
Theory and Applications of Categories, Vol. 38, No. 2, 2022, pp. 27–63.

WEAK FRAÏSSÉ CATEGORIES

WIES lAW KUBIŚ

Abstract. We develop the theory of weak Fräıssé categories, in which the crucial
concept is the weak amalgamation property, discovered relatively recently in model
theory. We show that, in a suitable framework, every weak Fräıssé category has its
unique generic limit, a special object in a bigger category, characterized by a certain
variant of injectivity. This significantly extends the present theory of Fräıssé limits.

Introduction

Infinite mathematical structures are often built by constructing chains of finite (or in some
sense finitary) small blocks. For example, the random graph is typically viewed as the
result of a random process of adding more and more vertices and edges, starting with the
empty set. In the same manner, one can build a random metric space and any other first-
order countably generated structure. Some of these structures have natural definitions
or representations (like the random graph—constructed first by Ackermann [1] and much
later, independently, by Rado [30], both providing an explicit formula), while some other
(like the Urysohn universal metric space [32]) can be explored only by looking at their
properties, or investigating suitable chains leading to the “random” objects. There is a
lot of literature addressing random mathematical structures (including some dedicated
journals). We would like to draw attention to another aspect of building structures from
finitary blocks, addressing the question of existence of a generic structure, that is, one
that occurs most often. This is strictly related to the theory of Fräıssé limits, namely,
countable ultra-homogeneous structures.

Perhaps the most classical example of a Fräıssé limit is the set of the rational numbers
⟨Q, <⟩, characterized by Cantor as the unique countable dense linearly ordered set with
no end-points. It can be built from finite linearly ordered sets as the “typical” and “most
complicated” limit of the natural random process, where at each step one adds a new
element—indeed, with probability one, the union of the chain is isomorphic to ⟨Q, <⟩.
Another example is the (already mentioned) Rado graph, discovered independently by
Erdős and Rényi [8] in their study of random evolutions of graphs.

In this note, however, we are not going to pursue the probabilistic approach, our aim is
to describe structures that are generic in the sense of a natural game, namely, a category-

Research supported by the GAČR project EXPRO 20-31529X and RVO: 67985840.
Received by the editors 2019-07-03 and, in final form, 2021-11-04.
Transmitted by Ieke Moerdijk. Published on 2022-01-07.
2020 Mathematics Subject Classification: Primary 03C95; Secondary 18A30.
Key words and phrases: Weak amalgamation property, generic object, Fräıssé limit.
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theoretic variant of the classical Banach-Mazur game, introduced by Mazur around 1930.
The original Mazur’s game was played with nonempty open intervals of the real line.
The only rule was that in each step the interval must be contained in the previous one.
The first player wins if the intersection of these intervals contains a point of a prescribed
set of reals. A slightly better and perhaps a bit more useful variant of this game is
by exchanging the roles of the players. This was done by Choquet (thus, the game is
sometimes called Choquet game) characterizing completeness of metric spaces. Actually,
the full characterization of the existence of winning strategies is due to Oxtoby [27]. We
refer to Telgársky [31] for a comprehensive survey of the Banach-Mazur game and its
numerous variants. When analyzing the “essence” of this game, one immediately realizes
that it can be played in an arbitrary category, where the inclusion of sets is replaced by
abstract arrows. In particular, such a game was played many times in model theory, where
the players alternately choose bigger and bigger models of the same type, see Hodges [12].
We have already explored this game in [21] and [18]; the latter work characterizes the
existence of a winning strategy for the second player, in the framework of model theory.
One of our goals here is to show that all these results can be proved by “playing with
arrows”, namely, using the language and basic tools of category theory. Our results
extend the classical Fräıssé theory, replacing the crucial amalgamation property by its
weaker version.

We develop category-theoretic framework for the theory of generic limits of weak
Fräıssé classes. Fräıssé theory belongs to the folklore of model theory, however actually
it can be easily formulated in pure category theory. The crucial point is the notion of
amalgamation, saying that two embeddings of a fixed object can be joined by further
embeddings into a single one. More precisely, for every two arrows f, g with the same
domain there should exist compatible arrows f ′, g′ with the same co-domain, such that
f ′ ◦ f = g′ ◦ g. A significant relaxing of the amalgamation property, called the weak
amalgamation property was identified by Ivanov [15] and later independently by Kechris
and Rosendal [16] during their study of generic automorphisms in model theory. Actu-
ally, this property is strictly related to the so-called pre-homogeneity, which goes back to
Pabion [28]. It turns out that the weak amalgamation property is sufficient for construct-
ing special unique objects satisfying certain variant of homogeneity. We show how do it
in pure category theory. We partially rely on the concepts and results of [22]. One of our
main goals is a general result on the existence and properties of special (called generic)
objects that are characterized up to isomorphism in terms of weak injectivity. Some of our
results extend [18], where the existence of generic objects in the classical model-theoretic
setting has been characterized. Weak injectivity in the framework of pure category theory
has been recently studied by Di Liberti [6], motivated by the results of [18].

This note is organized as follows. The first sections contain rather technical results
involving the weak amalgamation property, weak domination, and the crucial concept of
a weak Fräıssé sequence. Starting from Section 4, we present an applicable framework
involving the category K of “small” objects and the category L of their limits. The crucial
conditions (L0)–(L2) are formulated at the beginning of Section 4. Our results can be
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easily applied to the model-theoretic setting, the only possible obstacle is that the property
of “being hereditary” is not seen from the category-theoretic perspective, however the
weak amalgamation property allows ignoring this issue, at least to some extent. This is
discussed in Section 5 which also contains a short study of weak homogeneity. Section 6
introduces the abstract Banach-Mazur game and explores its basic properties. The main
result here is a characterization of weak injectivity, under the assumption that the base
category is locally countable. We also show that the weak amalgamation property (which
apparently is the main theme of this note) can be proved from the fact that the bigger
category L has a small enough cofinal subcategory. Finally, the last section contains
applications, including several relevant examples.

Connections to the literature. The book of Hodges [13] contains classical Fräıssé
theory for classes of finitely generated models (see the first section of Chapter 7 in [13]).
The book of Ghilardi & Zawadowski [11] essentially uses the amalgamation property, de-
fined in the context of monics. Furthermore, one can find in their Chapter 7 a result
(Prop. 7.9) resembling the notion of a Fräıssé sequence. The paper of Kirby [17] con-
tains a strengthening of Droste & Göbel result [7], significantly relaxing the cardinality
assumption. Finally, the work of Caramello [5] contains Fräıssé’s construction in the gen-
eral setting involving domination (the notion introduced earlier by the present author),
applying it in topos theory.
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1. Preliminaries

We start with some basic definitions and notation which will be needed in this note. For
undefined notions concerning category theory we refer to Mac Lane [26].

Let K be a category. The class of K-objects will be denoted by Obj(K). Given a, b ∈
Obj(K), the set of all arrows from a to b will be denoted by K(a, b). The identity of a
K-object a will be denoted by ida. Slightly abusing notation and supporting the ideology
that arrows are more important than objects, we will use the letter K to denote the class
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of all K-arrows. In other words,

K =
⋃

a,b∈Obj(K)

K(a, b).

One of the axioms of a category says that K(a, b)∩K(a′, b′) = ∅ whenever ⟨a, b⟩ ≠ ⟨a′, b′⟩.
Thus, given f ∈ K, there are uniquely determined objects a, b such that f ∈ K(a, b). In
this case a is called the domain of f , denoted by dom(f), while b is called the co-domain
of f , denoted by cod(f). The composition of arrows f and g will be denoted by f ◦ g.
The composition makes sense if and only if dom(f) = cod(g). The fact that f is an arrow
with domain x and co-domain y will often be written as f : x → y. Recall that f is a
monic (also called a monomorphism) if for every compatible arrows g0, g1 with the same
domain, the equation f ◦g0 = f ◦g1 implies g0 = g1. When we say that certain arrows are
compatible, we mean that certain expressions involving composition of these arrows make
sense. For instance, saying that “f , g are compatible” may mean that f ◦ g makes sense
or g ◦ f makes sense, however this will always be clear from the context. In the definition
of a monic, compatibility of g0, g1 means cod(g0) = dom(f) = cod(g1).

We shall use standard set-theoretic notation. In particular, as we have seen above,
⟨x, y⟩ denotes an ordered pair. The letter ω denotes the set of all natural numbers (starting
with zero) which at the same time is the first infinite ordinal and cardinal number, often
denoted by ℵ0. Note that ω is also treated as a category, namely, ⟨n,m⟩ is the unique
arrow from n to m provided that m ≥ n. More generally, every poset ⟨P,≤⟩ is a category,
where the class of objects is P and the class of arrows is ≤ (actually, it is enough to
assume that the relation ≤ is reflexive and transitive, so that the axioms of a category are
satisfied). A covariant functor between posets is simply an increasing (also called order
preserving) mapping.

Note that the set ω can also be treated as a monoid category (a category with one
object), where the composition is addition and the identity arrow is 0. In this note we
shall never treat ω as a monoid.

By a sequence in a category K we mean a covariant functor from ω into K. In order
to make our notation economical (minimizing the number of symbols), a sequence will be
denoted by x⃗ : ω → K and, in turn, xn will denote the object x⃗(n) and xmn will denote the
bonding arrow from xn to xm (formally, xmn = x⃗(⟨n,m⟩), where n ≤ m). In other words,
a sequence in K will be encoded by a single letter with the vector symbol above (e.g., x⃗,
a⃗, z⃗) and then suitable subscripts and superscripts will indicate its objects and bonding
arrows. Given a sequence x⃗, its colimit (possibly in a bigger category) will be denoted by
⟨X, {x∞n }n∈ω⟩ and we shall also write X = lim x⃗. Recall that {x∞n }n∈ω is the colimiting
co-cone, namely, it is a co-cone in the sense that x∞n = x∞m ◦ xmn whenever n < m and,
given another co-cone {fn}n∈ω into a fixed object Y , there is a unique arrow g : X → Y
satisfying g ◦ x∞n = fn for every n ∈ ω. This is the formal definition of the colimit of a
sequence.

Given sequences x⃗ : ω → K, y⃗ : ω → K, an arrow from x⃗ to y⃗ is typically a natural
transformation. This is not good enough for our purposes. Namely, we need to take
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into account more general arrows, specifically, natural transformations into subsequences.
Thus, a transformation from a sequence x⃗ to a sequence y⃗ is defined to be a natural
transformation f⃗ from x⃗ to y⃗ ◦ f̃ , where f̃ : ω → ω is an increasing mapping. We denote
by fn the arrow from xn to yf̃(n). We have to identify transformations leading to the
same colimit, namely, two transformations from x⃗ to y⃗ are equivalent if the diagram
consisting of both sequences and both transformations is commutative. Intuitively, two
transformations are equivalent if one can arrive at the same transformation by “correcting”
the corresponding increasing mappings of ω. For example, the identity of x⃗ is equivalent
to the transformation sending xn to xψ(n) via x

ψ(n)
n , where ψ : ω → ω is any increasing

mapping. It is rather clear that this is an equivalence relation and identifying equivalent
transformations we obtain a category structure on all sequences. Thus, from now on an
arrow of sequences will be an equivalence class of a transformation, as defined above. The
category of all sequences in K with arrows defined above will be denoted by σK. Note
that two sequences a⃗ and b⃗ are isomorphic if and only if there exist two transformations
g⃗ : a⃗→ b⃗, h⃗ : b⃗→ a⃗ such that the diagram,

a0 ag̃(f̃(0)) ag̃(f̃(g̃(f̃(0))) · · ·

b0 bf̃(0) bf̃(g̃(f̃(0)) · · ·
f0 fg̃(f̃(0))

gf̃(0)

gf̃(g̃(f̃(0))

consisting of both sequences and both transformations, is commutative. The equivalence
classes of g⃗ and h⃗ provide a concrete isomorphism together with its inverse.

The concepts defined above are illustrated by the following simple example.

1.1. Example. Let K be the category of finite sets with one-to-one mappings or, more
generally, finite structures with embeddings. Particular types of sequences are chains
x0 ⊆ x1 ⊆ · · · , meaning that xn is a substructure of xn+1 for each n ∈ ω. Given two
such chains x⃗, y⃗, we see that equivalent transformations from x⃗ to y⃗ are those leading
to the same embedding of X :=

⋃
n∈ω xn into Y :=

⋃
n∈ω yn. Note that every embedding

of X into Y is the result of a transformation, as the image of every xn is contained in
some yφ(n) and φ may obviously be increasing. Finally, note that X and Y are colimits
of the chains x⃗ and y⃗, respectively, in the category of all (or just countable) sets. Thus,
σK may be naturally identified with the category of countable structures that are unions
of chains in K, where the arrows are arbitrary embeddings. Obviously, isomorphisms of
chains correspond to bijections between their unions.

We now recall one of the crucial concepts from abstract Fräıssé theory that will be
used later several times.

1.2. Definition. A category K is directed if for every x, y ∈ Obj(K) there exist w ∈
Obj(K) and K-arrows f : x→ w, g : y → w.

Directedness is really meaningful when all the arrows are monic; otherwise it may hold
trivially, e.g. when K has a terminal object. In model theory, directedness is called the
joint embedding property, referring to the category of embeddings of structures.
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1.3. Definition. Following [22], we say that a subcategory S ⊆ K is dominating if the
following conditions are satisfied.

(C) For every x ∈ Obj(K) there is f ∈ K such that dom(f) = x and cod(f) ∈ Obj(S).

(D) For every y ∈ Obj(S), for every K-arrow f : y → z there is a K-arrow g : z → u
such that g ◦ f ∈ S (in particular, u ∈ Obj(S)).

This definition makes sense for arbitrary families of arrows, however, any infinite
dominating family generates a subcategory of the same cardinality and with the same
objects, therefore domination is preserved. The key point in Fräıssé theory is finding
countable dominating subcategories. A subcategory S satisfying condition (C) is called
cofinal.

2. Weak domination and weak amalgamations

The amalgamation property is a well known concept in algebra and model theory. In
category theory it is sometimes stated for monics only (see, e.g., [11, p. 40]), although
we do not see any formal reason for this, as all monics of a given category form a sub-
category. On the other hand, in Sections 4, 5 we shall indeed assume that all arrows
are monic. Nevertheless, we need an important (and perhaps ultimate) weakening of the
amalgamation property, therefore below we state somewhat technical variants of “local-
ized” amalgamation properties.

2.1. Definition. Let K be a fixed category. We shall say that K has the amalgamation
property at z ∈ Obj(K) if for every K-arrows f : z → x, g : z → y there exist K-arrows
f ′ : x → w, g′ : y → w satisfying f ′ ◦ f = g′ ◦ g. Such an object z is also called an amal-
gamation base (typically in model theory). Recall that K has the amalgamation property
(briefly: AP) if it has the amalgamation property at every z ∈ Obj(K).

A natural and important weakening is as follows.

2.2. Definition. We say that K has the cofinal amalgamation property (briefly: CAP)
if for every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that K has the amalgamation
property at z′ (see Fig. 1).

2.3. Proposition. A category has the cofinal amalgamation property if and only if it
has a dominating subcategory with the amalgamation property.

Proof. Assume K has the CAP and let K0 be the full subcategory of K such that

Obj(K0) = {z ∈ Obj(K) : K has the AP at z}.

We check that K0 dominates K. CAP says that K0 is cofinal in K, that is, (C) holds. As
K0 is full, (D) follows from (C).

Now suppose that S is a dominating subcategory of K and S has the AP. Fix z ∈
Obj(K) and using (C) choose a K-arrow e : z → u such that u ∈ Obj(S). Fix K-arrows
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f : u → x, g : u → y. Using (D), find K-arrows f ′ : x → x′, g′ : y → y′ such that
f ′ ◦ f, g′ ◦ g ∈ S. Applying the AP, find S-arrows f ′′ : x′ → w, g′′ : y′ → w such that
f ′′ ◦ f ′ ◦ f = g′′ ◦ g′ ◦ g. This shows that K has the AP at u.

The above proposition shows that, from the category-theoretic point of view, cofinal
AP is not much different from AP, as long as we agree to switch to a dominating subcate-
gory. Below is a significant and important weakening of the cofinal AP. In model theory,
it was explicitly used first by Ivanov [15], later by Kechris and Rosendal [16], and recently
by Krawczyk and the author [18].

2.4. Definition. Let K be a category. We say that K has the weak amalgamation prop-
erty (briefly: WAP)1 if for every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that
for every K-arrows f : z′ → x, g : z′ → y there are K-arrows f ′ : x → w, g′ : y → w
satisfying

f ′ ◦ f ◦ e = g′ ◦ g ◦ e.

In other words, the square in the diagram shown in Fig. 1 may not be commutative.
The arrow e above will be called amalgamable in K. Thus, K has the WAP if for every
K-object z there exists an amalgamable K-arrow with domain z. Note also that saying
“K has the AP at z ∈ Obj(K)” is precisely the same as saying “idz is amalgamable in K”.

2.5. Lemma. Let e ∈ K be an amalgamable arrow. Then i ◦ e and e ◦ j are amalgamable
for every compatible arrows i, j ∈ K.

Proof. Assume e : z → u is amalgamable, i : u → v, and fix f : v → x, g : v → y. Then
f ◦ i : u→ x and g ◦ i : u→ y and therefore there are f ′ : x→ w and g′ : y → w such that
f ′ ◦ f ◦ i ◦ e = g′ ◦ g ◦ i ◦ e. This shows that i ◦ e is amalgamable. It is clear that e ◦ j is
amalgamable as long as e is.

1Ivanov [15] calls it the almost amalgamation property, while we follow Kechris and Rosendal [16] who
use the adjective weak instead of almost. Actually, we have already considered the concept of almost
amalgamations in metric-enriched categories [23], where the meaning of “almost” is, roughly speaking,
“commuting with a small error”.

y w

z′ x

z

g′

f

g f ′

e

Figure 1: Cofinal amalgamation
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As it happens, the weak amalgamation property, contrary to its stronger variants, is
very stable. In order to state it precisely, we need the concept of weak domination.

2.6. Definition. We say that S ⊆ K is weakly dominating if it is cofinal (namely,
satisfies (C) from the definition of domination) and

(W) For every y ∈ Obj(S) there exists j : y → y′ in S such that for every K-arrow
f : y′ → z there is a K-arrow g : z → u satisfying g ◦ f ◦ j ∈ S.

Note that for a full subcategory the stronger condition (D) follows from (C), therefore
in that case being weakly dominating is the same as being dominating. The somewhat
technical concept of weak domination should be more clear after looking at the next result.
This is an important characterization of the weak amalgamation property, clearly showing
its strong stability with respect to suitable subcategories.

2.7. Proposition. Let K be a category. The following properties are equivalent.

(a) K has the weak amalgamation property.

(b) Every cofinal full subcategory of K has the weak amalgamation property.

(c) K has a cofinal full subcategory with the weak amalgamation property.

(d) K is dominated by a subcategory with the weak amalgamation property.

(e) K is weakly dominated by a subcategory with the weak amalgamation property.

Proof. (a) =⇒ (b) Let S be cofinal and full in K, and fix z ∈ Obj(S). Find an
amalgamable K-arrow e : z → v. Using domination, we may find a K-arrow i : v → u such
that i ◦ e ∈ S. By Lemma 2.5, i ◦ e is amalgamable in K. We need to show that it is
amalgamable in S. For this aim, fix S-arrows f : v → x, g : v → y. Applying the WAP,
we find K-arrows f ′ : x → w, g′ : y → w such that f ′ ◦ f ◦ i ◦ e = g′ ◦ g ◦ i ◦ e. Finally,
using domination again, find a K-arrow j : w → w′ such that w′ ∈ Obj(S). Then j ◦ f ′

and j ◦ g′ are S-arrows, because S is a full subcategory of K (this is the only place where
we use fullness). Finally, we have

(j ◦ f ′) ◦ f ◦ (i ◦ e) = (j ◦ g′) ◦ g ◦ (i ◦ e).

(b) =⇒ (c) =⇒ (d) =⇒ (e) Obvious.
(e) =⇒ (a) Let S be weakly dominating in K and assume S has the WAP. Fix

z ∈ Obj(K). First, find a K-arrow i : z → u with u ∈ Obj(S). Now find an S-arrow
e : u → v that is amalgamable in S. Let j : v → v′ be an S satisfying the assertion of
(W). By Lemma 2.5, it suffices to show that j ◦ e is amalgamable in K. Fix K-arrows
f : v → x, g : v → y. Using domination, find K-arrows f ′ : x → x′, g′ : y → y′ such that
f ′ ◦ f ◦ j ∈ S and g′ ◦ g ◦ j ∈ S. Using the fact that e is amalgamable in S, we find
S-arrows f ′′ : x′ → w and g′′ : y′ → w satisfying

f ′′ ◦ (f ′ ◦ f ◦ j) ◦ e = g′′ ◦ (g′ ◦ g ◦ j) ◦ e.

Thus j ◦ e is amalgamable in K.
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From the results above we see that the WAP comes from the CAP by shifting the
amalgamation property from the objects to the arrows. In practice, at least to the author’s
knowledge, there are not many natural examples of categories with WAP that fail the
CAP. Below is perhaps the first such example, due Pouzet, contained in Pabion [28].

2.8. Example. [Pouzet] Let L be the class of all finite linearly ordered sets. Given
X ∈ L , define a ternary relation RX by

RX(x, y, z) ⇐⇒ x < z & y < z & x ̸= y.

We now forget the linear orderings, replacing them by the relations defined above. Namely,
let K be the category whose objects are all structures ⟨X,RX⟩, where X ∈ L and arrows
are the embeddings. Note that, given ⟨X,RX⟩, one can “almost” reconstruct the linear
ordering of X, except the first two elements. It is easy to verify that K has the weak
amalgamation property, while it definitely fails the cofinal one, as one can extend any
⟨Z,RZ⟩ in two incompatible ways by adding a new element below the first two elements of
Z.

One can argue whether the example above is natural or not. We shall see later that
it leads to the set of rational numbers Q described in a different language. Note that one
can fully reconstruct the ordering from the relation RQ. From the model-theoretic point
of view, the structures ⟨Q, <⟩ and ⟨Q, RQ⟩ are inter-definable (each one can be defined
from the other).

Other model-theoretic examples distinguishing WAP from CAP can be found in [19].
Recall that the WAP was identified in [15] and [16] as the crucial ingredient for charac-
terizing the existence of generic automorphisms, although all the examples in these works
satisfy the CAP. Finally, let us mention that it is formally quite easy to “kill” the cofinal
amalgamation property:

2.9. Example. Assume K is a category with the CAP but not the AP, moreover, for
every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that K fails the AP at z′. Now
let K′ be the full subcategory of K obtained by removing all objects z such that K has
amalgamations at z. Then K′ has the weak amalgamation property (by Proposition 2.7)
while it evidently fails the cofinal amalgamation property.

A very concrete example is the category K of all finite cycle-free graphs with embed-
dings. Note that K has the amalgamation property at z if and only if z is connected.
Indeed, if z has at least two components then one can consider two inclusions f : z → x,
g : z → y such that x comes from z by adding a path of length two joining two fixed
components z0, z1 of z and y comes from z by adding a path of length three, joining z0
and z1 at the same vertices. By this way, any amalgamation of f and g contains a cycle.
Thus, the category K′ of all disconnected cycle-free finite graphs with embeddings satisfies
the WAP and fails the CAP.

The example above is not particularly natural, however it clearly exhibits the fact that
the WAP is much more stable than the CAP.
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3. Weak Fräıssé sequences

We now define the crucial concept of this note.

3.1. Definition. Let K be a fixed category. A sequence u⃗ : ω → K will be called a weak
Fräıssé sequence if the following conditions are satisfied.

(G1) For every x ∈ Obj(K) there is n such that K(x, un) ̸= ∅.
(G2) For every n ∈ ω there exists m ≥ n such that for every K-arrow f : um → y there

are k ≥ m and a K-arrow g : y → uk satisfying g ◦ f ◦ umn = ukn.

· · · un um uk · · ·

y

umn

f

ukm

g

Condition (G1) says that the image of u⃗ is cofinal in K. Condition (G2) looks a bit
technical, although it is actually strictly connected with the weak amalgamation property:

3.2. Lemma. Every category with a weak Fräıssé sequence is directed and has the weak
amalgamation property.

Proof. Let u⃗ be a weak Fräıssé sequence in K. Condition (G1) clearly implies that K is
directed, as every two K-objects have arrows into a single un for n big enough.

Fix n ∈ ω and let m ≥ n be as in (G2). We claim that umn is amalgamable in K. Indeed,
if f0 : um → x0 and f1 : um → x1 are K-arrows then there are k0, k1 ≥ m and K-arrows
g0 : x0 → uk0 , g1 : x1 → uk1 such that gi ◦ fi ◦ umn = ukin for i = 0, 1. Let k ≥ max{k0, k1}.
Then

(ukk0 ◦ g0) ◦ f0 ◦ u
m
n = ukn = (ukk1 ◦ g1) ◦ f1 ◦ u

m
n .

Now, if z ∈ Obj(K) and e : z → un is a K-arrow (which exists by (G1)), then umn ◦ e is
amalgamable, by Lemma 2.5.

3.3. Lemma. A category with a weak Fräıssé sequence is weakly dominated by a countable
subcategory, namely, the subcategory generated by the image of a weak Fräıssé sequence.

Proof. Assume u⃗ : ω → K is a weak Fräıssé sequence in a category K. Let S be the
subcategory generated by the image of u⃗. By (G1), S is cofinal in K. Fix x ∈ Obj(K)
and let e : x → z be a K-arrow, where z ∈ Obj(S). Then z = un for some n ∈ ω. Let
m > n be as in condition (G2). Then, by the proof of Lemma 3.2, umn is amalgamable in
K. Thus, condition (W) is satisfied.
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Concerning the proof above, let us remark that if a sequence u⃗ : ω → K is one-to-one
on objects (i.e. un ̸= um whenever n < m) then its image is already a subcategory. On
the other hand, it may actually happen that un = u for every n ∈ ω. Then the category
generated by the image of u⃗ has just one object u and its arrows are of the form

um1
n1

◦ . . . ◦ umk
nk
,

where n1 ≤ m1, . . . , nk ≤ mk, k ∈ ω.
Perhaps the most extreme example here is the category Set of all sets with all possible

mappings, where a weak Fräıssé sequence is any sequence in which singletons (i.e., one-
element sets) appear cofinally. A very concrete example is u⃗ : ω → Set, where un = {0}
and umn is the identity for every n < m. As {0} is terminal in Set, (G1) and (G2) are
clearly satisfied. Note that {0} with its identity is a trivial monoid dominating Set.

3.4. Lemma. Assume S ⊆ K is weakly dominating and u⃗ : ω → S is a weak Fräıssé
sequence in S. Then u⃗ is a weak Fräıssé sequence in K.

Proof. It is clear that the image of u⃗ is cofinal in K. It remains to check (G2).
Fix n and let m ≥ n be such that (G2) holds in S, namely:

(1) For every S-arrow f : um → y there are k ≥ m and an S-arrow g : y → uk such
that g ◦ f ◦ umn = ukn.

Let e : um → a be such that (W) holds, namely:

(2) For every K-arrow f : a→ x there is a K-arrow g : x→ y such that g ◦ f ◦ e ∈ S.

Applying (1), find k ≥ m and i : a→ uk such that i ◦ e ◦ umn = ukn.
Fix a K-arrow f : uk → x. Then f ◦ i : a → x, therefore applying (2) we can find a

K-arrow g : x → y such that h := g ◦ f ◦ i ◦ e ∈ S. Applying (1) to the S-arrow h, we
find ℓ ≥ k and an S arrow j : y → uℓ such that j ◦ h ◦ umn = uℓn. Finally, we have

uℓn = j ◦ h ◦ umn = j ◦ g ◦ f ◦ i ◦ e ◦ umn = (j ◦ g) ◦ f ◦ ukn,

which shows (G2).

The concept of a weak Fräıssé sequence is (as the name suggests) a natural general-
ization of the notion of a Fräıssé sequence from [22], where it is required that m = n in
condition (G2). The existence of a Fräıssé sequence obviously implies directedness and
the cofinal amalgamation property. Furthermore, a sequence isomorphic to a Fräıssé se-
quence may not be Fräıssé (it remains to be weak Fräıssé, as we shall see later). On the
other hand, we have:

3.5. Proposition. Assume K has the amalgamation property and u⃗ is a weak Fräıssé
sequence in K. Then u⃗ is a Fräıssé sequence in K.

Proof. Fix n and a K-arrow f : un → y. Let m ≥ n be such that (G2) holds. Using the
AP, find f ′ : y → w and g : um → w such that f ′ ◦f = g ◦umn . Using (G2), find h : w → uk
with k ≥ m such that h ◦ g ◦ umn = ukn. Finally, h ◦ f ′ ◦ f = ukn.
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As we have already mentioned, the property of being a Fräıssé sequence is not stable
under isomorphisms of sequences, unless the category in question has the AP. It turns
out that the property of being weak Fräıssé is very stable.

3.6. Proposition. Assume u⃗, v⃗ are isomorphic sequences in K. If u⃗ is weak Fräıssé
then so is v⃗.

Proof. Let p⃗ : u⃗ → v⃗ and q⃗ : v⃗ → u⃗ be arrows of sequences whose compositions are
equivalent to the identities. Assume u⃗ is weak Fräıssé. Obviously, v⃗ satisfies (G1). It
remains to check that v⃗ satisfies (G2).

Fix n ∈ ω and let n′ ≥ n be such that qn : vn → un′ . Let m ≥ n′ be such that (G2)
holds for u⃗, namely, for every f : um → x there are k ≥ m and g : x → uk satisfying
g ◦ f ◦ umn′ = ukn′ . Let m′ ≥ m be such that pm : um → vm′ . Then m′ ≥ n. We claim that
m′ is “suitable” for condition (G2) concerning the sequence v⃗. For this aim, fix a K-arrow
f : vm′ → y. Applying (G2) to the sequence u⃗ and to the arrow f ◦ pm, we obtain k ≥ m
and a K-arrow g : y → uk satisfying

g ◦ f ◦ pm ◦ umn′ = ukn′ .

Let k′ ≥ k be such that pk : uk → vk′ . Note that

pm ◦ umn′ ◦ qn = vm
′

n and pk ◦ ukn′ ◦ qn = vk
′

n ,

because the composition of p⃗ with q⃗ is equivalent to the identity of v⃗, as shown in the
following diagram.

· · · un′ um uk · · ·

· · · vn vm′ vk′ · · ·

y

pm pkqn

f

g

Thus
(pk ◦ g) ◦ f ◦ vm′

n = pk ◦ g ◦ f ◦ pm ◦ umn′ ◦ qn = pk ◦ ukn′ ◦ qn = vk
′

n .

This shows (G2) and completes the proof.

We shall later see that two sequences which are weak Fräıssé in the same category are
necessarily isomorphic. It remains to show their existence. We shall say that K is a weak
Fräıssé category, if it is directed, has the weak amalgamation property, and is weakly
dominated by a countable subcategory.

3.7. Theorem. Let K be a category. The following properties are equivalent:

(a) K is a weak Fräıssé category.

(b) There exists a weak Fräıssé sequence in K.
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Proof. Implication (b) =⇒ (a) is the content of Lemmas 3.2 and 3.3. It remains to show
(a) =⇒ (b). By Lemma 3.4, we may assume that K itself is countable. In order to show
the existence of a weak Fräıssé sequence, we shall use the following simple claim, known
in set theory as the Rasiowa-Sikorski Lemma:

3.8. Claim. Let ⟨P,≤⟩ be a partially ordered set and let D be a countable family of
cofinal subsets of P . Then there exists a sequence p0 ≤ p1 ≤ p2 ≤ · · · in P such that
D ∩ {pn : n ∈ ω} ≠ ∅ for every D ∈ D .

Let K<ω denote the set of all finite sequences in K, that is, all covariant functors from
n = {0, 1, . . . , n− 1} into K, where n ∈ ω is arbitrary. We shall use the same convention
as for infinite sequences, namely, if x⃗ : n→ K then we shall write xi instead of x(i) and xji
instead of x(⟨i, j⟩). Given a⃗, b⃗ ∈ K<ω, define a⃗ ≤ b⃗ if b⃗ extends a⃗. Clearly, ⟨K<ω,≤⟩ is a
partially ordered set. An increasing sequence in K<ω gives rise to an infinite sequence in
K, as long as it does not stabilize. Let P be the subset of K<ω consisting of all sequences
x⃗ : n→ K such that xji is amalgamable in K whenever i < j. We shall work in the partially
ordered set ⟨P,≤⟩.

Given x ∈ Obj(K), define Ux to be the set of all x⃗ ∈ P such that there is a K-
arrow from x to xi for some i < dom(x⃗). As K is directed and has the weak AP, Ux is
cofinal in ⟨K<ω,≤⟩. This follows from the fact that every K-arrow can be prolonged to an
amalgamable one (see Lemma 2.5).

Fix n ∈ ω and f ∈ K. Define Vn,f to be the set of all x⃗ ∈ P such that n+ 1 ∈ dom(x)
and the following implication holds:

(∗) If xn+1 = dom(f) then there are k > n and g ∈ K such that g ◦ f ◦ xn+1
n = xmn .

We check that Vn,f is cofinal in P . Fix a⃗ ∈ P . First, we extend a⃗ by using amalgamable
arrows so that n+ 1 < dom(⃗a). Now if an+1 ̸= dom(f) then already a⃗ ∈ Vn,f , so suppose
an+1 = dom(f). Let k = dom(⃗a) and assume f : an+1 → y. Knowing that an+1

n is
amalgamable, we can find K-arrows g : y → w, h : ak−1 → w such that g ◦ f ◦ an+1

n =
h ◦ ak−1

n+1 ◦ an+1
n . Extend a⃗ by adding the arrow h on the top, so that (∗) holds. The

extended sequence is a member of Vn,f . This shows that Vn,f is cofinal in ⟨P,≤⟩.
Finally, observe that a sequence p⃗0 ≤ p⃗1 ≤ p⃗2 ≤ · · · satisfying the assertion of the

Rasiowa-Sikorski Lemma (with D consisting of all possible Ux and Vf,n) yields a weak
Fräıssé sequence in K. This completes the proof.

3.9. Definition. A weak Fräıssé sequence u⃗ is normalized if for every n condition (G2)
holds with m = n+ 1. More precisely, for every n, for every arrow f : un+1 → y there are
k > n and and an arrow g : y → uk such that g ◦ f ◦ un+1

n = ukn.

The sequence obtained in the proof above is normalized. Clearly, every weak Fräıssé
sequence contains a subsequence that is normalized. In a normalized weak Fräıssé se-
quence all non-identity bonding arrows are amalgamable. It turns out that the converse
is true as well:
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3.10. Lemma. Let u⃗ be a weak Fräıssé sequence in K such that un+1
n is amalgamable for

every n ∈ ω. Then u⃗ is normalized.

Proof. Fix a K-arrow f : un+1 → y. Let m > n + 1 be as in condition (G2) applied to
n + 1 instead of n. Using the fact that un+1

n is amalgamable, we find K-arrows h : y → z
and f ′ : um → z such that h ◦ f ◦ un+1

n = f ′ ◦ umn+1 ◦ un+1
n . Using (G2), we find k ≥ m and

a K-arrow g′ : z → uk satisfying g′ ◦ f ′ ◦ umn+1 = ukn+1. Let g := g′ ◦ h. Then

g ◦ f ◦ un+1
n = g′ ◦ h ◦ f ◦ un+1

n = g′ ◦ f ′ ◦ umn+1 ◦ un+1
n = ukn+1 ◦ un+1

n = ukn,

showing that u⃗ is normalized.

The following fact will be essential for proving a variant of homogeneity of generic
objects. The proof is a suitable adaptation of the back-and-forth argument.

3.11. Lemma. Assume u⃗, v⃗ are weak Fräıssé sequences in K such that u10 is amalgamable

and f : u1 → v1 is a K-arrow. Then there exists an isomorphism of sequences h⃗ : u⃗ → v⃗
extending f ◦ u10.

Proof. Passing to subsequences, we may assume u⃗, v⃗ are normalized and u10 remains
as it was, as it is already amalgamable. We construct the following (not necessarily
commutative!) diagram

uk1 uk1+1 uk2 uk2+1 uk3 · · ·

v0 vℓ1 vℓ1+1 vℓ2 vℓ2+1 · · ·
f1 f2g1 g2

in which k1 = 0, ℓ1 = 1, and f1 = f . Furthermore,

(1) gi ◦ vℓi+1
ℓi

◦ fi ◦ uki+1
ki

= u
ki+1

ki
,

(2) fj+1 ◦ u
kj+1+1
kj+1

◦ gj ◦ v
vℓj+1

ℓj
= v

ℓj+1

ℓj

holds for all i, j ∈ ω. The construction is possible, because both sequences are normalized
weak Fräıssé, and hence (1), (2) are straightforward applications of the normalized variant
of (G2). Define

hi = fi ◦ uki+1
ki

and qj = gj ◦ v
ℓj+1
ℓj

.

Equations (1) and (2) give qi ◦ hi = u
ki+1

ki
and hj+1 ◦ qj = v

ℓj+1

ℓj
for i, j ∈ ω. Thus

h⃗ = {hn}n∈ω is an isomorphism from u⃗ to v⃗ and it extends h1 = f ◦ u10.

3.12. Corollary. A category may have, up to isomorphism, at most one weak Fräıssé
sequence.

Proof. Let u⃗, v⃗ be weak Fräıssé in K. Replacing them by subsequences, we may assume
that they are normalized. By (G1), there exists a K-arrow f : u1 → vk for some k. Further
refining v⃗, we may assume k = 1. Now Lemma 3.11 yields an isomorphism from u⃗ to v⃗.
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We finish this section by proving the following weakening of cofinality (in model theory
usually called universality).

3.13. Lemma. Let u⃗ be a weak Fräıssé sequence in K and let x⃗ be a sequence in K such
that xn+1

n is amalgamable in K for every n ∈ ω. Then there exists a σK-arrow e⃗ : x⃗→ u⃗.

Proof. For simplicity, we assume that the sequence u⃗ is normalized. We construct
inductively K-arrows en : xn → us(n) so that the following conditions are satisfied.

(1) u
s(n+1)
s(n) ◦ en = en+1 ◦ xn+1

n .

(2) en = e′n ◦ xn+2
n for some K-arrow e′n : xn+2 → us(n).

We start with e0 = e′0 ◦ x20, where e′0 is an arbitrary K-arrow from xn+2 into some us(0),
which exists by (G1). Suppose e0, . . . , en have been constructed. Let f : xn+3 → w and
g : us(n)+1 → w be K-arrows such that

f ◦ xn+3
n+2 ◦ xn+2

n+1 = g ◦ us(n)+1
s(n) ◦ e′n ◦ xn+2

n+1.

This is possible, because xn+2
n+1 is amalgamable in K. Using (G2) and the fact that u⃗ is

normalized, we find a K-arrow h : w → us(n+1), with s(n + 1) > s(n), such that h ◦ g ◦
u
s(n)+1
s(n) = u

s(n+1)
s(n) . Define e′n+1 := h ◦ f and en+1 := e′n+1 ◦ xn+3

n+1. Then

en+1 ◦ xn+1
n = h ◦ f ◦ xn+3

n+1 ◦ xn+1
n = h ◦ g ◦ us(n)+1

s(n) ◦ e′n ◦ xn+2
n+1 ◦ xn+1

n = u
s(n+1)
s(n) ◦ en.

It follows that the construction can be carried out, obtaining a σK-arrow e⃗ : x⃗ → u⃗ with
e⃗ = {en}n∈ω.

The results above show the importance of amalgamable arrows. One can say that
the weak Fräıssé theory comes from the usual one by moving the relevant concepts from
the objects to the arrows. By this way we obtain a framework that is both more general
and more robust, in the sense that it does not affect dominating subcategories. Let us
admit that in the category-theoretic approach to Fräıssé theory, the cofinal amalgamation
property plays the crucial role, as one can always restrict to a full cofinal subcategory. On
the other hand, a full cofinal subcategory may fail the cofinal AP, as the example below
shows. The weak version is much more stable, due to Proposition 2.7.

3.14. Example. Let T be the category of all finite cycle-free graphs (simple undirected
graphs with no cycles) with embeddings. Then T has the cofinal amalgamation property,
namely it has amalgamations at A ∈ Obj(T) if and only if A is connected. Indeed, if A
is disconnected and x, y ∈ A come from different components then adding a path joining
x and y provides a cycle-free graph containing A; by adding two paths of different length
we obtain two embeddings of A that cannot be amalgamated. On the other hand, if A is
connected then every two embeddings of A into cycle-free graphs can be amalgamated in
the “minimal” way, namely not adding any unnecessary edge. More precisely, if B0, B1
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are cycle-free, A = B0 ∩B1 then B0 ∪B1 is cycle-free as long as we do not add any edges
between B0 \ A and B1 \ A.

Now let K be the full subcategory of T whose objects are precisely the disconnected
graphs. By the arguments above, K totally fails the cofinal AP. On the other hand, by
Proposition 2.7, it still has the weak AP.

4. Weakly injective objects

The previous section was somewhat technical, as we were working in the rather abstract
category of sequences. We now prepare the setup suitable for exploring generic objects.
For obvious reasons, they could be called generic limits of weak Fräıssé categories. An-
other possible and tempting name would be weak Fräıssé limit, however, in our opinion
this would be a little bit inappropriate, because we only relax Fräıssé’s axioms, showing
that the generic limit is still unique and may only have weaker properties. After all, a
weak Fräıssé category may contain a weakly dominating Fräıssé subcategory, having the
same generic limit (see, e.g., Example 3.14 above). In any case, we shall avoid the word
limit, adapting the terminology from set-theoretic forcing, at some point calling the limit
of a weak Fräıssé sequence a generic object (see Section 6). In this section we characterize
those objects by a variant of injectivity.

As before, K will denote a fixed category. Now we also assume that L ⊇ K is a bigger
category such that K is full in L and the following conditions are satisfied:

(L0) All L-arrows are monic.

(L1) Every sequence in K has a colimit in L and every L-object is the colimit of some
sequence in K.

(L2) Every K-object is small in the following sense: If Y = lim y⃗, where y⃗ is a sequence
in K, then for every L-arrow f : x→ Y there are n and an L-arrow f ′ : x→ yn such
that f = y∞n ◦ f ′, where y∞n denotes the nth arrow from the colimiting co-cone.

Concerning (L2), recall that there is a well-established concept of a finitely presented object
(sometimes called a compact object), with a similar definition, using arbitrary functors
from directed posets or even filtered categories (see e.g. [2]). On the other hand, condition
(L2) describes exactly what we need, and nothing more. So, if every K-object is finitely
presented in L then (L2) holds, however the converse is not true: Consider the poset
category L consisting of all ordinals ≤ ω1 and let K consist of all ordinals of cofinality
̸= ω; then ω1 is not finitely presented in L, however it is small in the sense of (L2).

We shall use the following convention: The L-objects and L-arrows will be denoted
by capital letters, while the K-objects and arrows will be denoted by small letters.

Typical examples of pairs ⟨K,L⟩ satisfying (L0)–(L2) come from model theory: K could
be any class of finite (or just finitely generated) structures of a fixed first order language
while L should be the class of all structures isomorphic to the unions of countable chains
of K-objects. The arrows in both categories are typically all embeddings.
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It turns out that for every category K in which all arrows are monic, the sequence
category σK can play the role of L, however in the applications one usually has in mind
a more concrete and natural category satisfying (L0)–(L2). This is evident in Section 7,
where we discuss sample applications.

4.1. Definition. We say that U ∈ Obj(L) is weakly K-injective if

(U) Every K-object has an L-arrow into U (in other words: L(x, U) ̸= ∅ for every
x ∈ Obj(K)).

(WI) For every L-arrow e : a → U there exists a K-arrow i : a → b such that for every
K-arrow f : b → y there is an L-arrow g : y → U satisfying g ◦ f ◦ i = e, as shown
in the following diagram.

a b y

U

i

e

f

g

As one can expect, this concept is strictly related to weak Fräıssé sequences. Recall
that in this section we assume (L0)–(L2).

4.2. Theorem. Let U = lim u⃗, where u⃗ is a sequence in K. Then U is weakly K-injective
if and only if u⃗ is a weak Fräıssé sequence in K.

Proof. Assume first that U is weakly K-injective. Condition (U) combined with (L2)
shows that the sequence u⃗ satisfies (G1). In order to check (G2), fix n ∈ ω and apply the
weak K-injectivity of U to the arrow u∞n : un → U . We obtain a K-arrow i : un → b such
that for every L-arrow f : b → y there is an L-arrow g : y → U satisfying g ◦ f ◦ i = u∞n .
Taking f = idb, we obtain an L-arrow j : b→ U such that

j ◦ i = u∞n .

Applying (L2), we get m > n and a K-arrow k : b→ um such that j = u∞m ◦ k. Thus

u∞m ◦ umn = u∞n = j ◦ i = u∞m ◦ k ◦ i.

By (L0), u∞m is a monic, therefore
k ◦ i = umn .

We claim that m is a witness for (G2). Fix a K-arrow f : um → y. Applying weak
K-injectivity to the arrow f ◦ k, we find g : y → U such that

g ◦ f ◦ k ◦ i = u∞n .

Using (L2), we find ℓ > m and an L-arrow g′ : y → uℓ such that g = u∞ℓ ◦g′. Now we have

u∞ℓ ◦ g′ ◦ f ◦ umn = u∞ℓ ◦ g′ ◦ f ◦ k ◦ i = g ◦ f ◦ k ◦ i = u∞n = u∞ℓ ◦ uℓn.
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As u∞ℓ is a monic, we conclude that g′ ◦ f ◦ umn = uℓn, showing (G2).
Now suppose that u⃗ is a weak Fräıssé sequence in K. Then (G1) implies that U satisfies

(U). It remains to show that U is weakly K-injective. Fix e : a → U . Using (L2), find n
and a K-arrow e′ : a → un such that e = u∞n ◦ e′. Let m > n be such that the assertion
of (G2) holds. Define i = umn ◦ e′. Fix a K-arrow f : um → y. There are k ≥ m and a
K-arrow g′ : y → uk such that g′ ◦ f ◦ umn = ukn. Let g = u∞k ◦ g′. Then

g ◦ f ◦ i = u∞k ◦ g′ ◦ f ◦ umn ◦ e′ = u∞k ◦ ukn ◦ e′ = u∞n ◦ e′ = e.

Thus, i witnesses the weak K-injectivity of U .

Recall that K has a weak Fräıssé sequence if and only if it is a weak Fräıssé category,
i.e., it is directed, has the weak amalgamation property, and is weakly dominated by a
countable subcategory.

4.3. Corollary. A weakly K-injective object exists if and only if K is a weak Fräıssé
category.

Proof. If K is a weak Fräıssé category then it has a weak Fräıssé sequence, whose colimit
in L is a weakly K-injective object by Theorem 4.2. Conversely, if U is weakly K-injective
then, by (L1), U = lim u⃗ for some sequence u⃗ in K. By Theorem 4.2, the sequence u⃗ is
weak Fräıssé in K. Finally, by Theorem 3.7, K is a weak Fräıssé category.

4.4. Corollary. A weakly K-injective object, if exists, is unique up to isomorphism.

Proof. Suppose U , V are weakly K-injective. By (L1), U = lim u⃗, V = lim v⃗, where
u⃗, v⃗ are sequences in K. By Theorem 4.2, both u⃗ and v⃗ are weak Fräıssé in K. By
Corollary 3.12, there exists an isomorphism from u⃗ to v⃗ in the category of sequences.
This leads to an isomorphism between U and V .

4.5. Corollary. Let U be a weakly K-injective object. If X = lim x⃗, where x⃗ is a
sequence in K such that each bonding arrow xn+1

n is amalgamable in K, then there exists
an L-arrow from X to U .

Proof. Knowing that U = lim u⃗, where u⃗ is a weak Fräıssé sequence in K, it suffices to
apply Lemma 3.13.

We now turn to the question of homogeneity.

4.6. Theorem. Let U be a weakly K-injective object and let e : a→ b be an amalgamable
arrow in K. Then for every L-arrows i : b → U , j : b → U there exists an automorphism
h : U → U satisfying h ◦ i ◦ e = j ◦ e.

This is illustrated in the following diagram in which the triangle is not necessarily
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commutative.
U

a b

U

e

j

i

h

Proof. Assume U = lim u⃗, where u⃗ is a normalized weak Fräıssé sequence in K. By
(L2), there are k, ℓ ∈ ω such that i = u∞k ◦ i′ and j = u∞ℓ ◦ j′. We may assume that
ℓ > 0, replacing j′ by uℓ+1

ℓ ◦ j′, if necessary. We may also assume that i′ is amalgamable,
replacing it by uk+1

k ◦ i′ (and increasing k), if necessary. Now

a b uk uk+1 · · ·e i′ uk+1
k

and

uℓ−1 uℓ uℓ+1 · · ·
uℓℓ−1 uℓ+1

ℓ

are normalized weak Fräıssé sequences and j′ : b → uℓ is a K-arrow. By Lemma 3.11,
there is an isomorphism of sequences h⃗ extending j′ ◦ e. This leads to an isomorphism
h : U → U satisfying h ◦ i ◦ e = j ◦ e.

Note that if ida is amalgamable in K then this is indeed homogeneity (with respect to
a). In particular, if K has the amalgamation property then the weakly K-injective object
is homogeneous, that is, for every L-arrows a : i → U , j : a → U with a ∈ Obj(K) there
exists an automorphism h : U → U satisfying h ◦ i = j. In general, the property of U
described in Theorem 4.6 can be called weak homogeneity. We will elaborate this topic
in the next section.

5. Weak homogeneity

In the classical (model-theoretic) Fräıssé theory, an important feature is that the Fräıssé
class can be reconstructed from its generic limit U , simply as the class of all finitely
generated substructures (called the age of U). Actually, a countably generated model U
is the Fräıssé limit of its age K if and only if U is homogeneous with respect to K, in the
sense described above, where K is treated as a category with embeddings. That is why
a Fräıssé class is always assumed to be hereditary (i.e., closed under finitely generated
substructures). This cannot be formulated in category theory, however it becomes in some
sense irrelevant, as we can always work in the category of all finitely generated structures
of a fixed language, or in a selected (usually full) subcategory. On the other hand, we can
consider subcategories of a fixed category K and define the concept of being hereditary
with respect to K. By this way we can talk about objects that are weakly injective relative
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to a subcategory of K. We can also look at homogeneity and its weakening in a broader
setting.

We continue using the framework from the previous section, namely, we assume that
K ⊆ L is a pair of categories satisfying (L0)–(L2). Given a class of objects F ⊆ Obj(K),
we can say that it is hereditary in K if for every x ∈ F , for every K-arrow f : y → x
it holds that y ∈ F . Thus, the notion of being hereditary strongly depends on the
category K we are working with (the bigger category L plays no role here). Actually, it is
more convenient, and within the philosophy of category theory, to define this concept for
arbitrary subcategories (note that a class of objects may be viewed as a subcategory in
which the arrows are precisely all the identities). Namely, we say that a subcategory S
of K is hereditary if for every compatible K-arrows f, g the following equivalence holds:

f ◦ g ∈ S ⇐⇒ f ∈ S.

Note that a hereditary subcategory S is necessarily full. Indeed, if f : a→ b is such that
b ∈ Obj(S) then idb ∈ S, therefore f = idb ◦ f ∈ S. It is straightforward to see that a
family of objects F is hereditary if and only if the full subcategory S with Obj(S) = F
is hereditary, as a subcategory. Conversely, if S is a hereditary subcategory of K, then
Obj(S) is a hereditary class.

Natural examples of hereditary subcategories of K are of the form

KV := {f ∈ K : L(cod(f), V ) ̸= ∅},

where V ∈ Obj(L). One could call KV the age of V relative to K. It is natural to ask
when KV is a weak Fräıssé category and when V is its “generic limit”. The answer is
given below.

Fix V ∈ Obj(L). We say that V is weakly homogeneous if for every L-arrow f : a→ V
with a ∈ Obj(K) there exist a K-arrow e : a → b and an L-arrow i : b → V such that
f = i ◦ e and for every L-arrow j : b→ V there is an automorphism h : V → V satisfying
h ◦ f = j ◦ e. This is shown in the following diagram in which, again, the triangle with
vertices b, V, V may not be commutative.

V

a b

V

h

f

e

i

j

Note that in this case, if j′ : b→ V is another L-arrow, then there exists an automorphism
h′ : V → V such that h′◦f = j′◦e. Thus, k := h′◦h−1 is an automorphism of V satisfying
k ◦ j ◦ e = j′ ◦ e. This, by Theorem 4.6, shows that the weakly K-injective object is weakly
homogeneous.



WEAK FRAÏSSÉ CATEGORIES 47

An L-object V is homogeneous if the arrow e in the definition above can always be
identity. In other words, V is homogeneous if for every a ∈ Obj(K), for every L-arrows
i : a→ V , j : a→ V there is an automorphism h : V → V satisfying j = h◦i. Homogeneity
is often (especially by model-theorists) called ultra-homegeneity.

The following result says that weakly homogeneous objects are weakly injective with
respect to their age.

5.1. Theorem. Let V ∈ Obj(L) and let S := KV be the age of V , as defined above. The
following conditions are equivalent.

(a) V is weakly homogeneous.

(b) S is a weak Fräıssé category and V is weakly S-injective.

Proof. (a) =⇒ (b) First, note that V is S-cofinal. Fix an L-arrow f : a → V . Let
i : b → V and e : a → b be as in the definition of weak homogeneity. Fix an arbitrary
S-arrow g : b → y. There exists an L-arrow k : y → V . Apply the weak homogeneity to
j := k ◦ g. By this way we obtain an automorphism h : V → V satisfying h ◦ k ◦ g ◦ e = f .
This shows that V is weakly S-injective.

Corollary 4.3 says that S is a weak Fräıssé category (formally, one should replace L
by a suitable subcategory, so that (L1) will hold).

(b) =⇒ (a) Trivial, by the comment after the definition of weak homogeneity.

Weak homogeneity was probably first studied by Pabion [28], called prehomogeneity,
for multi-relations, i.e., structures with finitely many relations. This was later explored
by Pouzet and Roux [29]. We refer to [18] for more details and bibliographic references.

We finish this section by exhibiting the (rather expected) relation between weak homo-
geneity and homogeneity. Recall that K ⊆ L are as above, namely, conditions (L0)–(L2)
are satisfied.

5.2. Corollary. Assume V ∈ Obj(L) is weakly homogeneous. Then for every amal-
gamable K-arrow e : a → b, for every L-arrows i : a → V , j : b → V , there exists an
automorphism h : V → V such that j ◦ e = h ◦ i ◦ e.

In particular, if K has the amalgamation property, then V is homogeneous.

Proof. Without loss of generality, we may assume K = KV . Thus, V is weakly K-injective
and hence the statement follows directly from Theorem 4.6. The second part is obvious,
as the amalgamation property says that all identities are amalgamable.

6. The Banach-Mazur game

In this section we explore connections between weakly injective objects and a natural
infinite game which is a generalization of the classical Banach-Mazur game in topology.

We fix a category K. The Banach-Mazur game played on K is described as follows.
There are two players: Eve and Odd. Eve starts by choosing a0 ∈ Obj(K). Then
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Odd chooses a1 ∈ Obj(K) together with a K-arrow a10 : a0 → a1. More generally, af-
ter Odd’s move finishing with an object a2k−1, Eve chooses a2k ∈ Obj(K) together with a
K-arrow a2k2k−1 : a2k−1 → a2k. Next, Odd chooses a2k+1 ∈ Obj(K) together with a K-arrow
a2k+1
2k : a2k → a2k+1. Thus, the result of the play is a sequence

a⃗ : ω → K.

Of course, one needs to add the objective of the game, namely, a condition under which
one of the players wins. So, let us assume that K is a subcategory of a bigger category
L, so that some sequences in K have colimits in L. For the moment, we do not need
to assume neither of the conditions (L0)–(L2). Now choose a family W ⊆ Obj(L). We
define the game BM (K,W ) with the rules described above, adding the statement that
Odd wins the game if and only if the colimit of the resulting sequence a⃗ is isomorphic to
a member of W . So, Eve wins if either the sequence a⃗ has no colimit in L or its colimit
is isomorphic to none of the members of W .

We are particularly interested in the case W = {W} for some W ∈ Obj(L), where the
game BM (K,W ) will be denoted simply by BM (K,W ). Before we turn to it, we discuss
some basic properties of our Banach-Mazur game.

Recall that a strategy of Odd is a function Σ assigning to each finite sequence s⃗ : n→ K
of odd length a K-arrow Σ(s⃗) : sn−1 → s, called Odd’s response to s⃗. We say that Odd
plays according to Σ if the resulting sequence a⃗ satisfies an+1

n = Σ(⃗a ↾ n) for every odd
n ∈ ω. Odd’s strategy Σ is winning in BM (K,W ) if lim a⃗ is isomorphic to a member of
W whenever Odd plays according to Σ, no matter how Eve plays. These concepts are
defined for Eve analogously. A strategy Σ of Eve is defined on sequences of even length,
including the empty sequence, where Σ(∅) is simply a K-object a0, the starting point of a
play according to Σ.

6.1. Theorem. Let K ⊆ L be two categories and let W ⊆ Obj(L). Let S be a weakly
dominating subcategory of K. Then Odd has a winning strategy in BM (K,W ) if and only
if he has a winning strategy in BM (S,W ). The same applies to Eve.

Proof. Let Σ be Odd’s winning strategy in BM (K,W ). We describe his winning strategy
in BM (S,W ). We denote the resulting sequence of a play in BM (S,W ) by s⃗. So,
suppose Eve started with s0 ∈ Obj(S). Odd first chooses an S-arrow i0 : s0 → a0 so
that condition (W) of the definition of weak domination holds, namely, for every K-arrow
f : a0 → x there is a K-arrow g : x → t such that g ◦ f ◦ i0 ∈ S. Let a10 = Σ(a0), so
a10 : a0 → a1 with a1 ∈ Obj(K). Using (W), Odd finds a K-arrow j0 : a1 → s1 and he
responds with s10 := j0 ◦ a10 ◦ i0. In general, the strategy is described in the following
commutative diagram.

s0 s1 · · · s2n s2n+1 · · ·

a0 a1 a2n a2n+1

i0 in

a10

j0

a2n+1
2n

jn
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Namely, when Eve finishes with s2n, Odd first chooses a suitable S-arrow in : s2n → a2n
realizing the weak domination. Next, he uses Σ to find a K-arrow a2n+1

2n : a2n → a2n+1.
Specifically, a2n+1

2n is Odd’s response to the sequence a0 → a1 → · · · → a2n in which the
arrows are suitable compositions of those from the diagram above. Odd responds with
s2n+1
2n := jn ◦ fn ◦ in, where jn comes from the weak domination of S (condition (W)).

This is a winning strategy, because the resulting sequence s⃗ is isomorphic to the sequence
a⃗, where

a2k+2
2k+1 = ik+1 ◦ s2k+2

2k+1 ◦ jk
for every k ∈ ω; this sequence is the result of a play of BM (K,W ) in which Odd was
using strategy Σ.

Now suppose Odd has a winning strategy Σ in BM (S,W ). Playing the game BM (K,W ),
assume Eve started with a0 ∈ Obj(K). Odd first uses (C) to find an arrow i0 : a0 → s0
with s0 ∈ Obj(S). Next, he takes the arrow s10 : s0 → s1 according to Σ. Specifically,
s10 = Σ(s0). He responds with a10 := j0 ◦ s10 ◦ i0, where j0 : s1 → a1 is an S from condi-
tion (W), namely, for every K-arrow f : a1 → x there is a K-arrow g : x → s satisfying
g ◦ f ◦ j0 ∈ S. In general, the strategy described in the following commutative diagram.

a0 a1 · · · a2n a2n+1 · · ·

s0 s1 s2n s2n+1

i0 in

s10

j0

s2n+1
2n

jn

Here, in comes from condition (W), namely, in ◦ a2n2n−1 ◦ jn−1 ∈ S. Furthermore, s2n+1
2n =

Σ(v⃗), where v⃗ is the sequence s0 → s1 → s2 → · · · → s2n obtained from the diagram
above (note that all its arrows are in S). Finally, jn is such that the assertion of (W)
holds, that is, for every K-arrow f : a2n+1 → x there is a K-arrow g : x → t such that
g ◦ f ◦ jn ∈ S. Odd’s response is a2n+1

2n := jn ◦ s2n+1
2n ◦ in. This strategy is winning in

BM (K,W ), because the resulting sequence a⃗ is isomorphic to the sequence s⃗ in which

s2k+2
2k+1 = ik+1 ◦ a2k+2

2k+1 ◦ jk ∈ S

for every k ∈ ω. The sequence s⃗ results from a play of BM (S,W ) in which Odd was
using his winning strategy Σ.

The case of Eve’s winning strategies is almost the same, as the rules are identical for
both players, except for Eve’s first move.

6.2. Theorem. Assume {Wn}n∈ω is such that each Wn ⊆ Obj(L) is closed under iso-
morphisms and Odd has a winning strategy in BM (K,Wn) for each n ∈ ω. Then Odd has
a winning strategy in

BM

(
K,
⋂
n∈ω

Wn

)
.

In particular,
⋂
n∈ω Wn ̸= ∅.
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Proof. Let Σn denote Odd’s winning strategy in BM (K,Wn). Let {In}n∈ω be a partition
of all even natural numbers into infinite sets. Let Jn = In ∪{i+ 1: i ∈ In}. Given a finite
sequence s⃗ whose length n is odd, let k be such that n− 1 ∈ Ik and define

Σ(s⃗) = Σk(s⃗ ↾ (Jk ∩ n)).

We claim that Σ is a winning strategy of Odd in the game BM
(
K,
⋂
n∈ω Wn

)
.

Indeed, suppose a⃗ is the result of a play in which Odd has been using strategy Σ.
Then a⃗ ↾ Jk is a sequence resulting from another play in which Odd was using strategy
Σk. Thus lim a⃗ = lim(⃗a ↾ Jk) ∈ Wk. Hence lim a⃗ ∈

⋂
n∈ω Wn.

We now switch to the case where W is the isomorphism class of a single object. As
the reader may guess, weakly injective objects play a significant role here. In the next
result we do not assume (L0)–(L2).

6.3. Theorem. Let K ⊆ L and assume that u⃗ is a weak Fräıssé sequence in K with
U = lim u⃗ in L. Then Odd has a winning strategy in BM (K, U).

Proof. We may assume that the sequence u⃗ is normalized. Odd’s strategy is as follows.
Suppose a0 ∈ Obj(K) is Eve’s first move. Using (G1), Odd finds k ∈ ω together with a
K-arrow f0 : a0 → uk. His response is a10 := uk+1

k ◦ f0. In particular, a1 = uk+1.
In general, suppose a2n2n−1 was the nth move of Eve. Assume inductively that a2n−1 =

uℓ+1 and a2n−1
2n−2 = uℓ+1

ℓ ◦ fn−1 for some K-arrow fn−1. Using (G2), Odd finds m > ℓ + 1
together with a K-arrow fn : a2n → um satisfying

umℓ = fn ◦ a2n2n−1 ◦ uℓ+1
ℓ .

Odd’s response is a2n+1
2n := um+1

m ◦ fn. In particular, a2n+1 = um+1. The strategy is shown
in the following diagram.

· · · uℓ uℓ+1 um um+1 · · ·

a2n
a2n2n−1

fn

It is clear that the resulting sequence a⃗ is isomorphic to u⃗, therefore lim a⃗ = U .

The proof above is somewhat similar to that of Theorem 6.1. In fact, if the sequence
u⃗ is one-to-one (that is, un ̸= um for n ̸= m) then one can use Theorem 6.1 to play the
game in the image of u⃗, where Odd’s winning strategy is obvious.

Our goal is reversing Theorem 6.3, extending the results of Krawczyk and the au-
thor [18]. We start with a technical lemma. Recall that a category C is locally countable
if C(x, y) is a countable set for every C-objects x, y.
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6.4. Lemma. Assume K ⊆ L are two categories satisfying (L0)–(L2), K is locally count-
able, V ∈ Obj(L), and suppose e : a → V is an L-arrow with a ∈ Obj(K) satisfying the
following condition.

(×) For every K-arrow f : a → b there exists a K-arrow f ′ : b → b′ such that for every
L-arrow i : b′ → V it holds that e ̸= i ◦ f ′ ◦ f .

Then Eve has a winning strategy in BM (K, V ).

Proof. Eve’s strategy is as follows. She starts with a0 := a. At step n > 0, Eve chooses
a K-arrow fn : a → a2n−1 and responds with a2n2n−1 := f ′, where f ′ comes from condition
(×) applied to f := fn. Thus

(†) (∀ i ∈ L(a2n, V )) e ̸= i ◦ a2n2n−1 ◦ fn.

Of course, this strategy depends on the choice of the sequence {fn}n>0. We show that
a suitable choice makes Eve’s strategy winning. Namely, she needs to take care of all
K-arrows from a into the sequence a⃗. More precisely, the following condition should be
satisfied.

(‡) (∀ k > 0)(∀ g ∈ K(a, ak))(∃ n > k) fn = a2n−1
k ◦ g.

In order to achieve (‡), we use the fact that K is locally countable. Specifically, for each
k > 0, for each g ∈ K(a, ak) we inductively choose an integer φ(k, g) > k in such a way
that φ(k′, g′) ̸= φ(k, g) whenever ⟨k, g⟩ ̸= ⟨k′, g′⟩. This is possible, because for a fixed k
there are only countably many possibilities for g (we may first partition ω into infinite
sets Bk and make sure that φ(k, g) ∈ Bk for every g). We set fn := a2n−1

k ◦ g whenever
n = φ(k, g).

Now let A = lim a⃗ ∈ Obj(L) and suppose that h : V → A is an isomorphism in L.
Using (L2), we find a K-arrow g : a→ ak such that h ◦ e = a∞k ◦ g, where a∞k is part of the
colimiting co-cone. By (‡), there is n > k such that fn = a2n−1

k ◦g. Consider i := h−1◦a∞2n.
We have

i ◦ a2n2n−1 ◦ fn = h−1 ◦ a∞2n ◦ a2n2n−1 ◦ a2n−1
k ◦ g = h−1 ◦ a∞k ◦ g = h−1 ◦ h ◦ e = e,

contradicting (†). This shows that Eve wins while using the strategy above.

We are ready to prove the main result of this section.

6.5. Theorem. Assume K ⊆ L satisfy (L0)–(L2) and K is locally countable. Given an
L-object V , the following properties are equivalent.

(a) V is weakly K-injective (in particular, K is a weak Fräıssé category).

(b) Odd has a winning strategy in BM (K, V ).

(c) Eve does not have a winning strategy in BM (K, V ).
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Proof. (a) =⇒ (b) By (L1), V = lim v⃗ for a sequence v⃗ in K. By Theorem 4.2, this
sequence is weak Fräıssé in K. Thus (b) follows from Theorem 6.3.

(b) =⇒ (c) Obvious.
(c) =⇒ (a) First, note that V satisfies (U), since if x ∈ Obj(K) is such that L(x, V ) = ∅

then Eve would have an obvious winning strategy, starting the game with x. Thus,
supposing V is not weakly K-injective, we deduce that it is not weakly K-injective. Hence,
there exists e : a → V with a ∈ Obj(K) such that for every K-arrow f : a → b there is a
K-arrow f ′ : b→ y such that no L-arrow j : y → V satisfies j ◦ f ′ ◦ f = e. This is precisely
condition (×) of Lemma 6.4, contradicting (c).

Note that the result above says, in particular, that the Banach-Mazur game played on
a locally countable category is determined, as long as the goal is a single isomorphic type.
This is not true when the goal is an arbitrary set of objects, as the next example shows.

6.6. Example. Let X ̸= ∅ be a compact Hausdorff topological space, K the family of
all nonempty open subsets of X. Define U ≼ V if either U = V or clV ⊆ U , where
clV denotes the closure of V . Then ⟨K,≼⟩ is a poset, therefore it is a category. Let L
be the family of all nonempty closed Gδ subsets of X, endowed with the same ordering.
Then K ⊆ L satisfies (L0)–(L2). Clearly, K is locally countable, being a poset category.
It is also clear that K fails the WAP, unless X is a singleton. Now the Banach-Mazur
game played on K is practically the same as the original topological Banach-Mazur game,
the only difference is that we force a stronger containment relation, in order to achieve
(L2). If, additionally, X is a metric space then each of the players can play so that
the intersection of the resulting sequence is a single point. Thus, the game BM (K) can be
parameterized by a subset Y of X, meaning that Odd wins in BM (K, Y ) if the intersection
of the resulting chain is an element of Y . Now, if Y is a Bernstein set then none of the
players has a winning strategy in BM (K, Y ). Recall that a set Y is Bernstein if for every
perfect set P ⊆ X it holds that P ∩Y ̸= ∅ ≠ P \Y . A well known characterization due to
Oxtoby [27] says that Odd has a winning strategy in BM (K, Y ) if and only if Y contains
a set G that is both dense and Gδ in X. On the other hand, Eve has a winning strategy
if and only if there is a nonempty open set U ⊆ X such that U \ Y contains a Gδ set
whose closure contains U . Every nonempty Gδ set contains a perfect set, therefore if Y
is Bernstein then none of the players can have a winning strategy.

The example above shows also that the abstract Banach-Mazur game indeed general-
izes the classical topological one, invented by Mazur around 90 years ago.

Motivated by the results above, we now introduce the concept of a generic object. In
the context of model theory, it already appeared in [21].

6.7. Definition. [Generic object] Let K ⊆ L be as above, satisfying (L0)–(L2). An
object V ∈ Obj(L) will be called K-generic if Odd has a winning strategy in the game
BM (K, V ).

Theorem 6.5 tells us that this concept coincides with weak injectivity, as long as
the category is locally countable. On the other hand, the above definition covers natural
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categories that are not locally countable, e.g., the category of all finite-dimensional normed
spaces with linear isometric embeddings, which apparently has a generic object in the
category of all separable Banach spaces (see [20]). In any case, the definition of a generic
object is more general and perhaps more natural than that of a weakly injective object.

Let us admit that the adjective generic has already been used by Kueker and Laskowski [25]
referring to model-theoretic Fräıssé limits where the notion of embedding is specialized—
from the point of view of category theory this is just selecting a wide subcategory of the
category of all embeddings.

6.8. Ubiquity of generic objects. In model theory, the question which isomorphic
types of objects can be represented as a residual set in a suitable complete metric space was
addressed by Cameron [4] and later explored by Pouzet and Roux [29] who actually proved
that this happens if and only if the object is weakly homogeneous (pre-homogeneous, in
their terminology). The results concerning the abstract Banach-Mazur game, combined
with Oxtoby’s characterization of winning strategies lead to a direct proof of Pouzet and
Roux’ result saying that weakly homogeneous objects are ubiquitous in the sense of Baire
category2.

In order to present this result, we need to define a suitable complete metric space.
Namely, let K ⊆ L be as before, satisfying (L0)–(L2) and assume that K is small. In most
cases, we may replace K by a small (often countable) subcategory, simply by localizing
the objects in a big enough set.

Now, let TK = K<ω be the set of all finite sequences in K endowed with the “end-
extension” ordering. Then X is a tree and each of its branches corresponds to an object
of L (namely, its colimit). Let ∂TK be the space of all branches through TK. Then X is
a complete ultrametric space, when endowed with the metric ϱ(x, y) = 1/n, where n is
minimal with the property xnn1

̸= ynn−1 (it is tempting to replace this by xn ̸= yn, however
the category K may consist of a single object and then only the arrows distinguish the
branches of TK). In this setting, our Banach-Mazur game is equivalent to the classical
topological Banach-Mazur game played with basic open sets (which are actually ultra-
metric balls). Thus, Oxtoby’s characterization applies. Summarizing:

6.9. Theorem. Let TK and ∂TK be as above and K is locally countable. If K has a generic
object U in L then the set of all v ∈ ∂TK with lim v ≈ U is dense Gδ in ∂TK.

Proof. The fact that this set is dense follows directly from Oxtoby’s result [27]. In order
to show that it is Gδ, it suffices to observe that K is weakly dominated by a countable
subcategory and that the definition of a weak Fräıssé sequence requires countably many
parameters, all of them defining open subsets of ∂TK.

6.10. Cofinality vs. WAP. We now extend the results from [18] concerning the weak
amalgamation property. Namely, let us fix a pair of categories K ⊆ L and for the moment
the only assumption we make is that K be directed. We define the cofinality number as

2Here, the word category comes from the Baire Category Theorem.
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follows:
cf(L) := min{|U | : U is cofinal in L},

where a family of L-objects U is cofinal if for every L-object X there exists an L-arrow
from X to some U ∈ U . In model theory, cofinality is called universality, however in
category theory there would be a conflict with the notion of a universal object, which has
a different meaning.

In any case, if K is a Fräıssé category and (L0)–(L2) hold, then cf(L) = 1, which is
witnessed by the Fräıssé limit U ∈ Obj(L). On the other hand, there are examples of weak
Fräıssé categories of finite graphs K, where L is the corresponding category of countable
graphs, such that cf(L) = c, the cardinality of the set of all reals R (the continuum),
see [18].

On the other hand, failure of the weak amalgamation property implies that the cofi-
nality number is large:

6.11. Theorem. Assume K ⊆ L are categories satisfying (L0)–(L2), K is directed and
locally countable. If cf(L) < c then K has the weak amalgamation property.

Before proving the theorem above, we formulate a result involving the Banach-Mazur
game, that could be of independent interest. Given W ∈ Obj(L), denote by W ↑ the class
of all X ∈ Obj(L) for which L(X,W ) ̸= ∅. Similarly, if U is a class of L-objects, we
denote

U ↑ =
⋃
W∈U

W ↑.

Thus, the second player wins the game BM
(
K,U ↑) if and only if the colimit of the

resulting sequence admits at least one L-arrow into some W ∈ U . Theorem 6.11 is an
immediate consequence of the following fact.

6.12. Proposition. Assume K ⊆ L are categories satisfying (L0)–(L2), K is directed
and locally countable. If Odd has a winning strategy in BM

(
K,U ↑) for some family

U ⊆ Obj(L) of cardinality < c, then K has the weak amalgamation property.

Proof. Let 2<ω denote the tree of all finite zero-one sequences. Given s ∈ 2<ω and i ∈ 2,
we denote by s⌢i the sequence obtained from s by adding i at the end. Given a sequence
s ∈ 2<ω of positive length (the only sequence of length zero is ∅), we denote by s− the
sequence obtained from s by removing its last element. So if the last element was i ∈ 2,
then s = (s−)⌢i.

Suppose z is a witness for the failure of WAP. Using induction, we build a family of K-
objects {zs}s∈2<ω together with K-arrows es : zs− → zs, such that the following conditions
are satisfied.

(1) z∅ = z.

(2) The arrows es⌢0, es⌢1 witness the fact that the arrow

es ◦ . . . ◦ es↾2 ◦ es↾1 : z∅ → zs

is not amalgamable.
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(3) For each σ ∈ 2ω, the sequence

z∅ zσ↾1 · · · zσ↾n · · ·

comes from a play according to Odd’s winning strategy in BM
(
K,U ↑).

It is clear how to achieve (2), knowing that z∅ witnesses the failure of the WAP. In order
to achieve (3), we need to add the following clause:

(4) For each s ∈ 2<ω, for each i ∈ 2 there are z′s⌢i and K-arrows e′s⌢i : zs → z′s⌢i,
e′′s⌢i : z

′
s⌢i → zs⌢i such that es⌢i = e′′s⌢i ◦ e

′
s⌢i and e′′s⌢i is Odd’s answer, according to

his winning strategy, to the sequence

z∅ z′s↾1 zs↾1 z′s↾2 zs↾2 · · · zs z′s⌢i
e′s↾1 e′′s↾1 e′s↾2 e′′s↾2 e′

s⌢i

where the first move of Eve is actually z′s↾1 instead of z∅.

To be more precise, the inductive step at s ∈ 2<ω runs as follows. We first choose e′s⌢0, e
′
s⌢1

as in (2) and then we compose them with e′′s⌢0, e
′′
s⌢1, using Odd’s strategy, as described in

(4).
Finally, for each σ ∈ 2ω we have a branch of our tree, namely, a sequence z⃗σ : ω → K

such that z⃗σ(n) = zσ↾n and the bonding arrow from z⃗σ(n − 1) to z⃗σ(n) is eσ↾n. All these
sequences are results of instances of playing the game BM

(
K,U ↑), where Odd was using

his winning strategy. Denote by eσ the colimiting arrow from z = z∅ to the colimit of z⃗σ.
Choose Uσ ∈ U so that there is iσ ∈ L(lim z⃗σ, Uσ). Since |U | < c, there are W ∈ U and
an uncountable set S ⊆ 2ω such that Uσ = W for every σ ∈ S.

Using (L1), (L2) and the fact that K is locally countable, we can find two (in fact,
uncountably many) different σ, τ ∈ S such that

iσ ◦ eσ = iτ ◦ eτ .

Let s = σ ∧ τ ∈ 2<ω be the maximal common part of σ and τ . We may assume s⌢0 ⊆ σ
and s⌢1 ⊆ τ . Let eσ\s denote the colimiting arrow from zs⌢0 to lim z⃗σ and let eτ\s denote
the colimiting arrow from zs⌢1 to lim z⃗τ . Using (L1), we find a sequence w⃗ in K whose
colimit is W . Using (L2), we see that both iσ ◦ eσ\s, iτ ◦ eτ\s factor through a fixed wn,
that is,

iσ ◦ eσ\s = w∞
n ◦ f0 and iτ ◦ eτ\s = w∞

n ◦ f1
for some f0 : zs⌢0 → wn, f1 : zs⌢1 → wn. The situation is described in the diagram below,
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where k = es ◦ . . . ◦ es↾2 ◦ es↾1.

zs⌢1 lim z⃗τ

z∅ zs wn W

zs⌢0 lim z⃗σ

k w∞
n

e
s⌢1

e
s⌢0

eτ

eσ

iτ

iσ

eτ\s

eσ\s

f1

f0

Finally, using the fact that w∞
n is a monic (condition (L0)), we obtain that f0 ◦ es⌢0 ◦ k =

f1 ◦ es⌢1 ◦ k, contradicting the fact that k is not amalgamable (condition (2)). This
completes the proof.

The result above says that we can deduce the weak amalgamation property from the
small cofinality number. On the other hand, one can find in [18] the following relevant
example, showing that the converse is false: K is the class of all finite graphs with vertex
degree ≤ 3 and L is the category of all countable graphs of vertex degree ≤ 3. Then
K ⊆ L satisfy conditions (L0)–(L2), K is directed, essentially countable, and has the
cofinal amalgamation property, while cf(L) = c. Another example in [18] is a hereditary
class of finite graphs without the WAP. We close this section with two simple examples
of countable directed categories failing the WAP. Both of them share the same idea, even
though they lie on the opposite sides of category theory (one is a monoid and the other
one comes from a poset).

6.13. Example. Let K be the free monoid over a countable infinite set of letters, say, ω.
So K consists of all words of the form

n0n1 . . . nk−1,

where {ni}i<k ⊆ ω and the empty word is the identity. Clearly, K treated as a category is
countable and directed (it has just one object). On the other hand, it obviously fails the
weak amalgamation property. Note that any category L ⊇ K satisfying (L0)–(L2) must
have cofinality ≥ c. A natural choice is the category of all countable words in the alphabet
ω. An arrow from a countable word x to another countable word y is uniquely determined
by cutting off initial parts of x and y in the sense that x and y are equal modulo a finite
initial part.

6.14. Example. Let K be the free category over the poset ⟨ω,≤⟩ treated as a directed
graph. So the objects of K are natural numbers and the arrows are paths that could be
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encoded as finite increasing sequences of natural numbers. More precisely, an arrow from
k to ℓ is any sequence of the form

k = m0 < m1 < · · · < mn−1 ≤ mn = ℓ.

We allow mn−1 = mn in order to get the identities, namely, ⟨ℓ, ℓ⟩ is the identity of ℓ. It
is rather obvious that K fails the weak amalgamation property. On the other hand, K is
countable and directed. Note also that all K-arrows are monic .

What is a natural category L ⊇ K satisfying (L0)–(L2)? A sequence in K can be
identified with a finite or infinite increasing sequence of natural numbers, namely, a unique
increasing enumeration of a subset of ω. It is easy to check that an arrow from a sequence
x⃗ to a sequence y⃗ exists if and only if the corresponding sets X, Y are equal, modulo a
finite set. We conclude that a natural choice of L is the category of all subsets of ω with
suitable arrows (namely, inclusions modulo a finite set). Note that L has cofinality c, due
to Theorem 6.11.

7. Applications

The theory presented above definitely calls for illustrative examples. Some of them have
already been described above. Many relevant examples can be found in the existing
literature (e.g. [28], [15], [16], [18]). Below we collect some groups of examples, focusing
on the weak amalgamation property, which is in fact the main theme of this note.

7.1. Monoids. Category theory has two extremes: monoids and posets, living on the
opposite sides. Thus, before going into concrete categories of models, it is natural to
discuss the theory of weak Fräıssé categories in those extreme settings. It turns out that
posets do not contribute much, as all diagrams in a poset category are commutative,
therefore WAP is equivalent to AP. A poset is a Fräıssé category if and only if it is
directed and has a countable cofinality. On the other hand, the free category over a quite
simple poset already leads to something nontrivial, as shown in Example 6.14 above.
Furthermore, some countable monoids fail the WAP, see Example 6.13 above.

Let M = ⟨M, ◦, 1⟩ be a monoid, treated as a category with the unique object M . Note
that if M is commutative then it obviously has the amalgamation property. A countable
monoid without the WAP has already been described in Example 6.13.

The weak amalgamation property in M can be rephrased as follows: There exists
e ∈M such that for every x, y ∈M there are x′, y′ ∈M satisfying

x′ ◦ x ◦ e = y′ ◦ y ◦ e.

We are particularly interested in left-cancellative monoids (as condition (L0) suggests).
It is well known (and easy to show) that every left-cancellative monoid is isomorphic to
a monoid of one-to-one transformations of a fixed set S. We may assume that S has an
extra structure and the elements of the monoid are embeddings or just one-to-one maps
preserving the structure. Now it is easy to see examples of non-commutative monoids
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with the amalgamation property. Perhaps the simplest one is the monoid of all one-to-
one self-maps of a fixed infinite set S. A slightly more sophisticated example is given
below.

7.2. Example. Let R be a ring, n ≥ 1, and let M be the monoid of all (n× n)-matrices
with coefficients in R and with non-zero determinant. The operation is multiplication. If
n > 1 then M is not commutative. Assume R is an integral domain and let K be its field
of fractions. Then M has the amalgamation property.

Indeed, given A,B ∈ M, we have matrices A−1, B−1 with coefficients in K. Let g ∈ R
be the product of all denominators of the fractions appearing in A−1 and B−1. Then gA−1

and gB−1 are matrices with coefficients in R, therefore they are elements of M. Finally,
(gA−1)A = gI = (gB−1)B, where I is the identity matrix.

Actually, even R := Z with n := 1 leads to a nontrivial example. Namely, this
corresponds to the monoid of all self-embeddings of the group ⟨Z,+⟩. Thus, in this case
the natural category L ⊇ M satisfying conditions (L0)–(L2) is the category of all countable
abelian groups whose all nontrivial finitely generated subgroups are isomorphic to ⟨Z,+⟩.
It is easy to see that the Fräıssé limit of M in L is the group ⟨Q,+⟩. It is also easy
to check that if n ≥ 1 then ⟨Qn,+⟩ is the Fräıssé limit, where now the matrices encode
self-embeddings of ⟨Zn,+⟩.

The following example, due to Tristan Bice [3], shows that WAP does not imply AP
even in the class of left-cancellative monoids.

7.3. Example. Let M be the monoid of transformations of the integers generated by two
mappings a, b, where a : Z → Z is defined by a(n) = n + 1 if n ≥ 0 and a(n) = n − 1
otherwise; b : Z → Z is defined by b(n) = n + 1 if n > 0 and b(n) = n − 1 otherwise. So
the only (although essential) difference between a and b is that a(0) = 1, while b(0) = −1.
Every element of M \ {idZ} is of the form

f = xn−1 ◦ . . . x1 ◦ x0,

where xi ∈ {a, b} for every i < n. Note that either f = an or f = bn, depending on
whether x0 = a or x0 = b. This shows that both a and b are amalgamable, however M
fails the amalgamation property, because obviously a and b cannot be amalgamated.

7.4. Concrete categories. We now discuss how the results of this note can be inter-
preted in concrete categories of models and other structures.

First of all, K could be a fixed category of finitely generated models of a fixed first-order
language while L could be the category of all models representable as unions of countable
chains in Obj(K). In both cases it is natural to consider embeddings as arrows, where
an embedding is an isomorphism onto its image. It is clear that conditions (L0)–(L2) are
satisfied. In this setting, our results in Sections 4, 5, and in particular Theorem 5.1, are
extensions of the classical results of Fräıssé [9]. Specifically, if Obj(K) is countable up
to isomorphism and all the models in Obj(K) are countable, then the joint embedding
property together with the weak amalgamation property imply the existence of a unique
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weakly K-injective model in L that might be called the generic limit of Obj(K). Note that
the property of being hereditary is ignored here. The main reason is that the weak AP
is stable under taking the hereditary closure. Recall that the joint embedding property
is simply the property of being directed with respect to embeddings. If the models in
K are uncountable (this may happen if the language is uncountable) then we cannot
deduce that K is locally countable, and indeed K might not be weakly dominated by a
countable subcategory. Summarizing, a class M of countable finitely generated models is
called a weak Fräıssé class if it has the joint embedding property, the weak amalgamation
property and is essentially countable, namely, has countably many isomorphic types. Once
this happens, it is a weak Fräıssé category (with embeddings as arrows). This has already
been discussed in the recent work [18], also in the context of the Banach-Mazur game. Our
Theorem 6.5 in the special case of models summarizes the main results of [18]. Recall
that if M is a weak Fräıssé class then so is its hereditary closure, while if M has the
amalgamation property then its hereditary closure may fail the amalgamation property.

7.5. Projective weak Fräıssé theory. Following Irwin & Solecki [14], we say that
a class of finite nonempty models K is a projective Fräıssé class if it contains countably
many types and satisfies the following two conditions:

(1) For every X, Y ∈ K there exists Z ∈ K having proper epimorphisms onto X and Y .

(2) Given proper epimorphisms f : X → Z, g : Y → Z with X, Y, Z ∈ K, there exist
W ∈ K and proper epimorphisms f ′ : W → X, g′ : W → Y such that f ◦ f ′ = g ◦ g′.

Here, a mapping f : A → B is a proper epimorphism3 if it is a surjective homomorphism
and satisfies

RB(y1, . . . , yn) ⇐⇒ (∃ x1, . . . , xn ∈ A) RA(x1, . . . , xn) and (∀ i ≤ n) yi = f(xi)

for every n-ary relation R (in the language of the models from K). In most cases (at least
when K with homomorphisms admits pullbacks), proper epimorphisms are actually regular
epimorphisms, that is, co-equalizers of pairs of homomorphisms. On the other hand, what
really matters here is that proper epimorphisms are closed under composition.

It is clear that declaring arrows between A,B ∈ K to be proper epimorphisms from B
onto A, we obtain a Fräıssé category. It is also clear how to change condition (2) above,
in order to obtain the projective weak amalgamation property. Of course, the category
L ⊇ K should consist of all inverse limits of sequences in K, treated as compact topological
spaces with continuous epimorphisms. It is easy to check that conditions (L0)–(L2) are
fulfilled.

As a very concrete example, we may consider K to be the class of all finite nonempty
sets with no extra structure. Then L should be the class of all compact 0-dimensional
metrizable spaces. Obviously, K is a Fräıssé category and its generic limit is the Cantor
set. A much more interesting example (leading to an intriguing topological object, called
the pseudo-arc) is contained in [14].

3In [14], proper epimorphisms were erroneously called epimorphisms.
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7.6. Uncountable weak Fräıssé theory. There is nothing surprising in extending
the theory of generic objects and weak Fräıssé sequences to the uncountable setting,
namely, working in a category K closed under colimits of sequences of length < κ, where
κ is an uncountable regular cardinal. Under certain circumstances, there exists a (unique
up to isomorphism) weak Fräıssé sequence of length κ leading to a generic object in a
larger category. In fact, it suffices to combine the results of Section 3 above with [22,
Section 3]. Research in this direction has been recently done by Di Liberti [6].

In fact, the work [7] by Droste & Göbel is the first treatment of model-theoretic Fräıssé
limits from the category-theoretic perspective. Roughly speaking, the authors of [7] work
in a category L having the property that λ-small objects are co-dense and there are not too
many of them. Here, λ is an infinite regular cardinal. Under certain natural conditions,
L contains a special object which is the Fräıssé limit of the subcategory of all λ-small
objects. In our case, λ = ω, however we do not require that K ⊆ L consists of all ω-
small objects. We actually gave necessary and sufficient conditions for the existence of a
K-generic object, assuming conditions (L0)–(L2) only, which are weaker than those of [7].
Our main innovation is the concept of a weakly dominating subcategory. The results of
Droste & Göbel can be easily extended to the case where the amalgamation property is
replaced by its weak version.

8. Concluding remarks

We believe that the theory presented in this note will be applicable in various contexts
in several areas of mathematics. In fact, it already happened recently that weak Fräıssé
sequences were used for showing that a certain concrete C∗-algebra (called the Jiang-Su
algebra) is strongly self-absorbing, see [10]. Roughly speaking, the key idea was consider-
ing a category based on the one whose generic limit is the Jiang-Su algebra, showing that
this new category has a weak Fräıssé sequence and then concluding that its generic limit
must be again the Jiang-Su algebra, just because of uniqueness.

As a conclusion, it seems to us that one of the most important aspects of the Fräıssé
theory (including its weak variant) is uniqueness of the generic object, even though it is
obtained almost for free from the Banach-Mazur game. Nevertheless, Fräıssé theory has
already provided simple and short proofs of uniqueness of several mathematical objects,
like the Gurarii space [20] and the Poulsen simplex [24]. Previous arguments were highly
non-elementary.

8.1. Further research. First of all, uncountable variants of the Banach-Mazur game
presented here should be considered, aiming at finding new connections between “the
finite” and “the uncountable”. The game could possibly be played in a non-linear way,
building a tree or a more complicated infinite diagram.

Second, the “real source” of the weak amalgamation property, namely, structures
leading to generic automorphism—this line of research, originated by Ivanov [15] and
Kechris & Rosendal [16] has not been explored yet. We believe that a pure category-
theoretic framework can be relatively easily designed here.
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