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EXTENSIVITY OF CATEGORIES OF RELATIONAL STRUCTURES

JASON PARKER

Abstract. We prove that the category of models of any relational Horn theory satisfy-
ing a mild syntactic condition is infinitely extensive. Central examples of such categories
include the categories of preordered sets and partially ordered sets, and the categories
of small V -categories, (symmetric) pseudo-V -metric spaces, and (symmetric) V -metric
spaces for a commutative unital quantale V . We also explicitly characterize initial
sources and final sinks in such categories, and in particular embeddings and quotients.

1. Introduction

A category C is infinitely extensive [3] if it has small coproducts and for any small family
(Xi)i∈I of objects of C , the canonical functor

∏
i C /Xi → C / (

∐
iXi) is an equivalence.

Prominent and well-known examples of infinitely extensive categories include cocomplete
elementary toposes (such as Grothendieck toposes), the category Cat of small categories
and functors, and the category Top of topological spaces and continuous maps. Gener-
alizing the last example, Mahmoudi-Schubert-Tholen showed in [10] that many of the
categories studied in monoidal topology [7] (which are defined in terms of commutative
unital quantales V ) are also infinitely extensive. Clementino [4] recently extended the re-
sults of [10] to a more general setting (where a commutative unital quantale V is replaced
by a complete and cocomplete symmetric monoidal closed category V ).

As a further contribution to this line of work, we show in this article that if T is
a relational Horn theory satisfying a mild syntactic condition (5.2), then the category
T-Mod of T-models and their morphisms is infinitely extensive. As we show in Example
3.7, key examples of such categories include: the category Preord of preordered sets and
monotone maps, and its full subcategory Pos of partially ordered sets; for a commuta-
tive unital quantale V , the category V -Cat of (small) V -categories and V -functors, the
category PMetV of (symmetric) pseudo-V -metric spaces and V -contractions, and its full
subcategory MetV of (symmetric) V -metric spaces. The infinite extensivity of some of
these categories (e.g. Preord and V -Cat) is already known from the results of [10, 4]; but
the categories studied in [10, 4] do not subsume all of the categories studied in the present
article.1 On the other hand, the categories considered herein are all locally presentable [2],
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and there are certainly examples of non-locally-presentable categories studied in [10, 4]
(e.g. Top) whose infinite extensivity is therefore not a consequence of the results of the
present article. In summary, the results of the present article neither subsume nor are
subsumed by the results of [10, 4].

We now provide an outline of the article. After recalling some relevant background
on concrete and topological categories in Section 2, we begin Section 3 by defining the
notion of a relational signature Π, which is a set of relation symbols equipped with an
assignment to each relation symbol of a finite positive arity. We then define the concrete
category Str(Π) of Π-structures and Π-morphisms. For a regular cardinal λ, we define the
notion of a λ-ary relational Horn theory T over a relational signature Π, and we provide
some central examples of such theories. In Section 4 we study some topological properties
of the category T-Mod for a relational Horn theory T without equality, and we provide an
explicit characterization of initial sources (and hence embeddings) and final sinks (and
hence quotients) in T-Mod. We prove the main result of the paper in Section 5. We begin
Section 5 by stating the mild syntactic condition (5.2) that we will impose on relational
Horn theories to prove the infinite extensivity of their categories of models; this condition
is satisfied by all of our examples, and many others. We then establish in Theorem 5.5
that if T is a relational Horn theory that satisfies the syntactic condition (5.2), then
T-Mod is infinitely extensive. We thank the referee for useful comments and suggestions
that improved the content and presentation of the paper.

2. Notation and background

We first recall some background material on concrete and topological categories, which
can be found (e.g.) in [1].

2.1. A concrete category (over Set) is simply a category C equipped with a faithful
functor | − | : C → Set (which we will usually not mention explicitly). Concrete cate-
gories (A , | − |A ) and (B, | − |B) are concretely isomorphic if there is an isomorphism of
categories F : A → B satisfying | − |B ◦ F = | − |A . A source in an arbitrary category
C is a (possibly large) class of morphisms (hi : X → Xi)i∈I in C with the same domain,
while a sink in C is a (possibly large) class of morphisms (hi : Xi → X)i∈I with the same
codomain.

A source (hi : X → Xi)i∈I in a concrete category C is initial if for any C -object Y
and function h : |Y | → |X|, the function h lifts to a C -morphism h : Y → X iff the
composite functions hi ◦ h : |Y | → |Xi| lift to C -morphisms hi ◦ h : Y → Xi for all i ∈ I.
In particular, a morphism of C is initial if the source consisting of just that morphism
is initial. Dually, a sink (hi : Xi → X)i∈I in a concrete category C is final if for any
C -object Y and function h : |X| → |Y |, the function h lifts to a C -morphism h : X → Y
iff the composite functions h ◦ hi : |Xi| → |Y | lift to C -morphisms h ◦ hi : Xi → Y for all

studied herein (e.g. Pos) have this property. Moreover, it does not seem that the categories PMetV and
MetV of symmetric (pseudo-)V -metric spaces are examples that are (directly) captured by [10, 4].
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i ∈ I. In particular, a morphism of C is final if the sink consisting of just that morphism
is final.

If C is a concrete category, then a structured source is a (possibly large) class of
functions (fi : S → |Xi|)i∈I with S a set and Xi a C -object for each i ∈ I, while a
structured sink is defined dually. A concrete category C is topological (over Set) if every
structured source (fi : S → |Xi|)i∈I has an initial lift, meaning that there is a C -object
X with |X| = S such that each fi : |X| = S → |Xi| lifts to a C -morphism fi : X → Xi,
and the resulting source (fi : X → Xi)i∈I is initial. A topological category over Set also
satisfies the dual property that every structured sink has a final lift (see e.g. [1, 21.9]).

2.2. Let C be a topological category over Set. We say that a morphism of C is injective
(resp. surjective, bijective) if its underlying function is injective (resp. surjective, bijec-
tive). Since | − | : C → Set is faithful and preserves small limits and colimits (see [1,
21.15]), it follows that the monomorphisms (resp. epimorphisms) of C are precisely the
injective (resp. surjective) morphisms.

An embedding of C is an injective morphism that is initial, while a quotient (morphism)
of C is a surjective morphism that is final. The embeddings (resp. quotients) are precisely
the strong monomorphisms (resp. strong epimorphisms) of C , which in turn are precisely
the regular monomorphisms (resp. regular epimorphisms) of C (see e.g. [1, 21.13]). It
follows that the isomorphisms of C are precisely the bijective embeddings, or equivalently
the bijective quotients.

3. Relational Horn theories

We begin by defining the notion of a relational signature and its structures.

3.1. Definition. A relational signature is a set Π of relation symbols together with
an assignment to each relation symbol of a finite arity, i.e. a positive integer n ≥ 1.

We will typically write R for a general relation symbol. We fix a relational signature Π
for the remainder of Section 3. The next two definitions are essentially taken from [5,
Definition 3.1].

3.2. Definition. A Π-edge in a set S is a pair (R, (s1, . . . , sn)) consisting of a relation
symbol R ∈ Π (of arity n ≥ 1) and an ordered n-tuple (s1, . . . , sn) of elements of S. A
Π-structure X consists of a set |X| together with a subset RX ⊆ |X|n for each relation
symbol R ∈ Π (of arity n ≥ 1). We may equivalently describe a Π-structure X as a
set |X| equipped with a set E(X) of Π-edges in |X|: if R ∈ Π of arity n ≥ 1, then
(x1, . . . , xn) ∈ RX iff E(X) contains the Π-edge (R, (x1, . . . , xn)). We will pass between
these equivalent descriptions of Π-structures without further comment. We will often
write X |= Rx1 . . . xn to mean that (x1, . . . , xn) ∈ RX .

3.3. Definition. Let h : S → S ′ be a function from a set S to a set S ′, and let
e = (R, (s1, . . . , sn)) be a Π-edge in S. We write h · e = h · (R, (s1, . . . , sn)) for the Π-edge
(R, (h(s1), . . . , h(sn))) in S

′. If E is a set of Π-edges in S, then we write h · E for the set
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of Π-edges {h · e | e ∈ S} in S ′. If E ′ is a set of Π-edges in S ′, then we write h−1[E ′] for
the set of Π-edges e in S such that h · e ∈ E ′.

Given Π-structuresX and Y , a (Π-)morphism h : X → Y is a function h : |X| → |Y |
such that h · E(X) ⊆ E(Y ), or equivalently such that E(X) ⊆ h−1[E(Y )]. We let Str(Π)
be the concrete category of Π-structures and Π-morphisms.

We now describe the syntax of relational Horn theories.

3.4. Definition. Let λ be a regular cardinal, and let Var be a set of variables of cardi-
nality λ. A λ-ary2 Horn formula (over Π) is an expression of the form Φ =⇒ ψ, where
Φ is a set of Π-edges in Var of cardinality < λ and ψ is a (Π ∪ {=})-edge in Var, where
= is a fresh binary relation symbol not in Π. If Φ = {φ1, . . . , φn} is finite, then we write
φ1, . . . , φn =⇒ ψ, and if Φ = ∅, then we write =⇒ ψ. A λ-ary Horn formula without
equality (over Π) is a λ-ary Horn formula Φ =⇒ ψ (over Π) such that ψ is a Π-edge in
Var, i.e. such that ψ does not contain the fresh binary relation symbol =.

3.5. Definition. Let λ be a regular cardinal. A λ-ary relational Horn theory T
(without equality) is a set of λ-ary Horn formulas (without equality) over Π, which
we call the axioms of T. A relational Horn theory (without equality) is a λ-ary
relational Horn theory (without equality) for some regular cardinal λ.

3.6. Definition. Let λ be a regular cardinal, and letX be a Π-structure. We letX be the
(Π ∪ {=})-structure defined by

∣∣X∣∣ := |X| and E
(
X
)
:= E(X) ∪ {(=, (x, x)) | x ∈ |X|}.

A valuation in X is a function κ : Var → |X|. We say that X satisfies a λ-ary Horn
formula Φ =⇒ ψ over Π if whenever κ is a valuation in X such that X |= κ · φ for each
φ ∈ Φ, then X |= κ · ψ. A Π-structure X is a model of a λ-ary relational Horn theory T
if X satisfies every axiom of T. We let T-Mod be the full subcategory of Str(Π) consisting
of the models of T, which is a concrete category when equipped with the faithful functor
| − | : T-Mod → Set obtained by restricting the faithful functor | − | : Str(Π) → Set.

3.7. Example. We provide the following central examples of relational Horn theories.
Some further examples may be found in [5, Example 3.5].

1. Let T be the empty relational Horn theory over Π. Then of course T-Mod = Str(Π).
In particular, if Π is empty, then T-Mod = Set.

2. Let Π consist of a single binary relation symbol ≤, and let T be the finitary relational
Horn theory without equality over Π that consists of the two axioms =⇒ x ≤ x and
x ≤ y, y ≤ z =⇒ x ≤ z. Then T-Mod is the concrete category Preord of preordered sets
and monotone maps. If one extends T by adding the further axiom x ≤ y, y ≤ x =⇒
x = y, then the category of models of the resulting finitary relational Horn theory with
equality is the concrete category Pos of posets and monotone maps.

2When λ = ℵ0, we will say “finitary” rather than “ℵ0-ary”.
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3. The following examples come from [14, Definition 2.2 and Remark 2.4(2)]. Let (V ,≤
,⊗, k) be a commutative unital quantale [11], meaning that (V ,≤) is a complete lattice
and (V ,⊗, k) is a commutative monoid such that ⊗ distributes over arbitrary suprema
in each variable. A (small) V -category (X, d) (see also [8]) is a set X equipped with a
function d : X ×X → V satisfying the two conditions

d(x, x) ≥ k

d(x, z) ≥ d(x, y)⊗ d(y, z)

for all x, y, z ∈ X. A pseudo-V -metric space is a V -category (X, d) such that d :
X ×X → V satisfies the further symmetry condition

d(x, y) = d(y, x)

for all x, y ∈ X. Finally, a V -metric space is a pseudo-V -metric space (X, d) satisfying
the further “separation” condition

d(x, y) ≥ k =⇒ x = y

for all x, y ∈ X.

If (X, dX) and (Y, dY ) are V -categories, then a V -functor or V -contraction h : (X, dX)
→ (Y, dY ) is a function h : X → Y satisfying dX(x, x

′) ≤ dY (h(x), h(x
′)) for all

x, x′ ∈ X. We let V -Cat be the concrete category of V -categories and V -functors, we
let PMetV be the full subcategory of V -Cat consisting of the pseudo-V -metric spaces,
and we let MetV be the full subcategory of PMetV consisting of the V -metric spaces.
We regard PMetV and MetV as concrete categories by suitably restricting the faithful
functor | − | : V -Cat → Set. As indicated in [14, Example 2.3], one has the following
specific examples of V -Cat, PMetV , and MetV for suitable choices of (V ,≤,⊗, k) (see
[14, Example 2.1]):

• For the trivial quantale 1 with just one element, both 1-Cat and PMet1 are equivalent
to Set, while Met1 is equivalent to the terminal category.

• For the Boolean 2-chain quantale 2, we have that 2-Cat is equivalent to the category
Preord of preordered sets and monotone maps, while PMet2 is equivalent to the
category whose objects are sets equipped with an equivalence relation, and whose
morphisms are functions preserving the equivalence relations. Met2 is equivalent to
Set.

• For the Lawvere quantale R+ = ([0,∞],≥,+, 0) [9] given by the extended real half
line with the reverse ordering, we have that R+-Cat is the category of Lawvere
metric spaces, while PMetR+ is the category PMet of extended pseudo-metric spaces
(i.e. pseudo-metric spaces where two points may have distance ∞) and contractions
(i.e. non-expanding maps), and MetR+ is the category Met of extended metric spaces
(i.e. extended pseudo-metric spaces (X, d) satisfying d(x, y) = 0 =⇒ x = y) and
contractions.
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• For the quantale ∆ of distance distribution functions (see e.g. [6, §3.1]), we have
that ∆-Cat is equivalent to the category ProbMet of probabilistic metric spaces (see
[6, §3.2] and [13]), while PMet∆ is equivalent to the category of symmetric proba-
bilistic metric spaces, and Met∆ is equivalent to the category of symmetric, separated
probabilistic metric spaces.

Let ΠV consist of just the binary relation symbols ∼v for each v ∈ V . Let TV -Cat

be the relational Horn theory without equality over ΠV that consists of the following
axioms, where v, v′ range over V :

=⇒ x ∼k x

x ∼v y, y ∼v′ z =⇒ x ∼v⊗v′ z

x ∼v y =⇒ x ∼v′ y (v ≥ v′)

{x ∼vi y | i ∈ I} =⇒ x ∼∨
i vi

y

Then TV -Cat-Mod is concretely isomorphic (2.1) to V -Cat, which we prove in the Ap-
pendix (Section 6). Let TPMetV be the relational Horn theory without equality over
ΠV that extends TV -Cat by adding the symmetry axioms

x ∼v y =⇒ y ∼v x

for all v ∈ V . Then TPMetV -Mod is concretely isomorphic to PMetV , which we also
prove in the Appendix (Section 6). Finally, let TMetV be the relational Horn theory
with equality over ΠV that extends TPMetV by adding the axiom

x ∼k y =⇒ x = y.

Then we also show in the Appendix (Section 6) that TMetV -Mod is concretely isomor-
phic to MetV .

4. Topological properties of relational Horn theories without equality

Throughout Section 4 we fix a relational Horn theory T without equality over a relational
signature Π (an assumption that we will occasionally repeat for emphasis). We first aim
to characterize the initial sources and final sinks in the concrete category T-Mod, which
will allow us to prove that T-Mod is topological over Set, which is in fact a special case of
a result [12, Proposition 5.1] by Rosický. We will then characterize the embeddings and
quotients in T-Mod. We first require the following definition.
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4.1. Definition. Let S be a set. A T-relation on S is a set E of Π-edges in S satisfying
the following condition: for any axiom Φ =⇒ ψ of T and any valuation κ : Var → S such
that κ · φ ∈ E for each φ ∈ Φ, we have κ · ψ ∈ E . The set of all Π-edges in S is clearly a
T-relation on S, and the intersection of a small family of T-relations on S is a T-relation
on S. So for any set E of Π-edges in S, we can define the T-closure T(E) of E to be the
smallest T-relation on S that contains E , i.e. the intersection of all T-relations on S that
contain E . Note that a Π-structure X is a T-model iff E(X) is a T-relation on |X|.
The proof of the following lemma is elementary.

4.2. Lemma. Let h : S → S ′ be a function from a set S to a set S ′, and let E ′ be a
T-relation on S ′. Then h−1 [E ′] is a T-relation on S.

4.3. Proposition. A source (hi : X → Xi)i∈I in T-Mod is initial iff for each R ∈ Π of
arity n ≥ 1 and all x1, . . . , xn ∈ |X|, we have X |= Rx1 . . . xn iff Xi |= Rhi(x1) . . . hi(xn)
for all i ∈ I. A sink (hi : Xi → X)i∈I in T-Mod is final iff E(X) is the T-closure of⋃

i∈I hi · E(Xi).

Proof. For the first assertion, if E(X) has the stated characterization, then it readily
follows that (hi)i is initial. So assume that (hi)i is initial; since each hi (i ∈ I) is a Π-
morphism, we need only prove that X |= Rx1 . . . xn whenever Xi |= Rhi(x1) . . . hi(xn) for
all i ∈ I. Assuming the latter condition, we define a Π-structure Y by setting |Y | := |X|
and letting E(Y ) be the T-closure of E(X) ∪ {(R, (x1, . . . , xn))}. Then Y is a T-model,
and for each i ∈ I we claim that the function hi : |Y | = |X| → |Xi| is a Π-morphism
hi : Y → Xi, i.e. that E(Y ) ⊆ h−1

i [E(Xi)]. By definition of E(Y ), it suffices to show
that h−1

i [E(Xi)] is a T-relation on |Y | = |X| that contains E(X) ∪ {(R, (x1, . . . , xn))}.
Since E(Xi) is a T-relation on |Xi| (because Xi is a T-model), we deduce from Lemma
4.2 that h−1

i [E(Xi)] is a T-relation on |Y | = |X|. Then because hi : X → Xi is a Π-
morphism and Xi |= Rhi(x1) . . . hi(xn) by hypothesis, it follows that h−1

i [E(Xi)] contains
E(X) ∪ {(R, (x1, . . . , xn))}. So each hi : Y → Xi (i ∈ I) is a Π-morphism, and the
initiality of the source (hi)i then implies that the identity function 1|X| : |Y | = |X| → |X|
is a Π-morphism Y → X, which entails that X |= Rx1 . . . xn, as desired.

For the second assertion, suppose first that E(X) is the T-closure of
⋃

i∈I hi · E(Xi).
To show that the sink (hi)i is final, let Y be a T-model and let h : |X| → |Y | be a
function such that the function h ◦ hi : |Xi| → |Y | is a Π-morphism Xi → Y for each
i ∈ I. To show that h is a Π-morphism X → Y , we must show that E(X) ⊆ h−1[E(Y )].
By assumption on E(X), it suffices to show that h−1[E(Y )] is a T-relation on |X| that
contains

⋃
i∈I hi ·E(Xi). The first claim holds by Lemma 4.2 because E(Y ) is a T-relation

on |Y | (since Y is a T-model), and the second claim holds because each h ◦ hi (i ∈ I) is
a Π-morphism Xi → Y .

Now suppose that the sink (hi : Xi → X)i∈I is final, and let us show that E(X) must
be the T-closure of

⋃
i∈I hi · E(Xi). That is, we must show that E(X) is the smallest

T-relation on |X| that contains
⋃

i∈I hi · E(Xi). That E(X) is a T-relation holds because
X is a T-model, and since each hi : Xi → X (i ∈ I) is a Π-morphism, it follows that E(X)
contains

⋃
i∈I hi ·E(Xi). Now let R be any T-relation on |X| that contains

⋃
i∈I hi ·E(Xi),
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and let us show that E(X) ⊆ R. Let X ′ be the Π-structure defined by |X ′| := |X| and
E(X ′) := R, so that X ′ is a T-model because R is a T-relation. Showing that E(X) ⊆ R is
equivalent to showing that the identity function 1|X| : |X| → |X| = |X ′| is a Π-morphism
X → X ′. By finality of the sink (hi)i∈I , it then suffices to show that each function
hi : |Xi| → |X| = |X ′| is a Π-morphism Xi → X ′, which is true by assumption on R.
This proves the desired characterization of E(X).

The following result, whose proof we outline in (4.5) below, is a special case of [12,
Prop. 5.1]:

4.4. Proposition. [Rosický [12]] Let T be a relational Horn theory without equality.
Then the concrete category T-Mod is topological over Set.

4.5. The initial lift of a structured source (hi : S → |Xi|)i∈I is the source (hi :
X → Xi)i∈I , where X is the Π-structure with |X| := S and X |= Rx1 . . . xn iff Xi |=
Rhi(x1) . . . hi(xn) for all i ∈ I (for any R ∈ Π of arity n ≥ 1 and any x1, . . . , xn ∈ |X|).
Since T is a relational Horn theory without equality and each Xi (i ∈ I) is a T-model, it
readily follows that X is a T-model, and the source (hi)i in T-Mod is initial by Proposition
4.3. The final lift of a structured sink (hi : |Xi| → S)i∈I is the sink (hi : Xi → X)i∈I ,
where X is the Π-structure with |X| := S and E(X) the T-closure of

⋃
i∈I hi ·E(Xi). Then

X is a T-model because E(X) is a T-relation, and the sink (hi)i is final by Proposition
4.3.

4.6. Given a small diagram D : B → T-Mod, the limit cone of D is the initial lift of the
limit cone of | − | ◦D in Set, while the colimit cocone of D is the final lift of the colimit
cocone of |−|◦D in Set (see e.g. [1, 21.15]). In particular, the functor |−| : T-Mod → Set
strictly preserves small limits and colimits. If T is a relational Horn theory with equality,
then T-Mod is complete and cocomplete (e.g. because T-Mod is locally presentable, by [2,
Proposition 5.30]), and it is still true that | − | : T-Mod → Set strictly preserves limits,
since the inclusion T-Mod ↪→ Str(Π) preserves limits.

4.7. Definition. Let h : X → Y be a morphism in Str(Π). Then h reflects relations
if for each R ∈ Π of arity n ≥ 1 and any x1, . . . , xn ∈ |X|, we have X |= Rx1 . . . xn if
Y |= Rh(x1) . . . h(xn).

The characterizations of initial sources and final sinks in T-Mod provided in Proposi-
tion 4.3 immediately entail that embeddings and quotients in T-Mod have the following
characterizations:

4.8. Proposition. Let h : X → Y be a morphism in T-Mod. Then h is an embedding
iff h is injective and reflects relations, while h is a quotient morphism iff h is surjective
and E(Y ) is the T-closure of h · E(X).

If C is a topological category over Set, then a bimorphism in C (i.e. a morphism
that is both epic and monic) is precisely a bijective morphism in view of (2.2). As in [1,
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Definition 16.1], we say that a full replete3 subcategory B ↪→ C is bireflective if every
object of C has a B-reflection morphism that is a bimorphism of C , i.e. that is bijective.
Since the concrete category Str(Π) is topological over Set in view of Example 3.7.1 and
Proposition 4.4, we now have the following result (cf. [5, Proposition 3.6]):

4.9. Proposition. Let T be a relational Horn theory without equality. Then the full
replete subcategory T-Mod ↪→ Str(Π) is bireflective.

Proof. Let X be a Π-structure. We define a Π-structure X∗ by setting |X∗| := |X|
and letting E(X∗) be the T-closure of E(X). Then X∗ is a T-model, and the identity
function 1|X| : |X| → |X| = |X∗| is a bijective Π-morphism, which we claim is a T-Mod-
reflection morphism for X. So let h : X → Y be a Π-morphism from X to a T-model
Y . Then the function h : |X∗| = |X| → |Y | is also a Π-morphism h : X∗ → Y , because
E(X∗) is the smallest T-relation on |X| that contains E(X), and thus E(X∗) ⊆ h−1[E(Y )]
because h−1[E(Y )] is a T-relation on |X| (4.2) that contains E(X) (since h : X → Y is a
Π-morphism).

5. Extensivity of T-Mod for a relational Horn theory T
Throughout Section 5, we fix a relational Horn theory T over a relational signature Π.

5.1. Definition. Let Var be a set of variables. For any (Π ∪ {=})-edge φ in Var, we
define the set of variables Var(φ) occurring in φ as follows: if φ = (R, (v1, . . . , vn)) for
some R ∈ Π ∪ {=} of arity n ≥ 1 and some v1, . . . , vn ∈ Var, then Var(φ) := {v1, . . . , vn}.
If Φ is a set of (Π ∪ {=})-edges in Var, then we define Var(Φ) :=

⋃
φ∈Φ Var(φ).

5.2. Condition. We suppose throughout Section 5 that T satisfies the following mild
syntactic condition. For each axiom Φ =⇒ ψ of T, we require that:

1. Any two distinct elements of Φ share at least one variable in common; i.e. if φ, φ′ ∈ Φ
are distinct, then Var(φ) ∩ Var(φ′) ̸= ∅.

2. If Φ ̸= ∅, then Var(ψ) ⊆ Var(Φ); and if Φ = ∅, then Var(ψ) is a singleton.

This condition is certainly satisfied by all of our central examples (3.7) (and by the
additional examples of [5, Example 3.5]), and will be used to conveniently characterize
small coproducts in T-Mod in 5.4 below. We shall provide some commentary on this
condition in Remark 5.7 and Remark 5.8 below.

3Recall that a full subcategory B ↪→ C is replete if whenever C is an object of C that is isomorphic
to an object of B, then C is an object of B.
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5.3. In view of (4.6), the pullback A ×f,g B in T-Mod of two T-model morphisms f :
A→ C and g : B → C is formed by taking the initial lift of the pullback of the underlying
functions f : |A| → |C| and g : |B| → |C| in Set. So we have

|A×f,g B| = |A| ×f,g |B| = {(a, b) ∈ |A| × |B| | f(a) = g(b)}

with

RA×f,gB = {((a1, b1), . . . , (an, bn)) ∈ |A×f,g B|n | A |= Ra1 . . . an and B |= Rb1 . . . bn}

for each R ∈ Π of arity n ≥ 1. The pullback projections πA : |A| ×f,g |B| → |A| and
πB : |A| ×f,g |B| → |B| in Set then lift to pullback projections in T-Mod.

5.4. Let T be a relational Horn theory without equality. In view of (4.6), the coproduct∐
i∈I Xi of a small family of T-models Xi (i ∈ I) is formed by taking the final lift of the

coproduct of the underlying sets |Xi| (i ∈ I) in Set. So we have |
∐

iXi| =
∐

i |Xi|, and
E (
∐

iXi) is the T-closure of the set of all Π-edges in the images of all coproduct injections
si : |Xi| →

∐
i |Xi| (i ∈ I). We now claim that in fact

E

(∐
i

Xi

)
=
⋃
i∈I

si · E(Xi),

for which it suffices to show that
⋃

i∈I si · E(Xi) is a T-relation on
∐

i |Xi|.
So let Φ =⇒ ψ be an axiom of T, let κ : Var →

∐
i |Xi| be a valuation, and suppose

that κ · φ ∈
⋃

i∈I si · E(Xi) for each φ ∈ Φ; we must show that κ · ψ ∈
⋃

i∈I si · E(Xi).
Since any two distinct elements of Φ share at least one variable in common (see Condition
5.2.1) and the union

⋃
i∈I si · E(Xi) is disjoint (since the coproduct injections si (i ∈ I)

have disjoint images), there must be some i ∈ I such that κ · φ ∈ si · E(Xi) for all φ ∈ Φ.
In view of Condition 5.2.2, we may then assume without loss of generality that κ factors
through si : |Xi| →

∐
i |Xi| via a valuation κ′ : Var → |Xi|, so that κ = si ◦ κ′ and hence

si · κ′ · φ ∈ si · E(Xi) for each φ ∈ Φ. Since si is injective, it follows that κ
′ · φ ∈ E(Xi)

for each φ ∈ Φ, so that κ′ · ψ ∈ E(Xi) because Xi is a T-model. It then follows that
κ · ψ ∈

⋃
i∈I si · E(Xi), as desired.

Now let T be an arbitrary relational Horn theory (possibly with equality), and let T−

be the relational Horn theory without equality obtained from T by removing all axioms
Φ =⇒ ψ of T that contain equality, i.e. where ψ is a {=}-edge in Var. We claim that the
inclusion T-Mod ↪→ T−-Mod preserves small coproducts. So let (Xi)i∈I be a small family
of T-models, and let us show that the coproduct

∐
iXi in T−-Mod is a T-model. Since∐

iXi is a T−-model, it just remains to show that
∐

iXi satisfies each axiom Φ =⇒ ψ
of T where ψ is a {=}-edge x = y. So let κ : Var →

∐
i |Xi| be a valuation such that

κ ·φ ∈ E (
∐

iXi) =
⋃

i si ·E(Xi) for each φ ∈ Φ, and let us show that κ(x) = κ(y). Since T
satisfies Condition 5.2, we deduce exactly as in the previous paragraph that there must be
some i ∈ I such that κ factors through a valuation κ′ : Var → |Xi| (so that si◦κ′ = κ) and
κ′ ·φ ∈ E(Xi) for all φ ∈ Φ. Because Xi is a T-model, we then deduce that κ′(x) = κ′(y),
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so that κ(x) = κ(y) as desired. Since | − | : T−-Mod → Set preserves small coproducts, it
follows that | − | : T-Mod → Set preserves small coproducts.

Let T be a relational Horn theory and let (Xi)i∈I be a small family of T-models.
For each R ∈ Π of arity n ≥ 1 and any (i1, x1), . . . , (in, xn) ∈

∐
i |Xi|, we thus have∐

iXi |= R(i1, x1) . . . (in, xn) iff i1 = . . . = in = i and Xi |= Rx1 . . . xn. Therefore, each
coproduct injection si : Xi →

∐
iXi (i ∈ I) is an embedding4 (4.8). The initial object of

T-Mod is the empty set equipped (of course) with the empty set of Π-edges.

We recall from [3] that a category C is said to be infinitely extensive if it has small co-
products and for any small family (Xi)i∈I of objects of C , the canonical functor

∏
i∈I C /Xi

→ C / (
∐

iXi) is an equivalence. If C has small coproducts and pullbacks, recall that
small coproducts in C are said to be universal (or stable under pullback) if for any small
family (Xi)i∈I of objects of C with coproduct (si : Xi →

∐
iXi)i∈I and any morphism

f : Y →
∐

iXi, if the following diagram is a pullback in C for each i ∈ I:

Pi Y

Xi

∐
iXi,

ti

fπi

si

then (ti : Pi → Y )i∈I is a coproduct diagram in C . If C has small coproducts and
pullbacks, then a coproduct (si : Xi →

∐
iXi)i∈I of a small family (Xi)i∈I of objects of

C is said to be disjoint if for any distinct indices i, j ∈ I, the pullback of si along sj is
isomorphic to the initial object of C . If C has small coproducts and pullbacks, then by
(the infinitary version of) [3, Proposition 2.14], we have that C is infinitely extensive iff
small coproducts in C are universal and disjoint.

5.5. Theorem. Let T be a relational Horn theory that satisfies Condition 5.2. Then
T-Mod is infinitely extensive.

Proof. Since T-Mod has small coproducts and pullbacks (4.6), it is equivalent to show
that small coproducts in T-Mod are universal and disjoint. For the first claim, let (Xi)i∈I
be a small family of T-models with coproduct (si : Xi →

∐
iXi)i∈I in T-Mod. Let

f : Y →
∐

iXi be a morphism of T-Mod, and for each i ∈ I suppose that the following
diagram is a pullback in T-Mod:

Pi Y

Xi

∐
iXi.

ti

fπi

si

4Even if T is a relational Horn theory with equality, a morphism of T-Mod that is injective and reflects
relations is still an embedding.
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We must show that (ti : Pi → Y )i∈I is a coproduct diagram in T-Mod. Because Set is
infinitely extensive and | − | : T-Mod → Set preserves small coproducts and pullbacks
(see 4.6 and 5.4), we deduce that (ti : |Pi| → |Y |)i∈I is a coproduct diagram in Set. Now
let (hi : Pi → Z)i∈I be a small family of T-model morphisms. Then there is a unique
function h : |Y | → |Z| satisfying h ◦ ti = hi for each i ∈ I, so we just have to show that h
is a Π-morphism Y → Z. So let R ∈ Π of arity n ≥ 1 and suppose that Y |= Ry1 . . . yn.
Since f : Y →

∐
iXi is a Π-morphism, we obtain

∐
iXi |= Rf(y1) . . . f(yn). Then by 5.4,

we deduce that there are some i ∈ I and some x1, . . . , xn ∈ |Xi| such that si(xk) = f(yk)
for each 1 ≤ k ≤ n and Xi |= Rx1 . . . xn. For each 1 ≤ k ≤ n we then have (xk, yk) ∈ |Pi|,
and we have Pi |= R(x1, y1) . . . (xn, yn) because Xi |= Rx1 . . . xn and Y |= Ry1 . . . yn (see
5.3). Since hi : Pi → Z is a Π-morphism, we then obtain Z |= Rhi(x1, y1) . . . hi(xn, yn),
i.e. Z |= Rh(ti(x1, y1)) . . . h(ti(xn, yn)), i.e. Z |= Rh(y1) . . . h(yn), as desired. This proves
that small coproducts are universal in T-Mod.

It remains to show that the coproduct (si : Xi →
∐

iXi)i∈I is disjoint. So let i, j ∈ I
be distinct. Since small coproducts are disjoint in Set and | − | : T-Mod → Set preserves
pullbacks and small coproducts, we deduce that the underlying set of the pullback of si
along sj in T-Mod is ∅. But there is a unique T-model with underlying set ∅, and this is
the initial object of T-Mod (5.4).

Recall from [3] that a category C is said to be infinitely distributive if it has finite products
and small coproducts and for each X ∈ obC , the functor X × (−) : C → C preserves
small coproducts. The following result now follows immediately from Theorem 5.5 and
(the infinitary version of) [3, Proposition 4.5]:

5.6. Corollary. Let T be a relational Horn theory that satisfies Condition 5.2. Then
T-Mod is infinitely distributive.

5.7. Example. Let T be a relational Horn theory. Theorem 5.5 shows that the satisfac-
tion of Condition 5.2 is sufficient for infinite extensivity of T-Mod, but it is not necessary,
as the following (rather trivial) examples show.

1. Let Π be any relational signature that contains at least one relation symbol of arity
≥ 2, and suppose that T consists of just the axioms =⇒ Rv1 . . . vn for each R ∈ Π of
arity n ≥ 1, where v1, . . . , vn are pairwise distinct variables. Then T clearly violates
Condition 5.2.2. A Π-structure X is a T-model iff RX = |X|n for each R ∈ Π of
arity n ≥ 1, and hence there is a unique T-model structure on any set (the indiscrete
Π-structure), and moreover T-Mod(X, Y ) = Set(|X|, |Y |) for any T-models X, Y . It
follows that the forgetful functor |−| : T-Mod → Set is an isomorphism, so that T-Mod
is infinitely extensive because Set is.

2. As another (trivial) example, let Π be the empty relational signature, and suppose
that T consists of just the axiom =⇒ x = y for distinct variables x, y. Then T again
violates Condition 5.2.2, but clearly T-Mod is equivalent to the terminal category,
which is (trivially) infinitely extensive.
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We are not aware of any “natural” or well-studied examples of relational Horn theories
that fail to satisfy Condition 5.2, and we also do not know whether there is an alternative
syntactic condition that is both sufficient and necessary for infinite extensivity of T-Mod.

5.8. Remark. Let T be a relational Horn theory without equality, and let R ∈ Π be a
relation symbol of arity n ≥ 1. We define a T-model RT by setting |RT| := {1, . . . , n} and
letting E (RT) be the T-closure of the set consisting of the single Π-edge (R, (1, . . . , n)) on
{1, . . . , n}; in other words, RT is the free T-model on the Π-structure with underlying set
{1, . . . , n} and the unique Π-edge (R, (1, . . . , n)) (see the proof of Proposition 4.9). For
any T-modelX, it follows that Π-morphisms RT → X are in bijective correspondence with
Π-edges in E(X) whose first component is R. The small full subcategory ΠT of T-Mod
consisting of the T-models RT (R ∈ Π) is finally dense in T-Mod (see [1, Definition
10.69]), which means that for any T-model X, there is a final sink (hi : Xi → X)i∈I
with codomain X and Xi ∈ ΠT for each i ∈ I. Specifically, one takes I := E(X), and for
e = (R, (x1, . . . , xn)) ∈ E(X), one takes Xe := RT and he : RT → X to be the Π-morphism
corresponding to the Π-edge e. Then the resulting sink (he : Xe → X)e∈E(X) is final by
Proposition 4.3, because E(X) is clearly the T-closure of

⋃
e∈E(X) he · E(Xe).

Now if T satisfies Condition 5.2, then by 5.4 it readily follows that for each R ∈ Π,
the T-model RT is a connected object of T-Mod, meaning that the representable functor
T-Mod(RT,−) : T-Mod → Set preserves small coproducts. We conclude that if T is a
relational Horn theory without equality that satisfies Condition 5.2, then T-Mod has a
small finally dense subcategory of connected objects. Given that T-Mod is topological
over Set (4.4) and infinitely extensive (5.5), one may now wonder about the following
conjecture:

5.9. Conjecture. Let C be a topological category over Set that has a finally dense
subcategory of connected objects. Then C is infinitely extensive.

We thank Rory Lucyshyn-Wright for discussions that led to the posing of this conjecture.

6. Appendix

In this Appendix, we prove the claims asserted at the end of Example 3.7.3. So let
(V ,≤,⊗, k) be a commutative unital quantale, and let T := TV -Cat. We first show that
T-Mod is concretely isomorphic to V -Cat. We first define a concrete functor F : T-Mod →
V -Cat, i.e. a functor that commutes with the faithful functors to Set. So let X be a T-
model. We define a V -category FX = (|X|, dX) by setting dX(x, y) :=

∨
{v ∈ V | X |=

x ∼v y} for any x, y ∈ |X|. For each x ∈ |X| we have dX(x, x) ≥ k because X |= x ∼k x.
Now let x, y, z ∈ |X|, and let us show that d(x, z) ≥ d(x, y)⊗ d(y, z), i.e. that∨

{v ∈ V | X |= x ∼v z} ≥
∨

{v′ ∈ V | X |= x ∼v′ y} ⊗
∨

{v′′ ∈ V | X |= y ∼v′′ z}

=
∨

{v′ ⊗ v′′ | v′, v′′ ∈ V , X |= x ∼v′ y and X |= y ∼v′′ z},
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where the equality holds because ⊗ preserves arbitrary suprema in each variable sep-
arately. For any v′, v′′ ∈ V such that X |= x ∼v′ y and X |= y ∼v′′ z, we have
X |= x ∼v′⊗v′′ z and hence

∨
{v ∈ V | X |= x ∼v z} ≥ v′ ⊗ v′′, which yields the

desired inequality. This proves that FX = (|X|, dX) is a well-defined V -category. If
h : X → Y is a morphism of T-models, then the function h : |X| → |Y | is a V -functor
h : (|X|, dX) → (|Y |, dY ) because for any x, y ∈ |X| we have

dY (h(x), h(y)) =
∨

{v ∈ V | Y |= h(x) ∼v h(y)} ≥
∨

{v ∈ V | X |= x ∼v y} = dX(x, y),

because X |= x ∼v y implies Y |= h(x) ∼v h(y). So we set F (h) := h, and F : T-Mod →
V -Cat is then clearly functorial and commutes with the faithful functors to Set.

We now define a functor G : V -Cat → T-Mod. So let (X, d) be a V -category. We
define a ΠV -structure G(X, d) by setting |G(X, d)| := X and, for any v ∈ V and x, y ∈ X,
by setting G(X, d) |= x ∼v y iff d(x, y) ≥ v. It is essentially immediate that G(X, d) is a
T-model. Now let h : (X, dX) → (Y, dY ) be a V -functor. Then the function h : X → Y is
a ΠV -morphism h : G(X, dX) → G(Y, dY ), because for any v ∈ V and x, y ∈ X we have
the implications

G(X, dX) |= x ∼v y ⇐⇒ dX(x, y) ≥ v =⇒ dY (h(x), h(y)) ≥ v

⇐⇒ G(Y, dY ) |= h(x) ∼v h(y).

So we set G(h) := h, and G : V -Cat → T-Mod is then clearly functorial.
We now show that F and G are mutually inverse on objects, which will complete

the proof. First let X be a T-model, and let us show that X = GFX = G(|X|, dX),
i.e. that for any v ∈ V and x, y ∈ |X| we have X |= x ∼v y iff dX(x, y) =

∨
{v′ ∈

V | X |= x ∼v′ y} ≥ v. The forward implication is immediate. Now suppose that
w :=

∨
{v′ ∈ V | X |= x ∼v′ y} ≥ v, and let us show that X |= x ∼v y. Since X is

a T-model, we have X |= x ∼w y. Then since w ≥ v (and X is a T-model), we obtain
X |= x ∼v y, as desired.

Now let (X, d) be a V -category, and let us show that (X, d) = FG(X, d) =
(
X, dG(X,d)

)
.

So for all x, y ∈ X, we must show that d(x, y) = dG(X,d)(x, y), i.e. that

d(x, y) =
∨

{v ∈ V | G(X, d) |= x ∼v y} =
∨

{v ∈ V | d(x, y) ≥ v},

which is immediate. This completes the proof that T-Mod = TV -Cat-Mod is concretely
isomorphic to V -Cat. It is clear that if X is a model of TV -Cat, then X is a model of
TPMetV iff the associated V -category FX is a pseudo-V -metric space, whence we obtain
the further concrete isomorphism TPMetV -Mod ∼= PMetV . Finally, it is easy to verify
that if X is a model of TPMetV , then X is a model of TMetV iff the associated pseudo-
V -metric space FX is a V -metric space, whence we obtain the concrete isomorphism
TMetV -Mod ∼= MetV .
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