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ON THE DEARTH OF COPRODUCTS IN THE CATEGORY OF
LOCALLY COMPACT GROUPS

ALEXANDRU CHIRVASITU

Abstract. We prove that a family of at least two non-trivial, almost-connected locally
compact groups cannot have a coproduct in the category of locally compact groups if at
least one of the groups is connected; this confirms the intuition that coproducts in said
category are rather hard to come by, save for the usual ones in the category of discrete
groups.

Along the way we also prove a number of auxiliary results on characteristic indices of
locally compact or Lie groups as defined by Iwasawa: that characteristic indices can only
decrease when passing to semisimple closed Lie subgroups, and also along dense-image
morphisms.

1. Introduction

Many of the familiar categories arising “in nature” happen to have coproducts [18, §III.3]
for families tGiuiPI of objects: an object G that is the universal recipient of morphisms
Gi

//G. This is true, for instance, of sets (where the coproduct is just the disjoint union),
groups [3, §4.6], rings [3, §4.13], and in fact more generally, any variety of algebras in the
sense of [18, §V.6]; that is, the category of sets equipped with maps/relations satisfying
of fixed “shapes” satisfying a fixed collection of equations (Lie algebras, abelian groups,
monoids, etc. etc.). The latter result is a consequence of [3, Theorem 9.3.8], for instance,
or [1, Remark 3.4 (4)].

To illustrate the additional complications that obtain in handling topological algebraic
structure, consider how one constructs the coproduct of a family Gi, i P I in the category
of compact (Hausdorff) groups:

� form the group-theoretic coproduct G of the Gi;

� equip G with the finest group topology making all Gi
//G continuous;

� then take the Bohr compactification of G (for the latter construction, see e.g. [2, §1,
Corollary]).
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The present paper is concerned with coproducts in the category LCG of locally compact
(and always, for us, Hausdorff) topological groups. One case is easily dispatched: if the
locally compact groups in question happen to all be discrete, simply form their usual
coproduct in the category GP of (ordinary, non-topological) groups Lemma 4.2.

As soon as some non-discreteness seeps in things become more difficult. The main
result is the no-go Theorem 4.1:

1.1. Theorem. A family of at least two almost-connected locally compact groups cannot
have a coproduct in LCG if at least one of those groups is connected.

As the statement indicates, we focus mainly on the well-behaved class of almost-
connected [10, Preface] locally compact groups G: those for which the quotient G{G0

by the identity connected component is compact. These are in particular arbitrarily
approximable by Lie groups, in the sense that every neighborhood of the identity contains
a compact normal subgroup N such that G{N is Lie (e.g. [19, §4.6, Theorem]); in [10,
Preface] this property is referred to as being pro-Lie.

The proof of Theorem 1.1 relies on a convenient numerical invariant of a connected
locally compact group G, introduced by Iwasawa [12, Theorem 13], which roughly speak-
ing measures the group’s departure from being compact: its characteristic index, denoted
below by cipGq. This is the uniquely-determined non-negative integer r for which G ad-
mits a homeomorphic decomposition G � K � Rr for a maximal compact subgroup K
(see Definition 2.1).

A number of estimates on ci are needed that seem to be difficult to extract from the
literature in precisely the form needed here, so they are included here. An aggregate of
Theorem 3.3 and Proposition 3.4, for instance, reads

1.2. Theorem. Let f : H //G be a morphism of connected locally compact groups.

(a) If f has dense image then cipHq ¥ cipGq.

(b) On the other hand, if H is Lie semisimple then cipHq ¤ cipGq.

We also need an additivity result for characteristic indices under taking quotients by
discrete subgroups. This appears as Proposition 3.2:

1.3. Proposition. For a connected locally compact group G and a discrete central sub-
group Z �G (which will automatically be finitely-generated) we have

cipGq � rankpZq � cipG{Zq.

The statement supplements the analogue (1) for connected normal closed N � G [12,
Lemma 4.10].

Topological coproducts are discussed extensively in the literature, but the discussion
tends to branch in different directions than the one pursued here.

� On the one hand there are studies of varieties of topological groups, i.e. categories
closed under a number of constructions, including coproducts (which are known to
exist): e.g. [5] and references therein.
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� On the other, for locally compact groups the focus in the past seems to have been on
whether or not one can equip (subgroups of) the standard coproduct with a locally
compact topology: e.g. [20, Corollary 1].

In particular, [20, Remark (1)] is very similar in spirit to Theorem 4.1 applied to two
circles, but argues that the standard coproduct S1 �GP S1 in the category GP of groups
has no “non-obvious” locally compact subgroups. This does not seem to say much about
Theorem 4.1 because in principle S1 �LCG S1 (if it existed) might be

� a completion of sorts

� of some quotient of S1 �GP S1

(as per the above description of compact coproducts).
It is worth contrasting, in passing, the above-mentioned negative result, [20, Corollary

1], with positive results of the same flavor pertaining to the category of kω-groups. Recall
[23, §3] that a kω-space is a Hausdorff topological space

X
¤

nPZ¥0

Xn

exhausted by countably many compact subspaces Xn and whose closed subsets are pre-
cisely those having closed intersection with each Xn. kω-groups are topological groups
whose topology is kω in this sense.

In that context, [23, Theorem 3.2] says that the coproduct
²

nGn (in the category
of groups) of countably many kω-groups Gn, equipped with the finest topology making
Gn

//
²
Gn continuous, is again kω. Similarly, [15, §2, Theorem] proves the analogue

for free products of two kω-groups amalgamated over a common compact subgroup.
Reflecting this contrast between kω and locally compact groups, [23, Theorem 4.4]

observes that ordinary, group-theoretic coproducts of kω groups cannot be metrizable
unless they are discrete: metrizability entails local compactness, which is lacking [23,
Theorem 4.2].

As observed above, these matters are adjacent to the problems discussed in the present
paper but tangentially so: we are concerned here with coproducts in LCG, whose under-
lying groups might differ from the purely algebraic coproducts in the category GP .

2. Preliminaries

All topological groups are assumed Hausdorff, and LCG is the category of locally compact
groups.

It is a celebrated result of Iwasawa’s that a connected locally compact group G de-
composes as

G � KH1 � � �Hr � K �H1 � � � � �Hr

where
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� K is a maximal compact subgroup of G;

� which is automatically connected and conjugate to any other maximal compact
subgroup;

� the Hi are closed subgroups isomorphic to pR,�q;

� and the homeomorphism ‘�’ is given by the multiplication map

K �H1 � � � � �Hr
//G

(though that map does not decompose G as a direct product, as in general K and
the Hi do not commute).

This is [12, Theorem 13], which contains an additional hypothesis on G (that of being an
“(L)-group”, i.e. arbitrarily approximable by its Lie-group quotients) proven redundant
in [19, §4.6, Theorem]. Following Iwasawa:

2.1. Definition. The characteristic index of a connected locally compact group G is the
non-negative integer r in the discussion above.

We will denote the characteristic index of G by cipGq

The fact that, as recalled in the Introduction, an almost-connected locally compact
group G has, for any neighborhood 1 P U � G, a compact normal subgroup K � U such
that G{K is Lie [19, §4.6, Theorem] will be referenced repeatedly.

3. Bounds on characteristic indices

The present section collects a number of results, mostly revolving around characteristic-
index computations and estimates, that have proven difficult to locate in the literature
(at least in the form needed here, without further processing).

The characteristic index exhibits additivity under extensions

1 //N //G //G{N // 1

of connected locally compact groups (with N � G closed): according to [12, Lemma 4.10],
under such circumstances we have

cipGq � cipNq � cipG{Nq. (1)

We need some variations on this theme. For one thing, it is frequently convenient to pass
from locally compact groups to their Lie quotients, or from arbitrary connected Lie groups
to linear Lie groups (i.e. those admitting faithful finite-dimensional representations [24,
§1.5, discussion following Corollary 2], which is equivalent to being realizable as closed
subgroups of GLpn,Rq for some n [7, Theorem 9]).
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Connected Lie groups often have linear quotients by discrete central subgroup: this
happens when they are simply-connected [24, §1.4], for instance, or semisimple (following
from the simply-connected case together with the fact that quotients of semisimple linear
Lie groups are again linear [7, Lemma 9]). For this reason, it would be convenient to have
something like (1) for discrete (rather than connected) N .

Let us first begin with the following simple observation, well-known but set out here
for future reference.

3.1. Lemma. A discrete normal subgroup of a locally compact connected group is auto-
matically abelian finitely-generated.

Proof. That such a subgroup Z � G is in fact central follows from its normality and
discreteness, and the connectedness of G: the conjugation action of the latter will have
connected orbits, but the only non-empty connected subsets of Z are the singletons.

As to finite generation, pass first to a Lie quotient G{K of G by a compact normal
subgroup. This will affect nothing, since K X Z must be finite (being both discrete and
compact). But now Z can be identified with the fundamental group of a compact manifold
(a compact Lie group, in fact), hence the conclusion.

Lemma 3.1 implies that any discrete normal Z � G is of the form

Z � pthe torsion subgroup of Zq � Zr, (2)

and hence we can refer, as usual (e.g. [17, p.46]), to its rank rankpZq :� r. With all of
this in place, we can now proceed to the aforementioned discrete-subgroup analogue of
(1).

3.2. Proposition. Let G be a connected locally compact group and Z � G a discrete
normal subgroup. We then have

cipGq � rankpZq � cipG{Zq. (3)

Proof. Since quotients by finite groups do not affect the characteristic index and we can
work our way through the individual Z factors in (2) successively, we will assume Z � Z.
The goal, then, is to prove that

cipGq � 1� cipG{Zq. (4)

Consider a connected, closed, proper, normal subgroup t1u � N � G. We can then apply
the desired result to N and G{N separately: either Z XN is infinite cyclic, in which case
the proposition applies to it, or the image of Z generates a closed subgroup of G{N of
the form

pS1qm � Z, m ¥ 0 (5)

so that
cipG{Nq � 1� cippG{Nq{image of Zq.
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Either way, having taken care of the smaller groups N and G{N in this manner, we derive
the desired (4) from (1). This argument serves to reduce the problem to the case when
G has no such normal subgroups N , i.e. G is R (because it is 1-dimensional and has an
embedded copy of Z) or simple.

If G � R we are done; this leaves the case of simple G, to which the rest of the proof
is devoted.

Begin by fixing a a global Cartan decomposition

K � p Q pk, xq
�
ÞÝÑ k exppxq P G (6)

as in [16, Theorem 6.31] with K containing the center ZpGq and hence also Z, and such
that K{ZpGq is maximal compact in G{ZpGq. Furthermore, the p Cartesian factor in the
decomposition (6) survives as a Cartesian factor upon quotienting by Z, so by subtracting
dim p from both ci terms in (3) our goal becomes

cipKq � 1� cipK{Zq.

The Lie algebra k :� LiepKq is compact in the sense of [10, Definition 6.1] and hence of
the form

k � Rm �
n¹
i�1

si

for simple Lie algebras si [10, Theorem 6.6]. Then, up to irrelevant quotienting by a finite
central subgroup, we may assume K is of the form

K � RcipKq � Tm1

�
n¹
i�1

Si

where

� the Si are simple compact Lie groups with respective Lie algebras si;

� cipKq �m1 � m.

In this setup it is clear that the quotient K{Z will be of the form

RcipKq�1 � Tm1�1 � (a compact semisimple group).

Since the characteristic index of this product is precisely cipKq � 1, we are done.

We next record a phenomenon (reminiscent of (1)) whereby ci, if it changes at all, can
only decrease along morphisms with dense image.

3.3. Theorem. For a dense-image morphism f : G // H of connected locally compact
groups we have cipGq ¥ cipHq.
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Proof. Consider a compact normal subgroup K � H with H{K Lie, an open neighbor-
hood U of 1 P H{K that contains no non-trivial subgroups [9, Chapter II, Exercise B.5],
and let V be the pullback of U through

G
f
ÝÑ H //H{K. (7)

G contains a compact normal subgroup K 1 � V with G{K 1 Lie [19, §4.0], and the no-
subgroup-in-U condition ensures that (7) annihilates K 1. Since furthermore quotienting
out compact normal subgroups does not alter characteristic indices, we may as well sub-
stitute G{K 1 and H{K for G and H respectively; better yet, we can simply assume G
and H are Lie to begin with.

So long as we can find closed, connected, (non-trivial and proper) normal subgroups
N � G we can

� apply the result recursively to f |N : N // fpNq;

� and similarly to the morphism

G{N //H{fpNq;

� then lifting back up to f : G //H via Iwasawa’s additivity (1).

It thus suffices to consider the case when G has no such normal subgroups N ; when it is,
in other words,

(a) one-dimensional (and hence a circle or R)

(b) or simple.

For (a) observe that H will also be abelian and connected and hence of the form

pS1qm � RcipHq

for some m [9, Chapter II, Exercise C.2]. But then either G � S1 and its image is
automatically closed and hence cipHq � 0, or G � R and cipHq ¤ 1 because no morphism
R // R¥2 can have dense image.

This leaves case (b): G is simple. If there is an infinite cyclic discrete central subgroup

Z � Z ¤ G

then the closed subgroup fpZq ¤ H must be of the form (5) or a torus, so we can
substitute

G{Z //H{fpZq

for f : the characteristic index of G will have decreased by 1 by Proposition 3.2, whereas
that of H will have decreased by at most 1.
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Repeating this procedure, we can exhaust the torsion-free component of the center
of G and thus assume that its center is finite. But semisimple Lie subgroups with finite
center are automatically closed [6, Theorem 2], so in that case fpGq � H and we are back
to using Iwasawa’s original (1) with

N :� ker f and H � fpGq � G{N.

This concludes the proof.

One initial attempt at a proof of Theorem 4.1 proceeded by producing, for two non-
trivial simple linear Lie groups Gi, i � 1, 2, representations

ρi : Gi
//GLpV q

on a common space such that the group G generated topologically by ρipGiq contains
unipotent subgroups of large dimension (meaning subgroups of GLpV q consisting only of
unipotent matrices, i.e. with spectrum t1u). One might hope that this then allows us to
conclude that G has large characteristic index, thus finishing the argument via Proposition
4.8.

More generally, intuition dictates that the characteristic index of a connected Lie
group imposes an upper bound on the characteristic index of its Lie subgroups. We prove
a version of this.

3.4. Proposition. For a closed embedding H ¤ G of connected locally compact groups
with H Lie semisimple the characteristic index of H is dominated by that of G.

Proof. We make a number of simplifications. For one thing, G too can be assumed Lie:
simply pass to

HK{K //G{K

for a compact normal subgroup K � G with G{K Lie, noting that that embedding is still
closed because the kernel K is compact.

Reduction to the linear case. We can always render G linear by modding out a
central closed subgroup Z ¤ G (e.g. via the adjoint representation). Now, being Lie and
abelian, Z must be of the form

Z � Zm � pfinite abelian groupq � Rn � pS1qp (8)

for non-negative integers m, n and p: the connected component decomposes as a Euclidean
group times a torus by [9, Chapter II, Exercise C.2], and that component is divisible[§5,
Definition]kpl-inf and hence splits off as a summand [14, Theorem 2].

Annihilating normal compact subgroups makes no difference to characteristic indices,
so we will henceforth ignore the compact component

finite� pS1qp
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of (8). According to (1) and Proposition 3.2 we have

cipG{Zq � cipGq �m� n.

On the other hand the image
HZ{Z � H{H X Z

of H through G // G{Z is now semisimple and linear, meaning that it is automatically
closed [6, Theorem 2, Lemma 5]. In any decomposition

Z XH � Zm1

� Rn1

analogous to (8) (again, ignoring compact factors) we must have m1 � n1 ¤ m� n, so by
(1) and Proposition 3.2 again we will have

cipHq � cipHZ{Zq � m1 � n1 ¤ m� n � cipGq � cipG{Zq

or, rearranging,
cipG{Zq � cipH{Zq ¤ cipGq � cipHq.

For that reason we have

cipHZ{Zq ¤ cipG{Zq ñ cipHq ¤ cipGq :

the linear-case inequality entails the general one.

Reducing to semisimple G. This is similar to the previous portion of the argument
but simpler, now that we have specialized to linear groups. The additivity relation (1)
applied to N � R :� RadpGq (the radical) in particular gives

cipG{Rq � cipGq � cipRq ¤ cipGq.

The intersection H XR is normal and solvable and hence discrete (H being semisimple),
so it must in fact be finite because H is linear [6, Lemma 5]. This means that HR{R �
H{H XR has the same characteristic index as H, so it will be enough to prove

cipHR{Rq ¤ cipG{Rq.

Note that HR{R ¤ G{R is closed again by [6, Theorem 2, Lemma 5], since it is both
semisimple and linear: the semisimplicity is one of the hypotheses, the linearity of H is
being assumed, and that of its quotient HR{R � H{H XR follows from [7, Lemma 9].

The upshot is that we can assume G to be semisimple.

Linear, semisimple G. For a global Iwasawa decomposition

H � KH � AH �NH ,

the characteristic index cipHq is dimpAHq � dimpNHq, so it will be enough to argue that
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(a) dimpNHq ¤ dimpNGq

(b) and dimpAHq ¤ dimpAGq

where similarly, G � KG � AG � NG is an Iwasawa decomposition. We address the two
claims separately.

(a): dimpNHq ¤ dimpNGq. To see this, note first that the elements of NH remain
unipotent in G when regarded as operators on the Lie algebra g :� LiepGq via the
adjoint representation, because morphisms of semisimple Lie algebras preserve Jordan
decompositions (e.g. [11, §6.4, Corollary]).

But this then means that NH is conjugate to a subgroup of AGNG [21, §2.8], whose
unipotent elements are precisely those of NG. In short: NH is conjugate to a subgroup of
NG, implying the requisite dimension inequality.

(b): dimpAHq ¤ dimpAGq. Equivalently, we will work with the Lie algebras aH :�
LiepAHq and similarly for G. The argument is very similar in spirit to what we saw above:
aG is maximal real diagonal in the sense of [21, §1.3] (i.e. its elements are semisimple with
real eigenvalues) so by loc.cit. it will be enough to argue that aH � g is again real diagonal
(for it will then be conjugate in G to a Lie subalgebra of aG; see also [16, Theorem 6.51
and surrounding discussion on Iwasawa-decomposition uniqueness]).

That aH consists of semisimple operators on g follows from the Jordan-decomposition
preservation, as before. The issue is proving that those operators have real eigenvalues on
g. To that end, note that

� since g is a finite-dimensional representation of h, the eigenvalues in question are
obtained by evaluating various integral weights [11, §13.1] of the complexification
hC on aH ;

� said weights are rational combinations of the roots of hC [11, §13.1 and §13.2, Table
1];

� and the roots take real values on aH [16, discussion preceding Proposition 6.60].

This finishes the proof.

3.5. Side-note on linear quotients. In the course of the proof of Proposition 3.4 we
worked with a linear quotient of G by some central subgroup. The latter, being abelian
and closed in a connected Lie group, was of the form (8):

pfinitely-generated abelian groupq � pEuclidean groupq � ptorusq.

As it turns out, this was overly cautious: one can always arrange to have the Euclidean
factor absent. It seems worthwhile to record this here.
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3.6. Proposition. A connected Lie group G has a linear quotient by a central subgroup
of the form

A� pS1qm, m P Z¥0 (9)

for a finitely-generated discrete abelian group A.

Proof. Let R ¤ G be the radical, and M ¤ G of G a Levi factor: a Lie subgroup (not
necessarily closed, in general) whose underlying Lie algebra

m :� LiepMq ¤ g :� LiepGq

is a supplementary summand to r :� LiepRq (e.g. [25, Chapter VI, Theorem 4.1] and [24,
§1.3]).

Connected Lie groups are linear as soon as their radicals and Levi factors are [7,
Theorem 7], so we will focus on achieving that by quotienting out a central subgroup of
the desired form.

Consider first the central subgroup Z ¤M obtained as the common kernel of all finite-
dimensional M -representations. It will in particular act trivially on R by conjugation, so
Z and its closure Z ¤ G must be central.

Although in general Z will not be closed (i.e. Z � Z), it is nevertheless the case that
Z is of the form (9): this follows, for instance, from [6, Theorem 1] and its proof. We
thus have a first quotient G{Z by a closed central subgroup of the desired form (9) that
at least has a linear Levi factor. All subsequent quotients we consider will be by images
(in G{Z) of tori contained in R that were central in G to begin with, so we may as well
simplify the discussion by assuming that the Levi factor M was linear to begin with.

Given this latter assumption, we only need to render the radical R linear. Accord-
ing to [7, Theorem 5] we would be done if the closed derived subgroup CpRq :� DpRq
were simply-connected. Since CpRq is nilpotent (being the closure of the nilpotent Lie
group DpGq [25, Chapter V, Corollary 5.3]), the only it could possibly fail to be simply-
connected would be for its (unique, central-in-G: [24, §1.8], [7, Lemma 13]) maximal
compact subgroup K to be a non-trivial torus.

We can now pass to G{K: the linearity of the Levi factor M has not been affected, as
quotients of linear semisimple Lie groups are linear [7, Lemma 9], and since the kernel K is
compact, closures of quotients are quotients of closures, etc., so that CpG{Kq � CpGq{K.
The latter is now simply-connected, and we are done.

In general, the toral factor cannot be left out in Proposition 3.6. The following example
given in [6, Appendix] of a non-closed Lie-group embedding will serve to illustrate this.

3.7. Example. Let �SLp2,Rq be the universal cover of SLp2,Rq. Its center will be iso-
morphic to Z, and the kernel of the surjection back to SLp2,Rq is generated by a central
element σ. Now set

G :� �SLp2,Rq � R{tpσn�m, n�mγq | m,n P Zu

for some irrational number γ P R.
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A finite-dimensional representation of �SLp2,Rq factors through SLp2,Rq (as follows,
for instance, from the representation theory of the complexified Lie algebra slp2,Cq [11,
§7.2]), so any morphism G // GLpn,Rq must annihilate σ P SLp2,Rq � G. But the
closure of xσy in G contains the circle

R{tn� nγ | n P Zu � G,

so that closure will be an embedded copy of Z� S1. The resulting morphism�SLp2,Rq � G //G{Z� S1

is nothing but the original quotient�SLp2,Rq // SLp2,Rq

(or rather is isomorphic to it).

The issue of whether or not a Lie group has a discrete-kernel linear quotient relates to
the preceding discussion in other ways too. Several times (e.g. in the proofs of Theorem
3.3 and Proposition 3.4) we have used the fact that semisimple Lie groups with finite center
are automatically closed [6, Theorem 2], which in turn entails the fact that semisimple Lie
subgroups of linear groups are closed [6, Corollary to Theorem 2]. This can be enhanced
slightly.

3.8. Lemma. Let G be a connected Lie group admitting a linear quotient G{Z by a discrete
central subgroup. Any connected semisimple Lie subgroup of G is automatically closed.

Proof. This is immediate from the already-cited [6, Corollary to Theorem 2]: H ¤ G is
connected semisimple and the semisimple subgroup

impHq � HZ{Z � H{H X Z ¤ G{Z

is closed in the linear group G{Z. But then so is its preimage HZ through G // G{Z,
so the identity component H � pHZq0 must be closed too.

This unifies a number of other results similar results. For instance, semisimple Lie
subgroups are automatically closed when the large ambient group G is

� simply-connected ([22, Corollary 1]), because simply-connected groups have discrete-
kernel linear quotients [24, §1.4];

� or compact ([22, Corollary 2]), since compact Lie groups are already linear [10,
Corollary 2.40].

4. Colimits of locally compact groups

4.1. Theorem. A family of at least two non-trivial almost-connected locally compact
groups with at least one connected cannot have a coproduct in LCG.

It will require some detours and surrounding scaffolding, on which we now embark.
First, a converse of sorts:
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4.2. Lemma. If Γi, i P I is a family of discrete groups then their coproduct in the category
of groups is also their coproduct in LCG.

Proof. This is clear: the embedding functor of the category GP of discrete groups into
LCG is left adjoint to the discretization functor LCG // GP , and hence it preserves
colimits [18, (dual of) §V.5, Theorem 1].

The following simple remark will, on occasion, allow us to consider simpler groups.

4.3. Lemma. If a family tGiuiPI has a coproduct in LCG then so does any family of
quotients Gi

//Gi.

Proof. This is straightforward: if G � �LCGGi denotes the coproduct of the original
family, its quotient by the smallest closed normal subgroup generated by all

ker
�
Gi

//Gi

�
obviously satisfies the universality property required of the coproduct �LCGGi.

Next, we isolate the following notion that will recur in subsequent discussions.

4.4. Definition. A family G :� tGi | i P Iu of topological groups is jointly characteristic-
index-unbounded or (jointly) ci-unbounded for short if there are morphisms

ϕi : Gi
// L (10)

into locally compact groups wherein the connected component of the closed subgroup Gϕi

generated by ϕipGiq has arbitrarily large characteristic index.
G is linearly (jointly) ci-unbounded if it satisfies the above condition with morphisms

into linear groups L (or equivalently, L � GLpV q for finite-dimensional vector spaces V ).
If G is linearly ci-unbounded and families (10) exist with Gϕi

containing connected
semisimple Lie groups of arbitrarily large characteristic index, then G is semisimply ci-
unbounded, or (jointly) ciss-unbounded.

We will make use of the following device at least twice, so it is perhaps worth high-
lighting.

4.5. Definition. Consider two morphisms ϕi : Gi
// G into a locally compact group,

and suppose we would rather have ϕ land in an open subgroup of G having a property P
(e.g. being pro-lie or almost-connected) which is closed under

� taking open subgroups,

� and finite-index extensions.

Then, assuming that

� one of Gi, G1, say, is non-discrete;

� G is similarly non-discrete;
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� and G does have a property-P open subgroup H ¤ G,

we can first consider the open preimage

H1 :� ϕ�1
1 pHq ¤ G1,

which will be non-trivial because G1 is assumed non-discrete. The analogous preimage in
G2 might be trivial if G2 is finite, but in that is the case we can always replace the initial
open subgroup H ¤ G with �£

gPG2

ϕ2gHϕ2g
�1

�
ϕ2pG2q ¤ G,

which will still have property P by assumption. This alteration, though, ensures that when
G2 is finite we can simply take H2 :� G2 and still have ϕ2pH2q ¤ H.

We will have thus found a property-P open subgroup H ¤ G and non-trivial open
subgroups Hi ¤ Gi for which

ϕpHiq ¤ H.

Under these conditions we will say that the original morphisms ϕi have been compressed
to

ϕi|Hi
: Hi

//H

respectively, and what we have gained is the fact that the codomain now has the desired
property P. Furthermore, if G2 is finite we can simply take H2 � G2.

The difference between the two versions of Definition 4.4 vanishes in the cases of
interest here.

4.6. Lemma. Let G :� tGi, i � 1, 2u be a pair of almost-connected locally compact groups
with G1 infinite. If G is ci-unbounded in the sense of Definition 4.4 then it is linearly ci-
unbounded.

Proof. We are assuming that Gi jointly map to a locally compact group L where they
generate a closed subgroup with large characteristic index. Our assumption that G1 is
infinite allows us to use the compression procedure in Definition 4.5: we can then assume
that L is connected an hence pro-Lie, at the cost of replacing Gi with open non-trivial
subgroups Hi ¤ Gi.

By further taking a quotient we can assume that L is linear an Lie. In short, we have
representations ρi : Hi

//GLpV q for a finite-dimensional V such that ρipHiq generate a
group with large ci.

Hi ¤ Gi are open non-trivial subgroups of almost-connected groups, so they must
have finite index. We can thus induce ρi to a representation

σi :� indGi
Hi
ρi
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on a finite-dimensional space Vi [13, §2.1]. Furthermore, by the very definition of the in-
duced representation, the restriction σi|H contains a copy of ρi operating on an isomorphic
copy V ¤ Vi.

By replacing Vi with V `ni
i for appropriately-chosen ni if necessary, we can assume

that both σi operate on the same space W . Then, upon conjugating σ2 by an invertible
operator on W , we can assume that we have isomorphic copies

σi|Hi
� ρi, i � 1, 2

operating on the same subspace V ¤ W . All in all, we have

� morphisms σi : Gi
//GLpW q;

� whose restrictions to Hi leave a subspace V ¤ W invariant;

� such that the resulting subgroup

xσipHiqy � GLpV q

has large characteristic index.

But that index will then be dominated by that of

xσipGiqy � GLpW q,

which must thus also be large. But we saw above that this is precisely what was needed
to complete the proof.

Note, in passing, that the induction-based argument used in Lemma 4.6 also proves

4.7. Lemma. Let tGi, i � 1, 2u be a pair of locally compact groups and Hi ¤ Gi two
finite-index subgroups. If tHiu is linearly ci-unbounded then that unboundedness can be
witnessed by finite-dimensional representations

Gi
//GLpV q.

Returning to coproducts, the concept of joint ci-unboundedness is germane for the
following reason.

4.8. Proposition. Let Gi, i � 1, 2 be two almost-connected locally compact groups such
that

� G1 is infinite;

� and such that all pairs of non-trivial open subgroups Hi ¤ Gi are jointly ciss-
unbounded in the sense of Definition 4.4.

Then, Gi do not have a coproduct in the category LCG.
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Proof. We will argue by contradiction, assuming Gi do have a coproduct G in LCG.
Like all locally compact groups, G has an open subgroup H ¤ G containing the

identity component G0 such that H{G0 is compact and hence approximable by Lie groups
[19, §4.0]. By the compression procedure of Definition 4.5 (which requires the assumed
infinitude of H1) we then have non-trivial open subgroups Hi ¤ Gi mapped to H by the
canonical morphisms Gi

//G.
Now, our ciss-unboundedness assumption allows us, via Lemma 4.7, to construct finite-

dimensional representations ρi : Gi
//GLpV q such that Hi topologically generate linear

groups S ¤ GLpV q containing connected semisimple subgroups with large characteristic
index. The restrictions ρi|Hi

factor through the almost-connected open subgroup H ¤ G,
and hence the connected component

xϕipHiqy ¤ GLpV q

will be mapped to densely by H0 � G0 (Lemma 4.9). In summary:

H0

S

xϕipHiqy

dense image

closed embedding

In Theorem 3.3 and Proposition 3.4 respectively we prove

cipH0q ¥ cipxϕipHiqyq and cipxϕipHiqyq ¥ cipSq,

which render cipH0q unbounded and deliver the desired contradiction.

4.9. Lemma. Let G be an almost-connected locally compact group and ϕ : G // L a
morphism of locally connected groups. The restriction

ϕ|G0 : G0
//
�
ϕG
�
0

to the identity component must then have dense image.

Proof. Restricting our attention to ϕG, we will assume without loss of generality that
ϕ : G // L has dense image to begin with. The goal is then to show that so does

ϕ|G0 : G0
// L0.

Now, ϕG0 is normal in ϕG, so it must be normal in its closure L as well. But then so is
its closure ϕG0, and ϕ induces a dense-image morphism

G{G0
// L{ϕG0. (11)

Because by assumption G{G0 is profinite and quotients of profinite groups are profinite
[10, Exercise E1.13], the codomain L{ϕG0 of (11) will in particular be totally disconnected
(in addition to being compact). But this was our goal to begin with: showing that ϕG0

contains the connected component L0.
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Next, we turn to the hypotheses of Proposition 4.8 and whether or not they are satisfied
in the cases of interest.

4.10. Proposition. Pairs tGi, i � 1, 2u of non-trivial locally compact groups with G1

connected and G2 almost-connected are jointly ciss-unbounded in the sense of Definition
4.4.

Proof. The argument proceeds in a number of stages.
Step 1: simplifying the connected case. Since connected locally compact groups

are pro-Lie [19, §4.6, Theorem], whenever we assume one of Gi is connected we may as
well take a quotient and assume it is Lie (and non-trivial, and connected).

Furthermore, the Lie algebra gi :� LiepGiq will then either be solvable or have a
non-trivial semisimple quotient ([16, Proposition 1.12 and subsequent discussion]). In the
former case gi has R as a quotient and hence Gi surjects onto a circle group; in the latter Gi

surjects onto a simple connected Lie group (via the Lie-group-Lie-algebra correspondence
[8, Theorem 5.20], because its Lie algebra does [8, Theorem 7.8]). In summary, when
dealing with connected Gi we can (and will) assume that the group in question is either
S1 or connected, simple and linear.

Step 2: Gi both connected. That is, circles or simple, by Step 1. We can then
find

� circles Ti ¤ Gi;

� and finite-dimensional representations ρi : Gi
//GLpViq;

� in which, for some large n, the circles Ti operate with at least n eigenvalues (i.e.
characters) χi,j, 1 ¤ j ¤ n that are sufficiently generic, i.e. in the sense that for
each i � 1, 2 the characters

tχi,juj and tχi,jχ
�1
i,j1uj�j1

are all distinct and non-trivial.

Taking multiple copies of each Vi if necessary we can assume that ρi are realized on a
common space V , and then conjugating ρ2 inside GLpV q, we can further assume that Ti
operate with respective eigenvalues χi,j on n common lines

Cej � V, 1 ¤ j ¤ n.

By construction the Ti restrict to strongly regular circle subgroups of L :� PSLpspantej, 1 ¤
j ¤ nuq in the sense of [4, Definition 3.1], and by [4, Theorem 3.5] some pair of conjugates
of those groups will generate L. Since the latter can be chosen to have arbitrarily large
characteristic index, we are done.

Step 3: The connected-profinite case. That is, one of the groups (G1, say)
is assumed connected and the other profinite and non-trivial. We can then substitute a
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finite non-trivial quotient for G2, and then a finite cyclic subgroup thereof via Lemma
4.7. In short, assume

G � Z{n � xσy, n ¥ 2.

But then
G1 �G2 � G1 � pZ{nq �

�
�
n�1
i�0 AdσiG1

�
� pZ{nq, (12)

and we can fall back on the argument from Step 2: represent two of the conjugates AdσiG1

appropriately, then induce that representation to (12).
To conclude, note that upon applying Step 3 to G1 and G2{G2,0 we conclude that the

latter is trivial, i.e. G2 is connected. But then Step 2 applies.

Proof of Theorem 4.1. Immediate from Propositions 4.8 and 4.10.
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