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THE MATRIX TAXONOMY OF
FINITELY COMPLETE CATEGORIES

MICHAEL HOEFNAGEL, PIERRE-ALAIN JACQMIN, AND ZURAB JANELIDZE

Abstract. This paper is concerned with the taxonomy of finitely complete categories,
based on ‘matrix properties’ — these are a particular type of exactness properties that
can be represented by integer matrices. In particular, the main result of the paper gives
an algorithm for deciding whether a conjunction of such properties implies another such
property. Computer implementation of this algorithm allows one to peer into the com-
plex structure of the poset of ‘matrix classes’, i.e., the poset of all collections of finitely
complete categories determined by matrix properties. Among elements of this poset
are the collections of Mal’tsev categories, majority categories, (finitely complete) arith-
metical categories, as well as finitely complete extensions of various classes of varieties
defined by a special type of Mal’tsev conditions found in the literature.

Introduction

This paper deals with so-called matrix properties of categories, introduced and initially
studied in [33, 35, 36, 37]. The problem of finding an algorithm for deciding when does
one matrix property imply another has been unsolved since then. In the present paper
we solve this problem.

In what follows, we will work with matrices of (non-negative) integers, such as 1 1 0 2 2
0 0 1 1 0
2 0 1 2 1

 .
Such matrices encode systems of ‘linear equations’ in the algebraic theory of a variety of
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universal algebras, which in the specific example above is:
p(x1, x1, x0, x2, x2) = x0,
p(x0, x0, x1, x1, x0) = x0,
p(x2, x0, x1, x2, x1) = x0.

Recall that a variety of universal algebras is the collection of all algebraic structures,
defined by some signature of operators satisfying certain identities, such as the ones above,
where the xi’s are variables (so they may assume arbitrary values in a specific algebra)
and p is one of the operators. The system of equations above gives a property of a variety
stating that using the operators in its signature one may build an operator p such that
every algebra in the variety will model the system (every equation in the system will hold
for all values of the xi’s in the algebra) — for a variety to have this property is, thus, a
particular type of Mal’tsev condition [50]. For example, in the variety of vector spaces
over a two-element field, we can define

p(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5

to satisfy the given identities. This means that the variety in question has the property
determined by the matrix. Notice that the matrix is obtained from such a system of linear
equations as the matrix of indices of variables in the system, appearing to the left of the
equality sign. The variables on the right of the equality sign by default all have index 0
(otherwise, we must ‘extend’ the matrix with another column).

Algebras in a variety form a category, where morphisms are homomorphisms of alge-
bras. The property of a variety that the system of equations determines can be reformu-
lated as a property of this category. To do this, one first wants to see the matrix as a
property of an n-ary relation, where n is the number of rows of the matrix (so n = 3 in
the example above). This is done by means of ‘column-vectors’ of the matrix — in the
case of the matrix above, the corresponding property of a ternary relation R states:

 x1

x0

x2

 ,
 x1

x0

x0

 ,
 x0

x1

x1

 ,
 x2

x1

x2

 ,
 x2

x0

x1

 ⊆ R =⇒

 x0

x0

x0

 ∈ R.
The property of a category determined by the matrix states that all internal n-ary re-
lations in the category must have the property above internalised to the category (this
process of ‘internalisation’ is the standard one given by the Yoneda embedding). We
consider this property together with the requirement that the category is finitely com-
plete. The Mal’tsev condition on a variety obtained from a matrix is equivalent to the
corresponding condition on internal relations in the category of algebras (categories of
algebras are always finitely complete). This is an easy theorem to prove, using standard
universal-algebraic techniques (see [36]), which can be illustrated in the case of vector
spaces and the matrix above by saying that the existence of a linear combination p that
fulfills the above system of equations is equivalent to every subspace R of V n (for every
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vector space V ) to satisfy the implication above. Thus, collections of varieties given by
Mal’tsev conditions such as the one above extend to collections of finitely complete cat-
egories given by matrices. We refer to these collections of finitely complete categories as
‘matrix classes’.

Among examples of matrix classes are the matrix class of Mal’tsev categories in the
sense of [11, 10] and the matrix class of majority categories in the sense of [23, 24]. Their
universal-algebraic counterparts are given by the collections of Mal’tsev varieties [41, 49]
and varieties admitting a majority term [44]. The intersection of these two collections is
given by arithmetical varieties [44, 45, 46]. Arithmetical categories in the sense of [43]
are Barr-exact categories with coequalisers in the matrix class given by a matrix that
determines the Mal’tsev condition for arithmetical varieties. Many more matrix classes
can be produced from various Mal’tsev conditions commonly encountered in universal
algebra. This brings us to the following questions: how many matrix classes are there,
for given dimensions of a matrix, and how can we decide whether two matrices give rise
to the same matrix class or not?

In this paper we present an algorithm for determining implications of finite conjunc-
tions of matrix properties, which leads to answering the questions stated above, with the
help of a computer, for matrices with sufficiently small dimensions. For example, it allows
one to generate Figure 1, which gives a computation of the poset of all ‘non-degenerate’
matrix classes given by matrices in matr(4, 5, 2) ordered by inclusion, where matr(4, 5, 2)
denotes the set of matrices having 4 rows, 5 columns and whose each entry is either 0
or 1 (we will explain what ‘non-degenerate’ means shortly). Each of the matrix classes
in Figure 1 is represented by a ‘canonical matrix’ (defined in Section 4) which we display
as a grid, where each white square represents the entry 0 and each grey square represents
the entry 1. The reason why some of the matrices in Figure 1 appear to have smaller
dimensions than 4 × 5 is that we can always add duplicate rows and columns to a ma-
trix without changing the matrix class (as confirmed by Proposition 1.7 in [37]). By a
‘non-degenerate’ matrix class we mean one that is defined by a non-empty matrix and is
not equal to the collection of finitely complete preorders or the collection of all finitely
complete categories (see Section 2 for a discussion of the empty matrix). The algorithm
presented in this paper is first of its kind in the broader field of category theory concerned
with general methods in the study of exactness properties of categories.

Let us make a similar remark as in [9], one of the pioneering papers on Mal’tsev
categories: such a pursuit would have no value unless Mal’tsev categories were of fairly
common occurrence in mathematics ; except, in our case, ‘Mal’tsev categories’ should be
replaced with ‘categories having matrix properties’. Firstly, there are the algebraic exam-
ples. For instance, in the Mal’tsev case, these are the categories of groups, rings, modules,
Lie algebras, loops, Heyting algebras, and many others. Then, such structures internal to
a given finitely complete category provide examples as well. Still in the Mal’tsev case, this
gives us, say, the category of topological groups as an example. Examples of a different
kind are given by duals of geometric categories. For instance, the dual of the category
of topological spaces is a majority category (but not a Mal’tsev category). See [23, 51]
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Figure 1: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[4, 5, 2].

for some other examples. It is worth remarking that the dual of the category of sets be-
longs to all non-degenerate matrix classes. Also, matrix classes are closed under reflective
subcategories and various natural categorical constructions, such as taking categories of
functors from any fixed category to a category in the matrix class.

The results of this present paper, which actually build on ideas contained already in
[22, 23, 24] and [51], reveal a new realm of geometric examples of members of matrix classes
that are given by subcategories of duals of categories of relations. It is these examples that
lead us to the algorithm presented herein for deciding implications of matrix properties.
We must point out that, as already mentioned in the remark following Corollary 5.13
in [22], these same examples show that there are implications of matrix properties that
hold in the algebraic case, but not in the general finitely complete case. In other words,
implications of matrix properties are context sensitive (see Section 5).

The paper is organised as follows. Apart from this Introduction, there are five sections.
Section 1 is in most part recollection of necessary concepts from the literature dealing with
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matrix properties. Section 2 develops these concepts further along with distinguishing
and studying a special class of matrices, called ‘trivial matrices’, which require a separate
treatment in proofs of the results contained in subsequent sections. Section 3 contains the
main results of the paper. These results lead to the algorithm for deciding implications
of (conjunctions of) matrix properties, which is formulated in the same section. Section 4
gives computation of some fragments of the poset of matrix classes, based on a computer
implementation of the algorithm. We conclude with Section 5, which discusses context-
sensitivity of matrix properties.

Contents

1 Matrix classes 741
2 Triviality and functionality 752
3 The algorithm 761
4 Computer-aided classification results 770
5 Context sensitivity 783

1. Matrix classes

We assume basic knowledge of categories such as (finite) limits, colimits and functors,
such as can be found in [40]. For a category C, it is customary to denote the set of all
morphisms from an object X to an object Y in C by C(X, Y ).

Given integers n, k > 0 and m > 0, we write matr(n,m, k) for the set of all n × m
matrices whose entries are elements of the set {0, . . . , k−1}. Given a sequence (S1, . . . , Sn)
of sets, a row-wise interpretation of A ∈ matr(n,m, k) of type (S1, . . . , Sn), is an n ×m
matrix B whose entries are given by bij = fi(aij), where each fi is a specified function
fi : {0, . . . , k−1} → Si and the aij’s are the entries of A. We will often display a row-wise
interpretation of A as a matrix extended with the column of values fi(0): f1(a11) . . . f1(a1m) f1(0)

...
...

...
fn(an1) . . . fn(anm) fn(0)


We write [0]n for a column-matrix with n rows, all of whose entries are 0. Next, we
present in this language the definition of the well-known concept of an ‘internal relation’
in a category.

An internal n-ary relation (between objects C1, . . . , Cn) in a category C is given by
an object R together with a row-wise interpretation

r =

 r1
...
rn
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of [0]n ∈ matr(n, 1, 1) of type (C(R,C1), . . . ,C(R,Cn)) (so, it is given by a pair (R, r))
such that  r1x

...
rnx

 =

 r1y
...
rny

 =⇒ x = y

for any two parallel morphisms x, y : X → R with an arbitrary domain X. We sometimes
denote such a relation (R, r) simply by r. When C has finite products, an internal n-ary
relation in C can also be viewed as a monomorphism r : R� C1×· · ·×Cn, with ri = πir,
where πi denotes i-th product projection πi : C1 × · · · × Cn → Ci.

We remind the reader that up to conceptual identification of monomorphisms into an
object with ‘subobjects’ of that object, we have the following:

� Internal n-ary relations in the category Set of sets are the same as the usual n-ary
relations between sets. For this reason, definitions involving internal relations in a
category can be particularised to relations between sets.

� More generally, internal n-ary relations in an algebraic category (by which, in this
paper, we mean the category of algebras of a given single-sorted variety of universal
algebras) are the same as n-ary homomorphic relations (recall that a homomorphic
relation between, say, groups C1, . . . , Cn is a subgroup of the cartesian product
C1 × · · · × Cn). Thus, for instance, a congruence on a group is an example of an
internal 2-ary (binary) relation in the category of groups.

For an internal n-ary relation (R, r) between objects C1, . . . , Cn in a category C, a
matrix M ∈ matr(n,m, k) and an object X, we say that r is compatible with a row-wise
interpretation  x11 . . . x1m y1

...
...

...
xn1 . . . xnm yn


of M of type (C(X,C1), . . . ,C(X,Cn)) when, if there exist morphisms u1, . . . , um : X → R
such that  x1j

...
xnj

 =

 r1uj
...

rnuj


for each j ∈ {1, . . . ,m}, then there exists a morphism v : X → R such that y1

...
yn

 =

 r1v
...
rnv

 .
We say that r is strictly M-closed over X when it is compatible with every row-wise
interpretation of M of type (C(X,C1), . . . ,C(X,Cn)).
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1.1. Example. Consider the category Gp of groups and let X be any group. We will
now demonstrate how every homomorphic relation R between groups C and C ′ is strictly
M -closed over X, where

M =

[
0 1 1 2 2
1 1 2 2 0

]
.

Firstly, we remark that the relation R is seen as an internal binary relation (R, r), with
r1 : R→ C and r2 : R→ C ′ given by r1(a, b) = a and r2(a, b) = b. A row-wise interpreta-
tion of M of type (C(X,C),C(X,C ′)) is given by a matrix[

x0 x1 x1 x2 x2 x0

x′1 x′1 x′2 x′2 x′0 x′0

]
,

where xi : X → C and x′i : X → C ′ are arbitrary group homomorphisms, for i ∈ {0, 1, 2}.
We must show that if there exist group homomorphisms u1, . . . , u5 : X → R such that for
all w ∈ X we have

u1(w) = (x0(w), x′1(w)),

u2(w) = (x1(w), x′1(w)),

u3(w) = (x1(w), x′2(w)),

u4(w) = (x2(w), x′2(w)),

u5(w) = (x2(w), x′0(w)),

then there exists a group homomorphism v : X → R such that v(w) = (x0(w), x′0(w)) for
all w ∈ X. Note that since x0 and x′0 are homomorphisms, we just need to show that a
function v : X → R exists satisfying the equality above for all w ∈ X. Define v as follows:

v(w) = u1(w)− u2(w) + u3(w)− u4(w) + u5(w).

Then

v(w)

= u1(w)− u2(w) + u3(w)− u4(w) + u5(w)

= (x0(w)− x1(w) + x1(w)− x2(w) + x2(w), x′1(w)− x′1(w) + x′2(w)− x′2(w) + x′0(w))

= (x0(w), x′0(w))

as desired.

Given a matrix M ∈ matr(n,m, k) and a set S, an interpretation (without ‘row-wise’)
of M of type S is a row-wise interpretation of M of type (S, . . . , S) for which f1 = · · · = fn.
An internal n-ary relation between identical objects C, . . . , C in C (which we will, in the
future, refer to as an internal relation ‘on’ C) isM-closed (without ‘strictly’) over an object
X when it is compatible with any interpretation of M of type C(X,C). Following [36],
we say that
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� an internal relation r (between objects C1, . . . , Cn) is strictly M-closed, when r is
strictly M -closed over every object X in the category;

� an internal relation r on an object C is M-closed, when r is M -closed over every
object X in the category;

� the given category C has M-closed relations when every internal n-ary relation on
any object in C is M -closed; when C is finitely complete, this is equivalent to every
internal n-ary relation in C being strictly M -closed (by Theorem 2.4 in [36]).

Strict M -closedness of a homomorphic relation between algebras A1, . . . , An, seen as an
internal relation in some algebraic category where A1, . . . , An are objects, is equivalent to
its strict M -closedness over the free algebra with one generator, which itself is equivalent
to the strict M -closedness of the same relation seen as an internal relation in the category
of sets. The latter is nothing but the statement that for any row-wise interpretation x11 . . . x1m y1

...
...

...
xn1 . . . xnm yn


of M of type (A1, . . . , An), we have:

 x11
...
xn1

 , . . . ,
 x1m

...
xnm


 ⊆ R =⇒

 y1
...
yn

 ∈ R.
In the context of Example 1.1 this means that to check that R was strictly M -closed over
arbitrary X, for the matrix M given there, all we needed to do is to check that we always
have {[

x0

x′1

]
,

[
x1

x′1

]
,

[
x1

x′2

]
,

[
x2

x′2

]
,

[
x2

x′0

]}
⊆ R =⇒

[
x0

x′0

]
∈ R,

where this time xi ∈ C and x′i ∈ C ′ for i ∈ {0, 1, 2}. We have this indeed thanks to the
equality [

x0

x′1

]
−
[
x1

x′1

]
+

[
x1

x′2

]
−
[
x2

x′2

]
+

[
x2

x′0

]
=

[
x0

x′0

]
.

Similar remarks apply to the notion of M -closedness.

1.2. Example. A transitive relation R on a set C in Set is always M -closed, when

M =

[
0 1
1 0

]
,

since if (x0, x1) ∈ R and (x1, x0) ∈ R, then (x0, x0) ∈ R. However, R is not necessarily
strictly M -closed, since that would mean that (x0, x

′
0) ∈ R every time (x0, x

′
1) ∈ R and

(x1, x
′
0) ∈ R. For instance, if R was reflexive, strict M -closedness would force R = C×C.
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We must point out that the notation for matrices M used in this paper is different
from the usual notation originally introduced in [33, 35, 36], where the study of categories
with M -closed relations, for a general M , takes its start. In the usual notation, matrices
are filled in with variables instead of integers, and contain an additional right column, just
like the display of a row-wise interpretation above. In that case, if we consider pointed
categories, one usually uses the 0’s to represent a zero morphism (or a constant in the
algebraic interpretation). This is not a problem for the present paper, since here we do
not consider the pointed context; our 0’s will thus always represent a default variable used
to fill the right column. We must note here that some of the results of this paper have
analogues in the pointed case, and that some do not. For a separate treatment of the
pointed case we refer the reader to [26].

For a given M , the collection of all finitely complete categories with M -closed relations
is denoted by mclex{M} and is called a matrix class (of finitely complete categories) in
this paper (this notation abbreviates the term ‘matrix class of left exact categories’ in
which ‘left exact category’ is an alternative name for a ‘finitely complete category’). By
a matrix property we mean the property of a finitely complete category to have M -closed
relations for a given matrix M (as in [35]).

1.3. Remark. Note that matrix classes are ‘too large’ to be classes in the usual set-
theoretic sense. For this reason, without the term ‘matrix’ we refer to them as ‘collections’.
Another possible name for ‘matrix class’ is ‘matrix family’, which would mimic the name
‘Mal’tsev family’ used in universal algebra, as introduced in [18].

1.4. Example. The most standard example of a collection of finitely complete categories
with M -closed relations is the one where

M =

[
0 1 1
1 1 0

]
.

An internal binary relation r : R� C1×C2 in a finitely complete category is strictly M -
closed with respect to this matrix if and only if, for each object X and each morphisms
f0, f1 : X → C1 and g0, g1 : X → C2, if the three induced morphisms[

f0

g1

]
,

[
f1

g1

]
,

[
f1

g0

]
: X → C1 × C2

factor through r, then so does the induced morphism[
f0

g0

]
: X → C1 × C2.

If the considered category is an algebraic category, this happens if and only if the relation
is difunctional [48], i.e., it satisfies

[x0Ry1 ∧ x1Ry1 ∧ x1Ry0] =⇒ x0Ry0
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for every elements x0, x1 ∈ C1 and y0, y1 ∈ C2. In comparison, an internal binary relation
r : R � C2 in a finitely complete category is M -closed with respect to this matrix if
and only if, for each object X and each morphisms f0, f1 : X → C, if the three induced
morphisms [

f0

f1

]
,

[
f1

f1

]
,

[
f1

f0

]
: X → C2

factor through r, then so does the induced morphism[
f0

f0

]
: X → C2.

So the matrix class mclex{M} defined by the matrix M above is the collection of Mal’tsev
categories [11, 10]. The concept of a Mal’tsev category has occupied a prominent place in
categorical algebra since the 1990’s — see for instance [7, 8] and the references therein.
Algebraic Mal’tsev categories are nothing other than categories of algebras in a Mal’tsev
variety in the sense of [49]: a variety containing a ternary term p satisfying{

p(x0, x1, x1) = x0,
p(x1, x1, x0) = x0.

Such a term can be created in varieties of (not necessarily abelian) group-like structures:

p(x, y, z) = x− y + z.

Mal’tsev varieties are also known in universal algebra as ‘congruence-permutable’ varieties,
since they are exactly those varieties in which composition of congruences on an algebra
is commutative. This goes back to [41], where Mal’tsev varieties as well as Mal’tsev
conditions in general were born.

1.5. Remark. Expression of the property defining Mal’tsev varieties in terms of congru-
ences recalled in Example 1.4 extends to all matrix properties. This is not particularly
relevant for the present paper, so we will not elaborate on this in detail. It is worth
remarking, however, that such reformulations of matrix properties give rise to geometric
interpretations of these properties in the style of [49] and [21]. Let us briefly describe
this representation, as it opens up potential links with finite geometry. For the following
reformulation to hold, we restrict ourselves here to the case where each row of the matrix
contains at least one 0. Think of each column of the matrix as a point in a discrete plane.
Think of each row as an equivalence class of ‘parallel’ (discrete) lines (where lines being
parallel is no longer a property, but an imposed structure). If two entries xij and xij′ in
the same row are equal, interpret this as the points j and j′ having a line passing through
them which belongs to the equivalence class i of parallel lines. In the case of the Mal’tsev
matrix (i.e., the matrix from Example 1.4), we get a familiar geometric representation of
the property defining a Mal’tsev variety

/

/

/
/

/
/



THE MATRIX TAXONOMY OF FINITELY COMPLETE CATEGORIES 747

where the hollow point represents the extended column of the matrix. The following table
links this representation with the matrix:

• • • ◦
/ 0 1 1 0
// 1 1 0 0

Note that for other matrices, such drawings may require curved lines, as the geometries
that arise here are in most cases not embeddable in the usual Euclidean geometry. The
drawings suggest what the corresponding condition on congruences is: simply view each
point as an element of the algebra on which the congruences are defined and each line as
the property that the endpoints are in the same class of a congruence, with two lines being
‘parallel’ indicating that the same congruence is considered; the condition then requires
that the picture can be completed with an element representing the extended column of
the matrix.

1.6. Example. The matrix

M =

 1 0 0
0 1 0
0 0 1


defines majority categories in the sense of [23, 24], which generalise varieties having a
majority term [44], i.e., a ternary term p satisfying

p(x1, x0, x0) = x0,
p(x0, x1, x0) = x0,
p(x0, x0, x1) = x0.

If Mal’tsev varieties capture varieties of group-like structures, varieties with a majority
term capture varieties of lattice-like structures. A majority term can be defined in any
lattice by setting:

p(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

1.7. Example. Arithmetical categories in the sense of [43] are those Barr-exact cate-
gories [4] with coequalisers in which all ternary relations are M -closed, where

M =

 0 1 1
1 1 0
0 1 0

 .
In the more general context of regular categories [4] in the place of Barr-exact categories
with coequalisers, these become equivalence distributive Mal’tsev categories in the sense
of [20], where the link with strict M -closedness, for the M above, is established. It is easy
to prove (and it will be done in Section 5 as an application of our algorithm) that further
extension to the finitely complete context gives us the matrix class of Mal’tsev majority
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categories, already considered in [23]. In this paper, we thus refer to arithmetical cate-
gories as (finitely complete) Mal’tsev majority categories. The universal-algebraic origin
of the matrix class of arithmetical categories — the collection of arithmetical varieties in
the sense of [44, 45, 46], can be described in any of the following equivalent ways (among
many others):

� as varieties that contain a Pixley term, i.e., a ternary term p satisfying
p(x0, x1, x1) = x0,
p(x1, x1, x0) = x0,
p(x0, x1, x0) = x0,

� as those Mal’tsev varieties where algebras have distributive congruence lattices,

� as those Mal’tsev varieties that contain a majority term.

Varieties containing Boolean algebra operations are arithmetical (a Boolean algebra is
both a group-like and a lattice-like structure). The term p above can be expressed using
the Boolean operations as follows:

p(x, y, z) = (x ∧ y ∧ z) ∨ (x ∧ ¬y) ∨ (z ∧ ¬y).

1.8. Remark. In Examples 1.4, 1.6 and 1.7, the Mal’tsev conditions arise from the ma-
trix properties through a general process described in the Introduction. The Mal’tsev
conditions arising in this way are of a very particular type, where each identity in the
Mal’tsev condition is of the form p(x1, . . . , xm) = y1, where x1, . . . , xm, y1 are variables.
Many other Mal’tsev conditions studied in universal algebra, which do not have this type,
can be strengthened to a Mal’tsev condition of this type. This process can be referred
to as syntactical refinement (see [35]). We illustrate it on the following example. Con-
sider the Mal’tsev condition from [14] that characterises Mal’tsev varieties with directly
decomposable congruences [17]. This Mal’tsev condition states that the variety contains
binary terms s1, . . . , sm and t1, . . . , tm, and a term u of arity m+1, such that the following
identities hold in the variety (see Corollary 11.0.6 in [14]):

u(x, s1(x, y), . . . , sm(x, y)) = x,
u(y, t1(x, y), . . . , tm(x, y)) = x,
u(y, s1(x, y), . . . , sm(x, y)) = x,
u(x, t1(x, y), . . . , tm(x, y)) = y.

Now we will consider the case when all the binary terms si and tj are actually variables,
i.e., they satisfy v(x, y) = x or v(x, y) = y. Moreover, we consider the case where
{(si(x, y), ti(x, y)) | 1 6 i 6 m} = {x, y} × {x, y}. Writing out the corresponding matrix
and deleting the duplicate columns, we get:

x x x y y x
y x y x y x
y x x y y x
x x y x y y

 .
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To get it in the integer form, we first want to swap x and y in the last row. Then, writing
0 for x and 1 for y, and deleting the extended column of 0’s, we get:

M =


0 0 0 1 1
1 0 1 0 1
1 0 0 1 1
1 1 0 1 0

 .
Many other Mal’tsev conditions encountered in universal algebra refine to Mal’tsev con-
ditions given by matrix properties. In some other examples, an undetermined number
of ‘outer terms’ u1, . . . , us are considered in the original Mal’tsev condition (instead of
just one u as in the example above). In this case, the refinement is usually obtained
by considering only the particular case s = 1 and then by applying to it a similar tech-
nique as above. Note that the process of refinement described here is a purely syntactical
procedure, and may depend on the choice of presentation of a Mal’tsev condition.

It is clear that the matrix property arising from M ∈ matr(n,m, k) is the same as
the one arising from M viewed as a member of matr(n,m, k′), for any k′ > k. Moreover,
according to Proposition 1.7 in [37], we have:

� Given two matrices M ∈ matr(n,m, k) and N ∈ matr(n,m′, k′) such that every
column of M is a column of N , then any finitely complete category with M -closed
relations also has N -closed relations, i.e., mclex{M} ⊆ mclex{N}.

� Given two matrices M ∈ matr(n,m, k) and N ∈ matr(n′,m, k′) such that every row
of N is a row of M , then any finitely complete category with M -closed relations
also has N -closed relations, i.e., mclex{M} ⊆ mclex{N}.

The first of these results can be proved by showing that an internal n-ary strictly M -
closed relation is strictly N -closed (for M and N as in the statement). The other result
can be proved from the following fact. Using the notation in the statement, there exists
a function g : {1, . . . , n′} → {1, . . . , n} such that, for each i ∈ {1, . . . , n′}, the i-th row of
N is the same as the g(i)-th row of M . Given an object C in a finitely complete category,
we can consider the n-th and n′-th powers of C with respective projections denoted by
π1, . . . , πn : Cn → C and π′1, . . . , π

′
n′ : C

n′ → C. The function g induces a unique morphism
g : Cn → Cn′ such that π′ig = πg(i) for each i ∈ {1, . . . , n′}. The second statement follows
from the fact that, given an internal n′-ary relation r : R� Cn′ on C and considering the
pullback

S //

��

s

��

R
��

r
��

Cn
g
// Cn′

,

the internal n-ary relation s is M -closed if and only if r is N -closed. It follows from
these results that matrix properties of finitely complete categories are invariant under
duplication and permutation of the columns and of the rows of the matrices.
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The notions of M -closedness and strict M -closedness have been studied in [36, 37].
In this paper, we add a third type of closedness property of a relation under a matrix
M ∈ matr(n,m, k). Call an internal n′-ary relation in a category M-sharp if it is strictly
M ′-closed under any matrix M ′ ∈ matr(n′,m, k), obtained from M by permutation, du-
plication and deletion of rows — in other words, every row of M ′ is a row of M . Note
that in this notion, the matrix M itself does not need to have exactly n′ rows — one can
have n > n′, n = n′ or n < n′. By the above remark, a finitely complete category has
M -closed relations if and only if every n′-ary internal relation in it is M -sharp, where
n′ can be arbitrary or alternatively, any fixed value that is greater or equal to n. As an
illustration of this new closedness property of a relation, consider an affine subspace R of
a three dimensional vector space F 3 over a field F , seen as a ternary relation on F . Such
an R is M -sharp for the Mal’tsev matrix

M =

[
0 1 1
1 1 0

]
(1)

for the following reason. There are 8 possible M ′-s for this M :

M111 =

 0 1 1
0 1 1
0 1 1

 M112 =

 0 1 1
0 1 1
1 1 0

 M121 =

 0 1 1
1 1 0
0 1 1

 M122 =

 0 1 1
1 1 0
1 1 0



M211 =

 1 1 0
0 1 1
0 1 1

 M212 =

 1 1 0
0 1 1
1 1 0

 M221 =

 1 1 0
1 1 0
0 1 1

 M222 =

 1 1 0
1 1 0
1 1 0


Row-wise interpretations of, say, M212 of type (F, F, F ) are given by matrices of elements
of F of the form  a a b b

c d d c
e e f f

 .
Whenever the ‘left columns’ of this matrix (i.e., columns left to the vertical line) belong
to the affine subspace, so does the ‘right column’ (the column right to the vertical line)
thanks to the fact that  a

c
e

−
 a
d
e

+

 b
d
f

 =

 b
c
f

 .
For the same reason, R will be strictly closed with respect to the remaining seven matrices.
As a counter-example, let us remark that the ternary relation

R′ =


 x
y
y

 ,
 y
y
y

 ,
 y
x
x

 ⊂ {x, y}3
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on the two element set {x, y} is strictly M221-closed but not (strictly) M122-closed. It is
thus neither M -sharp nor M221-sharp as every row of M122 is a row of M221. However,
one trivially has that R′ is M111-sharp and M222-sharp since both these matrices have a
column of zeros.

It will be useful to have a designated concept of an interpretation for the closedness
property of sharpness. Given a sequence of sets (S1, . . . , Sn′), we define a reduction of type
(S1, . . . , Sn′) of a matrix M ∈ matr(n,m, k) to be a matrix M ′′′ which can be obtained as
follows:

� choose some matrix M ′ ∈ matr(n′,m, k) whose every row is a row in M ;

� choose some row-wise interpretation M ′′ of type (S1, . . . , Sn′) of M ′;

� possibly duplicate and permute some (left) columns of M ′′ and possibly delete some
duplicate (left) columns of M ′′ to obtain the reduction M ′′′.

Then an internal n′-ary relation between the objects C1, . . . , Cn′ in a category C is M -
sharp if and only if it is compatible with every reduction of M of type (C(X,C1), . . . ,
C(X,Cn′)) (for an arbitrary object X). We say that a matrix M ′′′ is a reduction of M if it
is a reduction of type (S1, . . . , Sn′) of M for some sets S1, . . . , Sn′ . Let us give a concrete
example of a reduction of type ({0, 1}, {2, 3}, {4, 5, 6}) of the Mal’tsev matrix M as in (1).
As a matrix M ′ with three rows each of which is a row of M , we can choose, e.g., the
matrix M121 as above. As a row-wise interpretation M ′′ of type ({0, 1}, {2, 3}, {4, 5, 6})
of M121, we can choose, e.g., the matrix

M ′′ =

 1 0 0 1
3 3 3 3
4 6 6 4

 .
Finally, the matrix

M ′′′ =

 0 1 1 1
3 3 3 3
6 4 4 4


which is obtained from M ′′ by deleting the second column, duplicating the first column,
and then reversing the left columns, is an example of a reduction of type ({0, 1}, {2, 3},
{4, 5, 6}) of M .

Let us conclude this section with a useful lemma on reductions.

1.9. Lemma. Given integers n, n′, k, k′ > 0 and m > 0 and a matrix M ∈ matr(n,m, k),
if M ′′′ is a reduction of M of type ({0, . . . , k′−1}, . . . , {0, . . . , k′−1}) whose right column
is [0]n′, then every finitely complete category with M-closed relations also has M ′′′-closed
relations, i.e., mclex{M} ⊆ mclex{M ′′′} (considering only the left part of M ′′′).
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Proof. Let M ′ and M ′′ be matrices as in the above definition of a reduction. The
inclusion mclex{M} ⊆ mclex{M ′} and the equality mclex{M ′′} = mclex{M ′′′} have been
discussed above. It thus remains to show that the inclusion mclex{M ′} ⊆ mclex{M ′′}
holds. But this follows from the fact that, by definition of M ′′ and since its right column
is [0]n′ , each row-wise interpretation of M ′′ is also a row-wise interpretation of M ′ of the
same type with the same right column.

2. Triviality and functionality

A matrix M ∈ matr(n,m, k) is said to be trivial if every finitely complete category with
M -closed relations is a preorder, i.e., any two parallel morphisms in the category coincide.
It is not difficult to see that any preorder has M -closed relations for any non-empty
matrix M , so:

(i) Non-empty trivial matrices are precisely those matrices M for which the matrix class
mclex{M} of finitely complete categories with M -closed relations matches with the
collection of finitely complete preorders.

To say something about the empty matrices, first let us set what we mean by an ‘empty
matrix’. Formally, elements of each matr(n,m, k) are functions {1, . . . , n}×{1, . . . ,m} →
{0, . . . , k − 1}. Since n and k are considered to be positive, empty matrices arise when
m = 0. Applying the definition of M -closedness to this case, we get:

(ii) When m = 0, since matrix properties on finitely complete categories are invariant
under duplication of rows, a finitely complete category C has M -closed relations if
and only if for any monomorphism r : R� C and for any morphism x : X → C, we
have ru = x for some morphism u. This is equivalent to saying that any monomor-
phism in C is an isomorphism (just consider the case when x = 1C). Considering the
equaliser of two parallel morphisms, this implies that such a category is a preorder.
Therefore, any morphism is a monomorphism, and thus an isomorphism. Consider-
ing the product of two objects X and Y , we know that C(X, Y ) is not empty and
is thus a singleton set. Therefore, if m = 0, mclex{M} is the collection of categories
equivalent to the single morphism category, i.e, the terminal category.

With the observation (ii), we have completely described the matrix classes of finitely
complete categories determined by empty matrices. Moreover, observations (i) and (ii)
combine to the following:

2.1. Lemma. A matrix M is trivial if and only if mclex{M} is the collection of all finitely
complete preorders or the collection of preorders with a single isomorphism class of objects,
the second case occurring if and only if M is empty.

Let us recall that a (non-row-wise) interpretation of type S of a matrix A = [aij]i,j ∈
matr(n,m, k) is given by the following data:
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(i) a function f : {0, . . . , k − 1} → S,

(ii) an n×m matrix B = [bij]i,j with entries from S,

(iii) these two ingredients being related as follows: f(aij) = bij for each i ∈ {1, . . . , n}
and each j ∈ {1, . . . ,m}.

This data can be represented as a commutative triangle of maps in Set

nSk
πS
A

""

n1
B

//

nf
<<

Sm

where:

� nX stands for the n-fold sum (i.e., the coproduct or the disjoint union) of a set X
with itself and Xp for the dual (i.e., the p-fold product),

� 1 is the terminal object (i.e., the singleton set),

� the morphism B is then the obvious representation of the matrix B as a map (the
values of this map are the m-tuples formed by the rows of B),

� f is a map 1→ Sk that has its unique value the function f from (i) seen as a k-tuple
of elements of S, while nf is the canonically induced map between n-fold sums of
sets,

� the map πSA is the canonical map from the sum to a product given by the matrix

πSA =

 πa11+1 . . . πa1m+1
...

...
πan1+1 . . . πanm+1


of product projections Sk → S (π1 is the first product projection, π2 the second,
and so forth).

Notice that πSA itself represents an interpretation of A of type Set(Sk, S). Thus, we have
a specific interpretation of A, given by πSA, which ‘generates’ all interpretations via the
triangle above. The image of the map πSA is nothing other than the set of all possible rows
of all possible row-wise interpretations of A of type (S, . . . , S).

The morphism πSA can obviously be defined in any category C having the required
sums and products — we call πSA a canonical interpretation of A in C of type S. Consider
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a triangle as above in a category C, with n1 replaced by nC, the object S renamed to X
and the matrix A renamed to M :

nXk

πX
M

##

nC
B

//

nf
<<

Xm

This triangle now describes interpretations of M of type C(C,X). Therefore, an internal
n-ary relation on an object C in the dual category Cop, described in C as an epimorphism

r =

 r1
...
rn

 : nC � R,

is M -closed over X if and only if every commutative diagram of solid arrows in the follow-
ing display can always be filled with the dashed morphism retaining the commutativity:

X

nXk

πX
M

##

πX
[0]n

hh

nC
r

}}}}

nf

<<

Xm

R

33

OO

(2)

If we let C = Xk and f be the identity morphism of Xk, then nf is the identity morphism
of nXk and so the diagrammatic condition above becomes:

X

nXk

r′

||||

πX
M

##

πX
[0]n

hh

R′

WW

// Xm

(3)

So, fixing a matrix M ∈ matr(n,m, k), a category C with finite products and finite
colimits and an object X in C, if every internal n-ary relation on any object in Cop is
M -closed over X, then any commutative diagram (3) in C (for an arbitrary epimorphism
r′ : nXk � R′) can be filled in with a dashed morphism. Moreover, by pushing out r along
nf in (2) we can get the converse implication (note that a pushout of an epimorphism
is an epimorphism). Suppose furthermore that any morphism h in C has a universal
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epi-factorisation, i.e., a factorisation h = ge via an epimorphism e such that any similar
factorisation h = g′e′ with e′ an epimorphism yields e = ue′ for a (necessarily unique)
morphism u. Then we can assume the bottom triangle in the diagram (3) to be such
a universal factorisation. Existence of the dashed morphism for it alone will imply the
existence of the dashed morphism when r′ is an arbitrary epimorphism. If furthermore
kernel pairs (i.e., pullbacks of a morphism along itself) exist, then the morphism R′ → Xm

in the universal epi-factorisation of the morphism πXM is necessarily a monomorphism
(consider the epimorphism obtained by composing r′ with the coequaliser of the kernel
pair of the morphism R′ → Xm). In the case when C = Set, this monomorphism is given
by the image of the map πXM . In this case, what the dashed map R′ → X does is to assign
to each row (xi1, . . . , xim) from some interpretation of M of type X, the corresponding
value yi in the extended display of the interpretation of M : x11 . . . x1m y1

...
...

...
xn1 . . . xnm yn


Of course, such a map exists if and only if yi never depends on the choice of the interpreta-
tion. Let us say that such a matrix M is functional in X. Keeping the same terminology
in the general case, we obtain:

2.2. Theorem. Given integers n, k > 0 and m > 0, a matrix M ∈ matr(n,m, k) and an
object X in a category C having finite products and finite colimits, as well as universal
epi-factorisations, the following conditions are equivalent:

(1) Every internal n-ary relation on any object in Cop is M-closed over X.

(2) Every internal n-ary relation in Cop is strictly M-closed over X.

(3) M is functional in X, i.e., for the universal epi-factorisation πXM = iXMr
X
M of the

canonical interpretation πXM of M in C of type X, there is a morphism pXM : RX
M → X

making the diagram
X

nXk

rXM

||||

πX
M

""

πX
[0]n

hh

RX
M

pXM

XX

iXM

// Xm

commute.

Note that M is dysfunctional in a set X (i.e., it is not functional in X as an object
in Set) if and only if there are two interpretations of M of type X having a common
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row (not necessarily in the same position), with the value in the corresponding extended
column being different. This is equivalent to existence of a reduction of M of the form

T =

[
a1 . . . am b
a1 . . . am c

]
where b 6= c and all entries are elements of X. Thus, when X is either empty or singleton,
any matrix M is automatically functional in X. As we will shortly see, there is a simple
way of verifying that a matrix is dysfunctional in a set having at least two elements that
does not require modifying the matrix. It amounts to finding a row that does not contain
0 as an entry, or if there is no such row, then finding two distinct rows and 0 entries in
each of the rows which cannot be connected to each other by a path along the matrix
consisting of steps that alternate between vertical steps of switching between the two
rows in the same column and horizontal steps that move within the selected row from
one position to another position having the same entry as at the original position. For
instance, such a path is possible between the 0 entries of the two rows of the Mal’tsev
matrix:

0 1 1

1 1 0

This implies that a reduction as described above does not exist. Indeed, since each row
of the Mal’tsev matrix contains a 0 entry, we cannot get T by using just one row of the
Mal’tsev matrix. An attempt to get T by using both rows of the Mal’tsev matrix would
also fail, since equalising the left columns of the Mal’tsev matrix forces the right extended
column to have equal entries too:[

0 1 1 0
1 1 0 0

]
→
[
a 1 1 a
a a 0 0

]
→
[
a a a a
a a 0 0

]
→
[
a a a a
a a a a

]
.

We will call such a path in a matrix a linkage. More precisely, for an integer l > 0, a
linkage of length l connecting the positions (i0, j0) and (il, jl) in a matrix M is a sequence

(i0, j0), . . . , (il, jl)

of l + 1 positions in the matrix M such that

� for each t ∈ {0, . . . , l− 1} with t ≡ 0 (mod 4), one has it = i0, it+1 = il and jt = jt+1

(i.e., (it, jt)→ (it+1, jt+1) is a vertical step from the i0-th row to the il-th row),

� for each t ∈ {0, . . . , l − 1} with t ≡ 1 (mod 4), one has it = it+1 = il and the entries
of M in the positions (it, jt) and (it+1, jt+1) are equal (i.e., (it, jt)→ (it+1, jt+1) is a
horizontal step in the il-th row),

� for each t ∈ {0, . . . , l− 1} with t ≡ 2 (mod 4), one has it = il, it+1 = i0 and jt = jt+1

(i.e., (it, jt)→ (it+1, jt+1) is a vertical step from the il-th row to the i0-th row),
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� for each t ∈ {0, . . . , l− 1} with t ≡ 3 (mod 4), one has it = it+1 = i0 and the entries
of M in the positions (it, jt) and (it+1, jt+1) are equal (i.e., (it, jt)→ (it+1, jt+1) is a
horizontal step in the i0-th row).

A linkage of length 0 is thus just a position in the matrix. A linkage of length 1 connects
two positions in the same column of two rows, and so on. So linkages can be represented by
the shapes displayed below (up to permutation and duplication of columns) and ordered
by increasing length.

a0 , a0

a1

, a0

a1 a1

, a0 a2

a1 a1

, a0 a2 a2

a1 a1

, a0 a2 a2

a1 a1 a3

, · · ·

According to our definition, a linkage of positive length must start with a vertical step;
but up to starting with the path

(i0, j0), (il, j0), (il, j0), (i0, j0), (i0, j1)

one may consider horizontal steps as first ‘effective’ steps. The reader may have noticed
that the essence of what is going on here is the following. For a matrix M ∈ matr(n,m, k),
each row gives rise to an equivalence relation on the set {1, . . . ,m} — the kernel relation
of the row seen as a map {1, . . . ,m} → {0, . . . , k − 1} (this relates to the geometric
interpretation of matrix properties from Remark 1.5). The positions (i, j) and (i′, j′) are
connected by a linkage if and only if j and j′ fall in the same equivalence class of the join
of the two equivalence relations given by the two rows i and i′. Thus, linkage partitions
the columns of M into equivalence classes — we call these the linkage classes for the
pair of rows. We can see that two positions in two rows are connected by a linkage if
and only if, in every two interpretations of the two rows matching in all entries except
possibly the extended entry, the positions have the same entries. Indeed, while the ‘only
if part’ follows immediately from the definition of a linkage, the ‘if part’ can be seen
by interpreting each entry of each of the two rows by the corresponding linkage class in
the quotient of {1, . . . ,m} by the above equivalence relation. Moreover, let us remark
that, considering two 0 entries in positions (i, j) and (i′, j′) of M , if those two entries are
connected by a linkage, then any 0 entry in the i-th row is connected by a linkage to any
0 entry in the i′-th row of M .

2.3. Theorem. Given integers n, k > 0 and m > 0 and a matrix M ∈ matr(n,m, k), the
following conditions are equivalent:

(1) M is functional in every set X.

(2) M is functional in a set having at least two elements.

(3) M is functional in the set {0, 1}.
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(4) M is non-empty and does not have a reduction given by any of the following two
matrices: [

1 0
]
,

[
1 0 0
0 1 0

]
.

(5) Every row of M has 0 as one of its entries and any two 0 entries in any two distinct
rows of M can be connected by a linkage.

(6) Given any two rows of M , each has 0 as an entry such that the two positions can
be connected by a linkage.

(7) Setop has M-closed relations.

(8) M is not a trivial matrix.

Proof. Let us first notice that if M is empty (i.e., if m = 0), all statements are false
and thus are equivalent. Let us now suppose that M is non-empty. The implications
(1)⇒(3)⇒(2) are obvious. The following argument proves simultaneously that if (5) does
not hold then (4) does not hold and the latter implies that (2) does not hold, giving us
the implications (2)⇒(4)⇒(5). Suppose (5) does not hold. If M has a (non-empty) row
where 0 is not an entry, then [

1 0
]

is a reduction ofM (select that row ofM , interpret 0 by 0 and each element of {1, . . . , k−1}
by 1 and delete duplicate columns). If M has such a reduction, it also admits[

1 0
1 1

]
as a reduction, which breaks functionality of M in any set with at least two elements. If
M has two 0 entries in two distinct rows that are not connected by a linkage, then the
columns of M can be divided into two disjoint sets:

� The first set is the linkage class of the given position of 0 in the first row.

� The second set is the union of all the remaining linkage classes.

This guarantees that M has the reduction[
1 0 0
0 1 0

]
(select those two rows, interpret in the first row the entries from the first set by 0 and the
entries from the second set by 1 and vice-versa for the second row and permute and delete
the columns as necessary). From this reduction, we can then get the undesired reduction[

1 0 0
1 0 1

]
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violating functionality of M in any set with at least two elements. (5)⇒(6) is trivial.
Next, we prove (6)⇒(1). Suppose (1) does not hold. Then M has a reduction of the form[

a1 . . . am b
a1 . . . am c

]
with b 6= c. If either b does not occur in the first row or c in the second, then 0 must
not occur in one of the rows of M and so (6) gets violated. If this is not the case and
b does occur in the first row of this reduction and c in the second row, since the rows
are identical and b and c are distinct, all of these occurrences must come from separate
linkage classes. Then (6) gets violated again and so (6)⇒(1). The equivalence (1)⇔(7)
follows immediately from Theorem 2.2. Since Setop is not a preorder, the implication
(7)⇒(8) is straightforward from the definition of a trivial matrix. To complete the proof
of the theorem, it remains to prove (8)⇒(4). If (4) does not hold, since we have supposed
that M is non-empty, M admits one of the two matrices mentioned in (4) as a reduction.
Therefore, in view of Lemma 1.9, every finitely complete category with M -closed relations
has either M1-closed relations or M2-closed relations with

M1 =
[

1
]

and M2 =

[
1 0
0 1

]
.

If f and g are two parallel morphisms

X
f
//

g
// Y

in a finitely complete category, the induced morphisms

X

 f
f


// g

g


// Y 2

to the power Y 2 factor through the diagonal

Y //

∆Y =

 1Y
1Y


// Y 2.

Since ∆Y is a monomorphism, if the category has M1-closed relations (and seeing ∆Y as
a unary relation on Y 2) or if the category has M2-closed relations (and seeing ∆Y as a
binary relation between Y and Y ), the morphism

X

 f
g


// Y 2

also factors through ∆Y proving that f = g and thus the category is a preorder. This
shows that if (4) does not hold, M is a trivial matrix, proving the implication (8)⇒(4).
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This theorem already gives a minor classification result:

2.4. Corollary. There are only two matrix classes given by a non-empty matrix having
one row: the matrix class of finitely complete preorders and the matrix class of all finitely
complete categories. There is only one other matrix class given by a non-empty matrix
with 2 rows — the matrix class of Mal’tsev categories.

Proof. If the unique row of a non-empty matrix M contains 0, then every category has
M -closed relations. If 0 does not appear in the unique row, then M is trivial by Theo-
rem 2.3. By Lemma 2.1, this then gives the matrix class of finitely complete preorders.
This proves the first part of the corollary. If a non-empty matrix M ∈ matr(2,m, k) is
non-trivial, then by Theorem 2.3, each of the two rows has an entry 0 connected to each
other by a linkage. The length l of the shortest such linkage cannot be of the form 4l′

or 4l′ + 3, where l′ is a non-negative integer, since the two considered positions are not
in the same row. It is also easy to see that, by minimality of l, it cannot be of the form
4l′ + 2. We thus have l = 4l′ + 1 for some integer l′ > 0. If l = 1, then the matrix class is
the collection of all finitely complete categories since M admits[

0
0

]
as one of its columns. If l > 5, let us consider the reduction of M obtained by substituting
1 in the place of each non-zero entry and deleting duplicate (left) columns. If the reduced
matrix has more columns than the Mal’tsev matrix (Example 1.4)[

0 1 1
1 1 0

]
then the only possibility is that it has a column of 0’s, which is impossible since by
reduction no new 0 entries were created and this would contradict the minimality of l. So
the above matrix is a reduction of M and hence, every category in the matrix class is a
Mal’tsev category by Lemma 1.9. Conversely, let us prove that the matrix class contains
all Mal’tsev categories. Let us denote by M ′ the matrix formed by the columns through
which the considered shortest linkage

(i0, j0), (i1, j1), . . . , (i4l′+1, j4l′+1)

passes. We thus have mclex{M ′} ⊆ mclex{M}. This matrix M ′ is a reduction of the
matrix

Ml′ =

[
0 1 1 2 2 · · · · · · l′ l′

1 1 2 2 · · · · · · l′ l′ 0

]
;

this can be seen using the row-wise interpretation given by the functions

f1, f2 : {0, . . . , l′} → {0, . . . , k − 1}
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defined for each t ∈ {0, . . . , l′} by

f1(t) = a(i4t,j4t)

and

f2(t) =

{
0 if t = 0

a(i4t−2,j4t−2) if t > 0

where the aij’s denote the entries of M . Since f1(0) = f2(0) = 0, by Lemma 1.9, we know
that mclex{Ml′} ⊆ mclex{M ′}. Finally, using induction on l′, it is easy to prove that each
Mal’tsev category has Ml′-closed relations for each l′ > 1. This proves that the matrix
class mclex{M} contains all Mal’tsev categories.

A matrix M ∈ matr(n,m, k) is said to be anti-trivial if any finitely complete category
has M -closed relations. We invite the reader to compare the equivalence (7)⇔(8) of
Theorem 2.3 with the equivalence (2)⇔(3) of the following theorem.

2.5. Theorem. Given integers n, k > 0 and m > 0 and a matrix M ∈ matr(n,m, k), the
following conditions are equivalent:

(1) M has [0]n among its columns.

(2) Set has M-closed relations.

(3) M is anti-trivial.

Proof. The implication (1)⇒(3) follows from the definition of M -closedness and the
implication (3)⇒(2) is an immediate consequence of the definition of anti-trivial matrices.
For the remaining implication (2)⇒(1), we suppose that Set has M -closed relations. We
consider the n-ary relation R on {0, . . . , k − 1} formed by the columns of M . Since this
relation is M -closed, considering the interpretation of M given by the identity function
on {0, . . . , k − 1}, we get that [0]n must belong to R, i.e., to the columns of M .

Note that due to the Yoneda embedding, the equivalence (2)⇔(3) in the theorem
above can be established directly without going through the condition (1).

3. The algorithm

By a matrix set we mean a subset S of the union⋃
n>0
m>0
k>0

matr(n,m, k).

We denote by mclexS the collection of all finitely complete categories which have M -closed
relations for each matrix M in S. An S-injective object in a category C is an object X
such that for every matrix M ∈ S with any number n of rows, every internal n-ary
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relation on any object in Cop is M -closed over X. If C is finitely cocomplete (i.e., if Cop

is finitely complete), this is equivalent to require that for every matrix M ∈ S with any
number n of rows, every internal n-ary relation in Cop is strictly M -closed over X. The
terminal object in a category, when it exists, is always S-injective. In fact, S-injective
objects are closed under all limits that exist in the category. This follows from the fact
that, given morphisms (ri : C → R)16i6n in C representing a relation in Cop, the legs
(πj : L→ Xj)j∈J of a limit in C and a family of morphisms (fi : C → L)16i6n, there exists
a morphism g : R → L such that gri = fi for each i ∈ {1, . . . , n} if and only if, for each
j ∈ J , there exists a morphism gj : R→ Xj such that gjri = πjfi for each i ∈ {1, . . . , n}.
We write InjSC for the full subcategory of C consisting of all S-injective objects. We say
that C has enough S-injective objects if for any object C in C there is a monomorphism
C � D such that D is S-injective.

For instance, as shown in [51], when C is the category of topological spaces and
S = {M}, where M is the Mal’tsev matrix (Example 1.4), S-injective objects are ‘R1-
spaces’ [15], i.e., topological spaces in which if one point can be separated from another
by an open set, then the two points can be separated from each other by disjoint open
sets. In contrast, every topological space is S-injective with S = {M}, when M is the
majority matrix (Example 1.6) (in other words, the dual of the category of topological
spaces is a majority category [23]). The category of topological spaces has thus enough
S-injective objects for the two mentioned matrix sets S.

The following result is obtained by an adaptation of ideas from [51]:

3.1. Theorem. Let C be a category having finite limits and finite colimits, where every
morphism factorises as an epimorphism followed by an equaliser. Consider two matrix
sets S ⊆ T . If C has enough T -injective objects, then InjSC is the largest full subcategory
of C among those that contain all T -injective objects, are closed under finite limits, and
whose dual categories have M-closed relations for every M ∈ S.

Proof. A factorisation f = gh of a morphism f : X → Y into an epimorphism h followed
by an equaliser g is a universal epi-factorisation of f . This is a consequence of the fact that
any equaliser g is a ‘strong monomorphism’, meaning that for any commutative diagram
of solid morphisms

W //

h′
����

Z
��

g

��

V

d
>>

// Y

where h′ is an epimorphism, there exists a unique dashed morphism d keeping the diagram
commutative. So, in view of Theorem 2.2, a matrix M with n rows is functional in an
object X if and only if every n-ary internal relation on any object in Cop is M -closed
over X. As mentioned above, it is not difficult to see that InjSC is closed under finite
limits in C. Any object that is a T -injective object is an S-injective object, and so InjSC
contains all T -injective objects. To get convinced that (InjSC)op has M -closed relations
for every M ∈ S, it suffices to check that any internal relation in (InjSC)op will remain an
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internal relation in the bigger category Cop. So consider an internal relation

r =

 r1
...
rn

 , ri : R→ Ci for i ∈ {1, . . . , n},

in (InjSC)op, where n is any positive integer. Now, in the category C, where each ri has
opposite direction, decompose r′ = gh the induced morphism r′ : C1 + . . .+Cn → R in C
as an epimorphism h followed by an equaliser g. Let f1, f2 be the two morphisms of which
g is an equaliser. Let D denote their common codomain. Consider a monomorphism
e : D� E such that E is a T -injective object. Then g is still an equaliser of ef1, ef2, and
since both R and E belong to InjSC, so does the domain of g, and hence g itself. Moreover,
g is an equaliser in InjSC. On the other hand, since each ri factorises through g, we get
that g is an epimorphism in InjSC. Being an epimorphism and an equaliser, it must be
an isomorphism. Then r′ is an epimorphism and so r is an internal relation in Cop. This
means that (InjSC)op has M -closed relations for every M ∈ S. It remains to show that
any full subcategory of C containing all T -injective objects, closed under finite limits in
C and the dual category having M -closed relations for each M ∈ S, is part of InjSC. Let
X be an object in such a subcategory D. Consider a matrix M in S ∩matr(n,m, k). We
want to prove that M is functional in X. Consider the diagram

X

nXk

rXM

||||

πX
M

""

πX
[0]n

hh

RX
M

pXM

XX

//

iXM

// Xm

of solid morphisms in C (as in Theorem 2.2). Since D is closed under finite limits,
the objects Xk and Xm are in D, and moreover, Xm is an m-fold product of X in D.
Furthermore, since iXM is an equaliser, similar to the earlier argument with monomorphisms
into T -injective objects, it will be an equaliser in D. Composing rXM with sum (coproduct)
injections ιi : X

k → nXk, we get an internal n-ary relation on Xk in Cop and hence in Dop.
Since Dop has M -closed relations, there will be a morphism pXM such that pXMr

X
M ιi = π1

for each i ∈ {1, . . . , n}. This then gives commutativity of the left triangle in the diagram
above. Therefore, M is functional in X. The proof is now complete.

The following is an adaptation of ideas from Section 3 of [23]. For each non-zero natural
number n, we consider the category Reln whose objects are pairs (X,R) where X is a set
and R is an n-ary relation on X, and morphisms (X,R)→ (X ′, R′) are relation-preserving
functions, i.e., functions f : X → X ′ such that there exists a (necessarily unique) dashed
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morphism rendering the diagram

R� _

��

// R′� _

��

Xn
fn
// X ′n

commutative. The forgetful functor Reln → Set is a topological functor (see e.g. [6])
and therefore Reln is a complete and cocomplete category. Moreover, each morphism
f : (X,R)→ (X ′, R′) in Reln factors as

(X,R)
f ′
// // (Im f, (Im f)n ∩R′) // i // (X ′, R′)

where Im f is the image of the function f , i is the inclusion of this image in the codomain
of f and f ′ is the corestriction of f . Since f ′ is surjective it is an epimorphism in Reln,
and i is the equaliser of

(X ′, R′)
g1
//

g2
// (Q,Qn)

where g1, g2 is the cokernel pair of i in Set. Therefore, each morphism in Reln factors
as an epimorphism followed by an equaliser and, in particular, Reln has universal epi-
factorisations.

3.2. Lemma. Given integers n, n′, k > 0 and m > 0, an object (X,R) of Reln and a
matrix M ∈ matr(n′,m, k), the following statements are equivalent:

(1) (X,R) is an {M}-injective object in Reln.

(2) M is functional in (X,R).

(3) M is functional in the set X and R is M-sharp.

Moreover, if M is a non-trivial matrix, these are further equivalent to:

(4) R is M-sharp.

Proof. The equivalence (1)⇔(2) is a direct application of Theorem 2.2. To make explicit
what (2) means, let us consider the following commutative diagram of plain morphisms
in Reln,

(X,R)

(n′Xk, n′Rk)
rXM

uuuu

πX
M

''

πX
[0]n′

ll

(Im πXM , (Im πXM)n ∩Rm)

pXM

bb

//

iXM

// (Xm, Rm)
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where Rm is seen as a subset of (Xm)n via the canonical injection Rm� (Xn)m ∼= (Xm)n

and n′Rk is seen as a subset of (n′Xk)n via the canonical injection n′Rk � n′(Xn)k ∼=
n′(Xk)n� (n′Xk)n. Then, (2) means that there is a morphism pXM in Reln retaining the
commutativity of the diagram. The existence of a function pXM retaining the commuta-
tivity of the diagram is exactly the definition of M being functional in the set X. For
this function to be a morphism in Reln, it means that for each n-tuple (x1, . . . , xn) of
elements in n′Xk such that (rXM(x1), . . . , rXM(xn)) is in Rm, then (πX[0]n′

(x1), . . . , πX[0]n′
(xn))

is in R. Denoting the canonical injections Xk → n′Xk by ι1, . . . , ιn′ , this condition can be
equivalently written as: for each (i1, . . . , in) ∈ {1, . . . , n′}n and each (x1, . . . , xn) ∈ (Xk)n

such that (πXM(ιi1(x1)), . . . , πXM(ιin(xn))) is in Rm, then (πX[0]n′
(ιi1(x1)), . . . , πX[0]n′

(ιin(xn)))

is in R. Denoting the entries of M as in M = [aij]i,j, we can further reformulate this
condition as follows: for each (i1, . . . , in) ∈ {1, . . . , n′}n and each matrix x10 . . . x1 k−1

...
...

xn0 . . . xnk−1


of elements of X, if the columns of the matrix x1ai11

. . . x1ai1m
...

...
xnain1

. . . xnainm


are elements of R then so is  x10

...
xn0

 .
This condition is exactly expressing that R is M -sharp, proving the equivalence (2)⇔(3).
Finally, if M is not a trivial matrix, M is always functional in X by Theorem 2.3, proving
the equivalence (3)⇔(4) in that case.

We can then see that for a non-negative integer n and a matrix set S, the category
InjSReln forms a (full) reflective subcategory of Reln. Given an object (X,R) in Reln,
its reflection f : (X,R)→ (X ′, R′) in the subcategory InjSReln is obtained as follows:

� If S contains a trivial matrix, then X ′ = X if X is the empty set and X ′ is a
singleton if X is non-empty. The function f is the unique function f : X → X ′.

� If S does not contain a trivial matrix, then X ′ = X. In this case, f is the identity
function f = 1X .

We then define R′ ⊆ X ′n as the intersection of all relations containing fn(R) as a sub-
relation and which are M -sharp for each matrix M in S. Therefore, a colimit of a small
diagram in InjSReln can be obtained by applying the construction above to the colimit of
the same diagram in Reln. In particular, each (InjSReln)op is a finitely complete category.
These remarks together with Theorem 3.1 and Lemma 3.2 bring us to the following result:
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3.3. Theorem. Consider two matrix sets S and U . If for any non-zero natural number n,
every n-ary relation R on any set X that is M-sharp for every matrix M in S is N-closed
for every matrix N in U having n rows, then every finitely complete category that has
M-closed relations for every M in S also has N-closed relations for every N in U , i.e.,
mclexS ⊆ mclexU . The converse is also true when no matrix in S is trivial.

Proof. Assume first for any integer n > 0, every n-ary relation R on any set X that
is M -sharp for every matrix M in S is N -closed for every matrix N in U with n rows.
Consider a finitely complete category C that has M -closed relations for every M in S.
Then every internal relation in C is M -sharp for each M ∈ S. Considering a matrix
N ∈ U with n rows, an n-ary internal relation r : R � Cn on an object C in C and
an arbitrary object Y , we need to prove that r is N -closed over Y . These induce an
n-ary relation R′ on the set C(Y,C) for which g1, . . . , gn : Y → C are related if and only
if there exists a (necessarily unique) morphism v : Y → R such that riv = gi for each
i ∈ {1, . . . , n}. It is then easy to see that R′ is an (ordinary) n-ary relation which is
M -sharp for each M ∈ S. Our assumption gives then that R′ is N -closed, which implies
that the internal relation r on C is N -closed over Y .

Now assume that every finitely complete category that has M -closed relations for
every M in S also has N -closed relations for every N in U . Suppose no matrix in S
is trivial. Then no matrix in U can be trivial as well. Indeed, if U contained a trivial
matrix, then a non-preorder could not belong to mclexU , but at the same time Setop

belongs to mclexS by Theorem 2.3. For each positive n, consider the full subcategory
InjUReln of Reln consisting of U -injective objects. We will now apply Theorem 3.1 to
the category C = Reln. Let T be the set of all non-trivial matrices. For any n > 0 and
any set X, the relation Xn is clearly M -sharp for every matrix M . So the object (X,Xn)
is a T -injective object in Reln. For any object (X,R) in Reln there is a monomorphism
into such object — namely, the inclusion (X,R) � (X,Xn). By Theorem 3.1 we then
get that InjUReln is the largest full subcategory of Reln having the following properties:
it contains all T -injective objects, it is closed under finite limits and its dual category has
N -closed relations for every N in U . By Theorem 3.1 again, the subcategory InjSReln of
Reln consisting of all S-injective objects has similar properties: it contains all T -injective
objects, it is closed under finite limits and its dual category has M -closed relations for
every M in S. The assumption that every finitely complete category having M -closed
relations for every M in S has N -closed relations for every N in U gives that InjSReln
must be a subcategory of InjUReln (note that, from the paragraph before the theorem,
we know that the duals of these categories are finitely complete). So, by Lemma 3.2, for
any non-zero natural number n, every n-ary relation R on any set X that is M -sharp for
every matrix M in S is also N -sharp for every matrix N in U . In particular, this means
that every such relation is N -closed for every matrix N in U having n rows.

Note that, if S contains only the trivial matrix

M =

[
1 0 0
0 1 0

]
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and U contains only the trivial matrix

N =

[
1 0
1 0

]
,

both mclexS and mclexU are the matrix class of all finitely complete preorders. Now, given
two subsets R1 ⊆ X and R2 ⊆ X of a set X, the binary relation R1×R2 ⊆ X2 is M -sharp;
however, this relation is N -closed only if R1 and R2 are disjoint or if R1 = R2 = X. This
shows that the converse implication in Theorem 3.3 might not hold if S contains a trivial
matrix.

From the proof of Theorem 3.3 we can extract the following theorem, which says that
in order to prove an implication between (non-empty) matrix properties (in the finitely
complete context), one only needs to produce a proof for a single particular category.

3.4. Theorem. Let S be a matrix set which contains no empty matrix and let N ∈
matr(n,m, k), where n, k > 0 and m > 0. The following statements are equivalent:

(1) mclexS ⊆ mclex{N}.

(2) The category (InjSReln)op, which belongs to mclexS, also belongs to mclex{N}.

(Notice that in the case where S contains a non-empty trivial matrix, both statements
are equivalent to N being a non-empty matrix. The result thus also holds in that case.)

We now come to the following question. Given a matrix set S and a matrix N ∈
matr(n,m, k), how to decide whether every n-ary relation R on any set X that is M -
sharp for every matrix M in S is N -closed? Consider the n-ary relation on {0, . . . , k− 1}
given by the columns of N . Let us write col(N) for this relation. Consider the intersection
of all n-ary relations on {0, . . . , k − 1} that contain col(N) as a subrelation and that are
M -sharp for all M in S. Let us denote this by colS(N). It is certainly M -sharp for all
M in S, and so, if every n-ary relation on any set X that is M -sharp for every matrix M
in S is N -closed, then [0]n ∈ colS(N). The converse is also true: If [0]n ∈ colS(N), then
every n-ary relation R on any set X that is M -sharp for every matrix M in S is N -closed.
To see this, consider an interpretation x11 . . . x1m y1

...
...

...
xn1 . . . xnm yn


of N of type X such that every left column of the interpretation belongs to R. Let this
interpretation be given by a map f : {0, . . . , k− 1} → X. Then the inverse image f−1(R)
of R along f will be a relation on {0, . . . , k−1} that is M -sharp for every M in S. Indeed,
every reduction of each M of type ({0, . . . , k−1}, . . . , {0, . . . , k−1}) whose (left) columns
belong to f−1(R) will have a further reduction by applying f to its entries, whose (left)
columns belong to R. Then, since R is M -sharp, f of the right column of the reduction
will be in R, which means the right column of the reduction will be in f−1(R). Now, since
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f−1(R) is M -sharp for every M in S and since it contains col(N), it must also contain
colS(N). The fact that [0]n ∈ colS(N) will now give that the right column of the above
interpretation of N belongs to R. So Theorem 3.3 has the following consequence.

3.5. Corollary. Consider two matrix sets S and U . If [0]n ∈ colS(N) for every non-
zero natural number n and every matrix N in U with n rows, then every finitely complete
category that has M-closed relations for every M in S also has N-closed relations for
every N in U , i.e., mclexS ⊆ mclexU . The converse is also true when no matrix in S is
trivial.

Note that colS(N) is necessarily finite (it is a subset of {0, . . . , k − 1}n, when N ∈
matr(n,m, k)). When S is finite, we can build colS(N) in finitely many steps as fol-
lows. For a given R ⊆ {0, . . . , k − 1}n, we consider the relation S(R) ⊆ {0, . . . , k − 1}n
containing exactly R and the right columns of each row-wise interpretation B of type
({0, . . . , k − 1}, . . . , {0, . . . , k − 1}) of each matrix M ′ ∈ matr(n,m′, k′) whose rows are
rows of a common matrix M in S such that the (left) columns of B belong to R. The
number of all possible such B’s is finite (as S is finite), so S(R) can be built from R in
finitely many steps. It is easy to see that if R ⊆ colS(N) then also S(R) ⊆ colS(N). Now,
starting with R = col(N) we can build a chain of proper subset inclusions

col(N) ⊂ S(col(N)) ⊂ SS(col(N)) ⊂ · · · ⊂ SS . . . S(col(N))

until S(R) for the last set R in the chain is equal to R. When this happens, R will be
M -sharp for every M in S, and hence R = colS(N). The chain does terminate after
some finitely many steps because each of the sets in the chain are subsets of the finite set
{0, . . . , k − 1}n.

From the results above we can readily extract an algorithm for deciding mclexS ⊆
mclexU , when S and U are finite matrix sets. Note that the results did not give full
characterisation of mclexS ⊆ mclexU when S contains a trivial matrix. This case can be
dealt with separately as follows:

� If S contains a trivial matrix, then every category in mclexS is a preorder. Therefore,
one has mclexS * mclexU if and only if U contains an empty matrix and S does not
contain an empty matrix.

The combined algorithm which deals with both the trivial and non-trivial matrices is then
the following. To decide whether mclexS ⊆ mclexU where S and U are finite matrix sets,
do the following.

Step 0 (dealing with empty matrices). If S contains an empty matrix, then termi-
nate the process with positive decision for mclexS ⊆ mclexU . Else, if U contains
an empty matrix then terminate the process with negative decision for mclexS ⊆
mclexU .

Step 1 (dealing with trivial matrices). If S contains a matrix M which contains a
row with no 0’s then terminate the process with positive decision for mclexS ⊆
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mclexU . Else, for each matrix M in S, for each pair of distinct rows in M and for a
(randomly) chosen entry 0 in the first row, do the following. If the second row does
not contain a 0 entry that admits a linkage with the chosen 0 entry in the first row,
then terminate the process with positive decision for mclexS ⊆ mclexU .

Step 2 (dealing with non-trivial matrices). For each matrix N ∈ matr(n,m, k) in
U do the following. Keep expanding N , until it is impossible to expand it further,
with right columns of those row-wise interpretations B of type ({0, . . . , k − 1}, . . . ,
{0, . . . , k − 1}) of each matrix M ′ ∈ matr(n,m′, k′) whose rows are rows of a common
matrix M in S such that the left columns of B, but not its right column, can be
found in N . If the expanded N does not contain the column of 0’s, then terminate
the process with negative decision for mclexS ⊆ mclexU .

Step 3 (conclusion). Reaching this step means that the process has not been termi-
nated in the previous steps. Then the process completes with positive decision for
mclexS ⊆ mclexU .

An obvious question that arises here is whether a conjunction of matrix properties is
a matrix property. It turns out that if S = {M1, . . . ,Ms} is a finite matrix set, then it is
possible to create a matrix M1 × · · · ×Ms such that mclexS = mclex{M1 × · · · ×Ms}. If
S = ∅, we set the empty product of matrices to be the matrix [0] ∈ matr(1, 1, 1). If S 6= ∅
and if Mi ∈ matr(ni,mi, ki) for each i ∈ {1, . . . , s}, we define a product M1 × · · · ×Ms of
matrices to be a matrix in

matr(n1 + . . .+ ns,m1 · . . . ·ms,max{k1, . . . , ks})

whose columns are indexed by the set of all possible choices of a column in each of
M1, . . . ,Ms and are obtained by stacking each of these columns on top of each other in
the same order as the matrices in the list. Thus,

col(M1 × · · · ×Ms) ∼= col(M1)× · · · × col(Ms).

It is easy to see that if m1 · . . . · ms > 0, then each Mi ∈ S will be a reduction of
suchM1×· · ·×Ms — just keep those rows ofM1×· · ·×Ms which correspond to the position
of columns from Mi in the stack and then delete the duplicate columns if necessary. So
mclex{M1 × · · · ×Ms} ⊆ mclexS by Lemma 1.9. In the case where m1 · . . . ·ms = 0 or
where S = ∅, this inclusion holds trivially. To get the converse inclusion, it is sufficient
to argue in the case when s = 2, since the cases s = 0 and s = 1 are obvious and when
s > 3, we have

M1 × · · · ×Ms = (. . . ((M1 ×M2)×M3) . . . )×Ms.

So we assume S = {M1,M2}. For any fixed column C of M2, the matrix M1 × {C} is a
reduction of M1. The right column of this reduction is given by {[0]n1}×{C}. The matrix



770 MICHAEL HOEFNAGEL, PIERRE-ALAIN JACQMIN, AND ZURAB JANELIDZE

formed by these right columns (one for each column C of M2) is a reduction of M2, with
the right column being [0]n1+n2 and so

mclex{M1,M2} ⊆ mclex{M1 ×M2},

by Corollary 3.5. We have thus proved the following:

3.6. Theorem. For a finite matrix set S, we have:

mclexS =
⋂
M∈S

mclex{M} = mclex

{∏
M∈S

M

}
.

This theorem together with Theorem 2.3 gives:

3.7. Corollary. For a finite matrix set S, the following conditions are equivalent:

(1) mclexS only contains preorders (i.e.,
∏

M∈SM is a trivial matrix).

(2) S contains a trivial matrix.

Proof. The implication (2)⇒(1) being trivial, let us show (1)⇒(2). Assuming (1), we
know that S cannot be empty. If S contains only one matrix, the result is obvious. Since
the intersection of finitely many matrix classes is again a matrix class (Theorem 3.6), by
induction it suffices to treat the case where S = {M1,M2} contains exactly two matrices.
We thus suppose that M1×M2 is a trivial matrix and we shall prove that either M1 or M2

is trivial. Without loss of generality, we can assume that both M1 and M2 are non-empty
(and thus so is M1 ×M2). If a row of M1 ×M2 does not contain 0 as an entry, so does
the corresponding row in M1 or M2 and thus at least one of M1 and M2 is trivial by
Theorem 2.3. Again by Theorem 2.3, the remaining possibility is that M1 ×M2 admits
two distinct rows containing 0 as an entry but for which the two corresponding entries
cannot be linked by a linkage. It is not possible that one of these rows comes from M1

and the other one from M2 since in that case, by construction of M1 ×M2, there would
exist a column of M1 ×M2 with 0 in each of these rows. So these two rows must come
from the same matrix, which is then forced to be a trivial matrix.

4. Computer-aided classification results

We write Mclex for the collection of all matrix classes (of finitely complete categories). It
is a meet semi-lattice by Theorem 3.6. For each n > 0, let Dn ∈ matr(n, n, 2) denote the
matrix, all of whose entries are 0 except those on the main diagonal, which are 1. Note
that D1 and D2 are the matrices from Theorem 2.3 characterising the trivial matrices, so

mclex{D1} = mclex{D2}
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is the matrix class of finitely complete preorders. D3 is the matrix that defines majority
categories (Example 1.6), and so we have a strict inclusion mclex{D2} $ mclex{D3}. Using
the algorithm we can see that this extends to an infinite sequence of strict inclusions

mclex{D2} $ mclex{D3} $ mclex{D4} $ · · · .

Hence Mclex is infinite. It is not difficult to see that Mclex is countable. Computer
implementation of our algorithm allows one to get a complete description of the posets
of matrix classes given by matrices with some restricted dimensions (dependent on the
computational efficiency of the implementation and the computer). The computation
of the poset of all matrix classes remains an open problem. The fragment of Mclex
consisting of matrix classes given by all matrices in matr(n,m, k) will be denoted by
Mclex[n,m, k]. Each Mclex[n,m, k] is obviously finite (it contains at most kn·m different
matrix classes). Our algorithm allows one to compute each poset Mclex[n,m, k] in a finite
time that depends (exponentially) on the parameters n,m, k.

What can be established without the help of a computer, using just Lemma 2.1,
Theorem 2.3, Corollary 2.4 and Theorem 2.5, is the following (where n,m, k are integers
such that n, k > 0 and m > 0):

� Mclex[n, 0, k] has exactly one matrix class consisting of the preorders with a single
isomorphism class of objects (i.e., preorders equivalent to the terminal category).

� When m > 1, we have that Mclex[n,m, 1] has exactly one matrix class given by all
finitely complete categories.

� When m > 1 and k > 2, we have Mclex[1,m, k] = Mclex[n, 1, k] = Mclex[n, 2, k] and
these have exactly two elements: the matrix class of finitely complete preorders and
the matrix class of all finitely complete categories.

� When m > 3 and k > 2, the set Mclex[2,m, k] consists of exactly three elements: the
matrix class of finitely complete preorders, the matrix class of all finitely complete
categories and the matrix class of Mal’tsev categories.

In view of this, we will call a matrix class degenerate if it is determined by a trivial matrix
or an anti-trivial matrix. That is, the degenerate matrix classes are the following ones:

� the matrix class consisting of the preorders with a single isomorphism class of objects
(i.e., the bottom element of the poset Mclex);

� the matrix class of finitely complete preorders (i.e., the unique atom of the poset
Mclex);

� the matrix class of all finitely complete categories (i.e., the top element of the poset
Mclex).
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Let us notice that a matrix with entries in the set {0, . . . , k−1} and having n rows can
have at most kn different columns. One of these kn columns is a column of zeros, whose
presence makes the matrix anti-trivial. So all non-degenerate members of Mclex[n,m, k]
lie in Mclex[n, kn − 1, k].

The computer program that we wrote at the time of preparing this paper is able to
compute the posets Mclex[n,m, 2], where n 6 4, in a short amount of time. For two
given matrices M1 ∈ matr(n1,m1, k1) and M2 ∈ matr(n2,m2, k2), establishing whether
mclex{M1} ⊆ mclex{M2} using our algorithm, is already quite laborious. In particular,
in Step 2 of the algorithm we are required to do a column-comparison of M2 with each
row-wise interpretation B of type ({0, . . . , k2 − 1}, . . . , {0, . . . , k2 − 1}) of each matrix
M ′

1 ∈ matr(n2,m1, k1) whose rows are rows of M1; and if the outcome is positive (i.e.,
if every column of B is a column of M2) and if the right column of B is not already
in M2, then we need to do the same, again for all B, after M2 has been expanded with the
right column of B. In general, the number of these M ′

1’s is nn2
1 and the number of such

row-wise interpretations is kk1n2
2 for each M ′

1. The maximum number of times that M2

may get expanded is given by kn2
2 − 1−m2, where kn2

2 − 1 is the total number of different
non-zero columns for a matrix in matr(n2,m2, k2). So altogether, the process may require
up to nn2

1 k
k1n2
2 (kn2

2 −1−m2) many column-comparisons of two matrices. Therefore, when
computing the poset Mclex[n,m, k], we want to decrease the number of times we would
have to decide some inclusion mclex{M1} ⊆ mclex{M2}. This can be done for instance by
removing duplicate rows or columns from matrices in matr(n,m, k) and thus consider the
resulting matrices only once. Since, just like duplication of rows and columns, also the
order in which rows and columns are arranged does not alter the corresponding matrix
class, we may only consider matrices for which both the rows and the columns are ordered
increasingly with respect to the usual lexicographical order. Adapting the terminology
from [39], we say that such matrices are doubly lexi-ordered. Other filters may also be
applied. For instance, in the case when k > 2, we may additionally filter out those
matrices where, in some row and for some 0 < i < k − 1, no entry i is found before the
first occurrence of i+ 1.

Before displaying the results of our computer-aided computation of Mclex[n,m, k] for
various n,m, k, we describe how we chose to represent the matrix classes in the display. For
each matrix class C obtained from a non-empty matrix, and for each integers n,m, k > 0,
consider the set Cn,m,k of all matrices M such that C = mclex{M} and M ∈ matr(n′,m′, k′)
for some n′ 6 n, m′ 6 m and k′ 6 k. Now consider the subset CRn,m,k of Cn,m,k consisting

of those matrices that have minimal number of rows; the subset CRCn,m,k of CRn,m,k consisting

of those matrices that have minimal number of columns and the subset CRCGn,m,k of CRCn,m,k
consisting of those matrices that have minimal greatest entry. Viewing elements of CRCGn,m,k

as sequences of elements of {0, . . . , k − 1} by juxtaposing the transpose of each column
next to each other, a matrix will be called an (n,m, k)-canonical matrix if it is the smallest
element of CRCGn,m,k by the lexicographical ordering. It is easy to see that any non-empty
matrix M ∈ matr(n′,m′, k′) which is (n,m, k)-canonical for some n > n′, m > m′ and
k > k′ is also (n′,m′, k′)-canonical. However, as we will show later on in this section,
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there is a matrix in matr(4, 5, 2) which is (4, 5, 2)-canonical but not (4, 5, 3)-canonical.

4.1. Lemma. Let n,m, k > 1 be integers and M an (n,m, k)-canonical matrix. The
following properties hold for M :

� M has no duplicate rows or columns.

� M is doubly lexi-ordered.

� For each row of M and for each 0 < i < j < k, if j appears in the row, then so does
i and the first occurrence of j appears after the first occurrence of i.

Proof. The fact that M does not have duplicate rows or columns follows immediately
from the fact that removing a duplicate row or a duplicate column in a matrix does not
alter the corresponding matrix class.

To prove that M is doubly lexi-ordered, we use the fact that rearranging rows of a
matrix, or rearranging its columns, does not alter the corresponding matrix class. The
fact that the columns of M are lexicographically ordered is easy to see. Indeed, if it is
not so, at the first position where this breaks, swap the two consecutive columns. Then,
the new sequence of juxtaposed transposed columns will be lexicographically less than
the previous one, violating our assumption that M is (n,m, k)-canonical.

Suppose now that the rows of M are not lexicographically ordered, and let i be the
position of the first row whose consecutive row is lexicographically less than it. Let j be the
first position of an entry ai,j in the i-th row which is bigger than the corresponding entry
ai+1,j in the (i+ 1)-th row. Swap the i-th and the (i+ 1)-th rows. Comparing juxtaposed
arrangement of transposed columns for the old and the new matrices, we note that the
first position where the two sequences will be different from each other is where the first
sequence has entry ai,j and the second sequence has entry ai+1,j. The second sequence is
then lexicographically smaller than the first, which contradicts the assumption that M is
(n,m, k)-canonical.

The last statement follows from the fact that, given positive integers i and j, if one
replaces in a row of a matrix, each entry i by j and vice-versa, the corresponding matrix
class remains the same.

We will now display some of the posets Mclex[n,m, k], where n ∈ {3, 4} and k = 2,
computed by a computer-implementation of the algorithm from the previous section.
In these displays, we will represent each element of Mclex[n,m, k] by an image which
represents the (n,m, k)-canonical matrix for that element of Mclex[n,m, k]. Each white
square of that image represents an entry 0 in the (n,m, k)-canonical matrix and each grey
square represents an entry 1. In each display, an arrow connecting a matrix M1 with a
matrix M2 marks inclusion of matrix classes mclex{M1} ⊆ mclex{M2}. We do not draw
an arrow if it can be obtained by a path of arrows (we thus display the reflexive and
transitive reduction of the poset). We also omit the degenerate matrix classes in these
displays.
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Figure 2: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[3, 7, 2].

We begin with Figure 2, which displays the poset of non-degenerate members of
Mclex[3, 7, 2]. Since 23 − 1 = 7, we know that Figure 2 displays the poset of all non-
degenerate matrix classes defined by a matrix having three rows, an arbitrary number of
columns and whose entries lie in the set {0, 1}. This figure also illustrates Corollary 2.4:
there are no matrices in the figure with a single row, and there is only one that has exactly
2 rows — namely, the matrix

M =

[
0 1 1
1 0 1

]
which, up to permutation of columns, is the Mal’tsev matrix (Example 1.4).

The matrix class on the left of the matrix class of Mal’tsev categories in Figure 2 is the
matrix class of majority categories (Example 1.6). The bottom matrix class is the finitely
complete extension of the collection of arithmetical categories (Example 1.7) — this is
in fact the intersection of the matrix classes of Mal’tsev and majority categories. The
one between arithmetical and Mal’tsev matrix classes is the one whose algebraic members
(i.e., categories of algebras in a variety) are given by varieties having a so-called ‘minority
term’.

What we cannot find in Figure 2 is the matrix class arising from the syntactical
refinement of the Mal’tsev condition characterising Mal’tsev varieties with directly de-
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composable congruences, from Remark 1.8:

M =


0 0 0 1 1
1 0 1 0 1
1 0 0 1 1
1 1 0 1 0

 .
It turns out that the matrix class for the M above shows itself only in Figure 3. The
matrix class in Figure 3 determined by the matrix M above is the middle one in the fourth
row (from the top). The matrix displaying that matrix class in the figure is given by

N =


0 0 0 1
0 0 1 1
0 1 1 0
1 0 1 1

 .
It is not difficult to see that M has the following doubly lexi-ordering (shift column 1
right to the position of column 3 and interchange rows 2 and 3):

M ′ =


0 0 0 1 1
0 0 1 1 1
0 1 1 0 1
1 0 1 1 0

 .
We can then see that N is just M ′ with the last column removed. So mclex{N} ⊆
mclex{M}. With the help of the computer we could find the following proof for the
converse inclusion. The display below summarises the proof. It consists of three blocks
of extended matrices (each having four rows). The first block has its left columns given
by the matrix M ′ and its right columns given by the matrix N . In every next block, each
row is a row-wise interpretation of type ({0, 1}, . . . , {0, 1}) of a row of M ′ and every left
column is a column appearing as a right column in one of the previous blocks. Reaching
a right column of 0’s confirms mclex{M} ⊆ mclex{N}.

0 0 0 1 1 0 0 0 1
0 0 1 1 1 0 0 1 1
0 1 1 0 1 0 1 1 0
1 0 1 1 0 1 0 1 1
1 0 0 1 0 1
1 0 0 1 0 1
0 1 0 0 1 1
1 0 1 1 0 0
0 0 0 1 1 0
0 0 1 1 1 0
0 1 1 0 1 0
1 0 1 1 0 0
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Figure 3: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[4, 4, 2].

We will call such proof displays ‘lex-tableaux’ (‘lex’ is a standard abbreviation of ‘left
exact’). A lex-tableau is of course nothing other than a visual implementation of our
algorithm.

What appears to be distinctive to the middle matrix in the fourth row of Figure 3,
compared to the other matrices in that row, is that each of them has three arrows going
out, while the former has two. The ‘missing arrow’ gets added in Figure 1 from the
Introduction, which displays the poset of non-degenerate matrix classes in Mclex[4, 5, 2].

As we increase the parameters of Mclex[n,m, k], the posets get more and more complex.
We have included here the one for Mclex[4, 6, 2] — see Figure 4, which is the largest one
with n = 4 and k = 2 that can fit with reasonable readability on a page. Figure 5 shows
the growth of the sizes of posets Mclex[4,m, 2] (including the degenerate matrix classes).

Figure 4 shows some of the matrix classes that arise from matrices that are obtained
from known Mal’tsev conditions in the literature or their syntactical refinements in the
sense of Remark 1.8 (although we have not found explicitly the term ‘4-ary minority’ in
the literature). We will discuss some of these examples below.

Syntactical refinement of the Mal’tsev condition given in Theorem 1 of [13] for the
egg-box property yields a matrix that defines the matrix class appearing in the left-most
place of the third row (from the top) of Figure 4. This matrix class appears already in
Figure 2: right matrix in the third row.

The refinement of the Mal’tsev condition characterising varieties having ‘normal local
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Figure 4: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[4, 6, 2].
The highlighted matrices with thicker frames are some of those that link with known
Mal’tsev conditions. In vertical order from bottom to top and horizontally from right to
left, these matrices arise from Mal’tsev conditions described by the following keywords:
(1) Arithmetical (= Mal’tsev with majority); (2) Mal’tsev with 4-ary near unanimity;
(3) Majority; (4) 4-minority; (5) Refinement of Mal’tsev with directly decomposable con-
gruences; (6) Minority; (7) Mal’tsev; (8) 3-edge; (9) 4-ary near unanimity; (10) 4-edge;
(11) Refinement of directly decomposable congruence classes (= refinement of local anti-
commutativity); (12) Refinement of the egg-box property; (13) Refinement of normal local
projections.
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Figure 5: Count of matrix classes in Mclex[4,m, 2] (including the two degenerate matrix
classes that can be obtained from non-empty matrices).

projections’ in the sense of [34] is given by:
p(x1, x1, x0, x0, x0, x1) = x0,
p(x0, x0, x1, x1, x0, x1) = x0,
p(x1, x0, x1, x0, x1, x1) = x0.

The corresponding matrix, doubly lexi-ordered, is 0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 1

 .
It coincidentally matches with the right matrix in the top row of Figure 4, which is the
same as the left matrix in the second row of Figure 2.

Although Figure 4 already has a large number of representations of matrix classes,
there are some arising in the literature that cannot be found there. For instance, using
the computer it is possible to establish that the syntactical refinement of the Mal’tsev
condition defining varieties with ‘difunctional class relations’ from [29] gives a matrix class
which does not live in Mclex[4, 6, 2], and so it cannot be found in Figure 4. This matrix
class is the top one in Figure 6.

We have also made some attempt to look at the cases when k ∈ {3, 4}. For instance,
we were able to generate Figure 7 representing the poset of non-degenerate matrix classes
in Mclex[3, 5, 4]. In that picture, the darker a square is, the higher the value of the
corresponding entry is. We have included there the digits in each square to improve
readability. We also have been able to compute the posets Mclex[3,m, 3] for m 6 9 — see
Figure 8 for the number of matrix classes in these posets.

The matrix considered in the beginning of the Introduction (which was, by the way,
chosen randomly), turns out to determine the matrix class that appears farthest to the
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Figure 6: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[4, 7, 2]
that are contained in the matrix class given by the syntactical refinement of the Mal’tsev
condition for difunctionality of class relations from [29].
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Figure 7: Hasse diagram of the poset of non-degenerate matrix classes in Mclex[3, 5, 4].
Note that the bottom matrix class is the only one in the figure which does not belong to
Mclex[3, 5, 3].
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Figure 8: Count of matrix classes in Mclex[3,m, 3] for m 6 9 (including the two degenerate
matrix classes that can be obtained from non-empty matrices).

right in the eighth row of Figure 7. This can be seen from the following two lex-tableaux,
proposed by the computer:

1 1 0 2 2 0 0 1 1
0 0 1 1 0 0 1 0 1
2 0 1 2 1 1 2 2 0
0 0 1 0 1 0
0 0 1 1 0 0
1 1 0 2 2 0

0 0 1 1 1 1 0 2 2
0 1 0 1 0 0 1 1 0
1 2 2 0 2 0 1 2 1
2 2 1 1 2
1 1 0 0 1
2 2 2 0 0
1 2 2 0 0
0 0 1 1 0
0 1 0 1 0

Given positive integers n1, n2,m1,m2, k1, k2, we obviously have the poset inclusion

Mclex[min(n1, n2),min(m1,m2),min(k1, k2)] ⊆ Mclex[n1,m1, k1] ∩Mclex[n2,m2, k2].

The question of the converse inclusion is in general not easy. Using the computer, we
found the following equalities:

Mclex[3, 7, 2] ∩Mclex[3, 5, 4] = Mclex[3, 5, 2],

Mclex[3, 7, 2] ∩Mclex[4, 5, 2] = Mclex[3, 5, 2]

and
Mclex[3, 7, 2] ∩Mclex[4, 6, 2] = Mclex[3, 6, 2].

However, in other cases, the inclusion may be strict. For instance, the computer calculated
that the intersection Mclex[3, 9, 3]∩Mclex[4, 15, 2] contains exactly six matrix classes that
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do not belong to Mclex[3, 9, 2] = Mclex[3, 7, 2]. One of these matrix classes is given by the
matrices

M1 =

 0 0 0 1 1
0 1 1 0 1
1 0 2 2 1


which is (3, 9, 3)-canonical (and thus also (3, 5, 3)-canonical) and

M ′
1 =


0 0 0 1 1
0 0 1 0 1
0 1 1 1 0
1 1 0 0 1


which is (4, 15, 2)-canonical (and thus also (4, 5, 2)-canonical) and such that mclex{M1} =
mclex{M ′

1}. Therefore, the matrix M ′
1 cannot be (4, 5, 3)-canonical. This matrix class

appears in the right place of the sixth row of Figure 7 represented by M1 but appears
in the fourth place of the seventh row of Figure 1 represented by M ′

1 (and of course
also in Figures 4 and 6). This is the only matrix class that has been represented by
two different matrices in our Figures 1–7. The five other elements of the intersection
Mclex[3, 9, 3] ∩ Mclex[4, 15, 2] which are not in Mclex[3, 7, 2] are given by mclex{Mi} =
mclex{M ′

i}, for i ∈ {2, 3, 4, 5, 6}, where Mi is a (3, 9, 3)-canonical matrix and M ′
i is a

(4, 15, 2)-canonical matrix given by

M2 =

 0 0 0 0 1 1 1
0 1 1 2 0 0 2
1 0 2 2 0 2 1

 and M ′
2 =


0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
1 0 1 1 0

 ,

M3 =

 0 0 0 0 0 1 1 1
0 1 1 1 2 0 1 2
1 0 1 2 2 0 2 0

 and M ′
3 =


0 0 0 0 1 1
0 0 0 1 0 1
0 1 1 0 1 0
1 0 1 1 1 0

 ,

M4 =

 0 0 0 0 1 1 1 1
0 1 1 1 0 0 0 1
1 0 1 2 0 1 2 2

 and M ′
4 =


0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1
0 1 1 0 1 0 1 0
1 0 1 1 0 1 1 0

 ,

M5 =

 0 0 0 0 0 1 1 1 1
0 1 1 1 2 0 1 2 2
1 0 1 2 1 0 2 1 2

 and M ′
5 =


0 0 0 0 0 1 1
0 0 0 1 1 0 1
0 1 1 0 1 1 0
1 0 1 1 0 1 0

 ,

M6 =

 0 0 0 0 1 1 2 2 2
0 1 1 2 0 2 1 2 2
1 0 2 2 0 1 0 0 2

 and M ′
6 =


0 0 0 0 1 1
0 0 1 1 0 1
0 1 0 1 1 0
1 0 1 0 1 0

 .
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5. Context sensitivity

Let us now address the following question. Restricted only to algebraic categories (i.e.,
categories of algebras in a variety), our matrix properties are a particular type of Mal’tsev
conditions, and so it is possible that implication of these Mal’tsev conditions is equivalent
to implication of the corresponding matrix properties. We will now show that this is not
the case. In other words, our poset Mclex is not ‘visible’ at the level of collections of
varieties of universal algebras. Note that replacing varieties with quasi-varieties would
not help either, since, as it can be established, a quasi-variety belongs to a given matrix
class if and only if the generated variety does. Moreover, the counter-example described
below also indicates that there are implications of matrix properties that hold for regular
well-powered categories, but not for all finitely complete categories.

Algebraic categories having Dn-closed relations, where Dn is the same as at the start
of Section 4, are given by varieties having the so-called ‘n-ary near unanimity term’.
As shown in [42], for each given n > 2, such a variety is ‘congruence distributive’ (i.e.,
congruence lattices are distributive). As remarked in [47], this means that algebraic
Mal’tsev categories with Dn-closed relations are nothing but arithmetical varieties. As
proved in [22], this result extends to Barr-exact categories, and thus, according to [31],
to all regular well-powered categories: given n > 2, a regular well-powered category has
M -closed relations and Dn-closed relations if and only if it has A-closed relations, where
M is the matrix that determines the matrix class of Mal’tsev categories (Example 1.4)
and A is the matrix for arithmetical varieties (Example 1.7). However, we know from [23]
that this result does not extend to finitely complete categories, i.e., the inclusion in

mclex{M} ∩mclex{D3} = mclex{A} $ mclex{M} ∩mclex{D4}

is strict. We can (re-)prove the above equality and inclusion using lex-tableaux and the
computer-aided classification results. The matrix M is a reduction of A, so the matrix
class for A is contained in the matrix class for M . That the matrix class for A is contained
in the matrix class for D3 can be established by the following lex-tableau (where we used
doubly lexi-ordered versions of our matrices):

0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
0 0 1 0
1 0 0 1
0 1 0 1
0 0 0 0
1 0 1 0
0 1 1 0

This proves
mclex{A} ⊆ mclex{M} ∩mclex{D3}.
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The converse inclusion can be established by the following lex-tableau; we hope the reader
will be able to understand the slightly different form of the tableau resulting from the
fact that we now have two matrices in the premise:

0 0 1 0 0 1
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1

0 0 1 0
1 0 1 1
0 1 1 1

0 0 0 0
0 1 1 0
1 0 1 0

This proves the desired equality. The strict inclusion mclex{A} $ mclex{M}∩mclex{D4}
follows from Figure 3, since as we will now show, mclex{M} ∩mclex{D4} is given by the
left matrix in the fourth row of Figure 3, which we will denote by A′. Figure 3 shows that

mclex{A′} ⊆ mclex{M} ∩mclex{D4}.

The converse is established by the following lex-tableau:

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 0 0 1 0 1 1

0 0 0 1 0
0 0 1 0 0
1 0 1 1 1
0 1 1 1 1

0 0 0 0
0 0 0 0
0 1 1 0
1 0 1 0

This proves mclex{A′} = mclex{M} ∩ mclex{D4}. That mclex{A′} * mclex{A} also has
a simple counter-example given by (Inj{M}Rel3)op, i.e., the dual of the category of all
ternary relations that are M -sharp (where M is the Mal’tsev matrix). This category is
not a majority category, yet any ternary relation is D4-sharp, since any 3-row reduction
of D4 contains a left column that is identical to the right column (see Proposition 3.25
in [23]).

As an another counter-example, let us consider the matrix class on the right of the
fourth row of Figure 2. Algebraic categories belonging to that matrix class are given
by the varieties which admit a ‘3-edge term’ in the sense of [5]. As it is shown in the
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mentioned paper, a variety admits a 3-edge term if and only if it admits a ‘3-cube term’,
i.e., if and only if it belongs to the top matrix class of Figure 2. This means that the
matrix on the right of the fourth row of Figure 2 and the five other matrices above it
in that figure all give equivalent conditions on algebraic categories. In a similar way,
this gives that 37 of the matrix classes in Figure 4 coincide when restricted to algebraic
categories. We can also deduce from this result that 227 matrix classes in Mclex[4, 15, 2]
coincide when restricted to algebraic categories. Moreover, as it shown in [5], a variety
admits a ‘4-edge term’ if and only if it admits a ‘4-cube term’. Using this result, we
can deduce that 173 other matrix classes in Mclex[4, 15, 2] coincide when restricted to
algebraic categories. Combining these two facts, we know that the 441 different matrix
classes in Mclex[4, 15, 2] give at most 43 non-equivalent Mal’tsev conditions on varieties.

So, implications of matrix properties are ‘context sensitive’: their validity depends on
what further exactness properties the base category has, such as being finitely complete
or algebraic. We remark here that, as shown in [31], matrix properties are stable under
the ‘exact completion’ C ↪→ Creg/ex of a regular well-powered category [38]. In particular,
since the embedding C ↪→ Creg/ex is a fully faithful regular functor (see e.g. [12]), it fol-
lows that implications of matrix properties are not sensitive to whether the base regular
category is Barr-exact or not (assuming the axiom of universes [3] to avoid size issues).
In general, it would be interesting to investigate implications of matrix properties, in a
similar way as we have done here, in the contexts of algebraic categories and of regular
categories, and to analyse their differences. One could try to do the algebraic case using
the characterisation [36] of matrix properties in that context as Mal’tsev conditions. As
for the regular case, the technique of the present paper cannot be directly applied there
since the categories (InjSReln)op are in general not regular. However, using the results
from [30, 31, 32] (and again assuming the axiom of universes), proving an implication
of matrix properties for all regular categories is equivalent to proving it only for regular
locally presentable categories [19], or equivalently, for regular essentially algebraic cate-
gories [1, 2]. Therefore, the techniques one could use to solve the algebraic case might
have a counterpart in the essentially algebraic world to solve the regular case. In view of
Theorem 3.4, since the categories InjSReln are essentially algebraic, the situation is some-
how dual in the finitely complete context: proving an implication of matrix properties for
all finitely complete categories is equivalent to proving it only for the duals of essentially
algebraic categories.

5.1. Remark. We should point out a mistake in the statement/proof of Proposition 3.23
in [23] (which is also Proposition 2.36 in [22], and which is referenced in the concluding
remarks section of [24]). That proposition claims that, for the matrix M that determines
the matrix class of Mal’tsev categories (Example 1.4), the category (Inj{M}Rel3)op is a
regular category — however, (Inj{M}Rel3)op is not a regular category.

Let us give another example showing context-sensitivity of implications of matrix prop-
erties. The Mal’tsev condition for ‘local-anticommutativity’ given in [25] is the Mal’tsev
condition for direct decomposability of congruence classes [16] together with some iden-
tities linking some of the ‘inner’ terms involved in the condition. This results in the
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syntactical refinement of the two Mal’tsev conditions being the same. The corresponding
matrix class is the left one in the sixth row (from the top) of Figure 4 which, as we can see
on that figure, contains the third one in the twelfth row. As it follows from Remark 2.25
in [25], a Mal’tsev variety is locally anticommutative if and only if it is arithmetical. This
implies that, in the algebraic case, the matrix class appearing in the third place of the
twelfth row of Figure 4 (which is the same as the matrix class from Remark 1.8) matches
with the matrix class given by the arithmetical matrix (Example 1.6). In the finitely
complete context, this is not the case as shown by Figure 4.

We conclude by mentioning that, however implications of matrix properties are context
sensitive in general, it is shown in [27] that the inclusion mclex{N} ⊆ mclex{M}, where M
is the Mal’tsev matrix and N ∈ matr(n,m, k) is any matrix, is equivalent to the analogue
inclusion in the algebraic context. Moreover, it is shown in [28] that, if N only contains
0’s and 1’s (i.e. k = 2), this implication is further equivalent to mclex{M ′} * mclex{N}
where M ′ is the majority matrix of Example 1.6.
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[2] J. Adámek and J. Rosický. Locally presentable and accessible categories, volume 189 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 1994.

[3] M. Artin, A. Grothendieck, and J.L. Verdier. Séminaire de géométrie algébrique du
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[5] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Va-
rieties with few subalgebras of powers. Transactions of the American Mathematical
Society, 362(3):1445–1473, 2010.

[6] F. Borceux. Handbook of Categorical Algebra 2. Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, 1994.

[7] F. Borceux and D. Bourn. Mal’cev, Protomodular, Homological and Semi-Abelian
Categories. Mathematics and Its Applications. Springer, 2004.

[8] D. Bourn, M. Gran, and P.-A. Jacqmin. On the naturalness of Mal’tsev categories.
Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics (eds. C. Casadio
and P.J. Scott), Outstanding Contributions to Logic, 20:59–104, 2021.



THE MATRIX TAXONOMY OF FINITELY COMPLETE CATEGORIES 787

[9] A. Carboni, G. M. Kelly, and M. C. Pedicchio. Some remarks on Maltsev and Goursat
categories. Applied Categorical Structures, 1(4):385–421, 1993.

[10] A. Carboni, J. Lambek, and M. C. Pedicchio. Diagram chasing in Mal’cev categories.
Journal of Pure and Applied Algebra, 69(3):271–284, 1991.

[11] A. Carboni, M. C. Pedicchio, and N. Pirovano. Internal graphs and internal groupoids
in Mal’cev categories. Canadian Math. Soc. Conference proceedings, 13:97–109, 1992.

[12] A. Carboni and E.M. Vitale. Regular and exact completions. Journal of Pure and
Applied Algebra, 125:79–116, 1998.

[13] I. Chajda. The egg-box property of congruences. Mathematica Slovaca, 38(3):243–
247, 1988.

[14] I. Chajda, G. Eigenthaler, and H. Länger. Congruence classes in universal algebra,
volume 26 of Research and Exposition in Mathematics. Heldermann Verlag, 2003.

[15] A. S. Davis. Indexed systems of neighborhoods for general topological spaces. The
American Mathematical Monthly, 68:886–893, 1961.

[16] J. Duda. Varieties having directly decomposable congruence classes. Časopis Pro
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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