but additionally endowed with a
genus map g : V → N. The colour of a vertex v is (g(v), deg(v) − 1). The total
genus of a graph G is ∑

v∈V g(v) + b1(G), where b1 is the first Betti number. The
operation µ0 is of colour (0, 1).

• The suboperad mOpst of mOp(g,n) on all operations that satisfy g(v) + deg(v) > 2
for all vertices v; it does not contain µ0. Modular operads, in the original sense of
[GK98], i.e. stable modular operads, are precisely the algebras over mOpst.

• The suboperad mOpnc of mOp that consists of all operations that are not a circle
with marked vertices or the nodeless loop ⃝.

The operads encoding generalized operads based on trees:

• The suboperad cOp′ of mOp consists of all operadic graphs that are trees. If the
set cOp(n1, . . . , nk;n0) is not empty, then n0 = ∑

nj − k + 1. We will denote these
sets simply as cOp(n1, . . . , nk). The same applies to suboperads of cOp′.

• The suboperad cOp of cOp′ consists of all trees with at least one leaf. The operad
cOp encodes cyclic operads.

• The suboperad sOp of cOp consists of rooted trees, i.e. of trees such that: every
inner edge contains exactly one 0-th half-edge of the two adjacent vertices; the 0-th
leaf, called root, is the 0-th half-edge of its vertex, which is called the root vertex.
Elements of sOp can be seen as planar rooted trees endowed with arbitrary order on
non-root leaves, see Figure 5. The algebras over the operad sOp are the uncoloured
symmetric operads ([BM07]).

• The suboperad pOp of sOp consists of planar rooted trees endowed with planar
order on non-root leaves. Its algebras are planar operads.

• The operad iuAs consists of trees with all vertices of degree 2, i.e. of lines with
vertices endowed with orientation. Its algebras are monoids with anti-involution.
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2 1 3 4

0 2 1 3 4

= 2

1

3

4

2

1 3

4

Figure 5: An element of sOp(2, 2, 2, 1; 4) represented as a planar rooted tree.

• The operad uAs is the intersection of sOp and iuAs. Its algebras are monoids. There
are two natural maps uAs → sOp that differ by the involution of uAs (categories
can be regarded as operads in two ways, equally (non)canonical).

The four operads related to cyclic monoids (monoids with a compatible bilinear form,
or, equivalently, a trace map):

• The suboperad ciuAs of mOp consists of the operadic graphs whose vertices have
degree 2. It additionally contains⃝ and the vertex without leaves. Its algebras are
cyclic monoids with anti-involution. (The letter c in ciuAs stands for cyclic, circle
or for the fact that ciuAs is obtained from the cyclic operad iuAs in a universal
way described in the next subsection.)

• The operads iuAsTr and iuAsiT r, see Definition 1.14. Their algebras can also be
seen as cyclic monoids with anti-involution.

• The suboperad cuAs of ciuAs consists of the operadic graphs whose vertices have
degree 2, all inner edges contain exactly one 0-th and one 1-st half-edge of adjacent
vertices; if an element of cuAs has leaves, then the 0-th leaf is required to be the
0-th half-edge of a vertex. These operadic graphs can be seen as lines and circles
with marked points, without order on half-edges adjacent to vertices. The operad
cuAs additionally contains ⃝ and the vertex without leaves. The corresponding
algebras are cyclic monoids.

These operads will suffice for our purposes. There are other operads that encode
generalized operads ([Mer10, Table 1]). We mention these only in Lemma 2.22.

1.6. Remark. For any set of colours C there is an operad sOpC such that the category
of sOpC-algebras is the category of C-coloured operads and colour-preserving morphisms.
The set of colours of sOpC is C ′ = ⊔

n∈NC
×(n+1). An element of sOpC is a planar rooted

operadic tree with any permutation on leaves, endowed with a map from the set of half-
edges to C such that the two half-edges of any inner edge have the same colour. In
particular, the operad sOp is an sOpN-algebra, and the operad sOpC is an sOpC′-algebra.
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Graded operads. Operads in this work are graded. Any operad can be graded via
arity, and for most operads appearing in practice the arity grading is the only reasonable
grading. However, for some operads the correct grading is different from the arity grading.

1.7. Definition. A grading ψ on an operad P is a map from operations of P to Z, or
to any other abelian monoid, such that for any operations p and q we have ψ(p ◦i q) =
ψ(p)+ψ(q), ψ(idc) = 0 and ψ(pσ) = ψ(p). For any operad P the arity grading ϕ sends an
operation p of arity n to (n− 1). We will always assume that the codomain of a grading
ψ is Z, that ψ(p) ≥ −1 for all operations p, that operations of grading (−1) have arity 0,
and that units of binary operations have grading (−1). Such grading will be called nice.
While we do not assume that operations of grading 0 have arity 1, we will show that this
property is necessary for the twisted arrow category of P to be generalized Reedy.

1.8. Definition. The grading ψ on the operads mOp and mOp(g,n) and on their subop-
erads sends an operadic graph p with underlying graph G = (V,H) to (|V | − 1 + 2b1(G)),
and sends µ0 to (−1) and ⃝ to 1.

The map ψ is a grading since the set of internal edges of p ◦i q is the disjoint union
of the sets of internal edges of p and of q, and b1(G) = |E| − |V | + 1. On suboperads of
mOp that contain only trees the grading ψ coincides with the arity grading ϕ.

Symmetric operads encoding cyclic algebras. Denote by τn = (0 . . . n) the cyclic
permutation in Sn+1. A cyclic operad P is an algebra over the operad cOp, or, equivalently,
a single-colour symmetric operad endowed with an action of τn on P (n) for all n > 0,
such that for any p ∈ P (m) and q ∈ P (n) the following holds: (p ◦1 q)τm+n−1 = qτn ◦n pτm ,
if n > 0; (p ◦1 q)τm−1 = pτ

2
m ◦m q, if n = 0; (p ◦i q)τm+n−1 = pτm ◦i−1 q, for i > 1; idτ1 = id;

and the actions of τn and of Sn on P (n) together generate an action of Sn+1 on P (n).

1.9. Proposition. The operads uAs and iuAs are cyclic.

Proof. Let β be the circle with two vertices from Figure 2. There is a bijection between
uAs and cuAs \ uAs and a bijection between iuAs and ciuAs \ iuAs. Both bijections are
given by the map p 7→ β ◦2 p. Cyclic permutations τn act on operations in uAs and iuAs
by cyclic permutations on indices of vertices of the corresponding circles in cuAs and
ciuAs. In particular, permutations τn decrease indices of vertices of circles by 1 modulo
(n + 1), thus µτn

n = µn and ξτ1 = ξ, where ξ is the non-trivial element of iuAs(1). This
description makes it easy to check directly that the operads uAs and iuAs are cyclic.

1.10. Definition. Let P be a cyclic operad in a symmetric monoidal category C. A
cyclic P -algebra A is an algebra over P , seen as a symmetric operad, together with a
map B : A ⊗ A → V in C such that the maps Bn : P (n) ⊗ A⊗(n+1) → V defined by
Bn(p⊗ a0⊗ · · · ⊗ an) = B(a0⊗ p(a1⊗ · · · ⊗ an)) are compatible with the action of τn, i.e.
Bn(pτn ⊗ a0 ⊗ · · · ⊗ an) = Bn(p⊗ an ⊗ a0 ⊗ · · · ⊗ an−1).
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1.11. Proposition. Let P be a cyclic {c1}-coloured operad. Define cyc(P ) to be the
{c1, c2}-coloured symmetric operad (P ⊔ F (β))/∼, with β ∈ F (β)(c1, c1; c2), and with
equivalence ∼ generated by β ◦2 p

τn ∼ (β ◦2 p)(1...(n+1)). Cyclic P -algebras are precisely the
algebras over the coloured symmetric operad cyc(P ).
Proof. Any cyc(P )-algebra A is a P -algebra via the inclusion map P → cyc(P ). The
structure map of A corresponding to β is the bilinear map of the cyclic P -algebra A. The
equivalence relation in cyc(P ) ensures that the corresponding maps Bn are compatible
with the action of τn.

1.12. Remark. For any cyclic operad P the operation β in cyc(P ) is symmetric: β = β◦2
id = β ◦2 id

τ1 = (β ◦2 id)(12) = β(12). This also shows that the bilinear map B : A⊗A→ V
of any cyclic algebra is symmetric with respect to the symmetric product ⊗.

1.13. Proposition. The operad cuAs is isomorphic to cyc(uAs). The operad ciuAs is
isomorphic to cyc(iuAs).
Proof. The circle with two vertices corresponds to the operation β. The vertex without
leaves corresponds to idc2 . The nodeless loop⃝ corresponds to (β ◦2µ0)◦1µ0 and encodes
the map I → V .

The obvious morphism uAs⊔F (β)→ cuAs that sends β to the circle with two vertices
induces the morphism cyc(uAs) → cuAs, since generating relations of cyc(uAs) hold in
cuAs. Take the operation ν = β◦1µ0 in cyc(uAs). We have ν◦1µ2 = (β◦1µ0)◦1µ2 = (β◦2
µ2)◦1µ0 = (β◦2µ2)(123)◦1µ0 = ((β◦2µ2)◦2µ0)(12) = (β◦2(µ2◦1µ0))(12) = (β◦2 idc1)(12) = β.
Thus any operation p in cyc(uAs) with output colour c2 and different from idc2 is of the
form ν ◦1 q, with q in uAs. If the operation p above has non-zero arity, then p = β ◦2 r
for some r in uAs. The morphism cyc(uAs) → cuAs is bijective: the operation r above
is determined uniquely by the image of p in cuAs.

Similarly, there is a morphism cyc(iuAs)→ cuiAs, and any operation p in cyc(iuAs)
with output colour c2 and different from idc2 is of the form ν ◦1 q, with q in iuAs. In
cyc(iuAs) we have ν◦1ξ = (β◦2 (ξ◦1µ0))◦1ξ = ((β◦2ξ)◦2µ0)◦1ξ = ((β◦2ξ)(12)◦2µ0)◦1ξ =
((β ◦2 ξ) ◦1 µ0) ◦1 ξ = ν ◦1 ξ ◦1 ξ = ν and β = ν ◦1 µ2 = ν ◦1 ξ ◦1 µ2 = (ν ◦1 µ2)(12) ◦1 ξ ◦2 ξ =
β ◦1 ξ ◦2 ξ. If the operation p above has non-zero arity, then p is of the form β ◦2 r with r
in iuAs. Again, the operation r is determined uniquely by the image of p in ciuAs, and
the map cyc(iuAs)→ ciuAs is bijective.

Later we will see that the operad ciuAs does not satisfy properties shared by many
graph-substitution operads. There are two other operads, iuAsTr and iuAsiT r, whose
algebras are also monoids with anti-involution and with a trace map. The difference
between ciuAs, iuAsTr and iuAsiT r is that the first operad describes algebras such that
Tr(a∗) = Tr(a), the second operad does not have this requirement, and the third operad
is such that Tr(a∗) = θ(Tr(a)), where θ is the involution of the target of the trace map.
Formally these operads are defined as follows.
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1.14. Definition. The operad iuAsiT r is the {c1, c2}-coloured operad generated by ele-
ments µ0 ∈ iuAsiT r(; c1), µ2 ∈ iuAsiT r(c1, c1; c1), ξ ∈ iuAsiT r(c1; c1), ν ∈ iuAsiT r(c1; c2)
and θ ∈ iuAsiT r(c2; c2), by relations on µ0, µ2 and ξ that are the same as the relations in
iuAs, and by relations ν ◦1µ

(12)
2 = ν ◦1µ2, ν ◦1 ξ = θ ◦1 ν, and θ ◦1 θ = idc2. The suboperad

iuAsTr of iuAsiT r is generated by µ0, µ2, ξ and ν.
There is only one operation in iuAsiT r(; c2) and in iuAsTr(; c2), again denoted by ⃝.

This operation is invariant under involution: θ ◦1 ⃝ = ⃝. The remaining elements in
iuAsiT r \ iuAs can be seen as oriented circles, with marked vertices endowed with orders
on adjacent half-edges. Substitution into θ changes the orientation of the circles.

2. Twisted arrow categories
Twisted arrow operads. We define the twisted arrow operad TwOpQ(A) of an algebra
A over a set-operad Q. This construction is closely related to two classical constructions:
the enveloping operad construction UOpQ(A) ([GJ94, Fre98]) and the Baez–Dolan plus
construction (Q,A)+ ([BD98]).

2.1. Definition. Let A be an algebra over a C-coloured set-operad Q. The Q-algebra
EO(A) is the algebra generated by the set HC = {hc, c ∈ C} ∼= C and by a copy of A, and
factored by relations in A. In other words, EO(A) is F (HC , U(A))/Rel A = F (HC) ⊔ A,
where F and U are the free and the forgetful functors.

2.2. Definition. Let A be an algebra over a C-coloured set-operad Q. The Q-algebra
TO(A) is the algebra generated by two copies of A, with the second copy then factored by
relations in A, i.e. TO(A) is F (U(A), U(A))/Rel A = F (U(A)) ⊔ A.

Any element of EO(A) is representable by an element of F (Hc, U(A)) of the form
q(hc1 , . . . , hcm , a1, . . . , an), and any element of TO(A) is representable by an element of
F (U(A), U(A)) of the form q(a′

1, . . . , a
′
m, a1, . . . , an), with elements a′

j and aj taken from
the first and from the second copy of A respectively. The elements hcj

and a′
j in the ex-

pressions above will be called variables. Variables in TO(A) will be marked with an apos-
trophe. For any element in EO(A) or in TO(A) the multiset of its variables is well defined,
while the elements aj ∈ A in general depend on the choice of a representative. There are
two natural maps from TO(A): the evaluation map ev : TO(A) = F (U(A))⊔A→ A, with
ev([q(a′

1, . . . , a
′
m, a1, . . . , an)]) = q(a′

1, . . . , a
′
m, a1, . . . , an), and the map TO(A) → EO(A)

that sends variables to their colours. By [q(. . . )] we denote the element of TO(A) or of
EO(A) represented by the expression q(. . . ).

2.3. Definition. Let A be an algebra over a C-coloured operad Q. The enveloping op-
erad UOpQ(A) of A is C-coloured. For any c0, . . . , cm ∈ C the set UOpQ(A)(c1, . . . , cm; c0)
consists of the elements [q(hc1 , . . . , hcm , a1, . . . , an)] of EO(A) endowed with a linear order
on variables, and with the output colour of q equal to c0. We can, and will, assume that
the variables hcj

in expressions [q(hc1 , . . . , hcm , a1, . . . , an)] are ordered from left to right.
By definition the composition [p(hc1 , . . . , hcm , a1, . . . , an)] ◦i [q(hd1 , . . . , hdk

, b1, . . . , bl)] is
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equal to [(p ◦i q)(hc1 , . . . , hci−1 , hd1 , . . . , hdk
, b1, . . . , bl, hci+1 , . . . , hcm , a1, . . . , an)]. Symmet-

ric groups act by permutation on the orders of variables. The identity maps are the maps
[idc(hc)].

2.4. Definition. Let A be an algebra over a C-coloured operad Q. The Baez–Dolan
plus construction (Q,A)+ of A is an A-coloured operad. For any a′

0, . . . , a
′
m ∈ A the

set (Q,A)+(a′
1, . . . , a

′
m; a′

0) consists of the elements [q(a′
1, . . . , a

′
m)] of F (U(A)) endowed

with a linear order on variables, and with the evaluation q(a′
1, . . . , a

′
m) equal to a′

0. We
will assume that the variables a′

j in expressions [q(a′
1, . . . , a

′
m)] are ordered from left to

right. We define the composition [p(a′
1, . . . , a

′
m)] ◦i [q(b′

1, . . . , b
′
k)] to be equal to [(p ◦i

q)(a′
1, . . . , a

′
i−1, b

′
1, . . . , b

′
k, a

′
i+1, . . . , a

′
m)]. Symmetric groups act by permutation on the or-

ders of variables. The identity maps are the maps [idc(a′)].

2.5. Definition. Let A be an algebra over a C-coloured operad Q. The twisted arrow
operad TwOpQ(A) of A is an A-coloured operad. For any a′

0, . . . , a
′
m ∈ A the set of

operations TwOpQ(A)(a′
1, . . . , a

′
m; a′

0) consists of the elements [q(a′
1, . . . , a

′
m, a1, . . . , an)]

of TO(A) endowed with a linear order on variables, with q(a′
1, . . . , a

′
m, a1, . . . , an) equal

to a′
0. The variables a′

j in expressions [q(a′
1, . . . , a

′
m, a1, . . . , an)] are ordered from left to

right. Composition [p(a′
1, . . . , a

′
m, a1, . . . , an)] ◦i [q(b′

1, . . . , b
′
k, b1, . . . , bl)] is equal to [(p ◦i

q)(a′
1, . . . , a

′
i−1, b

′
1, . . . , b

′
k, b1, . . . , bl, a

′
i+1, . . . , a

′
m, a1, . . . , an)], where variables are all the el-

ements a′
j and b′

j. Symmetric groups act by permutation on the orders of variables. The
identity maps are the maps [idc(a′)].

It follows from the definition of composition that (Q,A)+, UOpQ(A) and TwOpQ(A)
are operads. That this composition is well-defined can be checked as follows. The
equivalence relation on the elements of F (U(A), U(A)) is generated: by relations of
the form [(p ◦i q)(. . . , ai, . . . , ai+n−1, . . . )] = [p(. . . , q(ai, . . . , ai+n−1), . . . )], where all the
elements in the subexpression q(. . . ) are in the second copy of A; and by compati-
bility of the algebra structure with the action of symmetric group, i.e. by relations
[qσ(. . . , aσ(j), . . . )] = [q(. . . , aj, . . . )]. These generating equivalences on representatives
t1 and t2 of elements of TO(A) produce corresponding generating equivalences on repre-
sentatives of t1 ◦i t2. Analogous statements hold for the operad UOpQ(A).

2.6. Proposition. [GJ94, Fre98] Let A be an algebra over a set-operad Q. The category
of UOpQ(A)-algebras is equivalent to the slice category A/Q−alg of Q-algebras under A.

Proof. For a UOpQ(A)-algebra B the corresponding Q-algebra B′ is defined by B′(c) =
B(c), with structure maps given by q(b1, . . . , bn) = [q(hc1 , . . . , hcn)](b1, . . . , bn), where
bj ∈ B(cj), and with Q-algebra map A → B′ sending an element a to the element
of B corresponding to the arity 0 operation [id(a)]. In the opposite direction, for a
Q-algebra B′ and a Q-algebra map f : A → B′ the UOpQ(A)-algebra B is defined
by B(c) = B′(c), with structure maps given by [q(hc1 , . . . , hcn , a1, . . . , am)](b1, . . . , bn) =
q(b1, . . . , bn, f(a1), . . . , f(am)).
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2.7. Proposition. Let A be an algebra over a set-operad Q. The category of (Q,A)+-
algebras is equivalent to the slice category Q−alg/A of Q-algebras over A.

Proof. Let B be a (Q,A)+-algebra. The corresponding Q-algebra B′ is defined by
B′(c) = ⊔a′∈A(c)B(a′), and by q(b1, . . . , bn) = [q(a′

1, . . . , a
′
n)](b1, . . . , bn), where bj ∈ B(a′

j).
The Q-algebra map B′ → A sends b ∈ B(a′) to a′. In the opposite direction, let ε : B′ → A
be a Q-algebra map. Define (Q,A)+-algebra B by B(a′) = ε−1(a′), with the algebra maps
given by [q(a′

1, . . . , a
′
n)](b1, . . . , bn) = q(b1, . . . , bn).

2.8. Proposition. For any algebra A over a set-operad Q the twisted arrow operad of A
is isomorphic to the operad UOp(Q,A)+(idA) and to the operad (UOpQ, idA)+. The category
of TwOpQ(A)-algebras is equivalent to the category of Q-algebras B over and under A such
that the map A→ B → A is the identity map.

Proof. The construction of isomorphisms is straightforward. The isomorphisms in turn
imply the equivalence of categories of algebras. Explicitly this equivalence works as fol-
lows.

Let B be a TwOpQ(A)-algebra. The corresponding Q-algebra B′ is defined by B′(c) =
⊔a′∈A(c)B(a′), and by q(b1, . . . , bn) = [q(a′

1, . . . , a
′
n)](b1, . . . , bn), where bj ∈ B(a′

j). The
Q-algebra map A→ B′ sends an element a to the element of B corresponding to the arity
0 operation [id(a)]. The Q-algebra map B′ → A sends b ∈ B(a′) to a′. The composition
A → B′ → A is the identity map. Let B′ be a Q-algebra endowed with compatible Q-
algebra maps f : A→ B′ and ε : B′ → A. The TwOpQ(A)-algebra B is defined by B(a′) =
ε−1(a′), and by [q(a′

1, . . . , a
′
n, a1, . . . , am)](b1, . . . , bn) = q(b1, . . . , bn, f(a1), . . . , f(am)).

2.9. Lemma. Let A be an algebra over a C-coloured operad Q. There is an inclusion of
operads (Q,A)+ → TwOpQ(A) and a discrete opfibration of operads α : TwOpQ(A) →
UOpQ(A).
Proof. Notice that for any operad P and P -algebra B there is canonical inclusion of
operads P → UOpP (B). The obvious inclusion (Q,A)+ → TwOpQ(A) can be seen as the
inclusion (Q,A)+ → UOp(Q,A)+(idA).

For the second statement, the map TO(A) → EO(A) that sends an element to its
colour respects the operad structure on TwOpP (A) and UOpQ(A). For any choice of ele-
ments a′

1, . . . , a
′
m and an operation [q(hc1 , . . . , hcm , a1, . . . , am)] from corresponding colours

c1, . . . , cm the unique lift of this operation is [q(a′
1, . . . , a

′
m, a1, . . . , am)].

2.10. Remark. The image of (Q,A)+ in TwOpQ(A) is the preimage of the suboperad
Q of the operad UOpQ(A), i.e. the sequence (Q,A)+ → TwOpQ(A) → UOpQ(A) is in a
certain sense short exact.

Recall that any morphism of operads induces adjoint pair of extension and restric-
tion functors between respective categories of algebras. The opfibration TwOpQ(A) →
UOpQ(A) induces the left adjoint extension functor equivalent to the forgetful functor
(A/Q−alg)/idA → A/Q−alg and the right adjoint restriction functor that sends a map
f : A → B to the map (f, idA) : A → B × A, with the projection B × A → A on the
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second factor as the augmentation map. This is opposite to the usual case where right
adjoint restriction functor is forgetful.

Twisted arrow operads and enveloping operads are functorial constructions, and the
functors below commute with the sequence (Q,A)+ → TwOpQ(A)→ UOpQ(A).

2.11. Proposition. A morphism f : A → B of Q-algebras induces morphisms f∗ be-
tween respective twisted arrow operads, enveloping operads and plus constructions.

Proof. The morphism f of Q-algebras induces morphisms FU(A)→ FU(B), FU(A) ⊔
A → FU(B) ⊔ B = TO(A) → TO(B) and EO(A) → EO(B) of Q-algebras, which in
turn induce the morphisms f∗ : (Q,A)+ → (Q,B)+, f∗ : TwOpQ(A) → TwOpQ(B) and
f∗ : UOpQ(A)→ UOpQ(B).

2.12. Proposition. For any P -algebra A a morphism f : Q→ P of set-operads induces
morphisms f∗ : (Q,A)+ → (P,A)+, f∗ : TwOpQ(A)→ TwOpP (A), and f∗ : UOpQ(A)→
UOpP (A).
Proof. The morphism f∗ : TwOpQ(A) → TwOpP (A) sends [q(a′

1, . . . , a
′
m, a1, . . . , an)]

to [f(q)(a′
1, . . . , a

′
m, a1, . . . , an)]. Here we implicitly use the restriction functor P−alg →

Q−alg. The remaining cases are similar.

2.13. Proposition. For any Q-algebra B a morphism of operads f : Q → P induces
morphisms (Q,B)+ → (P,B′)+, TwOpQ(B)→ TwOpP (B′), and UOpQ(B)→ UOpP (B′),
where B′ is the extension of B.

Proof. The map of expressions is defined as in the previous proposition.

Twisted arrow categories. We define twisted arrow categories of algebras over op-
erads and introduce the property of operads called canonical decomposability. Twisted
arrow categories and enveloping categories of canonically decomposable operads admit a
simple description.

2.14. Definition. Let A be an algebra over a C-coloured operad Q. The enveloping
category UQ(A) of A is the underlying category of the operad UOpQ(A), i.e. the category
of arity 1 operations of UOpQ(A), with HomUQ(A)(c1, c2) = UOpQ(A)(c1; c2).

2.15. Definition. Let A be an algebra over a C-coloured operad Q. The twisted ar-
row category TwQ(A) of A is the underlying category of the operad TwOpQ(A), i.e.
HomTwQ(A)(a′

1, a
′
2) = TwOpQ(A)(a′

1; a′
2).

2.16. Remark. The discrete opfibration of operads TwOpQ(A)→ UOpQ(A) restricts to
discrete opfibration of categories α : TwQ(A)→ UQ(A).
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2.17. Example. Let uAs be the operad of (unital associative) monoids and A be a
monoid. The objects of TwuAs(A) are the elements of A. A morphism from an element a′ is
representable by an element [µn+m+1(a1, . . . , an, a

′, an+1, . . . , an+m)] of TO(A), and this el-
ement is equal to [µ3(b, a′, c)], with b = µn(a1, . . . , an) and c = µm(an+1, . . . , an+m), where
n and m might be equal to 0. Later we will show that for any morphism in TwuAs(A) its
representative of the form µ3(b, a′, c) is unique. A composition [µ3(b2, d

′, c2)]◦[µ3(b1, a
′, c1)]

is equal to [µ5(b2, b1, a
′, c1, c2)], i.e. to [µ3(µ2(b2, b1), a′, µ2(c1, c2))]. Thus TwuAs(A) is the

usual twisted arrow category Tw(A) of a monoid A. The discrete opfibration TwuAs(A)→
UuAs(A) = A× Aop corresponds to the copresheaf Hom : A× Aop → Sets.

The following example shows that in general it is impossible to choose canonical rep-
resentatives of morphisms in twisted arrow categories.

2.18. Example. For a set C = {c0, c1, c2, c3, c4} let P be the C-coloured operad generated
by operations p ∈ P (c1, c2; c0), q1, q2 ∈ P (c3, c4; c2) and relation p ◦2 q1 = p ◦2 q2, and
A = {a0, a1, a2, b2, a3, a4, b4} be the P -algebra such that ai and bi have colour ci, and
p(a1, a2) = p(a1, b2) = a0, q1(a3, a4) = q1(a3, b4) = a2, and q2(a3, a4) = q2(a3, b4) = b2.
Then in TwP (A) we have [(p ◦2 q1)(a′

1, a3, b4)] = [p(a′
1, a2)] = [(p ◦2 q1)(a′

1, a3, a4)] =
[(p◦2q2)(a′

1, a3, a4)] = [p(a′
1, b2)], i.e. this morphism does not have canonical representative.

The following property at first may seem artificial. Its true nature is explained by
Proposition 4.5 and its corollary, the localization lemma.

2.19. Definition. Let Q be a set-operad and Q′ be a subset of Q. The operad Q is
canonically decomposable via Q′ if for any operation q in Q of non-zero arity there exist:
unique operation q′ in Q′, unique operations ql in Q, and unique indices jli satisfying
jl1 < · · · < jlkl

for all l, such that q = q′(idc1(1), q0(j01, . . . , j0k0), . . . , qm(jm1, . . . , jmkm)),
where (m+ 2) is the arity and c1 is the first input colour of q′, and the expression denotes
the operadic composition of the operation q′ with operations ql, permuted via indices jli.

2.20. Example. The operads uCom, Com, uAs and As of commutative monoids, com-
mutative semigroups, monoids and semigroups respectively are canonically decomposable:
uCom via {µ2}, Com via {µ1, µ2}, uAs via {µ(12)

3 }, and As via {µ1, µ2, µ
(12)
2 , µ

(12)
3 }.

2.21. Lemma. Let Q be an operad canonically decomposable via Q′, and A be a Q-
algebra. Then any morphism f in TwQ(A) has exactly one representative of the form
q′(a′, a0, . . . , am) with operation q′ in Q′. Likewise, any morphism f in UQ(A) has unique
representative of the form q′(h1, a0, . . . , am) with q′ in Q′. Such representatives of mor-
phisms will be called canonical representatives.
Proof. For any representative q(a′, b1, . . . , bl) of a morphism f in TwQ(A) take the canon-
ical decomposition q′(1, q0(j01, . . . , j0k0), . . . , qm(jm1, . . . , jmkm)) of q and let al be ql((bl)).
Then q′(a′, a0, . . . , am) is a canonical representative of f . This gives a map from repre-
sentatives of f to canonical representatives of f . Any canonical representative is mapped
to itself. If two representatives are equivalent via generating equivalence, then they are
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mapped to the same canonical representative. If two canonical representatives are equiv-
alent, they are equivalent via a sequence of generating equivalences, and thus they are
equal.

Next we prove that some of the graph-substitution operads are canonically decompos-
able.

2.22. Lemma. The operads pOp, sOpC, cOp, uAs, iuAs, cuAs, ciuAs, iuAsTr, iuAsiT r,
mOp, mOp(g,n), mOpst, mOpnc and the operads encoding wheeled properads, wheeled op-
erads, dioperads and 1

2-props are canonically decomposable:

• pOp is canonically decomposable via reduced planar trees, the planar rooted trees
with (m+ 2) vertices, where m ≥ 0, with the first vertex having m input edges and
connected to m upper vertices and to one root vertex, with the root vertex being
indexed by 2, and the upper vertices being indexed from 3 to (m+2) in planar order,

• sOpC is canonically decomposable via reduced symmetric trees, the same trees as
above, with the root vertex v2 connected to the first vertex by the first edge of v2,
with the order on leaves such that for each vertex vj the indices of leaves of vj are
ordered in planar order, see Figure 7,

• cOp is canonically decomposable via reduced cyclic trees, the planar trees of height
2, without the root leaf, with the root vertex indexed by 1, with all m edges of the
first vertex being connected to the m upper vertices, with upper vertices indexed in
planar order, and with the order on leaves such that for each vertex vj the indices
of leaves of vj are ordered in planar order,

• mOp is canonically decomposable via reduced modular graphs, the elements of mOp
without loop-edges and such that every vertex except the first one is adjacent only to
the first vertex, with vertices ordered via the order on the edges of the first vertex,
with edges of each vertex except the first vertex ordered so that first come the edges
adjacent to the first vertex, ordered via the order on the edges of the first vertex, and
then come leaves, ordered via the global order on leaves.

1

2 3 4
0 2 1

Figure 6: A reduced modular graph. The upper vertices are indexed by 2, 3 and 4, since
they appear in that order as vertices adjacent to the first vertex. The order on edges of
upper vertices is obtained from the order on edges of the first vertex and from the order
on leaves.
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p0

2
p

p1

5 3

p2 p3

1

4 =

p
(12)
0

p

p
(12)
1

3 5

p2 p3

1

2 4

Figure 7: These trees represent the same morphism from p in the twisted arrow category
TwsOpC

(P ) of an operad P , but only the right tree is the canonical representative. The
input edges of the source vertex p cannot be permuted. In the notation of Lemma 2.21
we have a0 = p

(12)
0 , a1 = p

(12)
1 , a2 = p2, and a3 = p3.

Proof. In all cases except mOpst the proofs are similar: an operation q of these operads
is a graph endowed with additional structure; the graphs of operations q0, . . . , qm are the
maximal connected subgraphs of the graph of q that do not contain the vertex indexed
by 1; the graph of the operation q′ is obtained from the graph of q by contraction of the
subgraphs q0, . . . , qm; if a graph ql is the edge without vertices, then in q′ we replace the
corresponding edge with the edge with one vertex; if necessary, additional conditions on
orders on edges, leaves and neighbourhoods of vertices of q′ ensure that the operations q′

and q0, . . . , qm are unique. See Figures 6 and 7. The case of mOpst is slightly different:
since mOpst does not contain µ0, the first vertex of the corresponding reduced graphs
may be adjacent to leaves or to loops without vertices.

2.23. Remark. The operad of properads is not canonically decomposable, see Exam-
ple 4.7.

The first vertex in all reduced trees or graphs above will be called the source vertex,
and the remaining vertices will be called the non-source vertices.

2.24. Corollary. For a planar, symmetric, cyclic operad or an mOp-algebra P the
corresponding twisted arrow category Tw(P ) has operations of P as objects. A morphism
from an operation p is canonically represented by unique reduced planar, symmetric, cyclic
tree, or modular graph with vertices marked by operations of P , with the source vertex
marked by p. The target of a morphism is equal to the evaluation of the corresponding
tree or graph. A composition of morphisms h : p → r and h′ : r → t is obtained by
grafting the non-source vertices of h′ to corresponding leaves of h, and then contracting
the edges not adjacent to p via composition in P . The case of the enveloping category of
P is similar, except the source vertices of morphisms are not marked by operations of P .

Main examples. Several categories fundamental to homotopy theory are equivalent to
twisted arrow categories of operads or cyclic operads. This includes the simplex category
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∆, Connes’ cyclic category Λ, Segal’s category Γ, the opposite of the category of finite
sets, and, as we show later, Moerdijk–Weiss dendroidal category Ω.

2.25. Lemma. For any operad Q and terminal Q-algebra A the twisted arrow category
TwQ(A) is isomorphic to the enveloping category UQ(A).
Proof. The fibres of the canonical opfibration TwQ(A)→ UQ(A) are singletons.

2.26. Proposition. The twisted arrow category TwpOp(uAspl) and the enveloping cat-
egory UpOp(uAspl) of the terminal planar operad uAspl are isomorphic to the category
∆.

Proof. In the planar operad uAspl there is exactly one operation µn for each arity n ≥ 0.
A reduced planar tree with lower vertex µm0 connected by the i-th edge to the source
vertex µn, and with upper vertices µmj

, 1 ≤ j ≤ n, is the canonical representative of a
morphism from µn to µm0+···+mn−1. The categories TwpOp(uAspl) and ∆ are isomorphic:
the operation µn corresponds to [n], and the morphism above corresponds to the map f
with f(0) = i− 1, f(j)− f(j− 1) = mj. This correspondence is bijective. The set-map f
is equal to the following map from the indices of leaves of µn to the indices of leaves of the
target: the j-th leaf is mapped to the rightmost, i.e. to the next in the counter-clockwise
direction, leaf of the tree that was grafted into the j-th leaf, including the 0-th (root) leaf.
Functoriality follows easily from this description.

2.27. Proposition. Let uCom be the terminal symmetric operad, the operad of commu-
tative monoids. The categories TwsOp(uCom) and UsOp(uCom) are isomorphic to Segal’s
category Γ = sk(FinSetop∗ ), the skeleton of the opposite category of the category of finite
pointed sets.

Proof. Again, there is exactly one operation µn ∈ uCom(n) for each arity n ≥ 0, and
a reduced symmetric tree with the root vertex µm0 connected by the 1-st edge to the
source vertex µn, and with upper vertices µmj

, 1 ≤ j ≤ n, is the canonical representative
of a morphism µn → µm0+···+mn−1. Under the isomorphism of TwsOp(uCom) and Γ the
object µn corresponds to the set [n] with marked point 0, the tree above corresponds to
the opposite of the map of sets f : [m0 + · · · + mn − 1]→ [n], and this map is described
by its fibres: f−1(j) is the set of indices of leaves adjacent to the j-th non-source vertex,
with the root leaf and the root vertex indexed by 0. This correspondence between trees
and maps is well-defined, bijective and functorial.

2.28. Proposition. Let uComc be the terminal cyclic operad, the cyclic operad of cyclic
commutative monoids. The categories TwcOp(uComc) and UcOp(uComc) are the skeletons
of the opposite category of the category of non-empty finite sets. Let uCom′

c be the terminal
cOp′-algebra. The categories TwcOp′(uCom′

c) and UcOp′(uCom′
c) are the skeletons of the

opposite category of the category of finite sets.

Proof. As in the symmetric case, the set of indices of leaves of the j-th vertex is the
fibre f−1(j) of the corresponding map of sets.
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Recall that the inclusion of operads pOp → sOp induces the extension functor Sym,
called symmetrization, from planar operads to symmetric operads. Thus for any planar
operad P the inclusion pOp → sOp induces the functors TwpOp(P ) → TwsOp(Sym(P ))
and UpOp(P )→ UsOp(Sym(P )).

2.29. Proposition. For any planar operad P the functor TwpOp(P )→ TwsOp(Sym(P ))
is an equivalence of categories. In particular, the category TwsOp(uAs), i.e. the category
TwsOp(Sym(uAspl)), is equivalent to the category TwpOp(uAspl) = ∆.

Proof. An object in TwsOp(Sym(P )) is an operation of the form pσ, p ∈ P , and pσ

is isomorphic to p via the morphism with trivial non-source vertices and with leaves
permuted by σ−1. The full subcategory A of TwsOp(Sym(P )) on objects p ∈ P , i.e. on
images of objects of the category TwpOp(P ), is equivalent to the category TwsOp(Sym(P ))
itself.

Any morphism f in A is represented by a reduced symmetric tree t′ with vertices
marked by elements of Sym(P ), with the source vertex marked by an element of P . Since
the action of symmetric groups in Sym(P ) is free, there is exactly one symmetric tree t
of height 3 (that is not assumed to be reduced) that represents f and whose non-source
vertices are marked by operations pi from P , not merely from Sym(P ) (compare with
Figure 7). The tree t is obtained from t′ by permutation of edges of non-source vertices.
Denote by σ the permutation of the leaves of t. The target of f is equal to qσ, where
q is the evaluation of the planar tree t, i.e. of t endowed with trivial permutation on
leaves. Both q and qσ are in P . Since the action of symmetric groups on P is free, the
permutation σ is trivial, and t is reduced. Any morphism in A is represented by unique
reduced planar tree. The essentially surjective functor TwpOp(P )→ A is fully faithful.

2.30. Proposition. Let uAsc be the cyclic associative operad. Then TwcOp(uAsc) is
equivalent to Connes’ cyclic category Λ.

Proof. The proof is similar to that of Proposition 2.29. Any object µσn is isomorphic to
µn via permutation isomorphism. The leaves of a tree that represents a morphism in the
corresponding subcategory, and whose vertices are marked by operations µnj

, are always
cyclically ordered. To get an isomorphism with Λ one can proceed as in Proposition 2.26:
then µn → µm corresponds to morphisms [n] → [m]; or as in Proposition 2.27: then
µn → µm corresponds to ([m]→ [n])op.

Additional examples. The functors that appeared in the works of Pirashvili and
Richter ([PR02]) and Loday ([Lod98]) that connect Hochschild and cyclic homology the-
ory with functor homology are equivalent to canonical opfibrations Tw(P ) → U(P ). We
describe a similar functor related to 2-dimensional cobordisms.

2.31. Proposition. The category UcOp(uAsc) is the opposite of the category F(as) of
non-commutative sets ([FT87, A10], see also [FL91, PR02]), and the category UsOp(uAs)
is the opposite of the subcategory Γ(as) ⊂ F(as) of maps preserving 0.

Proof. The statement for Γ(as) appears in [Fre14], and is easy to prove directly.
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2.32. Remark. It is not clear whether the theorem of Pirashvili and Richter admits a
generalization. This theorem has a simple proof based on existence of a certain strict
factorization system on the enveloping categories of the operads uAs and uAsc ([Sło03,
Zim04]). Such strict factorization system does not exist for the symmetric operad pOp,
or sOp, or any other operad P such that there exist non-isomorphic objects of the same
colour in Tw(P ).

The following commutative diagram is (transposed and opposite to) the diagram from
[PR02, section 1.4]. The right square is also described in that section.

∆ Γ(as)op sk(FinSetop∗ )

Λ F(as)op sk(FinSetop)

Ĉop

The arrows in this diagram are the following functors. The two horizontal arrows on
the left are equivalent to opfibrations TwsOp(uAs) → UsOp(uAs) and TwcOp(uAsc) →
UcOp(uAsc). More precisely, the upper left arrow is the composition of the equivalence
TwpOp(uAs) → TwsOp(Sym(uAs)) with the canonical opfibration. The lower left arrow
is also a similar composition, with Λ being the twisted arrow category of the terminal
“planar cyclic” operad.

The inclusion of operads sOp→ cOp induces the restriction functor. The restriction of
cOp-algebra uAsc is uAs. This restriction induces the left and the middle vertical arrows.
The left square is commutative due to functoriality of canonical opfibrations.

The restriction of uComc is uCom, and it induces the right vertical arrow. The
restriction of the morphism uAsc → uComc is the morphism uAs → uCom, and it
induces the right commutative square.

The outer square is also equivalent to the square consisting of twisted arrow categories
of uAs, uAsc, uCom and uComc, with functors induced by the morphisms of operads, of
cyclic operads, and by restriction.

Notice also that the inclusion ∆ → F(as) in [PR02, Lemma 1.1] is equivalent to the
composition TwpOp(uAspl) → TwcOp(uAsc) → TwcOp(uAsc)op → UcOp(uAsc)op, i.e. the
inclusion ∆→ F(as) implicitly factors through the functor Λ→ Λop.
Cobordisms. A similar diagram exists for the modular envelopes of cyclic operads uComc

and uAsc. Modular envelope is the extension functor induced by the inclusion cOp →
mOp or by the inclusion cOp→ mOp(g,n).

2.33. Proposition. Let mOp-algebra uComm be the modular envelope of the terminal
cyclic operad uComc. Let mOp(g,n)-algebra uCom′

m be the terminal mOp(g,n)-algebra,
which is also the modular envelope of uComc. The category UmOp(uComm) is a subcat-
egory of the category Cob of orientable 2d-cobordisms. The categories TwmOp(uComm),
TwmOp(g,n)(uCom′

m), and UmOp(g,n)(uCom′
m) are all isomorphic to the full subcategory of
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the category ∅/Cob on connected cobordisms from the empty set. Let TmOp be the ter-
minal mOp-algebra. The category TwmOp(TmOp) = UmOp(TmOp) is the subcategory of
UmOp(uComm) of cobordisms of total genus 0.

Proof. The mOp-envelope of uComc is the mOp-algebra freely generated by the elements
of uComc and factored by relations in uComc, i.e. the elements of uComm are equivalence
classes of operadic graphs, with equivalence generated by contractions of subtrees and by
permutations of edges adjacent to any single vertex. The map that computes the genus
of an operadic graph induces isomorphisms between the sets uComm(n) and N.

Let Cob be the category whose objects are finite sequences of circles and morphisms
are orientable cobordisms between disjoint unions of circles. The arity of objects of
UmOp(uComm) encodes the number of circles in objects of Cob, and the j-th non-source
vertex of a morphism encodes the j-th connected component of the cobordism: the number
of boundary components and the indices of the target and the source circles, and the genus
of the surface attached to the j-th circle. The subcategory UmOp(uComm) of Cob contains
all morphisms of Cob except the non-trivial morphisms from ∅. In the remaining cases
an object in ∅/Cob corresponds to the choice of arity and genus. The rest of the proof is
trivial.

The operation β, the circle with two vertices, corresponds to cobordisms from (surfaces
with) two circles to the empty set. This suggests that while the operad mOpnc (or mOpst)
is more common, the operads mOp and mOp(g,n) also deserve attention.

The twisted arrow categories of modular envelopes of uAsc are related to ribbon
graphs. It seems that for these categories there is no decomposition analogous to that of
[Sło03, Zim04]. The categories TwmOp(uComm) and TwmOp(uAsm) are generalized Reedy,
with the surface of genus g with n circles having degree (2g + n). The category Cob is
not generalized Reedy.

Structure of twisted arrow categories of operads. We describe the struc-
ture on twisted arrow categories and enveloping categories of symmetric and generalized
operads that is used in the rest of this work.

From now on we assume that operads are endowed with a nice grading, see Defini-
tion 1.7. We start with a few lemmas.

2.34. Lemma. Let P be a planar, symmetric, cyclic operad or an mOp-algebra, and
morphisms e and s in Tw(P ) or in U(P ) be such that e ◦ s = id. Then the graphs of e
and s are trees, non-source vertices of s have arity at least 1 (and thus grading at least
0), and non-source vertices of e have arity at most 1 and grading at most 0.

Proof. In the case of mOp, a composition with a non-tree produces a non-tree, thus the
graphs of e and s are trees. In general, if s would have non-source vertices of arity 0,
then e ◦ s would have the same non-source vertices of arity 0. If e would have non-source
vertices of arity greater than 1, then e ◦ s would have non-source vertices of arity greater
than 1. Finally, let p be any non-source vertex of s, of arity n. Then composition with e
grafts (n − 1) operations qj of arity 0 to leaves of p and one operation q′ of arity 1 to a
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leaf or to the root of p. Since the result of this composition is an identity operation, the
operations qj are units of binary operations, and, by the niceness of grading, have grading
(−1). Let p′ be the composition of p with all the operations qj. The composition of p′

with q′ is an identity operation, which has grading 0, and since both p′ and q′ have arity
1, and thus grading not less than 0, they have grading 0.

2.35. Corollary. For any planar, symmetric, cyclic operad or mOp-algebra P the iso-
morphisms in Tw(P ) and in U(P ) are precisely the morphisms f such that all non-source
vertices of f have arity 1, grading 0 and are marked by isomorphisms in the category P (1).
Isomorphic objects of Tw(P ) have the same arity and grading, and isomorphic objects of
U(P ) have the same arity.

Proof. A morphism f that satisfies the properties above has a left inverse g: the non-
source vertices of g are the inverses of the non-source vertices of f , and the permutation
on leaves of g is the inverse of the permutation on leaves of f . The morphism g itself
satisfies the properties above, thus g has a left inverse, and f is an isomorphism. In the
opposite direction, the preceding lemma implies that non-source vertices of isomorphisms
have arity 1 and grading 0. If f is an isomorphism, the non-source vertices of f−1 are the
inverses in P (1) of the non-source vertices of f .

2.36. Definition. For a planar, symmetric or cyclic operad P a permutation isomor-
phism in Tw(P ) or in U(P ) is a morphism with all non-source vertices marked by identity
operations.

2.37. Proposition. A natural equivalence of operads induces natural equivalence between
the corresponding twisted arrow categories, and also induces natural equivalence between
the corresponding enveloping categories.

Proof. A natural equivalence is a map f : Q → Q′ of coloured operads such that
the map of underlying categories f(1) : Q(1) → Q′(1) is essentially surjective and the
maps f : Q(c1, . . . , cn; c0)→ Q′(f(c1), . . . , f(cn); f(c0)) of sets are bijective for any choice
of colours cj. Essential surjectivity implies that any object q of Tw(Q′) or of U(Q′) is
isomorphic to an object q′ with all colours belonging to the image of f . Bijectivity implies
that the object q′ is in the image of Tw(f), and thus implies essential surjectivity of f∗.
Bijectivity on operations also implies bijectivity on reduced symmetric trees with fixed
set of colours of inner and leaf edges, and thus implies that f∗ is fully faithful.
Ternary strict factorization system. Twisted arrow categories and universal en-
veloping categories of operads are endowed with two compatible strict factorization sys-
tems. The first factorization system often generates generalized Reedy category structure,
with precise criterion given by Theorem 2.54. The second factorization system exists only
for planar and symmetric operads, is fundamental to Segal conditions, and should be seen
as a refinement of (Active, Inert) orthogonal factorization system.
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2.38. Definition. Let P be a planar, symmetric or cyclic operad endowed with a nice
grading ψ. The class of morphisms either in Tw(P ) or in U(P ) denoted by Rψ=−1 consists
of morphisms such that the permutation on leaves of their canonical representatives is triv-
ial, and the non-source vertices are marked either by identity operations or by operations
of grading (−1). The class of morphisms either in Tw(P ) or in U(P ) denoted by Rψ≥0
consists of morphisms such that all non-source vertices of their canonical representatives
have grading at least 0.

2.39. Proposition. For any planar, symmetric or cyclic operad P the pair of subcate-
gories (Rψ=−1, Rψ≥0) of Tw(P ) or U(P ) is a strict factorization system.

Proof. Both Rψ=−1 and Rψ≥0 are closed under composition. For a factorization r ◦ l of
a morphism f the non-trivial vertices of l are the vertices of f of grading (−1), and the
vertices of r are the vertices of f of grading at least 0. These vertices are determined
uniquely by f .

2.40. Definition. Let P be a planar or symmetric operad. The class Upper of upper
morphisms in Tw(P ) or in U(P ) consists of morphisms such that the lowest vertex in
corresponding canonical representatives is marked by an identity operation. The class
Lower of lower morphisms in Tw(P ) or in U(P ) consists of morphisms such that the
upper vertices of canonical representatives are marked by identity operations, and the
indices of all leaves of upper vertices, considered together, increase in planar order (in
general not sequentially).

2.41. Definition. Let P be a planar or symmetric operad. An input map of an operation
p in P is a lower morphism from an identity operation to p. The output map out of p is
the unique upper morphism from an identity operation to p. An operation of arity n has
exactly n input maps. The j-th input map inj is the input map such that the leaf above
the source vertex is indexed by j.

2.42. Proposition. For any planar or symmetric operad P the pair (Upper, Lower) is
a strict factorization system.

Proof. Both Upper and Lower are closed under composition. For a factorization l ◦u of
a morphism f the upper vertices of u are the upper vertices of f , and the lowest vertex of l
is the lowest vertex of f . The permutations on leaves of morphisms l and r are determined
uniquely by the permutation on leaves of f .

2.43. Definition. The (Active, Inert) orthogonal factorization system on twisted ar-
row category or enveloping category of an operad is the orthogonal factorization system
generated by the corresponding (Upper, Lower) strict factorization system.

2.44. Remark. If F : A → B is a discrete (op)fibration of categories and (L,R) is a strict
factorization system on B, then (F−1(L), F−1(R)) is a strict factorization system on A.
The strict factorization systems on Tw(P ) described above arise in this manner from the
strict factorization systems on U(P ) via the canonical discrete opfibration Tw(P )→ U(P ).
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2.45. Proposition. For any planar or symmetric operad P the strict factorization sys-
tems (Rψ=−1, Rψ≥0) and (Upper, Lower) form a ternary strict factorization system. When
grading ψ is different from the arity grading, this ternary factorization system is a part
of quaternary strict factorization system.

Proof. Let ϕ be the arity grading. We have Rψ=−1 ⊆ Rϕ=−1 ⊆ Upper and Lower ⊆
Rϕ≥0 ⊆ Rψ≥0.

For any ternary strict factorization system ((L1, R1), (L2, R2)) it is natural to consider
the class of morphisms R2 ◦ L1. These are the morphisms in which the middle term in
their ternary factorization is an identity morphism.

2.46. Proposition. For any planar or symmetric set-operad P the class of morphisms
Lower ◦Rψ=−1 in Tw(P ) or in U(P ) is a category.

Proof. This follows easily from the fact that the class Lower ◦Rψ=−1 consists precisely
of the morphisms such that the indices of upper leaves increase in planar order, the upper
vertices of non-zero arity are marked by trivial operations, and the upper vertices of arity
0 are marked by operations of grading (−1).
Lower-Upper factorizations. We have shown that (Upper, Lower) is a strict factor-
ization system. For twisted arrow categories of categories the pair (Lower, Upper) is also
a strict factorization system. For operads this factorization is unique up to contractible
choice.

2.47. Definition. For any operad P the subcategory Lower′ of Tw(P ) or U(P ) is the
subcategory of lower morphisms with trivial permutation on leaves.

2.48. Definition. Let P be a symmetric operad and f be a morphism in Tw(P ) or in
U(P ). The canonical (Lower′, Upper)-factorization of f is the factorization u ◦ l, where
the lowest vertex of l is the lowest vertex of f , the permutation of leaves of l is trivial,
the upper vertices of u are the upper vertices of f followed by trivial vertices, and the
permutation on leaves of u is the same as the permutation on leaves of f .

2.49. Lemma. Let P be an operad and f be a morphism in Tw(P ) or in U(P ). The canon-
ical factorization of f is a terminal object in the category of (Lower, Upper)-factorizations
of f . The morphisms from (Lower, Upper)-factorizations of f to the canonical factoriza-
tion of f are upper morphisms.

Proof. Let f be a morphism and i be the permutation isomorphism inverse to the
permutation on leaves of f . The permutation on leaves of i ◦ f is trivial. Composition
with i gives an isomorphism between the categories of (Lower, Upper)-factorizations of f
and of i ◦ f , and sends the canonical factorization to the canonical factorization. Assume
then that the permutation on leaves of f is trivial. Any (Lower, Upper)-factorization of f
is isomorphic via permutation isomorphism to a (Lower′, Upper)-factorization. Let u′ ◦ l′
be such a factorization of f .
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Any lower morphism l from the factorization u′◦l′ to the canonical factorization u′′◦l′′
of f is trivial. Indeed, let p be the source of f , an operation of arity n. The morphisms
l′′ = l ◦ l′ and l′ preserve the indices of the first n leaves, thus l preserves the indices of
the first n leaves. The non-source vertices of u′′ that come after the first n upper vertices
are trivial, thus the lower vertex of l coincides with the lower vertex of u′′ ◦ l, and since
u′′ ◦ l = u′, this vertex is trivial, and l is trivial.

Any morphism of (Lower, Upper)-factorizations can be factored uniquely as an upper
morphism followed by a lower morphism, and these morphisms are themselves morphisms
of (Lower, Upper)-factorizations, see Lemma A.14. Since any lower morphism with target
u′′ ◦ l′′ is trivial, any morphism of (Lower, Upper)-factorizations with target u′′ ◦ l′′ is an
upper morphism.

Next we construct a morphism u from u′ ◦ l′ to u′′ ◦ l′′. Notice that the first n upper
vertices of u′ coincide with the first n upper vertices of f , and of u′′, and the permutation
on the leaves above the first n vertices of u′ is trivial. Since the remaining vertices of u′′

are trivial, the morphism u′ is equal to u′′ ◦ u, where u is the upper morphism with first
n vertices trivial, with remaining vertices the same as in u′, with trivial permutation on
the first n leaves. The morphism u ◦ l′ is a lower morphism with trivial permutation on
leaves, and u′′ ◦ u ◦ l′ = f , thus u ◦ l′ = l′′, and u is a morphism from u′ ◦ l′ to u′′ ◦ l′′.

For the proof of uniqueness of the morphism u from u′ ◦ l′ to u′′ ◦ l′′, notice that since
u◦ l′ must be a lower morphism with trivial permutation on leaves, the first n vertices of u
must be trivial, and u must have trivial permutation on the first n leaves. The condition
u′ = u′′ ◦ u determines the morphism u uniquely.

2.50. Remark. Categories of (Lower, Upper)-factorizations may have more than one
terminal object. If one is to attempt to generalize [BOO+18], uniqueness in the definition
of stable double category should be replaced by essential uniqueness.
Upper-Lower pushout. Twisted arrow categories of operads have pushouts of special
form.

2.51. Lemma. Let P be a symmetric or planar set-operad. Let f be an upper and g be a
lower map that have a common source, in Tw(P ) or in U(P ). The pushout D of f and
g always exists, and the pushout maps f ′ and g′ can be chosen so that f ′ is an upper and
g′ is a lower map, and f ′ ◦ g is a terminal (Lower, Upper)-factorization.

A B

C D

f

g g′

f ′

Proof. The planar case follows from the symmetric case by Proposition 2.29. Let P be
a symmetric operad. By applying a permutation isomorphism to C we can assume that
g has trivial permutation on leaves. Let n be the arity of A, (n + k) be the arity of C,
and m be the arity of B. Let g′ be the lower map with trivial permutation on leaves
and with lower vertex the same as in g. Let f ′ be the upper map with the first n upper
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vertices the same as the upper vertices of f , with indices of leaves above these vertices
the same as in f , and with the remaining k upper vertices being the identity operations,
and the remaining k leaves ordered trivially. We have g′ ◦ f = f ′ ◦ g. The factorization
f ′ ◦ g is the canonical (Lower′, Upper)-factorization. By applying essentially the same
permutation isomorphism to B and to D we can further assume that f , f ′ and g′ have
trivial permutation on leaves.

To show that D is a pushout, let hB : B → Z and hC : C → Z be maps such that
hB ◦ f = hC ◦ g. Then (1) the first n upper vertices of hC are equal to the composition of
the n upper vertices of f with the m upper vertices of hB; (2) the lower vertex of hB is
equal to the composition of the lower vertex of g with the lower and with the last k upper
vertices of hC . By applying permutation isomorphism to Z, we can assume that hC has
trivial permutation on leaves, which implies that hB has trivial permutation on leaves.
The map hD : D → Z such that hD ◦ g′ = hB and hD ◦ f ′ = hC is determined uniquely:
since g′ is a lower map with trivial permutation on leaves, the m upper vertices of hB
coincide with the first m upper vertices of hD; since f ′ is an upper map with the last k
upper vertices trivial, the remaining k upper vertices and the lower vertex of hD coincide
with the last k upper vertices and with the lower vertex of hC ; finally, the permutation of
leaves of hD must be trivial. This determines hD uniquely, and, using properties (1) and
(2), we have hD ◦ g′ = hB and hD ◦ f ′ = hC .

2.52. Corollary. Let P be a planar or symmetric set-operad, f : A → B be an active
map and g : A → C be an inert map in Tw(P ) or in U(P ). The pushout D of f and g
always exists, the map f ′ : C → D is active, and the map g′ : B → D is inert.

Generalized Reedy structure. For operads that satisfy a simple criterion the corre-
sponding twisted arrow categories, and often their enveloping categories, are generalized
Reedy.

2.53. Definition. A pair of subcategories (R−, R+) of a category C together with a map
deg : Ob(C)→ α to an ordinal α, called the degree map, is a generalized Reedy structure
([BM11]) for the category C if:

1. (R−, R+) is an orthogonal factorization system for C,

2. Non-isomorphisms in R− decrease degree,

3. Non-isomorphisms in R+ increase degree,

4. Isomorphisms preserve degree,

5. For any morphism f ∈ R− and any isomorphism θ, if θ ◦ f = f , then θ = id.
This structure is called dualizable if for any morphism f ∈ R+ and any isomorphism θ,
if f ◦ θ = f , then θ = id.

For any operad P let I be the class of all isomorphisms in Tw(P ) or U(P ). Denote
by R− the class I ◦Rψ=−1 and by R+ the class Rψ≥0 ◦ I = Rψ≥0. By Proposition A.3 the
pair (R−, R+) is an orthogonal factorization system.
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2.54. Theorem. For a planar, symmetric or cyclic operad P with a nice grading ψ let
the degree map on Tw(P ) be equal to ψ. With this choice of the degree map, the pair
(R−, R+) is a generalized Reedy structure for Tw(P ) if and only if all operations of P of
grading 0 have arity 1 and the category P (ψ = 0) of these operations is a groupoid.

Proof. Here we implicitly use Corollary 2.35. Suppose that (R−, R+) is a generalized
Reedy structure. For any operation p of degree 0 the output map of p is in R+ and
preserves degree, i.e. it is an isomorphism, and thus the operation p has arity 1 and is
invertible as the morphism in the category P (1).

In the opposite direction, the non-source vertices of degree preserving morphisms in
R+ are marked by elements of P (ψ = 0), thus these morphisms are isomorphisms. The
same holds for R−. For the last property, let f ∈ R− and θ ∈ I be such that θ ◦ f = f .
The permutation of leaves of θ must be trivial. For any non-source vertex ai of f of arity
1 and corresponding non-source vertex bj of θ we have bj ◦ ai = ai (or a0 ◦ b0 = a0 for the
lower vertex), and, since P (ψ = 0) is a groupoid, bj = id. Thus θ = id.

2.55. Example. Twisted arrow categories of graph-substitution operads are generalized
Reedy. Notice that for operads mOp, ciuAs and similar operads we have to use the
previously described grading ψ (see Definition 1.7), and not the arity grading.

In general the analogue of Theorem 2.54 does not hold for enveloping categories: it is
not clear how to endow these categories with the degree map. Still, we have the following
theorem.

2.56. Theorem. Let P be a planar, symmetric or cyclic operad with a nice grading ψ
such that operations with the same multiset of input and output colours have the same
grading. Then the image V(P ) of the canonical discrete opfibration Tw(P ) → U(P ) can
be endowed with the degree map. The orthogonal factorization system (R−, R+) on U(P )
restricts to V(P ). This gives a generalized Reedy structure for V(P ) if and only if all
operations of P of grading 0 have arity 1 and the category P (ψ = 0) of these operations
is a groupoid. In this case the discrete opfibration Tw(P )→ V(P ) is a map of generalized
Reedy categories.

Proof. As an image of discrete opfibration the category V(P ) is a full subcategory of
U(P ) and contains all objects of U(P ) that are isomorphic to objects of V(P ). Factoriza-
tions of morphisms in V(P ) via strict or orthogonal factorization system in U(P ) lie in
V(P ). For any object B in V(P ) elements in the corresponding non-empty fiber over B
have the same degree, which we define to be the degree of B. The proof is similar to that
of Theorem 2.54.

2.57. Example. In all graph-substitution operads operations with the same multisets
of colours have the same grading. For the operads with arity grading this is trivial.
For the operad mOp this is due to the fact that the first Betti number of an operadic
graph is determined by the number of vertices and the number of inner edges. The
latter is determined by the number of leaves and the number of half-edges, both in turn
determined by the colours of the corresponding operation.



624 SERGEI BURKIN

Dualizability. In the setting of Theorem 2.54 and Theorem 2.56 the group of operations
in P (ψ = 0) of a colour c acts on the right by operadic composition on the set of operations
in P with the j-th input color c, and, in planar and symmetric cases, acts on the left on
the set of operations in P with the output colour c.

2.58. Lemma. In the setting of Theorem 2.54 or of Theorem 2.56 if the group actions
above on operations of non-zero arity are free, then (and, in the latter case, only then)
for any f ∈ R+ with all non-source vertices of non-zero arity and any θ ∈ I such that
f ◦ θ = f we have θ = id.

Proof. Each upper vertex of f has arity at least 1 and is adjacent to at least one leaf.
Composition with θ does not permute the indices of leaves of f , thus the indices of leaves
of θ are ordered trivially. Since the action is free, non-source vertices of θ are trivial.

In the opposite direction, a fixed point of the action on P (n) can be used to obtain
non-trivial morphisms f and θ such that f ◦ θ = f .

2.59. Example. Most of the graph-substitution operads, including the operads cuAs,
iuAsiT r and iuAsTr, satisfy these conditions. The exceptions are precisely the operads
mOp, mOp(g,n), mOpst, mOpnc and ciuAs. These operads contain a graph with one vertex
of degree either 2 or 4 and with one loop, and a graph with one vertex of the same degree
without loops, which together give a fixed point of the action of groups on operations.

The twisted arrow categories of the operads mOp, mOp(g,n) and ciuAs are not du-
alizable: these categories contain non-trivial automorphism of µ0 and at the same time
have only one map µ0 → ⃝ in R+. For the operads mOpst and mOpnc the left actions
on operations of non-zero arity are free: such an action permutes the indices of leaves of
operadic graphs. Thus for any f ∈ R+ and any θ ∈ I such that f ◦ θ = f the upper
vertices of θ are trivial and the permutation on leaves of θ is trivial. Thus the left action
of the lower vertex of θ on the source of θ is trivial, and θ itself is either trivial or an
automorphism of µ0, the only operation of arity 0. In the latter case f ◦θ = f still implies
that θ = id.

For twisted arrow categories of graph-substitution operads any morphism f ∈ R+ with
an upper vertex of arity 0 is isomorphic to the output map id−1 →⃝, and again f ◦θ = f
implies that θ = id. This shows that twisted arrow categories of all graph-substitution
operads except mOp, mOp(g,n) and ciuAs are dualizable generalized Reedy categories.

3. Segal and 2-Segal presheaves
Single-object Segal presheaves. Algebras over a set-operad Q correspond to special
presheaves over Tw(Q).

3.1. Definition. Let P be an operad and p and q be composable operations in P . The
partial composition pushout of p and q is the Upper-Lower pushout of the i-th input map
of p and of the output map of q:



TWISTED ARROW CATEGORIES, OPERADS AND SEGAL CONDITIONS 625

idc q

p p ◦i q

out

ini

3.2. Definition. Let P be a C-coloured symmetric operad. A presheaf X on Tw(P )
satisfies single-object Segal condition if for any p ∈ P (c1, . . . , cn; c0) the product map
(X(inj))1≤j≤n : X(p) → ∏n

j=1 X(idcj
) is bijective. In particular, for any operation p

of arity 0 the set X(p) is a point. Such presheaves X will be called single-object Segal
P -presheaves.

3.3. Theorem. For any set-operad P the category of single-object Segal P -presheaves is
equivalent to the category of P -algebras.

Proof. Let X be a single-object Segal P -presheaf. The corresponding algebra A is the
C-coloured algebra with A(c) = X(idc) and with the algebra structure maps A(p) equal
to ∏n

j=1 X(idcj
)

∼=←− X(p) out−−→ X(idc0). Next we prove that A is a P -algebra.
First we show that the structure maps of A are compatible with composition in P .

Take any p ∈ P (c1, . . . , cn; c0) and q ∈ P (d1, . . . , dm; ci). We have to show that for any
elements aj of A of appropriate colour the element (p ◦i q)(a1, . . . , an+m−1) is equal to the
element p(a1, . . . , ai−1, q(ai, . . . , ai+m−1), ai+m, . . . , an+m−1). Observe that there exists the
following commutative diagram in Tw(P ), where j ̸= i:

idcj
p ◦i q iddk

p idc0 q

idci

inj

inj′ ink′

ink

out

out

outini

Thus the following diagram is also commutative.

∏
c=cj ,dk

X(idc)

∏
j ̸=iX(idcj

) X(p ◦i q)
∏
X(iddk

)

X(p) X(idc0) X(q)

∏n
j=1 X(idcj

) X(idci
)

∼=

∼=

∼=
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The two upper horizontal maps in this diagram are the projection maps of a product.
The upper dashed arrow is the map A(p◦iq), the lower right dashed arrow is the map A(q),
and the lower left dashed arrow is the map A(p). This diagram implies compatibility of
the algebra structure maps with operadic composition: the map from the upper product
to the lower left product is given by the identity maps on factors X(cj), j ̸= i, and by the
map A(q) on the product of remaining factors.

Since the input and the output maps of idc are the identity maps, the structure map
corresponding to idc is the identity map. Finally, compatibility with symmetric group
action is implied by the following commutative diagram:

p

idcj
idc0

pσ

σ

inj

inσ−1(j)

out

out

In the opposite direction, any P -algebra A produces single-object Segal P -presheaf X
as follows. For any p ∈ P (c1, . . . , cn; c0) let X(p) be equal to ∏n

j=1 A(cj). For a morphism
f : p → r the map X(f) : X(r) → X(p) is defined as follows. Let qj, j > 0, be the
upper vertices of f , and qj → r be the corresponding maps. For X to be a single-object
Segal P -presheaf the corresponding maps X(r)→ X(qj) have to be projections onto the
subproducts of factors of X(r) given by the indices of leaves above the vertices qj in
f . For X to be a presheaf the map X(r) → X(qj) out∗−−→ X(idc) should coincide with
X(r) → X(p)

in∗
j−−→ X(idc). Thus we define the map X(r) → X(p) to be the composition

of the permutation of factors (according to the permutation on leaves of f : p→ r), of the
projection to the factors indexed by the leaves of the upper vertices, and of the product
over j of the algebra structure maps A(qj) = out∗ : X(qj) −→ X(idc).

Functoriality can be checked as follows. Let s → p and p → r be maps in Tw(P ).
The composition X(r) → X(p) → X(s) is the composition of permutation of factors,
projection, product of the algebra structure maps, permutation, projection, and product
of the algebra structure maps. It can be simplified to the composition of permutation
of factors, projection, product of the algebra structure maps, and product of the algebra
structure maps. The permutation and the projection are the same as in the tree s→ p→
r. Since A is an algebra, the compositions of the algebra structure maps are the structure
maps of compositions, i.e. the structure maps of the upper vertices in s→ p→ r.

Under this correspondence morphisms of single-object Segal presheaves coincide with
morphisms of P -algebras.

3.4. Theorem. Let P be an operad, A be a P -algebra, and X be the single-object Segal
P -presheaf corresponding to the P -algebra A. There exists functor ev(P,A) : Tw(P )/X →
TwP (A).
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Proof. Objects g : p→ X of Tw(P )/X correspond to tuples of the form (p, a1, . . . , an),
where the elements aj of A are the images of (g : p → X) ∈ X(p) under the maps in∗

j :
X(p) → X(idcj

). The functor ev(P,A) sends a tuple (p, a1, . . . , an) to p(a1, . . . , an) ∈ A,
an object in TwP (A).

A morphism p→ r → X in Tw(P )/X can be represented as a reduced symmetric tree
corresponding to p → r with leaves marked by the same elements of A as in the tuple
corresponding to r → X. Let qj be the j-th non-source vertex of p → r. The output
qj(aj,1, . . . , aj,kj

), j > 0, of the corolla qj → X = qj → r → X is equal to the j-th input of
the corolla p→ X, and the input of the corolla q0 → X that is grafted into the output of
p→ X is equal to the output of p→ X. In this manner every edge in the tree p→ r → X
can be marked by an element of A.

The functor ev(P,A) sends the morphism p→ r → X to the corolla q0, i.e. to the mor-
phism represented by q0(a′, a0,1, . . . , a0,k0), with a′ = p(a1, . . . , an), aj = qj(aj,1, . . . , aj,kj

).
This map respects the composition of morphisms. Indeed, the lowest tree grafted into s
via s → p → r → X is obtained by grafting some of the corollas qi to the lower vertex
p0 of s → p, and this tree, as an element of TO(A) = F (U(A), U(A))/Rel A, is equal
to the tree obtained by grafting only q0 into p0, since each grafting of qi, i > 0, into p0
corresponds to generating equivalence of TO(A).

Intuitively, the category of elements of the single-object Segal presheaf corresponding
to an algebra A describes the ways to decompose elements of the algebra A. The functor
ev can be seen as the evaluation.
Single-object Segal presheaves over categories U(P ). For any operad P let
α : Tw(P ) → U(P ) be the canonical opfibration. One can try to define single-object
Segal presheaves over U(P ) as presheaves X such that for any operation p in P the map
(X(α(inj)))1≤j≤n : X(α(p))→ ∏

X(α(idcj
)) induced by the images of input maps of p is

a bijection. And while it seems possible to reconstruct a P -algebra from such a presheaf,
this definition is incorrect, unless we additionally require that the map (X(α(inj)))1≤j≤n :
X(α(p)) → ∏

X(α(idcj
)) depends only on the image of p in U(P ), i.e. the map is deter-

mined by the colours of p. With this additional requirement, we get the subcategory of
presheaves over U(P ) that is equivalent to the category of P -algebras.

For any C-coloured operad P and P -algebra A we get the following commutative
square.

TwsOpC
(P )/A TwP (A)

UsOpC
(P )/A UP (A)

ev

α

ev

The presheaves denoted by A are both presheaves corresponding to the algebra A, and
the presheaf over Tw(P ) is the restriction of the presheaf over U(P ) along the canonical
opfibration α : Tw(P )→ U(P ).
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Segal conditions. As first observed by Grothendieck, the category of small categories
is equivalent to the category of Segal presheaves over ∆ ([Seg68]). Two subcategories of
∆ are used to define Segal conditions: the category ∆0 of lower (or inert) morphisms of
∆ and the category El(∆0) of elementary objects, the full subcategory of ∆0 on objects
[0] and [1]. Segal condition for presheaves over ∆ is the condition on the restriction of a
presheaf over ∆ to the subcategory ∆0. This condition has two equivalent versions: the
condition to be a right Kan extension along the inclusion El(∆0)→ ∆0, and the condition
to be a sheaf for a certain coverage on ∆0.

For any set-operad P there are two versions of Segal condition for presheaves over
Tw(P ). These generalize the two versions of Segal condition for presheaves over ∆. For
a rather general class of operads these two versions are equivalent.

Three subcategories of the category Tw(P ) can play the role of the category ∆0: the
subcategories Lower, Lower ◦Perm and Inert, where Perm is the category of permuta-
tion isomorphisms. Both versions of Segal condition do not depend on the choice of one
of these three subcategories. We have to consider these three subcategories since, while
the choice of Inert seems to be the most natural, it does not give the desirable notion of
a free Segal P -presheaf.
Condition on restrictions to be right Kan extensions. The following form of
Segal condition is a particular case of Segal condition of Chu and Haugseng ([CH21]).

3.5. Definition. Let P be a planar or symmetric operad endowed with a nice grading ψ.
An elementary object in Tw(P ) is an identity operation or an operation q such that ψ(q) =
−1. The category El(P, ψ, Lower) = El(P, ψ, Lower ◦ Perm) is the full subcategory of
Lower (equally, of Lower ◦ Perm) on elementary objects. The category El(P, ψ, Inert)
is the full subcategory of Inert on elementary objects.

3.6. Definition. Let P be a planar, symmetric or cyclic operad endowed with a nice
grading. A petal map to an operation t in P , or simply a petal of t, is a morphism q → t
in Tw(P ) from an operation q of grading (−1). For a presheaf X on Tw(P ) and a petal
map f : q → p the petal of x ∈ X(p) corresponding to f is the element f ∗(x) ∈ X(q).

Any morphism from an operation of arity 0, thus any petal map, is a lower morphism.
Petal maps are analogous to maps from [0] in ∆. For a Segal presheaf X petals of an
element in X(idc) are analogous to objects of a morphism in a category and to colours of
an operation of a coloured operad.

3.7. Definition. For a planar or symmetric set-operad P let Tw(P )0 be the subcategory
Lower, Lower ◦ Perm or Inert of the category Tw(P ). A Segal P -presheaf is a presheaf
X over Tw(P ) such that the restriction of X to Tw(P )0 is the right Kan extension of the
restriction of X to El(Tw(P )0) along the inclusion i : El(Tw(P )0)→ Tw(P )0.

This notion does not depend on the choice of the category Tw(P )0.

3.8. Lemma. For any operad P and operation p in P the categories El(P, ψ, Lower)/p
and El(P, ψ, Lower ◦Perm)/p are equal, and their inclusion into El(P, ψ, Inert)/p is an
equivalence of categories.
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Proof. Here El(P, ψ,C)/p is the comma category with respect to the inclusion of p and
El(P, ψ,C) into C. The categories El(P, ψ, Lower)/p and El(P, ψ, Lower ◦Perm)/p are
equal: their objects f : q → p are the input maps and the petal maps of p, and their
morphisms f1 → f2 are the lower maps g : q1 → q2 such that f1 = f2 ◦ g. The objects of
the category El(P, ψ, Inert)/p are the petal maps of p and the inert maps from identity
operations to p, and its morphisms f1 → f2 are the inert maps g : q1 → q2 such that
f1 = f2 ◦ g. Any object of El(P, ψ, Inert)/p given by an inert map idc → p with upper
vertex v is isomorphic to an input map idd → p via the morphism idc → idd with upper
vertex v and lower vertex v−1. Thus El(P, ψ, Inert)/p is equivalent to its full subcategory
D on petal and input maps of p. Since any inert morphism between input maps of p is
trivial, the category D coincides with the category El(P, ψ, Lower)/p.

3.9. Corollary. For any operad P and presheaf X over El(P, ψ, Inert) the restriction
to Lower of the right Kan extension of X along the inclusion El(P, ψ, Inert)→ Inert is
the right Kan extension along the inclusion El(P, ψ, Lower) → Lower of the restriction
of X to El(P, ψ, Lower). The same holds with Inert or Lower replaced by Lower◦Perm.
Proof. The diagrams G′ computing the pointwise right Kan extension of the restriction
of X are equal to diagrams G ◦ F , where G is the diagram that computes the point-
wise right Kan extension of X, and F is the inclusion of the form El(P, ψ, Lower)/p →
El(P, ψ, Inert)/p. The inclusion F is an equivalence, thus the limits of G and G′ coin-
cide.

3.10. Example. The category of single-object Segal presheaves is equivalent to the cat-
egory of Segal presheaves X such that X(q) is a singleton for all operations q of grading
(−1): a single-object Segal presheaf X over Tw(P ) is a Segal presheaf, and X(q) is a
singleton for all operations q of arity 0, and in particular, for operations of grading (−1);
if Y is a Segal presheaf over Tw(P ) such that Y (q) is a singleton for all q such that
ψ(q) = −1, then Y (q) is a singleton for all operations of arity 0, since the comma cate-
gories El(Tw(P )0)/p for operations p of arity 0 are either empty or consist only of petal
maps.

3.11. Example. The category of Segal presheaves over TwsOp(iuAs) is the category of
small categories with anti-involution, and not the category of dagger categories. This
also shows that the set of colours of a coloured cyclic operad should be endowed with
involution.
Condition on restrictions to be sheaves. We will use the following notation for
coverages and sheaves ([Joh02]).

3.12. Definition. A coverage T on a category C is an assignment, for each object U
of C, of a collection T (U) of families (fi : Ui → U, i ∈ I) of morphisms with common
codomain U , called T -covering families, such that for any T -covering family (fi : Ui →
U, i ∈ I) and any morphism g : V → U there exists a T -covering family (hj : Vj →
V, j ∈ J) such that each composition g ◦ hj factors through some morphism fi via a map
Vj → Ui.
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3.13. Definition. A presheaf X on a category C satisfies the sheaf axiom for a family
of morphisms (fi : Ui → U, i ∈ I) if for any compatible family of elements si ∈ X(Ui)
there is exactly one element s ∈ X(U) such that f ∗

i (s) = si for all i in I. Compatibility
is the condition that for any g : V → Ui and h : V → Uj (where i and j might be equal)
such that fi ◦ g = fj ◦ h we have g∗(si) = h∗(sj). A presheaf X on a category C is a
sheaf for a coverage T on the category C if it satisfies the sheaf axiom for all T -covering
families.

There is a coverage S ′ on ∆0 that assigns a single family of morphisms to each object.
The family S ′([0]) consists of the identity map, and the families S ′([n]), n ̸= 0, consist of
all input maps of [n]. A Segal presheaf over ∆ is a presheaf whose restriction to ∆0 is a
sheaf. The coverage Sψ on Tw(P )0 that plays the same role as (but is not a generalization
of) the coverage S ′ on ∆ is defined as follows.

3.14. Definition. Let P be a planar or symmetric operad with a nice grading ψ. The
Segal coverage Sψ on Tw(P )0 assigns to each operation p of P a single family Sψ(p) of
morphisms. The family Sψ(p) is the union of all input and petal maps of p.

3.15. Proposition. Segal coverage is a coverage for the categories Lower, Lower◦Perm
and Inert.

Proof. The case of Lower and of Lower ◦ Perm is simple: a composition of a petal
map with any morphism is a petal map, and a composition of an input map with a lower
morphism or a morphism in Lower ◦ Perm is an input map. For the case of Inert, let
h : idc → V be an input map and g : V → U be an inert map. Let v be the operation
that marks the upper vertex of g ◦ h. Then v is an isomorphism in the category P (1),
and there is isomorphism k : idc → idd with upper vertex v and lower vertex v−1. The
morphism g ◦ h is equal to the composition of k with the j-th input map of U , where j is
the index of the leaf above the source vertex of g ◦ h.

3.16. Lemma. An inert morphism f : p → t from an operation of arity 1 can factor in
Tw(P ) through at most one input map of t.

Proof. If f factors through the j-th input map of t, then the index of the leaf above the
source vertex of f is j.

3.17. Lemma. Let P be a planar or symmetric set operad with a nice grading ψ, X be a
presheaf over Inert, U be an operation of P , the family (fi : Ui → U, i ∈ I) be the covering
family Sψ(U), and si be a family of sections of X(Ui). Then the family of sections si is
compatible over Inert if and only if it is compatible over Lower. The same holds with
Lower or Inert replaced by Lower ◦ Perm.

Proof. Implication of compatibility from Inert to Lower is obvious. Assume the family
si is compatible over Lower. Let g : V → Ui and h : V → Uj be inert morphisms such
that fi ◦ g = fj ◦ h. Let g′ ◦ u and h′ ◦ u be the (Upper, Lower)-factorizations of g and
h. Since fi and fj are lower morphisms, the morphisms g and h have the same upper
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morphism u in their factorization. The lower morphisms fi ◦ g′ and fj ◦ h′ are equal, and
thus by compatibility assumption g′∗(si) = h′∗(sj), and g∗(si) = h∗(sj).

3.18. Corollary. For any planar or symmetric set-operad P a presheaf X over Inert
is a sheaf if and only if the restriction of X to Lower is a sheaf. The same holds with
Lower or Inert replaced by Lower ◦ Perm.

Connection between the two versions.

3.19. Proposition. For any planar or symmetric operad P with a nice grading the right
Kan extension i∗ : Psh(El(Tw(P )0)) → Psh(Tw(P )0) is fully faithful, and any presheaf
in its image is a sheaf.

Proof. The inclusion of El(Tw(P )0) into Tw(P )0 is fully faithful, thus the right Kan
extension i∗ is fully faithful. Let Y be a presheaf over El(Tw(P )0) and p be an operation
with S-covering family (pi → p). Any family si of sections of Y over objects pi corresponds
to a choice of elements si in the objects indexed by the diagram that computes i∗Y (p).
If this family of sections is compatible, then the choice of elements si is compatible with
the mentioned diagram, and thus corresponds to an element in the limit indexed by this
diagram, i.e. corresponds to an element in i∗Y (p). Since any element in i∗Y (p) gives a
compatible family of sections and is determined uniquely by this family, the presheaf i∗Y
is a sheaf.
When petals factor through inputs. There is a property of operads that ensures
that Segal presheaves over corresponding twisted arrow categories behave particularly
well, and that generalized Reedy structure on these categories is particularly nice. Anal-
ogous property appears in a different place and plays a more fundamental role in the
generalization of the present theory to Lawvere theories.

3.20. Definition. Let P be a symmetric or planar operad. We will say that ‘petals
factor through inputs’ in Tw(P ) if for any petal map f : q → t, with t having arity at
least 1, the morphism f can be factored as q → idc → t, where idc → t is an input map.

3.21. Example. Let P be a graph-substitution operad and p be an operation in P of
non-zero arity. Input maps to p correspond to vertices of p. Petal maps to p correspond to
edges of p, endowed with an orientation if P (1; 1) is non-trivial. A petal f : q → p factors
through an input map g : idc → p if and only if the edge corresponding to f is adjacent to
the vertex corresponding to g. In twisted arrow categories of graph-substitution operads
petals factor through inputs.

This property is related to Segal conditions as follows. Notice that the Segal coverage
on Tw(uAspl)0 is slightly different from the coverage S ′ on ∆. The proper generalization
appears in the following proposition.
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3.22. Proposition. Let P be a planar or symmetric operad with a nice grading ψ, and
S ′
ψ be the function assigning to each object p the following single family of morphisms in

Tw(P )0: all input maps of p if p has non-zero arity, and all petal maps of p if p has arity
0. Petals factor through inputs in Tw(P ) if and only if S ′

ψ is a coverage of Lower (or
equivalently, a coverage of Inert, or of Lower ◦ Perm). In this case the Segal coverage
Sψ is equivalent to the coverage S ′

ψ, i.e. the corresponding sheaf conditions coincide.

Proof. We will denote Sψ and S ′
ψ simply by S and S ′. Assume S ′ is a coverage, and let

f : q → p be a petal map to an operation p of non-zero arity. The morphism idq is in
S ′(q), thus f ◦ idq = f factors through a morphism in the family S ′(p) of input maps of p.

In the opposite direction, assume that petals factor through inputs and let g : p → t
be an inert morphism. If p and t both have arity 0, then for any morphism f in S ′(p) the
composition g ◦ f is in S ′(t). If p and t both have non-zero arity, then any morphism f
in S ′(p) is an input map, and, as in the proof of Proposition 3.15, the composition g ◦ f
factors through an input map of t. Finally, if p has arity 0 and t has non-zero arity, then
any morphism f in S ′(p) is a petal, and thus g ◦f is a petal, and this petal factors though
an input of t by assumption.

If petals factor through inputs, then the coverages S and S ′ generate the same sieves,
and thus their sheaves coincide.

3.23. Proposition. Let P be a planar or symmetric operad such that: (1) either any
morphism in the category P (1) has at most one left inverse (2) or petals of operations
of arity 1 factor through inputs. Then the right Kan extension i∗ : Psh(El(Tw(P )0) →
Sh(Tw(P )0) is an equivalence of categories.

Proof. We have to show that i∗ is essentially surjective. It suffices to show that for any
sheaf X over Tw(P )0 and any family of morphisms (fi : pi → p) in S a family of sections
over pi that is compatible with respect to morphisms in El(Tw(P )0) is compatible (with
respect to morphisms in the sieve generated by the family (fi : pi → p)). Sources of
morphisms in this sieve have arity 0 or arity 1. Morphisms from operations of arity 0 to
operations of grading (−1) and to identity operations are necessary petals. Morphisms in
the sieve and not in El(Tw(P )0) are precisely the lower (or inert) morphisms from non-
identity operations of arity 1 to identity operations. Lower morphisms from an operation
t ∈ P (a; b) to the operation ida correspond to left inverses of t in P (1). Any inert
morphism g : t→ idc is a composition of a lower morphism t→ ida, determined uniquely
by g, and an isomorphism ida → idc, determined uniquely by the upper part of g.

Take any two morphisms g : t→ pj and h : t→ pk in the sieve and not in El(Tw(P )0)
and such that fj ◦ g = fk ◦ h. By Lemma 3.16 we have j = k. The upper parts of g
and h coincide. If condition (1) holds, then the lower parts of g and h coincide, and then
compatibility with respect to El(Tw(P )0) implies compatibility with respect to the sieve.

The condition (2) and the sheaf condition for X imply that for any operation t ∈
P (a; b) the map in∗ : X(t) → X(ida) induced by the input map of t is injective. Let
g : t → pj and h : t → pk be two inert maps such that fj ◦ g = fk ◦ h. Again j = k,
and we have to show that g∗ = h∗, and since the upper parts of g and h coincide, we can
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assume that g and h are lower maps. The composition g ◦ in with the input map of t is
the identity map of ida, thus the map in∗ : X(t)→ X(ida) is surjective, and bijective, and
the map g∗ is the inverse of in∗. Similarly, the map h∗ is the inverse of in∗, and g∗ = h∗.
This implies compatibility with respect to the sieve.

3.24. Example. Graph-substitution operads satisfy both of the conditions above. The
first condition is implied by the following property: any morphism in P (1) that has a
left inverse is an isomorphism. This property holds for operads that satisfy the condition
of Theorem 2.54. Indeed, for a planar or symmetric operad P with a nice grading any
morphism in P (1) that has a left inverse has grading 0.
Segal presheaves as multi-object algebras. Consider the following informal idea.
“A multi-object algebra” is a partial algebra endowed with maps to sets of “objects” such
that (1) composability of elements of such a partial algebra (2) and the objects of this
composition are both determined by the objects of composed elements.

Let P be an operad such that petals factor through inputs in Tw(P ) and X be a
Segal presheaf over Tw(P ). Then X is a multi-object algebra in the following way. The
first condition for multi-object algebras is satisfied in the sense that for any operation p
the elements of X(p) ∼= lims→pX(s) correspond to tuples of elements in the sets X(idc)
that have compatible petals, and by definition these tuples are precisely the tuples of
composable elements in the partial algebra X, and their composition via p is the output
of the corresponding element in X(p). The second condition for multi-object algebras is
satisfied since each petal of the output of p is a petal of p, and thus is a petal of some
input of p.
Some examples.

Nodeless loop and graphical categories. The use of grading in Segal conditions is
motivated by graph-substitution operads containing the operation ⃝. First we describe
maps to and from ⃝ in twisted arrow categories of graph-substitution operads. For
all graph-substitution operads except iuAsiT r the only morphism from ⃝ is the trivial
morphism, and there is only one morphism id−1 →⃝, since the only element with at least
one input colour equal to (−1) is id−1, the vertex without leaves. The operad iuAsiT r
additionally contains the operation θ, thus in Tw(iuAsiT r) there is exactly one non-trivial
morphism f from ⃝, the morphism f is an involutive automorphism, and there are two
morphisms from id−1 and two morphisms from θ to ⃝.

For any graph-substitution operad P let f : p → ⃝ be a morphism in Tw(P ), with
p different from id−1 and θ. The morphism f is defined uniquely by the morphisms l
and u in the factorization l ◦ u of f into upper and lower morphisms. The target of u
has arity 0, and is either µ0 or ⃝. The morphism u exists if and only if all vertices
of p have degree 2, and the morphism u is determined uniquely by p. We have already
described endomorphisms of ⃝. Suppose then that the source of l is µ0. For operads
iuAsTr and iuAsiT r there are exactly two morphisms from µ0 to⃝, and for the remaining
graph-substitution operads there is only one such morphism.



634 SERGEI BURKIN

3.25. Remark. This suggests that the definition of the graphical category Ũ should be
changed ([HRY20a, Remark 4.8]). Any twisted arrow category that has two endomor-
phisms of ⃝ has two morphisms from id−1 to ⃝. It is not clear if the operad that
contains both mOp and iAsTr exists, unless the vertices of the corresponding graphs are
endowed with genus map.

Let P be a graph-substitution operad containing ⃝, and different from iuAsTr and
iuAsiT r. The operad P has two natural gradings: the grading that was denoted by ψ and
the arity grading ϕ. Segal condition for the grading ψ implies that the map X(µ0 →⃝)
is an isomorphism. In Segal condition for the arity grading ϕ the map id⃝ is a petal map,
and there are no restrictions on the set X(⃝). The choice of the grading ψ here is more
natural, and in the case of cuAs recovers familiar structure.
Cyclic nerve and trace. Any object in the category Tw(cuAs) is isomorphic either
to µn, to ν ◦ µn or to id−1, thus the full subcategory C on these objects is equivalent to
Tw(cuAs). The subcategory of C on objects µn is isomorphic to ∆, and any morphism
in C to µn is in ∆. There is only trivial morphism to id−1, and there is exactly one
morphism from id−1 to ν ◦ µn for all n. The target of any morphism from ν ◦ µn is of
the form ν ◦ µm for some m. The full subcategory of C on objects ν ◦ µn is isomorphic
to the category Λ endowed with additional terminal object ⃝. Indeed, any morphism
in this subcategory is an upper morphism, and has unique representative with vertices
marked by µn. These representatives correspond to representatives of morphisms in the
full subcategory of TwcOp(uAsc) on operations µn, with indices of leaves shifted by 1. Any
morphism from µn to ν ◦µm uniquely factors as i◦f ◦u, where u is as an upper morphism
in ∆, f : µk → ν ◦ µm is a lower morphism such that the lower vertex of f is marked by
ν ◦ µm−n+1 and is connected to the source vertex by the first edge, and the permutation
on leaves of f is trivial, and i is an automorphism of ν ◦ µm.

Recall that the trace of a category C is the quotient map Tr : End(C)→ End(C)/∼,
with the equivalence generated by fg ∼ gf for all f : x→ y and g : y → x in C.

3.26. Proposition. Segal presheaves X over Tw(cuAs) correspond to small categories
C endowed with a map t from End(C) that factors through the trace. The restriction of X
to ∆ is the nerve of the corresponding category C, the restriction of X to Λ is the cyclic
nerve of C, the set X(⃝) is the set X(µ0) = Obj(C), the set X(ν) is the set End(C),
and the map X(ν)→ X(id−1) is the map t.

Proof. The proof is straightforward. Endomorphisms fg and gf are sent to the same
element in X(id−1) since the compositions of the two maps ν → ν ◦µ2 with id−1 → ν are
equal.

2-Segal presheaves, or decomposition spaces. Existence of Upper-Lower pushouts
in twisted arrow categories of operads allows to generalize the notion of (discrete) de-
composition space ([GCKT18a, GCKT18b, GCKT18c]), or 2-Segal space ([DK19]), to
presheaves over twisted arrow categories of operads. For any operad P discrete decom-
position spaces over Tw(P ) correspond to special morphisms of operads into P .
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3.27. Definition. Let P be a planar or symmetric operad. A P -decomposition space,
or a 2-Segal presheaf, is a presheaf X over Tw(P ) such that the pushout of any pair (f, g)
of maps with common source, with f active and g inert, is mapped by X to a pullback.

3.28. Lemma. For any operad P a presheaf X over Tw(P ) is a discrete decomposition
space if and only if for all composable operations p and q in P the restriction of X to the
partial composition pushout of p and q is a pullback.

Proof. The only if part is trivial: a partial composition pushout is a pushout of upper
and lower maps. In the opposite direction, the assumption is that for all composable p
and q we have X(p ◦i q) = X(p) ×X(idc) X(q). Let f and g be an active and an inert
maps with a common source. By replacing these with isomorphic maps we can assume
that f and g are upper and lower maps with trivial permutation on leaves, and these
have the form f : p → γ(p, q1, . . . , qn) and g : p → q0 ◦1 p, where γ is the operadic
composition. The assumption implies that X(γ(p, q1, . . . , qn)) is the fibered product of
X(p) with ∏

j>0 X(qj) over ∏
j>0 X(idcj

), that X(q0 ◦1 p) is the fibered product of X(p)
with X(q0) over X(idc0), and that X(q0 ◦1 γ(p, q1, . . . , qn)) is the fibered product of X(p)
with ∏

j≥0 X(qj) over ∏
j≥0 X(idcj

). This implies that X(q0◦1γ(p, q1, . . . , qn)) is the fibered
product of X(γ(p, q1, . . . , qn)) and X(q0 ◦1 p) over X(p).

3.29. Example. For any operad P single-object Segal presheaves over Tw(P ) are discrete
decomposition spaces.

Recall that for any small category B the category of presheaves over B is equivalent
to the category of discrete fibrations from small categories to the category B. A discrete
fibration G : E → B generates the presheaf Y such that Y (b) = G−1(b) and Y (f :
b′ → b)(e) = e′, where e′ is the source of the unique lift h : e′ → e with target e of
a morphism f . The category E is isomorphic to the category B/Y of elements of Y ,
and this isomorphism induces isomorphism between the functor G and the projection
functor B/Y → Y . Any morphism in the category of discrete fibrations over B is a
discrete fibration. Morphisms f : X → Y of presheaves over the category B correspond
to discrete fibrations f : B/X → B/Y over B. The presheaf X ′ over B/Y corresponding
to a discrete fibration f : B/X → B/Y over B is the subpresheaf of the restriction of X to
B/Y such that X ′(y) = f−1(y). The category (B/Y )/X ′ of elements of X ′ is isomorphic
to the category B/X of elements of X.

3.30. Lemma. Let f : P1 → P be a morphism of operads. The induced functor f∗ :
Tw(P1) → Tw(P ) is a discrete fibration if and only if for any p and q in P and z in P1
such that f(z) = p ◦i q there exist unique x and y in P1 such that x ◦i y = z, f(x) = p,
and f(y) = q.

Proof. Assume that f∗ is a discrete fibration. Given p and q as above, let g : p→ p ◦i q
be the morphism in the partial composition pushout of p and q. Let g′ : x → z be the
unique lift of g with target z. Since at most one non-source vertex of g is non-trivial,
uniqueness of g′ implies that at most one non-source vertex of g′ is non-trivial, and g′ is
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of the form x→ x ◦i y, with f(y) = q, and with x and y defined uniquely by g. This also
implies that partial composition pushouts lift to partial composition pushouts.

In the opposite direction, the condition implies that only identity operations are
mapped to identity operations, that only permutation isomorphisms are mapped to per-
mutation isomorphisms, and that lifts of the morphisms with exactly one non-trivial
non-source vertex exist, are unique, and have exactly one non-trivial non-source vertex.
It suffices to show that any morphism with trivial permutation on leaves has a unique
lift. Such a morphism is a unique composition of morphisms with trivial permutation on
leaves and with only j-th non-source vertex being possibly non-trivial, with j decreasing
from n to 0, where n is the arity of the source of the morphism. The morphisms in the
composition have unique lifts, and the composition itself has unique lift.

3.31. Proposition. Let P be a planar or symmetric operad and Y be a presheaf over
Tw(P ). The presheaf Y corresponds to discrete fibration f∗ : Tw(P1) → Tw(P ) induced
by a morphism of operads f : P1 → P if and only if Y is a discrete decomposition space.

Proof. The first part of the proof continues the preceding lemma. Assume that Y
corresponds to the discrete fibration f∗ induced by a morphism of operads f . Since only
identity operations are mapped by f to identity operations, the set of identity operations
of P1 is the set ⊔

c f
−1(idc) = ⊔

c Y (idc). Let p and q be composable operations in P ,
and idc → p be the i-th input map of p and idc → q be the output map of q. The set
Y (p) ×Y (idc) Y (q) consists of all composable operations x and y in P1 lying over p and q
respectively. By preceding lemma the map ◦i : Y (p)×Y (idc)Y (q)→ Y (p◦iq), the restriction
of the partial composition map, is a bijection. For all pairs (x, y) in Y (p)×Y (idc) Y (q) we
have x = Y (p → p ◦i q)(x ◦i y) and y = Y (q → p ◦i q)(x ◦i y), i.e. the bijection above is
the isomorphism of pullbacks. This shows that Y sends partial composition pushouts to
pullbacks, i.e. Y is a discrete decomposition space.

In the opposite direction, define ⊔
c Y (idc)-coloured operad P1 as follows. Operations

in P1 of arity n are the elements of Y (p) for all operations p in P of arity n. The i-th
input and the output colour of x in Y (p) are the i-th input and the output of x, i.e. the
images of x under the maps Y (p) → Y (idc). Again, the set Y (p) ×Y (idc) Y (q) consists
of all composable operations x and y in P1 lying over p and q respectively. The partial
composition x◦iy is computed via the canonical isomorphism Y (p)×Y (idc)Y (q)→ Y (p◦iq)
between pullbacks. Operad axioms for P1 follow from relations in Tw(P ), e.g. associativity
of composition can be proved by factoring the obvious morphisms from operations p, q, r
to the operations (p ◦i q) ◦j r in two ways.

3.32. Example. For an operad P and a single-object Segal P -presheaf X the operad
over P corresponding to the discrete decomposition space X is the operad of P -algebras
over the P -algebra corresponding to X, i.e. the Baez–Dolan plus construction (P,X)+.

3.33. Definition. A morphism of operads f : P1 → P is a decomposition morphism if
the induced functor f∗ : Tw(P1)→ Tw(P ) is a discrete fibration.
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3.34. Example. A morphism of categories C1 → C is a decomposition morphism if and
only if it is a discrete Conduché fibration ([Joh99]).

3.35. Lemma. Decomposition morphisms form a wide subcategory of the category of
coloured operads. For any decomposition morphisms Pi → P over the same base P mor-
phisms P1 → P2 over P are decomposition morphisms, and any morphism h : Tw(P1)→
Tw(P2) of categories over Tw(P ) is induced by a decomposition morphism f : P1 → P2.

Proof. A composition of discrete fibrations is a discrete fibration. Morphisms E1 → E2
between discrete fibrations Ei → B over the same base are discrete fibrations. Let Pi → P
be decomposition morphisms, and h : Tw(P1) → Tw(P2) be a morphism over Tw(P ).
Since the functor Tw(P1) → Tw(P ) and lifts along the discrete fibration Tw(P2) →
Tw(P ) preserve the classes of input maps, output maps, partial composition pushouts
and permutation isomorphisms, the functor h preserves the aforementioned classes of
maps and diagrams, and thus h is induced by a morphism of operads.

3.36. Corollary. For any operad P the category of discrete decomposition spaces over
Tw(P ) is equivalent to the category of decomposition morphisms over P .

Segal presheaves as algebras. We introduce a class of operads called palatable. For
a palatable operad P Segal P -presheaves can be seen as algebras over operads related to
P .

3.37. Definition. Let P be a planar or symmetric operad with a nice grading. The
operad P is palatable if any Segal presheaf over Tw(P ) is 2-Segal. For a palatable operad
P and a 2-Segal presheaf over Tw(P ) the operad PX is the operad over P that corresponds
to X.

3.38. Definition. For a planar or symmetric operad P with a nice grading ψ the cate-
gory Pψ is the full subcategory of Tw(P ) on objects q of grading (−1). Let X be a presheaf
over Tw(P ) and k be the inclusion of Pψ into Tw(P ). The presheaf Pl(X) over Tw(P ) is
the presheaf k∗k

∗X, and ηX : X → Pl(X) is the unit of the adjunction k∗ ⊣ k∗. In other
words, presheaves Pl(X) are determined by their petals, presheaves X and Pl(X) have
the same petals, and Pl(X) is terminal among presheaves with petals the same as in X.

3.39. Proposition. For any operad P presheaves Pl(X) over Tw(P ) are Segal.

Proof. Morphism in Tw(P ) from objects of Pψ are lower morphisms. Thus for any
presheaf Y over Pψ the restriction j∗k∗Y of the right Kan extension of Y along k to
the subcategory Lower and the right Kan extension of Y along the inclusion of Pψ into
Lower are computed by the same formula, i.e. the two presheaves are isomorphic. The
inclusion of Pψ into Lower is the composition of the inclusion of Pψ into El(Lower) with
the inclusion i : El(Lower) → Lower, thus j∗k∗Y is a right Kan extension along i, and
the presheaf k∗Y is Segal.



638 SERGEI BURKIN

3.40. Proposition. Let P be an operad and X be a presheaf over Tw(P ) such that
Pl(X) is 2-Segal. If X is Segal, then the corresponding presheaf X ′ over Tw(PPl(X))
is single-object Segal. This correspondence gives an equivalence between the category of
single-object Segal presheaves over Tw(PPl(X)) and the category of Segal presheaves Y over
Tw(P ) such that Pl(Y ) = Pl(X) and petal-preserving morphisms.

Proof. For any operation p′ in PPl(X) that lies over an operation p in P the set X ′(p′)
consists of elements in X(p) that have petals equal to petals of p′. If X is Segal, then
X ′(p′) is the subset of the limit taken over El(Lower)/p, the subset of the product indexed
by petals and inputs of p, with values over petals determined uniquely by p′. This implies
that the map X ′(p′)→ ∏

X ′(idc′) is a bijection, and X ′ is single-object Segal.
Let Y ′ be a single-object Segal presheaf over Tw(PPl(X)) and Y be the corresponding

presheaf over Tw(P ). For operations q′ of arity 0 in PPl(X) the sets Y ′(q′) are singletons,
thus Pl(X) = Pl(Y ). By the same reasoning as in the first half of the proof, Y is Segal.

If an operad P is palatable, then for any presheaf X over Tw(P ) Segal presheaf Pl(X)
is 2-Segal. The opposite is also true.

3.41. Proposition. Let P be an operad such that presheaves Pl(X) over Tw(P ) (i.e.
right Kan extensions of presheaves over Pψ) are 2-Segal. Then P is palatable.

Proof. Let X be a Segal presheaf. The corresponding presheaf X ′ over TwPl(X) is 2-
Segal as a single-object Segal presheaf. The presheaf X corresponds to the composition
Tw(PPl(X))/X ′ → Tw(PPl(X)) → Tw(P ) of discrete fibrations induced by decomposition
morphisms. Composition of decomposition morphisms is a decomposition morphism, i.e.
the presheaf X is 2-Segal.

3.42. Proposition. Let P be a palatable operad and X be a presheaf over Tw(P ). Then
the operad PPl(X) is palatable. Presheaves over Tw(P ) that correspond to Segal presheaves
over Tw(PPl(X)) are Segal. Let Z ′ be a presheaf over Tw(PPl(X)) and Z be the correspond-
ing presheaf over Tw(P ). Then the presheaf Pl(Z) corresponds to Pl(Z ′).
Proof. We start with the last claim. Let Z1 be the presheaf over Tw(P ) that corresponds
to Pl(Z ′). Pairs of presheaves Pl(Z) and Z, Z and Z ′, Z ′ and Pl(Z ′), Pl(Z ′) and Z1
have the same petals (i.e. the same sections over operations of grading (−1)), thus Pl(Z)
and Z1 have the same petals. For any operation p in P the sets Z1(p) and Pl(Z)(p)
are computed by essentially the same limit over Pψ/p, thus presheaves Z1 and Pl(Z) are
isomorphic.

For the first claim, for any presheaf Z ′ the presheaf Pl(Z ′) corresponds to the mor-
phism of presheaves Pl(Z) → Pl(X), and since P is palatable, this morphism is a mor-
phism between 2-Segal presheaves, and thus corresponds to a decomposition morphism
PPl(Z) → PPl(X). This implies that the presheaf Pl(Z ′) is 2-Segal, and PPl(X) is palatable.

For the second claim, let Y ′′ be the presheaf over Tw(PPl(Y )) = Tw((PPl(X))Pl(Y ′))
corresponding to a Segal presheaf Y ′. Since Y ′ is Segal, Y ′′ is single-object Segal, and Y
is Segal.
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To check if an operad is palatable we use the following notion.

3.43. Definition. An operad P endowed with a nice grading is strongly palatable if for
any composable operations p and q in P the set of petals of p ◦i q is the pushout of the
sets of petals of p and q.

3.44. Example. The operad uCom is strongly palatable. The operad mOpnc and its
graph-substitution suboperads, and the operads cuAs, iuAsTr and iuAsiT r, all graded by
ψ, are strongly palatable: if a composition p ◦i q has arity greater than 0, then the set of
edges of p ◦i q is the pushout of the sets of edges of p, q and idci

; if arity of p ◦i q is 0, the
condition can be checked directly.

3.45. Example. Some of the graph-substitution operads are not strongly palatable,
which is the reason why in general the corresponding presheaves Pl(X) are not 2-Segal.
In graph-substitution operads containing⃝ and endowed with the arity grading ϕ the set
of petals of the operation ⃝ = ν ◦1 µ0 is not the pushout of the sets of petals of µ0 and
of ν, since the map id⃝, a petal of ⃝, is not in the pushout. In the operads mOp and
ciuAs endowed with grading ψ the operation ⃝ has only one petal, while the pushout
corresponding to the composition ν ◦1 µ0 consists of two petals.

3.46. Proposition. Let P be an operad with a nice grading ψ. If P is strongly palatable
then P is palatable. If the category Pψ is a groupoid and P is palatable, then P is strongly
palatable.

Proof. For any presheaf X over Tw(P ) the presheaf Pl(X) is 2-Segal if and only if the
following square is a pullback for all composable operations p and q.

Pl(X)(p ◦i q) Pl(X)(p)

Pl(X)(q) Pl(X)(idc)

The above square is obtained by taking limits of the form lims→tX(s) over the categories
in the following commutative square.

Pψ/idc Pψ/p

Pψ/q Pψ/p ◦i q

If P is strongly palatable, then the lower square is a pushout, and by Lemma A.16 the
upper square is a pullback. For any presheaf X over Pψ the square of limits of the form
lims→tX(s) over the categories in the lower square is equivalent to the upper square. If
Pψ is a groupoid and the upper square is always a pullback, then by Lemma A.17 the
lower square is a pushout.
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3.47. Remark. It is not clear whether the requirement above to form a groupoid is
necessary. Notice that for operads satisfying the conditions of Theorem 2.54 that P (ψ = 0)
or P (1) is a groupoid, which is very likely satisfied by all operads of any interest, the
category Pψ is a groupoid. For this case the proposition gives a criterion of palatability.

3.48. Remark. Let P be a palatable operad such that P (ψ = 0) is a groupoid and petals
factor through inputs in Tw(P ). Let X be a presheaf over Tw(P ). An operation p′ in
PPl(X) over an operation p of non-zero arity in P corresponds to a corolla with vertex
marked by p and with leaves coloured by the petals of the input or the output of p′.
Since petals factor through inputs, the correspondence between operations of non-zero
arity in PPl(X) and the corollas above is bijective. The operations of arity 0 in PPl(X) that
can be composed with operations of arity greater than 1 are determined by the petals
of their outputs. For these operations composition in PPl(X) works as composition in
P . Palatability ensures that this composition is well-defined. The only operations that
do not fit this description are the operations of arity 0 that can be composed only with
operations of arity 1.

The dendroidal category Ω.

3.49. Proposition. The category of Segal presheaves over Tw(sOp) is equivalent to the
category of coloured operads.

Proof. Let X be a presheaf over Tw(sOp). Then sOpPl(X) is the operad sOpX(µ0) of
X(µ0)-coloured operads: the petals of the j-th input of an element in Pl(X) are the
X(µ0)-colours of the edges adjacent to the j-th vertex in the corresponding operadic tree
in sOpX(µ0).

A Segal presheaf X over Tw(sOp) corresponds to a single-object Segal presheaf X ′

over Tw(sOpX(µ0)), i.e. to an sOpX(µ0)-algebra, or to an X(µ0)-coloured operad. Any
X(µ0)-coloured operad, or a single-object Segal sOpPl(X)-presheaf Y ′, corresponds to a
Segal presheaf Y over Tw(sOp), and X(µ0) = Y (µ0). Morphisms of Segal sOp-presheaves
correspond to morphisms of coloured operads.

3.50. Definition. Let P be a palatable operad and X be a Segal P -presheaf. The twisted
arrow category TwP (X) of X is the twisted arrow category of the corresponding PPl(X)-
algebra X ′.

3.51. Remark. It is possible to define categories TwP (X) for Segal presheaves X over
non-palatable graph-substitution operads P , since these operads satisfy palatability for
all operations p and q except when p ◦i q = ⃝. The operation ⃝ is not used in the
construction of corresponding twisted arrow categories.

3.52. Remark. If P is additionally such that petals factor through inputs, then mor-
phisms in TwP (X) are given by equivalence classes of expressions p(x′, x1, . . . , xn), where
p is an operation of P and the elements x′, x1, . . . , xn from the sets X(idc) have petals
compatible with respect to p. This observation is used in the following propositions.
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3.53. Proposition. The Yoneda embedding of Tw(sOp) consists of Segal presheaves.

Proof. For an operation r in sOp the presheaf Hom(−, r) is Segal if and only if for
any operation p in sOp of arity n with input colours cj and for any collection of maps
gj : idcj

→ r in Tw(sOp) compatible with petals of p there is unique map f : p → r in
Tw(sOp) such that gj = f ◦ inj. A map idcj

→ r, or its upper vertex, corresponds to a
choice of subtree of r endowed with order on leaves, and its lower vertex corresponds to
the tree obtained by contraction of the chosen subtree. An element in the limit in Segal
condition for Hom(−, r) over p corresponds to a choice of n subtrees in r, endowed with
order on leaves of subtrees, such that for any petal of p that factors through any two inputs
of p the corresponding leaves of the two subtrees idcj

→ r are the two different half-edges
in the same internal edge of r. This implies that the n subtrees do not intersect each other,
and their union is a subtree of r. There is unique morphism f : p→ r with upper vertices
corresponding to the chosen subtrees of r, and with the lower vertex corresponding to the
tree obtained by contraction of the chosen subtrees into a single vertex.

3.54. Proposition. The twisted arrow category Tw(sOp) is equivalent to Moerdijk–
Weiss dendroidal category Ω.

Proof. For any Segal presheaf X over Tw(sOp) the set Hom(Hom(−, p), X) = X(p) is
isomorphic to the set limq→pX(q) = limq→p Hom(Hom(−, q), X) of tuples of maps from
inputs of p to X that are compatible with respect to petals of p. Thus Hom(−, p) is the free
coloured operad generated by inputs of p. The category Ω and (the Yoneda embedding
of) the category Tw(sOp) are both full subcategories of the category of coloured operads
on free operads generated by trees.

3.55. Proposition. The presheaves in the images of Yoneda embeddings of Tw(pOp)
and of Tw(cOp) are Segal, but those of Tw(mOp) are in general not Segal presheaves.

Proof. For Tw(pOp) and Tw(cOp) the proofs are analogous to that of Tw(sOp). Let
p ∈ mOp be an operadic graph given by “a line” with three vertices of degree 4 and
r ∈ mOp be “a circle” with two vertices of degree 4. If Hom(−, r) is Segal, then the
morphisms from Hom(−, p) to Hom(−, r) correspond to morphisms from vertices of p to
r that are compatible with respect to petals of p. However, there in no morphism in
Tw(mOp) from p to r that sends the first and the third vertex of p to the first vertex of
r and the second vertex of p to the second vertex of r.

3.56. Proposition. For any operad P there is a sequence of categories

Ω/P → Tw(P )→ (Γ+
P )op.

By restricting to a category C we get the sequence

∆/C → Tw(C)→ Cop × C.



642 SERGEI BURKIN

Proof. The functor Ω/P → Tw(P ) is equivalent to the functor Tw(sOp)/P → TwsOp(P ).
The functor ∆/C → Tw(C) is equivalent to the functor Tw(uAs)/C → TwuAs(C). The
map Tw(P )→ (Γ+

P )op is the map Tw(P )→ U(P ), where the category Γ+
P is the category

defined in [Fre14]. The map Tw(C)→ Cop × C is the map Tw(C)→ U(C).

3.57. Proposition. For any operad P and P -algebra A the following square is a pull-
back:

Ω/(P,A) Tw(P )/A

Ω/P Tw(P )

Proof. Here (P,A) is the dendroidal nerve of the algebra A, and its elements are the
trees in P with edges labeled by elements of A, so that the labeling is compatible with the
algebra structure of A. The map Ω/(P,A) → Tw(P )/A evaluates the trees, preserving
the labeling of inputs. The map Ω/(P,A) → Ω/P forgets the labeling, and is a discrete
fibration. The pullback property is easy to check.

4. Twisted arrow categories and ∞-localizations
For any operad P and P -algebra A we introduce a strict 2-category TP (A). The local-
ization of TP (A) by all 2-morphisms is the (∞, 1)-localization of Tw(P )/A by the upper
morphisms. The homotopy category of TP (A) is equivalent to TwP (A). This shows that,
up to equivalence of categories, TwP (A) is the localization of Tw(P )/A by the upper
morphisms. The 2-category TP (A) is similar to bicategories of correspondences.

For the model of (∞, 1)-localization we will use the hammock localization LH .

4.1. Lemma. Let C be a category endowed with:

• a pair of subcategories L and R′,

• a subset S of objects of C, such that for any object X in C there exists unique
morphism in L from an object in S to X,

• for any morphism f in C, a choice of terminal (R′, L)-factorization l ◦ r of f , such
that morphisms of factorizations of f into l ◦ r are in L; for any morphism r in R′

the factorization is chosen to be id ◦ r,

• for any morphisms r in R′ and l in L with a common source, a choice of the pushout
maps r′ in R′ and l′ in L, so that r′ ◦ l = l′ ◦ r,

• and such that for any morphisms f in C and l in L, if f ◦ l is in L, then f is in L.

Then for any objects s and s′ in S the nerve of the category of (R′, L)-cospans (with
morphisms in L) from s to s′ is a deformation retract of the simplicial set LH(C,L)(s, s′).
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Proof. We will deform the simplicial set LH(C,L)(s, s′) in several steps. Due to the
nature of hammock localization, it suffices to describe the deformation retraction on 1-
simplices. The 1-simplices are represented by diagrams in which the horizontal arrows
pointing left and the vertical arrows pointing down belong to the subcategory L. The
deformation corresponds to a sequence of morphisms of diagrams. At the first step a
simplex

A0,i B0,i A0,i+1

A1,i B1,i A1,i+1

is deformed into the 1-simplex

A0,i bi A0,i+1

A1,i bi A1,i+1

id

via the morphisms of diagrams induced by the unique morphisms bi → Bk,i in L from
objects bi in S and the identity morphisms on Ak,i. This simplex is deformed into 1-
simplex

A′
0,i bi A′

0,i+1

A′
1,i bi A′

1,i+1

R′

id

R′

via the morphisms in L from the canonical (R′, L)-factorizations bi → A′
k,i+1 → Ak,i+1.

The morphism A′
0,i+1 → A′

1,i+1 is the morphism in L from the (R′, L)-factorization bi →
(A′

0,i+1 → A0,i+1 → A1,i+1) to the terminal (R′, L)-factorization bi → A′
1,i+1 → A1,i+1.

The morphisms bi → A′
k,i are determined uniquely.

If the rows in the diagram that represents the obtained 1-simplex start with morphisms
pointing left, then, since s is in S, these morphisms are identity morphisms, and we replace
this diagram with the diagram in which the first morphisms point to the right. If the last
morphisms in the rows point right, then we add identity morphisms pointing left. Finally,
the obtained simplex is deformed into the 1-simplex

A′′
0,i A′′

0,i A′′
0,i+1

A′′
1,i A′′

1,i A′′
1,i+1

id R′

R′id
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via the morphisms A′
k,i → A′′

k,i constructed by induction, and the morphisms bi → A′′
k,i

being the obvious composition. The first maps A′
k,0 → A′′

k,0 are the identity maps. Once
the map A′

k,i → A′′
k,i is defined, the map bi → A′′

k,i is also defined. The maps A′
k,i+1 →

A′′
k,i+1 in L and A′′

k,i → A′′
k,i+1 in R′ constructed at the next step are the maps in the

canonical pushout of bi → A′
k,i+1 and bi → A′′

k,i. The map A′′
0,i+1 → A′′

1,i+1 is the unique
map from the pushout A′′

0,i+1, induced by the maps A′
0,i+1 → A′

1,i+1 → A′′
1,i+1 and A′′

0,i →
A′′

1,i → A′′
1,i+1. And since the composition A′

0,i+1 → A′′
0,i+1 → A′′

1,i+1 is equal to A′
0,i+1 →

A′
1,i+1 → A′′

1,i+1, which is in L, and A′
0,i+1 → A′′

0,i+1 is in L, the map A′′
0,i+1 → A′′

1,i+1 is in
L.

Since the left arrows except the last one are trivial, the final simplex is represented by
the diagram of the following form.

s A′′
0,n s′

s A′′
1,n s′

R′

id L

L

id

R′ L

This simplex does not change during the deformation.

4.2. Remark. Let t and t′ be objects in C, and s and s′ be the objects in S corresponding
to t and t′. The morphisms s→ t and s′ → t′ in L induce homotopy equivalence between
the simplicial sets LH(C,L)(t, t′) and LH(C,L)(s, s′). Thus the theorem describes the
homotopy type of all simplicial sets LH(C,L)(t, t′).

4.3. Definition. Let P be an operad and A be a P -algebra. The strict 2-category
TP (A) has the elements of A as objects. For any elements s and s′ in A the cate-
gory HomTP (A)(s, s′) is the category of (Lower′, Upper)-cospans from idc/s to idc′/s′ in
Tw(P )/A. Notice that these cospans are determined uniquely by their Lower′ part, and
that morphisms between these cospans are upper morphisms with first vertex trivial, with
index above the first vertex equal to 1. The horizontal composition of cospans correspond-
ing to Lower′ morphisms r1 and r2 is the cospan corresponding to the Lower′ morphism
r, where the lower vertex of r is the composition of the lower vertices of r1 and r2. The
horizontal composition of upper morphisms f1 and f2 is the upper morphism f , with the
first vertex trivial, followed by the second to the last vertices of f1, followed by the sec-
ond to the last vertices of f2; the permutation on leaves is the obvious permutation in
S1 × Sn−1 × Sm−1 ⊂ Sn+m−1. The composition is associative.

The strict locally groupoidal (2, 1)-category T′
P (A) is the strict 2-category obtained from

TP (A) by groupoidification of categories of morphisms.

4.4. Theorem. Let P be an operad and A be a P -algebra. The (2, 1)-category T′
P (A) is

the (∞, 1)-localization of Tw(P )/A by the upper morphisms.

Proof. Let S be the set of objects of Tw(P )/A of the form idc/a, and the categories
L and R′ be the categories Upper and Lower′. Lemma 4.1 holds: its third and fourth
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assumptions have been proved in Lemma 2.49 and Lemma 2.51, and the remaining as-
sumptions hold trivially. The 2-category T′

P (A) is equivalent to LH(Tw(P )/A,Upper).

4.5. Proposition. An operad P is canonically decomposable if and only if for any P -
algebra A connected components of Hom-categories in TP (A) have initial objects.

The proof is trivial. The next corollary implies Theorem 2 of [Wal21], Theorem
1.1 of [BdBM20] and the asphericity of Ω, proved in [ACM19].

4.6. Corollary. For any canonically decomposable operad P the functor Tw(P )/A →
TwP (A) is the (∞, 1)-localization by the upper morphisms. In particular, the functor
Ω/P → Tw(P ) is the (∞, 1)-localization by boundary preserving morphisms. In particular,
the functor Ω/sOp→ Ω, or the functor Tw(sOp)/sOp→ Tw(sOp), is (∞, 1)-localization.

1

2

3

1

1

Figure 8: The element of the operad of properads used in Example 4.7.

In contrast, the following example shows that twisted arrow categories of PROPs and
of properads in general are not (∞, 1)-localizations of the corresponding slice categories
of Segal presheaves.

4.7. Example. Let diOp be the operad of dioperads and prOp be the operad of properads
or the operad of PROPs. Let B be the dioperad without operations of input arity 0,
without operations of output arity 0, and with exactly one operation in B(m;n) for
any positive input arity m and positive output arity n. Let B′ be the properadic or
the PROP envelope of B, i.e. the extension of the diOp-algebra B to prOp-algebra B′

induced by the morphism of operads diOp→ prOp. Let A be the properad or the PROP
B′ ⊔ F (x)/∼, where x is an operation of input and output arity 1, and where relations
encode that any composition of x with any operation p in B′ is equal to p. Consider the
1-morphism f : id → b′ in TprOp(A) represented by the operation in prOp from Figure 8
and by the three elements from A that are of appropriate arity and that belong to the
dioperad B. We will show that the connected component C of the object f in the category
HomTprOp(A)(id, b′) is not contractible. This will imply that Tw(prOp)/A→ TwprOp(A) is
not (∞, 1)-localization.

The 1-morphisms that are objects of C are represented by planar graphs that can
be obtained from the planar graph of f by adding vertices of input and output arity 1,
these vertices necessarily being marked either by identity operation or by xk for some
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k. Consider the full subcategory C ′ of C on 1-morphisms such that all of the additional
vertices are marked by x. The category C ′ is a reflective subcategory of C, with the
unit of adjunction being the 2-morphism that removes the vertices marked by identity
operations and replaces the vertices marked by xk with k vertices marked by x. Let C ′′

be the subcategory of C ′ on 1-morphisms with all additional vertices located between the
second and the third vertex of the triangle. The category C ′′ is a coreflective subcategory
of C ′. The category C ′′ is isomorphic to the category D whose objects are natural numbers
and whose morphisms (a, b) : n→ n+ a+ b correspond to pairs of natural numbers, with
composition given by addition. The spaces BC, BC ′′ and BD are homotopy equivalent.
The space BD is not contractible.

One can easily come up with a definition of a Segal presheaf over twisted arrow category
of a PROP. The above example shows that the analogous naive notion of a weak Segal
presheaf over a twisted arrow category of a PROP is in general not the correct one. This
problem may appear in practice as follows.

4.8. Example. To generalize the present work further to the case of ∞-operads one
needs the notion of∞-category endowed with a factorization system. There is a coloured
PROP FactSys whose algebras are monoids endowed with a strict factorization system.
Segal presheaves over Tw(FactSys) should correspond to small categories endowed with
a strict factorization system. Yet it is not immediately clear if weak Segal presheaves
or some other nice presheaves over Tw(FactSys) correctly encode ∞-categories endowed
with a factorization system, and in particular if Tw(prOp)/FactSys → Tw(FactSys) is
∞-localization. At least one can expect that ∞-categories endowed with a factorization
system are correctly modeled by nice presheaves over Tw(prOp)/FactSys.

Finally, since twisted arrow categories of planar operads are equivalent to twisted
arrow categories of their symmetrizations, one may ask if analogous equivalence holds
while passing from symmetric operads to more general structures that encode algebras.
Cartesian operads, better known as multi-sorted Lawvere theories, are the simplest among
structures that generalize symmetric operads, and the present theory can be generalized
to some extent to the case of sufficiently nice cartesian operads. However passage from
symmetric operads to cartesian operads does not induce equivalence of corresponding
twisted arrow categories.

A. Category theory
Strict factorization systems. A strict factorization system is a refinement of an
orthogonal factorization system.

A.1. Definition. An orthogonal factorization system for a category C is a pair (L,R) of
subcategories of C such that both L and R contain all isomorphisms of C, any morphism
in C can be factored as r ◦ l, l ∈ L, r ∈ R, and this factorization is unique up to unique
isomorphism of factorizations.
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A.2. Definition. A strict factorization system for a category C is a pair (sL, sR) of
subcategories of C such that for any morphism in C there is unique factorization r ◦ l, l ∈
sL, r ∈ sR.

A pair of wide subcategories (L,R) of a category C is a strict factorization system
if for any morphism f in C the category of (L,R)-factorizations of f is a point, and is
an orthogonal factorization system if for any morphism f in C the category of (L,R)-
factorizations is a contractible groupoid.

In the rest of this appendix we denote by I the class of all isomorphisms of a category
C. Morphisms that contain i, l or r in their name are the morphisms from I, sL or sR
respectively. In particular, il is in I ∩ sL and ir is in I ∩ sR.

A.3. Proposition. Let (sL, sR) be a strict factorization system for a category C. Then
((I ∩ sR) ◦ sL, sR ◦ (I ∩ sL)) is an orthogonal factorization system for C.

We prove this proposition by a sequence of lemmas. We implicitly use the fact that
any morphism is representable as composition r′ ◦ l′ for unique l′ ∈ sL and r′ ∈ sR.

A.4. Lemma. For any composable i ∈ I and l ∈ sL let r′ ◦ l′ = l ◦ i be the (sL, sR)-
factorization of their composition. Then r′ is an isomorphism.

Proof. We have l = l ◦ i ◦ i−1 = r′ ◦ l′ ◦ i−1 = r′ ◦ r′′ ◦ l′′, where l′ ◦ i−1 = r′′ ◦ l′′, thus
l = l′′ and r′ ◦ r′′ = id. Similarly, l′ = l′ ◦ i−1 ◦ i = r′′ ◦ l′′ ◦ i = r′′ ◦ l ◦ i = r′′ ◦ r′ ◦ l′, thus
r′′ ◦ r′ = id, and r′ is an isomorphism.

A.5. Lemma. For any composable r ∈ sR and i ∈ I let r′ ◦ l′ = i ◦ r be the (sL, sR)-
factorization of their composition. Then l′ is an isomorphism.

Proof. We have r = i−1 ◦ i ◦ r = i−1 ◦ r′ ◦ l′ = r′′ ◦ l′′ ◦ l′, where i−1 ◦ r′ = r′′ ◦ l′′, thus
r = r′′ and l′′ ◦ l′ = id. Similarly, r′ = i ◦ i−1 ◦ r′ = i ◦ r′′ ◦ l′′ = i ◦ r ◦ l′′ = r′ ◦ l′ ◦ l′′, thus
l′ ◦ l′′ = id, and l′ is an isomorphism.

A.6. Lemma. For any isomorphism i let r ◦ l = i be the (sL, sR)-factorization of i. Then
the morphisms l and r are isomorphisms.

Proof. We have id = i−1 ◦ r ◦ l = r′ ◦ l′ ◦ l. By preceding lemma l′ is an isomorphism.
Since l′ ◦ l = id, the morphism l is an isomorphism, and r is an isomorphism.

A.7. Corollary. The classes of morphisms I ◦ sL and sR ◦ I are closed under compo-
sition, and I ◦ sL = (sR ∩ I) ◦ sL, sR ◦ I = sR ◦ (I ∩ sL).

A.8. Lemma. For any morphism f in C the groupoid of factorizations of f via (I ◦
sL, sR ◦ I) is connected.

Proof. Let r ◦ il ◦ ir ◦ l be a factorization of the morphism f via (I ◦ sL, sR ◦ I). By
preceding lemma il ◦ ir = i′r ◦ i′l. Let l′ = i′l ◦ l, r′ = r ◦ i′r, i = i′l ◦ i−1

r . Then r′ ◦ l′
is the unique factorization of f via (sL, sR), and i is the isomorphism from the original
factorization to r′ ◦ l′.
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A.9. Lemma. The automorphism group of any factorization via (I ◦ sL, sR◦ I) is trivial.

Proof. The groupoid of factorizations of a morphism is connected, thus automorphism
groups of factorizations of the same morphism are isomorphic. Let i = ir ◦ il be an
automorphism of the unique (sL, sR)-factorization r ◦ l of a morphism. Then r = r ◦ ir ◦ il
and l = ir ◦ il ◦ l, and il = ir = id.

We have proved the proposition.
Ternary factorization systems. If (L1, R1) and (L2, R2) are orthogonal factorization
systems on the same category, then L1 ⊆ L2 implies R2 ⊆ R1. The analogous statement
for strict factorization systems is false.

A.10. Example. Let C be a category with two objects A and B and with three non-
trivial morphisms: automorphism i of A, and two morphisms f, g : A→ B; and relations
i2 = id, f ◦ i = g, g ◦ i = f . Let L, R1 and R2 be the wide subcategories of C with exactly
one non-trivial morphism, this morphism being i, f and g respectively. Then (L,R1)
and (L,R2) are strict factorization systems. Notice that these systems generate the same
orthogonal factorization system.

A.11. Definition. A ternary strict factorization system for a category C is a pair of
strict factorization systems (L1, R1) and (L2, R2) for C such that L1 ⊆ L2 and R2 ⊆ R1.

A.12. Proposition. Let a pair (L1, R1) and (L2, R2) of strict factorization systems be
a ternary strict factorization system for a category C. Then any morphism of C can be
decomposed uniquely as r ◦m ◦ l, with l ∈ L1, m ∈ L2 ∩R1, and r ∈ R2.

Proof. Let f be a morphism in C, and r1 ◦ l1 be the decomposition of f via (L1, R1).
Let r2 ◦m be the decomposition of r1 via (L2, R2). Let r3 ◦ l3 be the decomposition of m
via (L1, R1). Since r1 = r2 ◦ r3 ◦ l3, r1 ∈ R1, r2 ◦ r3 ∈ R1, l3 ∈ L1, we have l3 = id, and
m = r3 ◦ l3 = r3 ∈ R1. Thus r2 ◦m ◦ l1 is a decomposition of f of the desired form.

The morphism m◦l1 is in L2 and r2 is in R2, thus m◦l1 and r2 are determined uniquely
by f . Similarly, r2 ◦m and l1 are determined uniquely by f . The morphism m is in R1,
and is determined uniquely by m ◦ l1, and thus m is determined uniquely by f .

Uniqueness of ternary decomposition in a category does not imply that the corre-
sponding structure is a ternary factorization system, as the following example shows.

A.13. Example. Let C be a category with five objects A, B, C, X and Y , generated
by morphisms r : A → B, l : B → C, l′ : A → X, m′ : X → Y and r′ : Y → C, with
relation l ◦ r = r′ ◦ m′ ◦ l′. The classes of morphisms L, M , R containing all identity
morphisms together with l and l′; m′; r and r′ respectively are wide subcategories of C.
Any morphism decomposes uniquely via (L,M,R). These do not correspond to a ternary
factorization system: the class M ◦ L, which should be a category L2, is not a category.
(sR, sL)-factorizations. We will use the following lemma on (sR, sL)-factorizations.
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A.14. Lemma. Let C be a category endowed with a strict factorization system (sL, sR).
For any morphism f in C the category of (sR, sL)-factorizations of f has a strict factor-
ization system induced by (sL, sR).
Proof. Let l′ ◦ r′ and l′′ ◦ r′′ be two (sR, sL)-factorizations of f , and r ◦ l be a morphism
from the first to the second factorization. The morphism r′′ = r ◦ l ◦ r′ is in sR, thus l ◦ r′

is in sR. The morphism l′ = l′′ ◦ r ◦ l is in sL, thus l′′ ◦ r is in sL. The morphisms l and
r are morphisms of (sR, sL)-factorizations.

Pushouts of special form.

A.15. Lemma. Let C be a subcategory of a small category B, and A → B and A → C
be morphisms in B. The functors C/A → C/B and C/A → C/C have a pushout D. The
square

C/A C/B

C/C D

is a pushout if and only if it is a pushout on the sets of objects and the two functors to D
are discrete fibrations.

Proof. The pushoutD of the pair of functors C/A→ C/B and C/A→ C/C is constructed
as follows. The set of objects of D is the pushout of the sets of objects of the corresponding
categories. Notice that if morphisms s → t and s′ → t′ in B represent the same object
in D, with t and t′ being in {B,C}, then s = s′. The set HomD(−, [s → t]) is defined
to be the set of objects of C/s. The set HomD(−, [s → t]) is isomorphic to the set
HomC/t(−, s → t), which allows to define sources and composition of morphisms in D,
and these are well-defined. In all categories in the square the set of morphisms with a
target s → t or [s → t] is the set C/s, and the four functors of the square are discrete
fibrations.

In the opposite direction, assume that all the four functors are discrete fibrations, and
that the square is a pushout on the sets of objects. Let E be a category and FB : C/B → E
and FC : C/C → E be a pair of compatible functors. There is unique functor FD : D → E
compatible with FB and FC . On objects of D the functor FD is defined uniquely by
the pushout condition. Let g be a morphism in D. Since the set of objects of D is
the pushout of sets of objects of C/B and C/C, g has a lift gB to C/B or a lift gC to
C/C. The morphism FD(g) then has to be equal to FB(gB) or to FC(gC). If gB or gC
has a lift gA to C/A, then FB(gB) or FC(gC) is equal to FA(gA). Again by pushout and
discrete opfibration properties, any two lifts of g are connected by zig-zag via functors
C/A → C/B and C/A → C/C. This implies that FD(g) is well-defined, and that the
square is a pushout.
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A.16. Lemma. Continuing Lemma A.15, with D as the pushout, let Y be a presheaf on
C. Define presheaves Y ′ on the four categories in the pushout square by Y ′(s→ t) = Y (s),
with obvious maps. The corresponding square of limits of the diagrams Y ′ is a pullback
square.

LD LB

LC LA

Proof. In general for any diagram F : I → E in some category E with appropriate limits
and any functor J → I there is a canonical map from the limit of F to the limit of the
restriction of F to J . The maps in the square are of this form.

Let E → LB and E → LC be two compatible maps. Composition of these maps
with the projection maps LB → Y (s) and LC → Y (s) gives well-defined maps E → Y (s)
indexed by the objects [s → t] of D. These maps are compatible with morphisms in D:
any two lifts of the same morphism [s→ s′ → t] in D give the same map Y (s′)→ Y (s).
We have constructed the map from E to the diagram indexed by D, which gives the
unique map E → LD.

A.17. Lemma. Continuing Lemma A.15, with D as the pushout, let additionally D′ be
an object of B with maps B → D′ and C → D′, and let D → C/D′ be the map of the
pushout. If C is a groupoid and for any presheaf Y over C the canonical map from the
limit LD′ to the pullback and limit LD is an isomorphism, then the functor D → C/D′ is
an isomorphism.

Proof. In general, the limit of a diagram F : G → Sets indexed by a groupoid G is
the product ∏

[G]∈π0(G) F (G)Aut(G) indexed by the set π0(G) of connected components of
G, where the set F (G)Aut(G) is the set of fixed points of the action of the automorphism
group of a representative G of a connected component [G].

Since C is a groupoid, the categories C/A, . . . , C/D′,D are groupoids. Let Y be the
presheaf on C with Y (s) = {0, 1} for all s in C, with maps being trivial (the corresponding
limits LA, . . . , LD′ , LD can be seen as the 0-th cohomology with Z/2 coefficients of the
categories C/A, . . . , C/D′,D). Since LD′ → LD is an isomorphism, the functor D → C/D′

induces isomorphism on the sets of connected components, and thus, as a discrete fibration
of groupoids, this functor is surjective on objects.

For any object s in C let Y be the presheaf on C with Y (s′) = HomSet(HomC(s, s′),Z).
For any object s′ in C that is not in the connected component [s] the set Y (s′) is a
singleton, thus the factors Y ′(s′ → t)Aut(s′) in the products that compute the limits
LA, . . . , LD′ , LD are singletons. The remaining factors in these products are indexed by
connected components that contain the objects of C/A, . . . , C/D′,D of the form s →
A, . . . , s → D′, or [s → t] respectively. A factor indexed by [s → t] is isomorphic
to HomSet(AutC(s)/Aut(s → t),Z). We have already proved that the indexing sets of
LD and LD′ are isomorphic. Since the map LD′ → LD is an isomorphism, the functor
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D → C/D′ induces isomorphism on the groups Aut(s→ t). This implies that the functor
D → C/D′ is injective, and thus bijective, on objects, and is an isomorphism.

B. EZ-categories
There are two classes of particularly nice generalized Reedy categories: EZ-categories and
Eilenberg–Zilber categories. Here we show how to check if the twisted arrow category or
the enveloping category of a reasonable operad belongs to these classes.

B.1. Definition. A generalized Reedy category is EZ-category ([BM11]) if R+ is the
set of all monomorphisms, R− is the set of all split epimorphisms, and any pair of split
epimorphisms with common source has an absolute pushout.

B.2. Definition. A generalized Reedy category is Eilenberg–Zilber category ([MN16]) if
R− is the set of all split epimorphisms, and any two split epimorphisms that have the
same set of sections are equal.

B.3. Proposition. Under conditions of Theorem 2.54 (or Theorem 2.56) any split epi-
morphism in Tw(P ) (or in V(P )) is in R−.

Proof. By Lemma 2.34 non-source vertices of a split epimorphism e have arity at most
1 and grading at most 0. The conditions imply that non-source vertices of e of arity 1 are
marked by isomorphisms, i.e. that e is in R−.

For any operad P petal maps in Tw(P ) are related to maps that we call elementary
degeneracies. Elementary degeneracies in ∆ and Ω in the usual sense are precisely the
maps isomorphic (but not necessarily equal) to elementary degeneracies in the following
sense.

B.4. Definition. Let P be a planar, symmetric or cyclic operad with a nice grading
ψ. An elementary degeneracy in Tw(P ) is a morphism in Rψ=−1 such that exactly one
non-source vertex is marked by a non-trivial operation.

Petal maps and elementary degeneracies are determined by a similar data. An ele-
mentary degeneracy (p)′ ◦i q is determined by its source p, the operation q and the index i
of the leaf of p to which the operation q is grafted. In planar case petal maps p ◦i (q)′ are
determined by the very same data. In symmetric and cyclic cases this data is determined
up to the action of a cyclic group on the index i and on the orbit of p. In canonical
representatives of morphisms the index i is assumed to be equal to 1, but we will use
non-canonical representatives of morphisms.

For any symmetric operad P let f : q → t be a petal map. The morphism f can be
factored as q → idc → t, where idc → t is an input map, if and only if there are operations
r and p and an index i such that p ◦i (q)′ is a representation of f , the operation q is a left
unit for the operation r, t = (p ◦i q) and p = t ◦i r = (p ◦i q) ◦i r. The planar case differs
only in that q might be not a left, but a right unit for r, so that p = (p ◦i q) ◦i−1 r.
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B.5. Proposition. Under conditions of Theorem 2.54 (or Theorem 2.56) suppose addi-
tionally that petals factor through inputs in TwP . Then any morphism in R− is a split
epimorphism if (and, trivially, only if) elementary degeneracies from operations of arity
1 (or their images in V(P )) are split epimorphisms.

Proof. Any morphism in R− is a composition of an isomorphism and of elementary
degeneracies. It suffices to show that elementary degeneracies are split epimorphisms.
We have assumed that these have a section if their source has arity 1. Suppose then that
f = (s)′ ◦i q is an elementary degeneracy, with operation s of arity greater than 1. The
petal map g = s ◦i (q)′ factors through an input map of s ◦i q. In case of symmetric
operad this implies existence of operations r and p such that g = p ◦j (q)′, r ◦1 q = id
and (p ◦j q) ◦j r = p for some j. The morphism f1 = (p)′ ◦j q has a section (p ◦j q)′ ◦j r.
Finally, notice that f = f1 ◦ h, where h : s→ p is the obvious permutation isomorphism,
and thus f is a split epimorphism. Planar and cyclic cases, and the enveloping category
case, are similar.

B.6. Example. For the graph-substitution operads containing⃝ the morphism ν →⃝,
and its image in V(P ), is an elementary degeneracy without a section. For the rest of
graph-substitution operads P the subcategory R− of TwP (or of V(P )) is the subcategory
of split epimorphisms.

B.7. Proposition. Under conditions of Theorem 2.54 (or Theorem 2.56) assume that
petals factor through inputs in TwP . All monomorphisms in TwP (or in V(P )) are in R+
if and only if elementary degeneracies from operations of arity 1 (or from their images)
are not monomorphisms.

Proof. Let g ◦ l be the factorization of a monomorphism via (R−, R+). The morphism l
is a composition of elementary degeneracies lj followed by an isomorphism. Since g ◦ l is
a monomorphism, the first of these elementary degeneracies l1 is a monomorphism. Thus
monomorphisms are in R+ if and only if elementary degeneracies are not monomorphisms.

As in the Proposition B.5, let f = (s)′ ◦i q be an elementary degeneracy from an
operation of arity greater than 1, and f1 = (p)′ ◦j q be the corresponding elementary
degeneracy of the special form. It suffices to show that f1 is not a monomorphism. Take
two non-equal morphisms from an identity operation to p: the (j + 1)-th input map of
p and the morphism with the upper vertex marked by r and the lower vertex marked
by (p ◦j q) and connected to the source vertex by the j-th edge. Compositions of these
morphisms with f1 are equal, thus f1 is not a monomorphism, and elementary degeneracies
from operations of arity greater than 1 are not monomorphisms.

B.8. Example. In graph-substitution operads an operation of arity 1 that can be a
source of elementary degeneracy is isomorphic either to id1, or to ν. The elementary
degeneracy id1 → µ0 is not a monomorphism: its compositions with the two elementary
degeneracies µ2 → id1 coincide. Likewise, the compositions of the elementary degeneracy
ν → ⃝ with either of the two elementary degeneracies ν ◦1 µ2 → ν coincide. Thus for
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all graph-substitution operads monomorphisms in their twisted arrow categories or in the
categories V(P ) are in R+.

B.9. Proposition. Under conditions of Theorem 2.56, the operadic composition of oper-
ations of non-zero arity with operations of non-zero arity is injective (i.e. for any operation
p in P of non-zero arity the maps p ◦i − and − ◦i p, restricted to the set of operations
of non-zero arity, are injective for all i) if and only if any morphism in V(P ) with all
non-source vertices of non-zero arity is a monomorphism.

Proof. Let f be a morphism in V(P ) with all non-source vertices having non-zero arity
(such a morphism f is always in R+). Injectivity of partial composition ensures that
non-source vertices and indices of leaves of a morphism g in V(P ) can be recovered from
the non-source vertices and indices of leaves of f and f ◦ g. The opposite direction is
trivial.

B.10. Example. The operads mOp, mOp(g,n), mOpst, mOpnc and ciuAs do not satisfy
the injectivity condition, since the action of the groupoid P (ψ = 0) is not free. The
operads containing ⃝ do not satisfy the injectivity condition, since ν ◦1 µ2 = ν ◦1 (µ(12)

2 ).
The graph-substitution operads based on trees satisfy the injectivity condition, and for

these operads the subcategory R+ of the category V(P ) is the subcategory of monomor-
phisms.

For twisted arrow categories the “only if” part of the proposition above does not
hold: any morphism in the twisted arrow category of the planar operad with three binary
operations p1, p2 ∈ P (c1, c2; c0) and q ∈ P (c3, c4; c1) and one ternary operation p1 ◦1 q =
p2 ◦1 q is a monomorphism.

B.11. Proposition. Under conditions of Theorem 2.54, suppose additionally that for
any operation p in P of non-zero arity the maps −◦i p, restricted to the set of operations
of non-zero arity, are injective for all i. Then any morphism f : t → r with all vertices
(including the source) having non-zero arity is a monomorphism.

Proof. Injectivity ensures that any morphism g : s→ t in TwP is determined uniquely
by f ◦ g: the upper vertices of g and the indices of their leaves are determined by f ◦ g,
and the lowest vertex of g is determined by the upper vertices of g and by the operations
s and t.

B.12. Example. For all graph-substitution operads compositions −◦i p of operations of
non-zero arity with operations of non-zero arity are injective: a graph r can be recovered
by contracting the subgraph p in the graph r ◦i p and permuting the edges of the obtained
vertex according to the permutation on leaves of p. To check that the subcategories R+
of twisted arrow categories of graph-substitution operads consist of monomorphisms it
suffices to check that morphisms in R+ with at least one vertex of arity 0 are monomor-
phisms.

For operads ciuAs, mOp, mOp(g,n) the morphism µ0 →⃝ is not a monomorphism: the
compositions of this morphism with the two maps µ0 → µ0 are equal. For the remaining
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graph-substitution operads the subcategories R+ of their twisted arrow categories consist
of monomorphisms.

Often twisted arrow categories and enveloping categories of operads are such that
elementary degeneracies with a common source have a split pushout. Recall that a split
pushout is a diagram of the following form.

A B

C P

f

g k

s

h

t u

Here the morphisms t, s and u are sections, and f ◦ t = u ◦ h and k ◦ f = h ◦ g. Split
pushouts are absolute pushouts. Split pushout is asymmetric notion: there are two ways
in which morphisms with common source can have a split pushout.

B.13. Proposition. Under conditions of Theorem 2.56, suppose that any morphism in
R− is a split epimorphism. Then any pair of elementary degeneracies with a common
source has a pushout if and only if for any colour c in P there is at most one operation of
grading (−1) with the output colour c. Such pushouts are split pushouts, in both possible
ways.

Proof. If there are two operations of grading (−1) with the same output colour, then the
images of the corresponding output maps do not have a pushout. Suppose then that for
any colour c in P there is at most one operation of grading (−1) with the output colour
c. Let f and g be two different elementary degeneracies with common source A. If g and
f graft an operation of grading (−1) to the i-th and to the j-th leaves of A respectively,
with i < j, then k and h are the elementary degeneracies that graft the operations of
grading (−1) to the leaves now indexed by i and (j − 1) respectively.

Let u be a section of k. It has one non-trivial non-source vertex. If this vertex is a
lower vertex, the index of its leaf is i. If this vertex is an upper vertex grafted in the
l-th leaf, then the indices of its leaves are l and i. Let t be a morphism with only one
non-trivial non-source vertex, equal to the non-trivial non-source vertex of u, grafted to
the essentially the same leaf, and with leaves indexed by i and, if the vertex is upper, by
the index of the leaf to which this vertex is grafted. The morphism t is a section of g, and
f ◦ t = u ◦ h. The case with i > j is similar.

For twisted arrow categories the condition above is necessary, but not sufficient, since
in this case the target of the morphism t might be different from A.

B.14. Proposition. For graph-substitution operads not containing ⃝ elementary de-
generacies with common source have a split pushout, in both possible ways.

Proof. Let f and g be two elementary degeneracies with common source A. Morphisms
f and g replace vertices v and w of degree two in the graph A by edges. If the vertex w is
adjacent to a vertex z different from v, then the sections t and u in the split pushout can
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be chosen to be upper morphisms corresponding to insertions of a tree on two vertices
(corresponding to z and w) into the vertex z. If the vertex w is adjacent only to v, then
the sections t and u can be chosen to be lower morphisms, corresponding to insertion of
the sources into the vertex of the tree with two vertices, one of which is the vertex w.

B.15. Proposition. Under conditions of Theorem 2.54 or Theorem 2.56, suppose that
any morphism in R− is a split epimorphism and any pair of elementary degeneracies
with a common source has a split pushout, in both possible ways. Then (1) any pair of
split epimorphisms with a common source has an absolute pushout, and (2) any two split
epimorphisms that have the same set of sections are equal.

Proof. The first part is simple: any split epimorphism is a composition of elementary
degeneracies followed by an isomorphism, and the morphisms in the pushout square of
elementary degeneracies are elementary degeneracies. The pushout square of two split
epimorphisms can be built from pushout squares of elementary degeneracies.

For the second part observe that by vertically stacking the pushout diagrams of elemen-
tary degeneracies we can show that any split epimorphism g and elementary degeneracy
f have a split pushout (as in the above diagram, and g and f cannot be exchanged here).
If two split epimorphisms g, g1 : A → C are different, then there is an elementary de-
generacy f such that g1 = l ◦ f for some morphism l, and g ̸= l′ ◦ f for any morphism
l′. Let t be the section of g in the split pushout of f and g. If t is a section of g1, then
id = g1 ◦ t = l ◦ f ◦ t = l ◦ u ◦ h. The morphism h is an elementary degeneracy, and thus
does not have a left inverse. The section t of g is not a section of g1.

We have shown that for operads uAs, iuAs, pOp, sOp, and cOp the correspond-
ing twisted arrow categories and enveloping categories are both Eilenberg–Zilber and
EZ-categories. The twisted arrow categories of the operads mOpnc and mOpst are also
Eilenberg–Zilber and EZ-categories, while the corresponding enveloping categories are
Eilenberg–Zilber, but not EZ-categories.

C. Twisted arrow quasi-categories
Twisted arrow∞-categories of simplicial operads were introduced in [Hoa20]. We propose
an analogous construction for∞-operads modeled by dendroidal sets. Unfortunately, the
construction is ad hoc. We do not know if there is a good general context analogous to
the discrete case.

Denote by Ω′ the full subcategory of Tw(sOp) on operadic trees with vertices ordered
in depth-first search order. This category is equivalent to the category Ω and allows to
ignore the order on vertices.

C.1. Proposition. There is a faithful functor T : ∆/Γ→ Ω′.

Proof. A functor [0] → Γ, an object of ∆/Γ, corresponds to an object [n] of Γ. The
functor T sends this object to the tree with one vertex and with n leaves ordered trivially.
An object [1] → Γ that corresponds to a morphism f in Γ is sent by T to the reduced
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symmetric tree such that leaves of the corolla adjacent to the j-th edge of the source
vertex are indexed by f−1(j). An object G : [n] → Γ is sent to the tree of total height
(1 + 2n) obtained via sequence of graftings of corollas, with k-th grafting corresponding
to k-th 1-simplex G ◦ ([1] → [n]). The i-th face map G ◦ ([n − 1] → [n]) is sent by
T to the composition of face maps in Ω′ that contract inner edges of distance i from
the source vertex, or graft corollas into leaves in case i = n. The i-th degeneracy map
G ◦ ([n]→ [n− 1]) is sent by T to the composition of degeneracy maps that replace inner
edges of distance i from the source vertex by edges with one vertex of degree 2.

C.2. Definition. Let π : ∆/Γ → ∆ be the projection. The functor Tw : dSet → sSet,
the twisted arrow set of a dendroidal set, is the composition of restriction along T with
the left Kan extension along π.

C.3. Proposition. For any operad P the twisted arrow set of the dendroidal nerve of P
is the nerve of the twisted arrow category of P .

C.4. Remark. It is known2 that the nerve of the twisted arrow category Tw(C) of
a category C is the diagonal of the bisimplicial set obtained via join maps ([n], [m]) →
[n+m+1] from the nerve of the category C, or, equivalently, obtained from the (unpointed)
stable double category corresponding to the category C ([BOO+18]). Pointed stable
double categories are equivalent to 2-Segal sets, or to discrete decomposition spaces. The
construction of stable double category corresponding to a category relies on the fact that
both (Upper, Lower) and (Lower, Upper) are strict factorization systems for twisted arrow
categories of categories. The twisted arrow set of a dendroidal set is also the diagonal of
bisimplicial set, constructed using the (Upper, Lower) factorization system and canonical
(Lower′, Upper)-factorizations.

C.5. Remark. The functor T is most likely analogous to the dendrification functor
of [HHM16]. This suggests that there should be three model category structures on
presheaves over ∆/Γ that model ∞-operads: one is used in Lurie’s works, one should
come from twisted arrow categories, and one should come from universal enveloping cat-
egories of operads.

Furthermore, there is a functor Ω′/TwOp(uCom) → Tw(sOp) that generalizes the
functor T . Composition of the restriction along this functor with the left Kan extension
along the projection Ω′/TwOp(uCom)→ Ω′ gives the functor sd : dSets→ dSets, which
is likely the generalization of the edgewise subdivision of simplicial sets to dendroidal
sets. The edgewise subdivision of the nerve of an operad is the nerve of its twisted arrow
operad.

2https://mathoverflow.net/questions/295318
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