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ENRICHED LOCALLY GENERATED CATEGORIES

I. DI LIBERTI AND J. ROSICKÝ

Abstract. We introduce the notion of M-locally generated category for a factoriza-
tion system (E ,M) and study its properties. We offer a Gabriel-Ulmer duality for these
categories, introducing the notion of nest. We develop this theory also from an enriched
point of view. We apply this technology to Banach spaces showing that it is equivalent
to the category of models of the nest of finite-dimensional Banach spaces.
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1. Introduction

Locally presentable categories were introduced by Gabriel and Ulmer [12] in 1971 and,
since then, their importance was steadily growing. Today, they form an established frame-
work to do category theory in the daily practice of the working mathematician. The reason
of their success is merely evidence-based. On the one hand, they are technically handy,
allowing transfinite constructions (e.g. the small object argument) and thus offering pleas-
ing versions of relevant tools (e.g. the adjoint functor theorem). On the other hand, a
vast majority of relevant categories happen to be locally presentable (with some very
disappointing exceptions, like the category of topological spaces).

Gabriel and Ulmer [12] also introduced locally generated categories. While locally
presentable categories are based on the classical algebraic concept of a (finitely) pre-
sentable object, locally generated categories are based on (finitely) generated objects.
This makes them easier to handle than locally presentable ones. Every locally finitely
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generated category is locally λ-presentable for some regular cardinal. Yet, a category
can be locally finitely generated without being locally finitely presentable. Despite this,
locally generated categories were somewhat neglected. They were mentioned in [1] and,
later, generalized in [2]. In a nutshell, a M-locally generated category is a cocomplete
category K, equipped with a factorization system (E ,M), that is generated by a set of
M-generated objects. In [12] they were only dealing with (Strong Epi, Mono), in [2],
monomorphisms were replaced by any right part of a proper factorization system (E ,M).

We slightly generalize [2] by taking any factorization system (E ,M). A locally λ-
presentable category is then a K→-locally λ-generated category. More importantly, we
extend the (nearly forgotten) Gabriel-Ulmer duality for locally generated categories to our
setting. While the famous Gabriel-Ulmer duality for locally finitely presentable categories
is based on the fact that they are sketched by a finite limit sketch, their duality for locally
finitely generated categories uses finite limits and multiple pullbacks of monomorphisms.
This explains why locally finitely generated categories do not need to be locally finitely
presentable. In our situation, we use multiple pullbacks of morphisms from M.

Our main goal is to apply these ideas to Banach spaces. For this, we have to make our
theory enriched. While enriched locally presentable categories were treated by Kelly [17],
enriched locally generated categories have not been considered. Our motivation was [3,
Remark 7.8] where finite-dimensional Banach spaces, which are not finitely presentable,
were shown to be finitely generated with respect to isometries when Banach spaces are
enriched over CMet, the category of complete metric spaces. The relevant factorization
system is (dense maps, isometries). Our main accomplishment is that Banach spaces
can be sketched using finite-dimensional Banach spaces equipped with finite weighted
limits and multiple pullbacks of isometries. This has turned out to be more delicate than
expected, because CMet is not a well-behaved enrichment base.

In Section 2 we introduce the notion of a locally generated category, providing exam-
ples and properties. For this, we need the concept of a λ-convenient factorization system
(E ,M). We discuss the main properties of λ-generated objects with respect to M. We
provide a recognition theorem (2.24) for locally λ-generated categories which meets the
spirit of the original definition of Gabriel and Ulmer. In Section 3 we introduce the notion
of a λ-nest, a sketch-like gadget that we use to recast a suitable version of Gabriel-Ulmer
duality forM-locally generated categories. We introduce the notion of a model of a nest,
and show that the category of models of a nest is a M-locally generated category. In
Sections 4 and 5 we present an enriched version of Sections 2 and 3, when the enrichment
base V is locally λ-presentable as a closed category. Section 6 discusses the case of Banach
spaces in detail, focusing on their axiomatizability via the (ℵ0,CMet)-nest Banfd.

Acknowledgement. The authors are grateful to A. Chirvasitu for a very valuable
exchange of ideas on C∗-algebras.
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2. Locally generated categories

Locally λ-generated categories were introduced by Gabriel and Ulmer [12] as cocomplete
categories K having a strong generator consisting of λ-generated objects such that every
λ-generated object has only a set of strong quotients. Here, an object A is λ-generated if
its hom-functor K(A,−) : K → Set preserves λ-directed colimits of monomorphisms. A
category is locally generated if it is locally λ-generated for some regular cardinal λ. [12]
showed that locally generated categories coincide with locally presentable ones. Every
locally λ-presentable category is locally λ-generated but a locally λ-generated category
does not need to be locally λ-presentable. Thus the passage to locally generated categories
can lower the defining cardinal λ.

The definition of a locally λ-generated category was reformulated in [1]: a cocomplete
category K is locally λ-generated if it has a set A of λ-generated objects such that every
object is a λ-directed colimit of its subobjects from A. The fact that these two definitions
are equivalent follows from [1] 1.70 and [12] 9.2.

A further step was made in [2] where a cocomplete category K with a proper factor-
ization system (E ,M) was called M-locally λ-generated if it has a set A of λ-generated
objects with respect toM such that every object is a λ-directed colimit of A-objects and
M-morphisms. Here, an object A is λ-generated with respect to M if its hom-functor
K(A,−) : K → Set preserves λ-directed colimits ofM-morphisms. Again, [2] proves that
a category is M-locally generated for some proper factorization system (E ,M) if and
only if it is locally presentable. Moreover, locally λ-generated categories are M-locally
λ-generated ones for the factorization system (strong epimorphisms, monomorphisms).
We extend this definition a little bit.

2.1. Definition. Let K be a category with a factorization system (E ,M) and λ a regular
cardinal. We say that an object A is λ-generated with respect to M if its hom-functor
K(A,−) : K → Set preserves λ-directed colimits of M-morphisms.

In what follows, K→ will denote the class of all morphisms of K.

2.2. Examples. (1) For the factorization system (Iso,K→), an object is λ-generated with
respect to K→ if and only if it is λ-presentable.

(2) For the factorization system (K→, Iso), every object is λ-generated with respect to
Iso.

(3) For the factorization system (StrongEpi,Mono), an object is λ-generated with
respect to Mono if and only if it is λ-generated.

2.3. Definition. Let λ be a regular cardinal. A factorization system (E ,M) in a cate-
gory K will be called λ-convenient if

1. K is E-cowellpowered, i.e., if every object of K has only a set of E-quotients, and

2. M is closed under λ-directed colimits, i.e., every λ-directed colimit ofM-morphisms
has the property that
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(a) a colimit cocone consists of M-morphisms, and

(b) for every cocone of M-morphisms, the factorizing morphism is in M.

(E ,M) is convenient if it is λ-convenient for some λ.

2.4. Remark. If (E ,M) is λ-convenient and λ′ ≥ λ is regular then (E ,M) is λ′-convenient.

2.5. Definition. Let K be a cocomplete category with a λ-convenient factorization
system (E ,M) where λ a is regular cardinal. We say that K is M-locally λ-generated
if it has a set A of λ-generated objects with respect to M such that every object is a
λ-directed colimit of objects from A and morphisms from M.
K is calledM-locally generated if it isM-locally λ-generated for some regular cardinal

λ.

2.6. Remark. In the same way as in II. (i) of the proof of [1] 1.70, we show thatA is dense
in K. Hence the canonical functor E : K → SetA

op

( sending K to K(−, K) restricted on
Aop) is fully faithful. Since K is cocomplete, E is a right adjoint. Moreover, E preserves
λ-directed colimits ofM-morphisms. Consequently, in aM-locally λ-generated category,
λ-small limits commute with λ-directed colimits of M-morphisms.

2.7. Notation. In what follows, Kλ will denote the full subcategory of K consisting of
λ-generated objects with respect to M and by Eλ the set E ∩ K→λ .

2.8. Examples. (1) The factorization system (Iso,K→) is convenient and K is locally
λ-presentable if and only if it is K→-locally λ-generated.

(2) The category K is Iso-locally generated if and only if it is small. In fact, every
object K of K has a morphism

∐
A → K where the domain is the coproduct of all objects

A from A. Thus (K→, Iso) is convenient if and only if K is small.
(3) A Mono-locally λ-generated category K in the sense of [12] and [1] satisfies 2.5

for the factorization system (strong epi, mono). Then this factorization system is λ-
convenient. Indeed, following 2.6 the canonical functor E : K → SetA

op

is fully faithful
and preserves λ-directed colimits of monomorphisms. This implies that monomorphisms
are closed in K under λ-directed colimits (in the sense of 2.3) because this holds in SetA

op

and E preserves and reflects monomorphisms. Now, we can show that A is closed under
strong quotients. Let e : A → B be a strong epimorphism with A ∈ A, mi : Ki → K
a λ-directed colimit of monomorphisms and f : B → K. Since A is λ-generated, there
is g : A → Ki such that mig = fe. Since mi is a monomorphism, the diagonalization
property yields h : B → Ki such that mih = f . Hence B is λ-generated. Then II. in the
proof of [1] 1.70 yields that K is locally presentable, hence cowellpowered. This verifies
2.3 (1), hence the (strong epi, mono) factorization system is λ-convenient. We gave this
argument in detail because [1] is not accurate at this point.

(4) For a factorization system (Epi, StrongMono), we get StrongMono-locally λ-generated
categories. Here, we have to assume that this factorization system is λ-convenient because
it does not seem that we could get it for free like in (3).
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(5) Any full reflective subcategory L of K determines a factorization system (E ,M)
where E consists of morphisms sent by the reflector to an isomorphism (see [23]). Both
(1) and (2) are special cases for L = K or L consisting just from a terminal objects.

2.9. Example. The category CGWH of compactly generated weakly Hausdorff spaces
and continuous maps, has a factorization system (dense maps, closed embeddings). It
is ℵ0-convenient and [25, 3.8] shows that compact spaces are ℵ0-generated with respect
to this factorization system. [25, 1.11] can be taken as a reformulation of the fact that
compact spaces form a dense subcategory of CGWH. As a result, CGWH would be a
class-locally generated category with respect to closed embeddings in the spirit of [9],
if only we had defined such notion. Yet, its behavior is incredibly similar to that of a
locally generated category, as the only obstruction is that ℵ0-generated objects form a
proper class. This example finally clarifies the sense in which compact spaces are compact
objects, as the classical terminology of algebraic topology addresses finitely presentable
objects.

2.10. Example. A similar example is given by ∆-generated spaces [11], for the same
choice of a factorization system. In this case though, the category is indeed locally finitely
generated with respect to closed embeddings.

2.11. Notation. We say that a category is locally λ-generated if it is M-locally λ-
generated for someM. Locally λ-generated categories in the sense of [12] are then Mono-
locally λ-generated.

2.12. Lemma. λ-generated objects with respect to M are closed under E-quotients.

Proof. Let e : A → B is in E and A ∈ A. Consider a λ-directed colimit mi : Ki → K,
i ∈ I of M-morphisms and f : B → K. Since A is λ-generated with respect to M,
there is g : A→ Ki such that mig = fe. Since mi is in M, the diagonalization property
yields h : B → Ki such that mih = f . Assume that mih

′ = f for h′ : B → Ki. Then
mihe = mih

′e and, since A is λ-generated with respect toM, there is i ≤ j ∈ I such that
mijhe = mijh

′e. Hence both mijh and mijh
′ are diagonals in the commutative square

A e //

mijhe

��

B

f
��

Kj mj
// K

and thus they are equal. Hence B is λ-generated.

2.13. Lemma. In an M-locally λ-generated category K, λ-generated objects with respect
to M are closed under λ-small colimits and, up to isomorphism, form a set.
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Proof. Let colimAj be a λ-small colimit of λ-generated objects with respect to M and
colimKi a λ-directed colimit ofM-morphisms. Since λ-directed colimits commute in Set
with λ-small limits, we have

K(colimAj, colimKi) ∼= lim
j
K(Aj, colimKi)

∼= lim
j

colimiK(Aj, Ki)

∼= colimi lim
j
K(Aj, Ki)

∼= colimiK(colimj A,Ki)

Hence colimAj is λ-generated with respect to M.
The second claim follows from the fact that every λ-generated object with respect to

M is is a λ-directed colimit of A-objects and M-morphisms, which makes it a retract of
an A-object, i.e., a finite colimit of A-objects. Indeed, given a retract u : B → A with a
section s : A→ B, then s is a coequalizer of us and idA.

2.14. Remark. For the first claim, we do not need to assume that K is M-locally λ-
generated.

2.15. Notation. Given a family of arrows E , we call E⊥ the family of arrows that are
orthogonal to E . This means that an arrow m belongs to E⊥ if it has the unique right
lifting property with respect to every arrow in E . An object A is orthogonal to E if the
unique morphism from A to the terminal object is in E⊥.

2.16. Lemma. If K is M-locally λ-generated then M = (Eλ)⊥.

Proof. Every e : A → B in E is a λ-directed colimit (ai, bi) : fi → e in K→λ . Every
fi : Ai → Bi has the factorization fi = miei with ei : Ai → Ci in E and mi : Ci → Bi

in M. Then e = colimmi · colim ei where colim ei : A → C and colimmi : C → B.
Since C = colimCi is a λ-directed colimit of M-morphisms and (E ,M) is λ-convenient,
colimmi is in M and thus it is an isomorphism. Hence e = colim ei. Consequently
M = E⊥λ .

2.17. Remark. We have shown that, in a M-locally λ-generated category K, E is the
closure colim(Eλ) of Eλ under all colimits in K→.

Conversely, if M = E⊥λ then M satisfies 2.3(2).

The proof of the next theorem follows [2] and, like [2], is based on [12]. However, [2]
lacks the assumption that (E ,M) is convenient.

2.18. Theorem. For every category K equivalent are:

1. K is locally presentable,

2. K is M-locally generated for some convenient factorization system (E ,M), and

3. K is M-locally generated for every convenient factorization system (E ,M).
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Proof. Clearly, (3) ⇒ (1) ⇒ (2). The implication (1) ⇒ (3) is analogous to I. of the
proof [1] 1.70.

(2)⇒ (1) follows [2]. In fact, let K be M-locally λ-generated. Then E : K → SetA
op

makes K equivalent to a full reflective subcategory of L = SetA
op

closed under λ-directed
colimits of M-morphisms (see 2.6). Let P consist of reflections of L-objects in K which
are either λ-small colimits in L of diagrams in A or codomains of multiple pushouts in
L of E-morphisms with a domain in A. Observe that P is small: the case of λ-small
colimits is clear, for the multiple pushout use 2.12 and the fact that every λ-generated
object with respect to M is a retract of an A-object. Thus, the class Ort(P) of all L-
objects orthogonal to P is a locally presentable category. Moreover, K is closed in Ort(P)
under

1. λ-small colimits of diagrams in A,

2. multiple pushouts of E-morphisms with a domain in A, and

3. λ-directed colimits of M-morphisms.

Consider a morphism f : A → L with A in A and L in Ort(P). Let ef : A → Kf be
the cointersection in K of all E-morphisms through which f factors. Following (2) above,
there is mf : Kf → L such that f = mfef . Clearly, ef is in E and mf is E-extremal in
the sense that any E-morphism Kf → K through which mf factors is an isomorphism.
Moreover, this factorization is ”functorial”: given f ′ : A′ → L and h : A → A′ with
f = f ′h there exists h∗ : Kf → Kf ′ in M with mf = mf ′h

∗. In fact, form a pushout

A
ef ′h //

ef

��

Kf ′

ẽf
��

Kf h∗
// K

There is g : K → L such that gh∗ = mf and gẽf = mf ′ . Since ẽf is in E and mf ′ is
E-extremal, ẽf is an isomorphism.

Every L in Ort(P) is a λ-directed colimit di : Di → L where Di are λ-small colimits
of diagrams in A. Form reflections ri : Di → D′i in K. Since ri ∈ P , di factors through
ri, say, di = d′iri. Since D′i is in A, we can take the factorization d′i = miei above with
mi : D′′i → L. Since mi is E-extremal, d′′i is in M. Thus mi : D′′i → L is a λ-directed
colimit of M-morphisms, which implies that L is in K.

We have proved that K = Ort(P), hence K is locally presentable.

2.19. Remark. (1) All implications, except (2) ⇒ (1), are valid for a given λ. In
(2)⇒ (1), λ can increase.

(2) The previous theorem sheds a light on the notion of locally generated category.
Indeed, the framework of locally generated categories is not more expressive than that
of locally presentable ones. Yet, as pointed out (1), it might happen that a category
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is locally finitely generated without being locally finitely presentable. From the point
of view of essentially algebraic theories (see 3.D in [1]), this means that some λ-ary
essentially algebraic theories can be axiomatized by the data of a finite limit theory
and a factorization system. Thus, the complexity of infinitary (partial) operations can be
hidden under the carpet of the factorization system. From a less technical perspective, the
factorization system that makes the category locally generated is very often an extremely
natural one to consider. A sketch-oriented (see 2.F in [1]) interpretation of this discussion
is the core motivation for the forthcoming notion of λ-nest.

2.20. Remark. We do not know whether, given a locally λ-presentable category K, one
can find an ℵ0-convenient factorization system (E ,M) such that K is M-locally finitely
generated. Following 2.6, finite limits should commute in K with directed colimits of
M-morphisms.

2.21. Notation. Genλ(K) will denote the full subcategory of λ-generated objects with
respect to M in a M-locally λ-generated category K.

2.22. Remark. A multiple pullback P is a limit of a diagram consisting of morphisms
fi : Ai → A, i ∈ I. We can well-order I as {i0, i1, . . . , ij . . . } and form pullbacks Pj as
follows: P0 is the pullback

P0
f̄0 //

f̄1
��

A0

f0
��

A1 f1
// A

Then P1 is the pullback

P1
p01 //

��

P0

f0f̄1
��

A2 f2
// A

We proceed by recursion and in limit steps we take limits. In this way, we transform
multiple pullbacks to limits of smooth well-ordered chains (smooth means that in limit
steps we have limits).

Conversely, a limit of a smooth chain pij : Pj → Pi, i ≤ j < α is a multiple pullback of
p0j, j ∈ I. Moreover, if K is equipped with a factorization system (E ,M) then multiple
pullbacks of M-morphisms correspond to limits of smooth well-ordered chains of M-
morphisms. Indeed, M is stable under pullbacks.

2.23. Corollary. Let K be an M-locally λ-generated category. Then K is equivalent
to the full subcategory of SetGenλ(K)op consisting of functors preserving λ-small limits and
sending multiple pushouts of E-morphisms to multiple pullbacks.

Proof. Following [1] 1.33(8), this describes Ort(P) from the proof of 2.18.
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The following theorem makes easier to identifyM-locally generated categories among
cocomplete categories with a factorization system and goes back to [12].

2.24. Theorem. A cocomplete category K equipped with a λ-convenient factorization
system (E ,M) is M-locally λ-generated if and only if it has a strong generator formed by
λ-generated objects with respect to M.

Proof. Using 2.13 and 2.12, the closure A of our strong generator under λ-small colimits
and E-quotients consists of λ-generated objects with respect to M. Following the proof
of [1] 1.11, we show that every object in K is a λ-filtered colimit of A-objects. Using
(E ,M)-factorizations, we get that every object of K is a λ-directed colimit of A-objects
and M-morphisms.

2.25. Remark. If λ′ ≥ λ and K is M-locally λ-generated then K is M-locally λ′-
generated.

2.26. Theorem. Let K be a M-locally λ-generated category where (E ,M) is a proper
λ-convenient factorization system and let T be a monad preserving M-morphisms and
λ-directed colimits of M-morphisms. Then, assuming Vopěnka’s principle, the category
of algebras Alg(T ) is locally λ-generated.

Proof. Following [4] 3.3, Alg(T ) is cocomplete. Consider the adjunction F : K �
Alg(T ) : U and put M′ = U−1(M). Using [5] 4.3.2, we get that M′ is closed under
λ-directed colimits. Following [21] 11.1.5,M′ = F (E)⊥. Since E = colim Eλ (see 2.17), we
have colimF (E) = colim(F (Eλ)). U is clearly conservative (and faithful), thus F maps
the dense generator Genλ(K) to a strong generator G in Alg(T ). Let A be the closure of
G under λ-small colimits. Following 2.14, A is dense in K. Assuming Vopěnka’s principle,
Alg(T ) is locally presentable (see [1] 6.14). Hence, following [11] 2.2, (colimF (E),M′)
is a factorization system on Alg(T ). Since Alg(T ) is cowellpowered (see [1] 1.58) and
colimF (E) ⊆ Epi, this factorization system (colimF (E),M′) is λ-convenient. We con-
clude the proof by the previous theorem and 3.11.

2.27. Remark. We do not know whether Vopěnka’s principle is really needed. This is
related to the Open Problem 3 in [1]. In fact, let L be a full reflective subcategory of
a locally λ-presentable category K closed under λ-directed colimits of monomorphisms.
Then the monad T = FG, where G : L → K is the inclusion and F its left adjoint, pre-
serves λ-directed colimits of monomorphisms. Since L ∼= Alg(T ), 2.26 without Vopěnka’s
principle would yield a positive solution of the Open Problem 3.

3. Extended Gabriel-Ulmer duality

The Gabriel-Ulmer duality is a contravariant biequivalence between categories with λ-
small limits and locally λ-presentable categories (see [12] 7.11 or [1] 1.45). We are going
to to extend this duality to M-locally λ-generated categories. It will also cover the
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Gabriel-Ulmer duality for Mono-locally λ-generated categories. In order to do so, we will
introduce the notion of a nest.

3.1. Definition. A λ-nest is a small category A equipped with a factorization system
(EA,MA) and having λ-small limits and multiple pullbacks of MA-morphisms.

3.2. Remark. λ-nestsA with (Iso,A→) are precisely small categories with λ-small limits.
λ-nests with (StrongEpi,Mono) are precisely small ”echt” λ-complete categories of [12].

3.3. Example. Genλ(K)op is a λ-nest for everyM-locally λ-generated category K. This
follows from 2.13, 2.12 and the fact that (MA ∩ A→, EA ∩ A→) is a factorization system
on Genλ(K)op.

3.4. Notation. For a λ-nest A, Modλ(A) denotes the category of all models, i.e., of
functors A → Set preserving λ-small limits and multiple pullbacks of M-morphisms.

3.5. Lemma. Modλ(A) is a locally presentable category equipped with a factorization
system (E ,M).

Proof. Modλ(A) is a full subcategory of SetA and the codomain restriction of the Yoneda
embedding Y : Aop → SetA is a full embedding of Aop to SetA. Following [1] 1.51,
Modλ(A) is locally presentable. The factorization system on Aop is (MA, EA) and the
factorization system (E ,M) is given, following [11] 2.2, as: E = colim(MA) and M =
M⊥
A.

3.6. Theorem. Modλ(A) is a M-locally λ-generated category for every λ-nest A.

Proof. I. At first, we will show that K = Modλ(A) is closed in L = SetA under λ-
directed colimits ofM-morphisms. Following [1] 1.33(8), K = Ort(P) where P is defined
as in the proof of 2.18. This means that P consists of reflections of L-objects in K
which are either λ-small colimits of diagrams in Aop or codomains of multiple pushouts
of MA-morphisms in Aop.

Let ki : Ki → K be a colimit in L of a λ-directed diagram ofM-morphisms in K. Let
r : colimAj → A be a reflection of a λ-small colimit in L of a diagram in Aop; its reflection
in K lies in Aop. It is easy to see that objects orthogonal to r are closed under λ-directed
colimits; in fact, these objects correspond to functors A → Set preserving λ-small limits.

Let r : P → A be a reflection of a multiple pushout ofMA-morphisms. Alternatively,
P can be seen as a colimit of a well ordered smooth chain

P0
p01−−−→ P1

p12−−−→ P2
p23−−−→ . . .

of MA-morphisms. Let f : P → K. There exists i0 and g0 : P0 → Ki0 such that
ki0g0 = fp0. There exists i1 > i0 and g′1 : P1 → Ki1 such that ki0i1g0 = g′1p01. Since
ki0i1 ∈ M⊥

A and p01 ∈ MA, there is g1 : P1 → Ki0 such that g1p01 = g0 and ki0i1g1 = g′1.
Continuing this procedure by taking colimits in limit steps, we get a cocone gj : Pj → Ki0

inducing g : P → Ki0 such that ki0g = f . There is h : A → Ki0 with hr = g. Hence
ki0hr = f . The uniqueness of this extension follows from A being in Aop.
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II. From I., it follows that every object of Aop is λ-generated with respect toM in K.
Following 3.5 and 2.17,M satisfies 2.3(2). In the same way as in 2.12, we show that every
E-quotient of an Aop-object is λ-generated with respect to M. Since every λ-generated
object with respect to M is a retract of an Aop-object (cf. 2.13) and Aop is closed under
retracts, Aop = Genλ(K). Using (E ,M) factorizations, we show that every object in K is
a λ-directed colimit of Aop-objects.

It remains to show that K is E-cowellpowered. Let e : K → L be an E-quotient of K.
Then e is a λ-directed colimit of E-morphisms ei : Ki → Li where Ki and Li are in Aop.
Since there is only set of expressions of K as a λ-directed colimit of Aop-objects, there is
only a set of E-quotients of K.

3.7. Remark. We have
A ' (Genλ(Modλ(A)))op

for every λ-nest A, and
K ' Modλ(Genλ(K)op)

for every M-locally λ-generated category K.
Note that these equivalences also include the corresponding factorization systems. In

the first case, (colim(MA),M⊥
A) restricts to (MA, EA) (see 3.5) and, in the second case,

it follows from 2.17.

3.8. Remark. For a λ-nest A, Modλ(A) is a full subcategory of the free completion
Indλ(A) of A under λ-directed colimits. Indeed, the latter category consists of functors
Aop → Set preserving λ-small limits.

3.9. Definition. A morphism of locally λ-generated categories R : K → L is a right
adjoint preserving M-morphisms and λ-directed colimits of them.

3.10. Remark. R preservesM if and only if its left adjoint L : L → K preserves E (see
[21] 11.1.5).

3.11. Lemma. Let R : K → L be a morphism of locally λ-generated categories. Then its
left adjoint L preserves λ-generated objects with respect to M.

Proof. Let A be λ-generated with respect to M in L. Consider a directed colimit
colimKi of M-morphisms in K. Then

K(LA, colimKi) ∼= L(A,R colimKi)
∼= L(A, colimRKi)
∼= colimL(A,RKi)
∼= colimK(LA,Ki).
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3.12. Definition. A morphism of λ-nests F : A → B is a functor preserving λ-small
limits, M-morphisms and multiple pullbacks of them.

3.13. Notation. Let LGλ be the 2-category of locally λ-generated categories and Nλ

be the 2-category of λ-nests, in the both cases 2-cells are natural transformations.

3.14. Construction. [The functor Genλ] Given a locally λ-generated category K, we
have defined Genλ(K)op to be the opposite category of its λ-generated objects. It is easy
to see that this construction is (contravariantly) functorial. Indeed, given a morphism
of locally λ-generated categories R : K → L, its left adjoint L restricts to λ-generated
objects

L : Genλ(L)→ Genλ(K)

by 3.11, and passing to the opposite category, is a morphism of λ-nests because of 2.12
and 2.13.

3.15. Construction. [The functor Modλ] Given a λ-nest A, we have seen that the
category Modλ(A) is locally λ-generated. We will extend this construction to a (con-
travariant) functor. Given a morphism of λ-nests F : A → B, the functor Modλ(F )
sends H from Modλ(B) to HF . This functor is the domain restriction of the functor
Indλ(B) → Indλ(A) given, again, by precompositions with F . The latter functor has
the left adjoint Indλ(F ) : Indλ(A) → Indλ(B). The domain restriction L(F ) of this left
adjoint is a left adjoint to Modλ(F ). The functor L(F ) preserves E-morphisms because

L(F )(EModλ(A)) = L(F )(colimMA) ⊆ colim(F (MA)) ⊆ EModλ(B).

Thus Modλ(F ) preserves M-morphisms and, therefore, it is a morphism of λ-generated
categories.

3.16. Theorem.
Genλ : LGλ � Nop

λ : Modλ

is a dual biequivalence between locally λ-generated categories and λ-nests.

Proof. It follows from 3.7 and 3.15.

3.17. Remark. (1) Our duality restricts to the standard Gabriel-Ulmer duality between
locally λ-presentable categories and small categories with λ-small limits (for M = Iso)
and, a little bit forgoten, Gabriel-Ulmer duality for locally λ-generated categories (see
[12] 9.8). In the second case M = Mono and the dual is formed by small categories with
λ-small limits and pullbacks of strong monomorphisms.

On the other hand, our extended Gabriel-Ulmer duality is a restriction of the standard
one (see 3.15).

(2) Like the Gabriel-Ulmer duality (see [19]), our duality is given by the category Set
being both a large λ-nest and a locally λ-generated category. Clearly, models of a λ-nest
A are λ-nest morphisms A → Set. Conversely, a morphism U : K → Set of locally
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λ-generated categories is uniquely determined by its left adjoint F : Set → K, these
restrictions uniquely corespond to objects in Genλ(K).

(3) [8] generalized the Gabriel-Ulmer duality to certain limit doctrines. This is based
on the commutation of certain limits and colimits in Set. But our duality (even that for
Mono-locally λ-generated categories) does not fall under this scope.

4. Enriched locally generated categories

In what follows, V will be a complete and cocomplete symmetric monoidal closed category.
We will work with V-categories and under a λ-directed colimit we will mean a conical λ-
directed one. V-factorization systems were introduced in [10] and their theory was later
developed by Lucyshyn-Wright in [18]. We refer to [18] for the main definitions and
notations.

4.1. Definition. Let K be a V-category with a V-factorization system (E ,M) and λ
a regular cardinal. We say that an object A is λ-generated with respect to M if its
hom-functor K(A,−) : K → V preserves λ-directed colimits of M-morphisms.

4.2. Remark. In a tensored V-category K, V-factorization systems are precisely factor-
ization systems (E ,M) such that E is closed under tensors (see [18] 5.7).

4.3. Definition. A V-factorization system (E ,M) in a tensored V-category K is called
λ-convenient if it is λ-convenient as an (ordinary) factorization system.

4.4. Definition. Let K be a cocomplete V-category with a λ-convenient V-factorization
system (E ,M) where λ a is regular cardinal. We say that K is M-locally λ-generated
if it has a set A of λ-generated objects with respect to M such that every object is a
λ-directed colimit of objects from A and morphisms from M.
K is calledM-locally generated if it isM-locally λ-generated for some regular cardinal

λ.

4.5. Example. For a cocomplete V-category K, (Iso,K→) is a convenient V-factoriza-
tion system. K→-locally λ-generated categories are locally presentable V-categories in the
sense of [17].

4.6. Remark. In 4.4, A is dense in K, i.e., the canonical V-functor E : K → VAop
is fully

faithful. In fact, E preserves λ-directed colimits of M-morphisms and, then, the result
follows from [16], 5.19.
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4.7. Remark. For a V-category K, the arrow category K→ is a V-category with K(f, g)
defined by the following pullback in V

K→(f, g) //

��

K(A,C)

K(A,g)

��
K(B,D)

K(f,D)
// K(A,D)

where f : A→ B and g : C → D.

4.8. Proposition. Assume that pullbacks commute with λ-directed colimits in V. Then,
for aM-locally λ-generated V-category K, the V-category K→ isM→-locally λ-generated.

Proof. Following [21] 13.1, K→ is tensored and cotensored. Since K→ has limits and
colimits (calculated pointwise), it is complete and cocomplete (see [5] 6.6.16). The fac-
torization system (E→,M→) on K→ is defined pointwise from that on K and is clearly
λ-convenient. We will show that any morphism f : A → B with A and B λ-generated
with respect to M is λ-generated with respect to M→.

Consider a λ-directed colimit gi → g on M→-morphisms in K→. We have pullbacks

K→(f, ggi)
//

��

K(A,Ci)

K(A,gi)

��
K(B,Di) K(f,Di)

// K(A,Di)

Since pullbacks commute with λ-directed colimits in V ,

K→(f, g) ∼= colimK→(f, gi).

Clearly, every h in K→ is a λ-directed colimit of λ-generated objcts with respect to M→
and M→-morphisms.

4.9. Lemma. Assume that λ-small (conical) limits commute in V with λ-directed colimits.
Then, in an M-locally λ-generated V-category, λ-generated objects with respect to M are
closed under λ-small (conical) colimits.

Proof. The proof for λ-small conical colimits is the same as that of 2.13 and the proof
for λ-small weighted limits is analogous (cf. [6] 3.2).

4.10. Remark. For the first claim, we do not need to assume that K is M-locally λ-
generated.

4.11. Lemma. Assume that finite conical limits commute with λ-directed colimits in V.
Then, in an M-locally λ-generated V-category, λ-generated objects with respect to M are
closed under E-quotients.
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Proof. Let e : A→ B is in E and A ∈ A. Express B as a λ-directed colimit mi : Bi → B,
i ∈ I, of A-objects and M-morphisms. Form pullbacks

Pi
ē //

m̄i

��

Bi

mi

��
A e

// B

Since pullbacks commute with λ-directed colimits in V , they do it in VAop
as well. Since

E preserves pullbacks and λ-directed colimits ofM-morphisms, pullbacks commute with
λ-directed colimits of M-morphisms in K. Hence m̄i : Pi → A is a λ-directed colimit.
Since M is λ-convenient, mi ∈ M for every i ∈ I. Hence m̄i ∈ M for every i ∈ I and,
thus, m̄ij : Pi → Pj are in M for every i < j ∈ I. Since A is λ-generated with respect to
M, mi0 splits for some i0 ∈ I. Thus there exists s : A → Pi0 such that m̄i0s = idA. We
have

mi0 ēs = em̄i0s = e.

The commutative square

A
e //

ēs

��

B

idB

��
Bi0 mi0

// B

has the diagonal t : B → Bi0 making B a retract of Bi0 . Since t is a coequalizer of idBi0
and tmi0 , 4.9 implies that B is λ-generated with respect to M.

4.12. Lemma. If K is M-locally λ-generated V-category then M = (Eλ)⊥V .

Proof. It follows from 4.2, 2.16 and [18] 5.4.

4.13. Remark. (1) Given a small V-category, every V-functor H : A → V is a weighted
colimit of representable V-functors. If V is locally λ-presentable as a closed category (see
[17] 5.5) then, for a small category A with λ-small limits, any functor H : A → V pre-
serving λ-small limits is a λ-filtered (and thus λ-directed) conical colimit of representable
functors (see [6] 4.5). In such a V , λ-small limits commute with λ-directed colimits (see
[6] 2.4).

(2) For a general V , let H : A → V preserve λ-small conical limits and consider the
category Y (Aop) ↓ H of representable functors over H. This category is λ-filtered and
let H∗ be its colimit in VA and γ : H∗ → H be the comparison morphism. If A is a
λ-nest then, due to (E ,M) factorizations in A, the category Y (Aop) ↓ H has a cofinal
subcategory D whose morphisms are Y (m) : Y (A) → Y (B) where m are in M. D is
λ-directed and H∗ is it colimit of the projection D : D → VA with a cocone ϕd : Dd→ H∗.

Assume that V is equipped with a λ-convenient factorization system (EV ,MV) and
that hom-functors A(A,−) : A → V send M-morphisms to MV-morphisms. Them, for
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every A in A, we have a λ-directed colimit (ϕd)A : Dd(A)→ H∗(A) ofMV-morphisms in
V . Since the factorization system (E ,M) is λ-convenient, (ϕd)A are in M.

Assume that V isMV-locally λ-generated and that A has cotensors with λ-generated
objects V with respect to MV . If H preserves these cotensors then the argument from
[6] 4.5 yields that γ is an isomorphism.

4.14. Theorem. Let V be locally λ-presentable as a closed category. Then, for every
V-category K equivalent are:

1. K is locally presentable,

2. K is M-locally generated for some convenient V-factorization system (E ,M), and

3. K is M-locally generated for every convenient V-factorization system (E ,M).

Proof. We proceed like in 2.18. In the implication (2) ⇒ (1), we take Genλ(K) for
A. Following 4.9, P is closed under finite tensors. Analogously as in 4.12, we get that
P⊥ = P⊥V . Hence Ort(P) consists of objects V-orthogonal to P . Finally, following
4.13(1), every L in Ort(P) is a λ-directed colimit of objects from Genλ(K).

4.15. Corollary. Let V be locally λ-presentable as a closed category and K be an M-
locally λ-generated V-category. Then K is equivalent to the full subcategory of VGenλ(K)op

consisting of V-functors preserving λ-small limits and sending multiple pushouts of E-
morphisms to multiple pullbacks.

Proof. We proceed analogously as in 2.23. Note that [1] 1.33(8) is true in the enriched
setting too but mi there should be

mi : colim hom(Dd,−)→ hom(limDd,−).

4.16. Notation. Again, we say that a V-category is locally λ-generated if it isM-locally
λ-generated for some M.

4.17. Theorem. Assume that λ-small conical limits commute in V with λ-directed colim-
its. Then a cocomplete V-category K equipped with a λ-convenient V-factorization system
(E ,M) is M-locally λ-generated if and only if its underlying category K0 has a strong
generator formed by λ-generated objects with respect to M.

Proof. Using 4.9 and 4.11, the closure A of our strong generator under λ-small conical
colimits and E-quotients consists of λ-generated objects with respect to M. Then we
follow the proof of 2.24.
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5. Enriched Gabriel-Ulmer duality

5.1. Definition. A (λ,V)-nest is a small V-category A equipped with a V-factorization
system (EA,MA) and having λ-small limits and multiple pullbacks of M-morphisms.

5.2. Example. Genλ(K)op is a (λ,V)-nest for every M-locally λ-generated V-category
K. This follows from 4.9, 4.11 and the fact that (MA∩A→, EA∩A→) is a V-factorization
system on Genλ(K)op.

5.3. Remark. Let V be locally λ-presentable as a closed category. Then a small V-
category A is a (λ,V)-nest if and only is it is a λ-nest and MA is closed under λ-small
cotensors.

We get this analogously to 4.2 applied to Aop.

5.4. Notation. For a (λ,V)-nest A, Modλ(A) denotes the category of all V-functors
A → V preserving λ-small limits and multiple pullbacks of M-morphisms.

5.5. Lemma. Let V be locally λ-presentable as a closed category. Then Modλ(A) is a
locally presentable V-category equipped with a V-factorization system (E ,M).

Proof. We proceed like in 3.5 with [1] 1.51 replaced by [6] 7.3. We also use 4.2.

5.6. Theorem. Let V be locally λ-presentable as a closed category. Then Modλ(A) is a
M-locally λ-generated V-category for every (λ,V)-nest A.

Proof. It follows from 5.5, 3.6 and 4.2.

5.7. Definition. A morphism of λ-generated V-categories R : K → L is a right V-adjoint
preserving M-morphisms and λ-directed colimits of them.

A morphism of (λ,V)-nests F : A → B is a V-functor preserving λ-small limits,
M-morphisms and multiple pullbacks of them.

5.8. Theorem. Let V be locally λ-presentable as a closed category. Then

Genλ : LGλ � Nop
λ : Modλ

is a dual biequivalence between locally λ-generated V-categories and (λ,V)-nests.

Proof. It follows from 3.16, 5.2 and 5.6.

5.9. Remark. (1) Our duality restricts to the enriched Gabriel-Ulmer duality between
locally λ-presentable V-categories and small V-categories with λ-small limits given in [17].

(2) 3.11 and 3.17 (2) apply to the enriched case as well.
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6. Banach spaces

Let CMet be the category of (generalized) metric spaces and nonexpanding maps. This
category is symmetric monoidal closed and locally ℵ1-presentable as a closed category (see
[3] 2.3(2) and 4.5(2)). But it is not locally ℵ0-presentable. In fact, only the empty space
is ℵ0-presentable in CMet (see [3] 2.7 (1)). CMet has a strong generator consisting of
a one-point space 1 and of two-point spaces 2ε where the two points have the distance
ε > 0.

The category Ban of Banach spaces and linear maps of norm ≤ 1 is enriched over
CMet. Moreover, it is locally ℵ1-presentable CMet-category (see [3] 6.3).

6.1. Remark. (1) Epimorphisms in CMet or Ban coincide with dense maps. See [20]
1.15 for Ban and the argument for CMet is analogous. Both in CMet and Ban, there
is a factorization system (E ,M) where E consists of dense maps and M of isometries
(see [3] 3.16(2)). Hence isometries coincide, both in CMet and in Ban with strong
monomorphisms. Both CMet and Ban are E-cowellpowered and, from the description of
directed colimits (see [3] 2.5), it follows that (E ,M) is, in the both cases, ℵ0-convenient.

(2) Both in CMet and Ban, ℵ0-generated objects with respect to M coincide with
approximately ℵ0-generated objects in the sense of [3] (see 5.11(3)). In CMet, approxi-
mately ℵ0-generated finite metric spaces are precisely discrete ones (see [3] 5.18 and 5.19).

(3) Ban is M-locally ℵ0-generated (see [3] 7.8). Every finite-dimensional Banach
space is approximately ℵ0-generated ([3] 7.6).

(4) The concept of a finite weight does not make sense in CMet because only ∅ is
ℵ0-presentable. Thus, under finite limits in CMet, we understand finite conical limits,
cotensors with finite metric spaces, and their combinations. Here, cotensors with finite
metric spaces can be replaced by ε-pullbacks (see [3] 4.6). But in CMet, ℵ0-generated
objects with respect toM are not closed under these finite colimits (see [3] 5.20). Hence,
following 4.9 and [3] 5.20 and 4.1(4), finite limits do not commute with directed colimits
in CMet.

6.2. Remark. A metric space is called convex if for every points x and y there is a point
z such that d(x, z) + d(z, y) = d(x, y). A subset S of a metric space A is called a metric
segment if for every two distinct points a 6= b there is an isometry f : [0, d(a, b)] → A
from a closed interval on R such that f(0) = a, f(d(a, b)) = b and f([0, d(a, b)]) = S. A
complete metric space is convex if and only if every distinct points are connected by a
metric segment (see [7]). The proof consists in creating a dense set of points between a
and b and taking its completion. Hence it also applies to d(a, b) = ∞ where the interval
is [0,∞] in R with ∞ added.

6.3. Lemma. For every δ > 0, CMet(2δ,−) : CMet→ CMet preserves directed colim-
its of convex spaces and isometries.

Proof. Let ki : Ki → K, i ∈ I be a directed colimit of convex complete metric spaces
and isometries. Consider f : 2δ → K and choose ε > 0. Denote the two points of 2δ as x
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and y. There is i ∈ I and a, b ∈ Ki such that d(a, fx), d(b, fy) ≤ ε
2
. Then

d(a, b) ≤ d(a, fx) + d(fx, fy) + d(fy, b) ≤ ε+δ.

Let S be the metric segment in Ki connecting a and b. Choose a′, b′ ∈ S such that
d(a, a′), d(b, b′) ≤ ε

2
. Then d(a′, b′) ≤ δ. Let g : 2δ → Ki be given by fx = a′ and fy = b′.

Then d(f, kig) because d(a′, fx) ≤ d(a′, a) + d(a, fx) ≤ ε and similarly d(b′, fy) ≤ ε.

6.4. Example. There is an approximately ℵ0-generated Banach spaces which is not
finite-dimensional. Consider the complete metric space A = {0} ∪ { 1

n
;n = 1.2., . . . }.

Let Am = { 1
n
;n = 1, 2, . . . ,m} and rm : Am → A be the inclusion. Let um : A → Am be

the identity on Am and send A \ Am to 1
m

. We have rmum ∼ 1
m

idAm .
Let F : CMet → Ban be the left adjoint to the unit ball functor U : Ban →

CMet (see [3] 4.5(3)). This adjunction is enriched and thus F (rmum) ∼ 1
m

idF (Am). Since

F (1) = C, F sends finite discrete metric spaces to finite-dimensional Banach spaces.
We have surjective maps Dm → Am where Dm is discrete space of m points. Since U
preserves isometries, F preserves E-maps. Thus F (Am) are finite-dimensional Banach
spaces. Following [3] 7.7(1), F (A) is approximately ℵ0-generated.

Since um are surjective, F (um) are dense. Thus F (A) cannot be finite-dimensional
because it has dense maps to m-dimensional Banach spaces for every m.

6.5. Lemma. An ε-pushout in Ban is

A
f //

g

��

B

g

��
C

f

// B ⊕f,g,ε C

where B ⊕f,g,ε C is the coproduct B ⊕ C endowed with the norm

‖(x, y) ‖ = inf{‖ b ‖+ ‖ c ‖+ ε ‖ a ‖ \x = b+ f(a), y = c− g(a)}.

Proof. In the special case of B ⊕f,idA,ε C, it is [13] 2.1. The general case is analogous.

6.6. Corollary. The dual of the full subcategory Banfd of Ban consisting of finite-
dimensional Banach spaces is a (ℵ0,CMet)-nest.

Proof. Finite-dimensional Banach spaces are closed under dense quotients. Following
[3] 4.6 and 6.5, they are closed under finite colimits.
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6.7. Theorem. Ban is equivalent to Modℵ0(Banop
fd ).

Proof. Following 4.15, Ban is equivalent to the full subcategory of Modℵ0 Banop
fd . Con-

sider H in Modℵ0 Banop
fd and follow 4.13(2). For every Banach space X, H(X) is the

directed colimit colimdDd(X) of complete metric spaces Dd(X) and isometries. Every
Dd(X) is Ban(A,X) for some finite-dimensional Banach space A. Since these complete
metric spaces are convex, we have

CMet(2δ, colimdDd(X)) ∼= colimdCMet(2δ, Dd(X)).

Since 1 and 2δ, δ > 0 form a strong generator in CMet, γ : H∗ → H is an isomorphism
(following the argument from [6] 4.5).

6.8. Remark. The category Ban→ does not seem to be M-locally ℵ0-generated – 4.8
does not apply to it. Hence [3] cannot be immediately applicable to the construction of
approximately ℵ0-saturated objects in Ban→ like in Ban. The existence of such objects
in Ban→ was proved in [14].

6.9. Remark. Let CCMet be the category of convex complete metric spaces and non-
expansive maps. CCMet is an injectivity class in CMet given by 2δ → [0, δ], δ > 0,
sending the two points of 2δ to the end-points of [0, δ]. Thus CCMet is a full weakly
reflective subcategory of CMet. A weak reflection of a complete metric space A to
CCMet is constructed as follows. If a, b ∈ A are not connected by a metric segment of
length d(a, b), we glue [0, d(a, b)] to A by identifying 0 with a and d(a, b) with b. The
distances of points of distinct added segments are ∞. We repeat the procedure and add
metric segments [0,∞]. We proceed by induction and the union ∪nAn, n = 1, 2, . . . is a
desired weak reflection. But CCMet is not reflective in CMet because it is not closed
under equalizers. Indeed, let C be the circle of radius 1. Then the equalizer of the identity
and the axial symmetry on C is 22. Even, this equalizer does not exist in CCMet at all.
CCMet does not have coproducts - for instance 1 + 1 does not exist in CCMet.

CCMet is closed in CMet under ℵ1-directed colimits. Indeed, let ki : Ki → K,
i ∈ I be an ℵ1-directed colimit of convex complete metric spaces in CMet. Let a, b ∈ K.
Following [3] 2.5(1), there is i ∈ I and a′, b′ ∈ Ki such that d(a′, b′) = d(a.b), kia

′ = a and
kib
′ = b. There is c ∈ Ki such that d(a′, c) + d(c, b′) = d(a′, b′). Since d(a, fc) + d(fc, b) ≤

d(a′, c) + d(c, b′) = d(a, b), we have d(a, fc) + d(fc, b) = d(a, b). Thus K is convex.
Analogously, using [3] 2.5(2), we prove that CCMet is closed under directed colimits of
isometries in CMet. We do not know whether the segments [0, δ] are ℵ0-generated with
respect to isometries in CCMet.

The tensor product A ⊗ B of convex complete metric spaces A and B is convex and
complete. Recall that A⊗B is A×B with the +-metric

d(a, b), (a′, b′)) = d(a, a′) + d(b, b′).

Indeed, let a′′ ∈ A and b′′ ∈ B satisfy d(a, a′′)+d(a′′, a′) = d(a, a′) and d(b, b′′)+d(b′′, b′) =
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d(b, b′) . Then

d((a, b), (a′′, b′′)) + d((a′′, b′′), (a′, b′)) = d(a, a′′) + d(b, b′′) + d(a′′, a′) + d(b′′, b′)

= d(a, a′) + d(b, b′) = d((a, b), (a′, b′)).

We do not know whether CCMet is symmetric monoidal closed.

6.10. Remark. Let CAlg be the category of C∗-algebras and CCAlg the category of
commutative C∗-algebras. The forgetful functor U : CAlg → Ban preserves limits,
isometries and ℵ1-directed colimits. Thus it has a left adjoint F . The same holds for
U : CCAlg→ Ban. The unit ηB : B → UFB is a linear isometry. Thus F is faithful. In
the commutative case, this left adjoint was described in [24] and called the Banach-Mazur
functor.

The forgetful functor U : CAlg → Ban even preserves directed colimits. In fact,
directed colimits in Ban are calculated like in CMet, i.e., as a completion of a directed
colimit in Met. However, the same holds in CAlg because one completes the directed
colimit of ∗-algebras. Indeed, if x = limn xn and y = limm ym are in this completion then
both x · y = limn,m(xn · ym) and x∗ = limn x

∗
n are there.

The category of (commutative) C∗-algebras is locally ℵ1-presentable and monadic over
Set (see [22]). Since epimorphisms are surjective in CAlg (see [15]), (epi, strong mono)-
factorization system on CAlg is (surjective, dense) one and it is ℵ0-convenient. We expect
that CAlg is not isometry-locally ℵ0-generated.

References
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[23] J. Rosický and W. Tholen, Factorizations, fibrations and torsion, J. Hom. Rel.
Str. 2 (2007), 295-314.

[24] Z. Semadeni, Some categorical characterizations of algebras of continuous func-
tions, Symp. Math. XVII (1978), 97-112.

[25] N. P. Strickland, The category of CGWH spaces, preprint 2009.



ENRICHED LOCALLY GENERATED CATEGORIES 683

Ivan Di Liberti
Institute of Mathematics
Czech Academy of Sciences
Žitná 25, Prague, Czech Republic
diliberti.math@gmail.com
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