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QUANTALE-ENRICHED MULTICATEGORIES VIA ACTIONS

Eros Martinelli

Abstract. In this communication, motivated by a classical result that relates cocom-
plete quantale-enriched categories to modules over a quantale, we prove a similar result
for quantale-enriched multicategories.

1. Introduction

Lawvere, in his seminal paper [26], made the important observation that fundamental
mathematical structures do not only constitute the objects of a category but are them-
selves categories. In fact, it has been known for a long time that ordered sets can be seen
as categories enriched in the two element boolean algebra; moreover, monotone maps
between them are exactly enriched functors. As a leading example, Lawvere explains
how metric spaces fit into his thesis by showing how they are instances of enriched cate-
gories and how results from enriched category theory are able to capture important metric
constructions.

We must point out that, although it is possible to develop enriched category theory in
the more general setting in which the enrichment is taken in a closed symmetric monoidal
category, in many cases it is sufficient to take the enrichment in a commutative quantale
V , that is to say a monoid in the monoidal category of suplattices. This leads to the
notion of quantale-enriched categories which can be seen as a generalization of the notion
of ordered sets where one substitutes the ordered relation with a more general relation—
called enriched structure—with values in the quantale V .

Since quantale-enriched categories are a generalization of ordered sets, it is natural
to ask which relations there are between the two. The very first observation is that to
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every quantale-enriched category X we can associate an ordered set, called the underlying
ordered set of X; its order relation relates elements of X whose value under the enriched
structure of X is greater or equal than the unit of V . This construction is part of a right
adjoint functor between the category of quantale-enriched categories and the category
of ordered sets. Due to the form this functor has, any hope to recovery the structure
of a quantale-enriched category (X, a) from its underlying ordered set is going to be
disappointed. In order to maintain such hope, we we must add some structure to the
category of ordered sets; a structure that must contain the information which gets lost in
the discretization procedure: the values of the enriched relation at elements of X.

The solution to this problem is to consider ordered sets equipped with a suitable
action of the base quantale subject to conditions that allow us to define a copowered
enriched category, where the copower becomes the action itself. This association will
give us an equivalence between the category of ordered sets equipped with such an action
and the category of copowered categories (see [8] for the general construction). The
aforementioned equivalence restricts to an equivalence between the category of cocomplete
quantale-enriched categories and the category of cocomplete ordered sets equipped with an
action of the base quantale, also called the category of modules (see [30] and [39]). These
last two equivalences allow us to reason about enriched categories by using order theoretic
arguments. An example where this is not only useful, but it has proven to be essential, is
given by the results contained in [13], where, in order to obtain the duality between metric
compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched
in the unit interval [0, 1], the representation of the latter as ordered sets with an action
of [0, 1] is essential.

In [10] D. Hofmann and G. Gutierres proved that a similar result holds also for
approach spaces. Approach spaces are particular examples of (T, V )-categories (see [14])
where the monad T is specialized to the ultrafilter monad U and V is specialized to the
quantale [0,∞]op. For these categories, Clementino, Hofmann and Tholen showed how it
is possible to develop many constructions that come from enriched category theory in the
more general context of (T, V )-categories (see [11, 5, 12]). In particular, in [11], Hofmann
showed how algebras for a Kock-Zöberlein monad, which generalizes the presheaf monad,
characterize cocomplete (T, V )-categories. By using the machinery of (T, V )-categories,
D. Hofmann and G. Gutierres proved that separated (i.e. T0) cocomplete approach
spaces are equivalent to continuous lattices (cocomplete topological spaces in the (U, 2)
setting) equipped with an action of the quantale [0,∞]op.

The aim of this paper is to prove that a similar result holds also for quantale-enriched
multicategories. We also notice that quantale-enriched multicategories, from now on
called (L, V )-categories, are particular examples of (T, V )-categories where the monad T
is specialized to the list monad L. We prove that the category CoCts((L, V )-Catsep)
of cocomplete separated (L, V )-categories is equivalent to the category of quantales (or-
dered cocomplete multicategories) equipped with a suitable action of V and denoted
V -Mod(Quant).

We must point out that, although approach spaces and quantale-enriched multicate-
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gories are both examples of (T, V )-categories, the strategy used to prove the main result
of this paper bears little relationship to the one used in [10]; while the latter relies on
a careful study of weighted (U, [0,∞]op)-colimits, the former essentially relies on the fact
that we can internalize the notion of monoid in every monoidal category. The deep rea-
son why approach spaces and quantale-enriched multicategories behave differently is an
interesting open question the author wants to investigate; the hope is to provide a more
general theory of “actions” for (T, V )-categories.

The structure of the paper is as follows:

� In the first section we introduce some background material on V -categories. We
briefly sketch the equivalence between the category of cocomplete quantale-enriched
categories and the category of modules:

CoCts(V -Catsep) ' V -Mod.

� The second section contains the first step towards our desired result. We analyze
further the equivalence CoCts(V -Catsep) ' V -Mod. First we prove that both
categories can be equipped with a monoidal structure, then we prove that the afore-
mentioned equivalence extends to the corresponding categories of monoids:

Mon(V -Mod,⊗V , V ) 'Mon(CoCts(V -Catsep),⊗V , V ).

� In the third section we introduce (L, V )-categories. We show how many construc-
tions that come from enriched category theory can be developed in the more general
context of (L, V )-categories.

� In the fourth section we study further the category Mon(V -Mod,⊗V , V ). We prove
that Mon(V -Mod,⊗V , V ) is equivalent to a particular subcategory of V ↓ Quant.

� In the fifth section we study further the category Mon(CoCts(V -Catsep),⊗V , V ).
We prove that it is monadic over Set and that it is equivalent to the category of
cocomplete separated (L, V )-categories, CoCts((L, V )-Catsep).

� In the last section we collect everything together and prove that CoCts((L, V )-Catsep)
is equivalent to V -Mod(Quant), the category of quantales equipped with a suitable
action of V .

� In the appendix we recall some useful materials from [16] about commutative monads
we use across the paper.

Here is a commutative diagram that summarizes all the categories involved; all the
bended arrows are monadic adjunctions.
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V -Mod(Quant) Mon(V -Mod) Mon(SetPV ) CoCts((L, V )-Catsep)

Quant V -Mod SetPV

Sup Set

' ' '

'

PL

V⊗2= PV

P2

PL

2. Preliminaries on Quantale-Enriched Categories

In this section we recall/introduce some basic notions of V -categories. Our point of view is
slightly different from the more ”standard” one contained in [19], it is more ”relational”:
following [2, 6], we introduce the quantaloid of V -relations and we define V -categories
starting from there. This might be seen as an overkill, but it will be clear in the section
related to (L, V )-categories how this approach allows us to smoothly introduce some
concepts also in the (L, V )-case.

2.1. V-Categories and V-Functors.

2.2. Definition. A quantale (V,⊗, k) is a complete lattice endowed with a multiplication
⊗ : V ×V → V that preserves suprema in each variable and for which k ∈ V is the neutral
element. If k 6=⊥, we call V non-trivial.

2.3. Remark. When we talk about quantale-enriched categories we always assume our
base quantale V to be commutative.

2.4. Remark. In this paper we assume—unless explicitly stated—quantales in which we
take the enrichment to be non-trivial.

2.5. Remark. By the adjoint functor theorem applied to ordered sets, it follows that
−⊗ = admits a right adjoint (in each variable) denoted by [−,=] and called ”internal
hom”.

2.6. Examples.

1. The two-element boolean algebra 2 = {0, 1} with ∧ as multiplication and ⇒ as
internal hom is a quantale.

2. More generally, every frame becomes a quantale with the multiplication given by ∧.
In this case we have k = >, where > is the top element of the frame.

3. [0,∞]op (with the opposite of the natural order) with + as multiplication is a quan-
tale. The internal hom is given by ”truncated minus” defined as

[u, v] = v 	 u = max(v − u, 0).
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As we stated in the introduction of this section, we are going to present V -categories
from a more ”relational” point of view—which is a special case of the more general con-
struction considered in [2]. The first step is to define the quantaloid of V -relations which
is the enriched generalization of the category Rel of (ordinary) binary relations. For an
account on quantaloids we refer to [40] for a brief overview and to [38] for a more in depth
description.

The quantaloid V -Rel is the order-enriched category whose objects are sets, and an
arrow r : X −7−→ Y is given by a function

r : X × Y → V.

The composition of r : X −7−→ Y , s : Y −7−→ Z is given by ”matrix multiplication” and it is
defined pointwise as

s ◦ r(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z).

The identity arrow Id : X −7−→ X is

Id(x1, x2) =

{
k if x1 = x2,

⊥ if x1 6= x2.

The complete order on V -Rel(X, Y ) is the one induced (pointwise) by V , i.e.

r ≤ r′ in V -Rel(X, Y ) whenever r(x, y) ≤ r′(x, y) in V for all x, y ∈ X, Y. (1)

2.7. Remark. When V = 2, 2-Rel is the quantaloid of relations, and the ”matrix mul-
tiplication” defined previously becomes the ”classical” relational composition.

We also have an involution (−)◦ : V -Relop → V -Rel defined as r◦(y, x) = r(x, y),
which satisfies

(1X)◦ = 1X , (s ◦ r)◦ = r◦ ◦ s◦, (r◦)◦ = r.

2.8. Definition. A V -category is a pair (X, a), where X is a set and a : X −7−→ X is a
V -relation that satisfies

� Id ≤ a;

� a ◦ a ≤ a.

2.9. Remark. In this paper, when the V -structure is clear from the context, we will
denote a V -category (X, a) simply as X.

2.10. Definition. Let (X, a) and (Y, b) be V -categories. A V -functor f : (X, a)→ (Y, b)
is a function between the underlying sets such that

a ≤ f ◦ ◦ b ◦ f,

which, in pointwise terms, means that, for all x, y ∈ X,

a(x, y) ≤ b(f(x), f(y)).

If the equality holds, we call f fully faithful.
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2.11. Definition. A V -category (X, a) is called separated (see [15]) whenever f ' g
implies f = g, for all V -functors of the form f, g : (Y, b)→ (X, a).

2.12. Examples.

1. For V = 2, a 2-category is an ordered set and a 2-functor is a monotone map. The
order relation of a 2-category (X,≤X) does not need to be antisymmetric. Separated
2-categories are partially ordered sets.

2. Categories enriched in the quantale [0,∞]op, as first recognized by Lawvere in [26],
are generalized metric spaces and [0,∞]op-functors between them are non-expansive
maps.

3. The quantale V defines a V -category with the V -structure given by its internal hom
[−,=].

4. By using the involution (−)◦ : V -Relop → V -Rel, for every V -category (X, a), one
can define its opposite category Xop = (X, a◦).

5. ([19, Section 2.2]) Let (X, a) and (Y, b) be V -categories. We define the V -category
formed by all V -functors f : (X, a)→ (Y, b), denoted by ([X, Y ], [X, Y ](−,=)), with
the following V -structure:

[X, Y ](f, g) =
∧
x∈X

b(f(x), g(x)).

In particular we have two very important V -categories:

D(X) = [Xop, V ], the category of presheaves,

U(X) = [X, V ]op, the category of co-presheaves.

These two categories are generalizations (for a general V ) of the classical down(up)-
closed subsets construction that corresponds to the case in which V = 2.

6. ([19, Section 2.4]) Given a V -category (X, a), there are two V -functors, called the
Yoneda embedding and the co-Yoneda embedding:

yX : X → D(X), x 7→ a(−, x),

λX : X → U(X), x 7→ a(x,=).

Moreover, one can prove that

U(X)[λX(x), g] = g(x), D(X)[yX(x), g] = g(x).

The last two results are known as the co-Yoneda lemma and Yoneda lemma, respec-
tively. For a general X, yX and λX are not injective functions; they are injective
iff X is separated (see [15, Proposition 1.5]).
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7. ([19, Section 1.4]) Let (X, a) and (Y, b) be V -categories. We define their tensor
product

X ⊗ Y = (X × Y, a⊗ b),

where, for x1, x2 ∈ X and y1, y2 ∈ Y , a⊗b(x1⊗y1, x2⊗y2) = a(x1, x2)⊗b(y1, y2). In
particular, one has: X ⊗K ' X where K denotes the one-point V -category (1, k).

For V = 2, the ordered structure on X ⊗ Y is the product order. This means that
(x1, y1) ≤X⊗Y (x2, y2) if and only if x1 ≤X x2 and y1 ≤Y y2.

For V = [0,∞]op, the metric structure on X ⊗ Y is the taxicab metric, which is
defined as:

dX⊗Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

In this way we define V -Cat as the category whose objects are V -categories and whose
arrows are V -functors. Moreover, V -Cat becomes an order-enriched category, if we define,
for V -functors f, g : (X, a)→ (Y, b),

f ≤ g whenever k ≤
∧
x∈X

b(f(x), g(x)).

With the tensor product previously defined, V -Cat becomes a symmetric closed monoidal
category (see [19, Section 2.3]), since one can show that, for V -categories (X, a), (Y, b), (Z, c),
one has

V -Cat(X ⊗ Y, Z) ' V -Cat(X, [Y, Z]) ' V -Cat(Y, [X,Z]).

This allows us to define monoids with respect to such product, which we call monoidal
V -categories.

2.13. Definition. A monoidal V -category (X, a, ∗, uX) is a V -category (X, a) equipped
with two V -functors: ∗ : X ⊗ X → X and uX : K → X, such that (X, a, ∗, uX) is a
monoid (with respect to the monoidal structure (⊗, K)).

2.14. Remark. Since V -Cat—with the product described before—is a symmetric closed
monoidal category, to give a V -functor of the form ∗ : X ⊗X → X is equivalent to give a
set of V -functors, for all x ∈ X, of the form − ∗ x : X → X (or equivalently of the form
x∗ =: X → X).

2.15. Remark. Since V -Cat—with the product described before—is a symmetric closed
monoidal category, to give a V -functor of the form ∗ : X ⊗X → X is equivalent to give a
set of V -functors, for all x ∈ X, of the form − ∗ x : X → X (or equivalently of the form
x∗ =: X → X).
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2.16. Definition. Let (X, a, ∗X , uX) and (Y, b, ∗Y , uY ) be monoidal V -categories. A
(strong) monoidal functor f : (X, a, ∗X , uX) → (Y, b, ∗Y , uY ) is a V -functor, such that,
the following diagrams commute:

X ⊗X Y ⊗ Y

X Y

∗X

f⊗f

∗Y
f

K X

Y.

uX

uY
f

That is to say, f is a (strict) monoid morphisms.

As before, we can define the category of monoidal enriched categories and denote it
by Mon(V -Cat,⊗V , V ). With the 2-structure inherited from V -Cat (introduced in 2.1),
Mon(V -Cat,⊗V , V ) becomes an order-enriched category.

2.17. Remark. For V = 2, a monoidal ordered set is just an ordered monoid. That is
to say it is a monoid endowed with an order relation which is compatible with the monoid
structure.
For V = [0,∞]op, a monoid in [0,∞]op-Cat is a metric space endowed with a monoid
structure on its underlying set which is compatible with the metric.
Examples of monoidal metric spaces are the underlying additive groups of normed vector
spaces. Let (X,+, 0, ||-||) be a normed vector space. Let x̃ be an element of X, then for
all z, w ∈ X, we have ([33], or any other book on functional analysis)

d(z + x̃, w + x̃) = ||z + x̃− w − x̃|| = d(z, w).

By Remark 2.15 it follows that (X, d,+, 0) is a monoidal [0,∞]op-category.

2.18. The Presheaf Monad. The presheaf construction is part of a monad defined on
V -Cat (see [41]). The underlying 2-functor is defined as

D(−) : V -Cat→ V -Cat, f : X → Y 7→ D(f) := − ◦ f ∗ : D(X)→ D(Y ),

where f ∗ : Y −7−→ X, f ∗(y, x) = b(x, f(x)). The unit at a V -category X, is the Yoneda
embedding

yX : X → D(X);

while the multiplication is given by

− ◦ (yX)∗ : D(X)2 → D(X),

where (yX)∗ : X −7−→ D(X), (yX)∗(x, g) = g(x).
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2.19. Remark. In the definition of the presheaf monad we implicitly used distributors
(also called profunctors in the literature), see [1]. We could have explicitly written down
the pointwise definition of D(f) and of − ◦ (yX)∗ without having to define f ∗ and (yX)∗.
The reason why we did not will become clear when we will introduce the presheaf monad
for (L, V )-categories.

From the Yoneda lemma it follows that the monad (D(−),y−,−◦(y−)∗) is of Kock–Zöb-
erlein type (see [22]).
The 2-category of pseudo-algebras for this monad is 2-equivalent to the 2-category formed
by cocomplete V -categories and cocontinuous V -functors among them with the 2-structure
inherited by the one on V -Cat (see 2.1), and denoted by CoCts(V -Cat). These last two
observations, combined together, allow us to give a characterization of cocomplete V -
categories.

2.20. Theorem. [41, Proposition 5.2] Let (X, a) be a V -category. The following are
equivalent:

� (X, a) is a cocomplete V -category;

� There exists a V -functor
SupX : D(X)→ X,

such that, for every x ∈ X, SupX(yX(x)) ' x.

2.21. Remark. Since (D(−),y−,− ◦ (y−)∗) is of Kock-Zöberlein type, SupX (whenever
it exists) is automatically the left adjoint to the Yoneda functor.

Separated cocomplete V -categories are strict algebras for the presheaf monad

(D(−),y−,− ◦ (y−)∗).

2.22. Theorem. [41, Proposition 5.2] Let (X, a) be a V -category. The following are
equivalent:

� (X, a) is a separated cocomplete V -category;

� There exists a V -functor
SupX : D(X)→ X,

such that, for every x ∈ X, SupX(yX(x)) = x.

Every set X can be endowed with the discrete V -structure given by

dX(x1, x2) =

{
⊥ if x1 6= x2,

k if x1 = x2.
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In this way we obtain a functor d : Set → V -Catsep, where the latter is the full subcat-
egory of V -Cat formed by separated V -categories. Since presheaf categories are always
separated, we can compose it with

D(−) : V -Catsep → CoCts(V -Catsep).

In this way we get a functor which is left adjoint to the forgetful functor

CoCts(V -Catsep)→ Set.

We have the well-known result (see [17, 30, 39]).

2.23. Theorem. The forgetful functor G : CoCts(V -Catsep)→ Set is monadic.

If we study the monad which arises from the adjunction, we see that the resulting
monad is the V -powerset monad (PV , u, n), the enriched generalization of the classical
powerset monad, where PV : Set → Set is defined by PV (X) = V X and, for f : X → Y
and φ ∈ V X

PV (f)(φ)(y) =
∨

x∈f−1(y)

φ(x);

and:

� uX : X → V X is the transpose of the diagonal 4X : X ×X → V ;

� nX : PV (PV (X))→ PV (X) is defined by nX(Φ)(x) =
∨
φ∈V X Φ(φ)⊗ φ(x).

In this way we have the equivalence (see ibid.)

CoCts(V -Catsep) ' SetPV ,

which can be explicitly described as the one that sends the cocomplete V -category (X, a)
to the algebra (X,α), where α(ψ) = SupX(ψ ◦ a).

2.24. Remark. The equivalence CoCts(V -Catsep) ' SetPV generalizes the well known
equivalence

Sup ' SetP2 ,

where P2 is the powerset monad and Sup is the category of suplattices with suprema
preserving maps.

2.25. Remark. This is a particular case of a more general result that holds for categories
enriched in a quantaloid, see [32] for details.

2.26. Enrichment via Actions. To every V -category (X, a) we can associate an or-
dered set (X,≤a), where the order is defined as

x ≤a y ⇐⇒ k ≤ a(x, y).

We call (X,≤a) the underlying ordered set of the V -category (X, a). This defines a
2-functor

V -Cat→ Ord, f : (X, a)→ (Y, b) 7→ f : (X,≤a)→ (Y,≤b).
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2.27. Remark. The underlying ordered set of the V -category (V, [−,=]) is (V,≤), the
underlying partially ordered set of the quantale V .

2.28. Remark. The 2-functor V -Cat→ Ord restricts to a 2-functor

V -Catsep → Ordsep.

Moreover, it is easy to see that Ordsep ' Pos, where the latter is the 2-category of partially
ordered sets and monotone maps.

2.29. Remark. The arguments we are going to use in this paper rely—mainly—on the
monadicity over Set of certain categories. For this reason we restrict ourself to consider
only separated categories. Take CoCts(V -Cat), the category of cocomplete enriched cat-
egories with cocontinuous functors. CoCts(V -Cat) is not separated and, morover, it is
not complete; thus it can not be monadic over Set.

In order to show that CoCts(V -Cat) is not complete, consider the V -categories
({•},>) and ({•1, •2},>); then the equalizer of the two evident maps

({•},>) ({•1, •2},>)

is empty which is not complete.

2.30. Definition. A V -category (X, a) is copowered if, for all x ∈ X, a(x,=) : X → V
admits a left adjoint in V -Cat denoted by −� x : V → X. That is to say

a(u� x, y) = [u, a(x, y)],

for all x, y ∈ X and u ∈ V. We say that a V -functor f : (X, a)→ (Y, b) between copowered
V -categories preserves copowers if, for all x ∈ X and u ∈ V , f(u� x) ' u� f(x).

In this way we can form the 2-category of copowered categories with copowers pre-
serving V -functors among them, denoted as V -Cat�. In the same way, if we consider
only separated V -categories, we obtain the category V -Cat�sep.

If we start with a separated copowered category (X, a) and we take its underlying
ordered set, then −� x : V → X becomes a monotone map of the type

−� x : (V,≤)→ (X,≤a).

Moreover, we have the following lemma.

2.31. Lemma. Under the same hypothesis as above, the monotone map

−� x : (V,≤)→ (X,≤a),

enjoys the following properties, for all x ∈ X, u, v ∈ V :

� k � x = x;

� v � (u� x) = (v ⊗ u)� x;

� (
∨
i ui) � x =

∨
i(ui � x), for every set {ui, i ∈ I} of elements of V , where either

side existing if the other does.
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Proof. First observe that k � x = x follows from [k, w] = w.
Fix an x ∈ X. Then, for all y ∈ X, we have

a(v � (u� x), y) = [v, a(u� x, y)]

= [v, [u, a(x, y)]]

= [v ⊗ u, a(x, y)]

= a((v ⊗ u)� x, y),

from which v � (u� x) = (v ⊗ u)� x follows.
Finally, the last property follows from the adjunction −� x a a(x,=).

2.32. Remark. Let X, Y be ordered sets. Then X ⊗ Y ' X × Y , that is to say the
monoidal structure ⊗ in the category Ord coincides with the cartesian product ×.

2.33. Definition. Let PosV∨ be the category described as follows. An object of PosV∨ is
a poset (X,≤X) equipped with a monotone map

ρ : V ⊗X → X,

such that, for all x ∈ X, u, v ∈ V :

� ρ(k, x) = x;

� ρ(v, ρ(u, x)) = ρ(v ⊗ u, x);

� ρ(
∨
i ui, x) =

∨
i ρ(ui, x), for every set {ui, i ∈ I} of elements of V , where either

side existing if the other does.

An arrow f : (X,≤X , ρ)→ (Y,≤Y , θ) in PosV∨ is a monotone map between the underlying
ordered sets (X,≤X) and (Y,≤Y ), such that the following diagram commutes

V ⊗X V ⊗ Y

X Y.

ρ

Id⊗f

θ

f

2.34. Remark. The underlying ordered set of the base quantale V , (V,≤), acts on itself
via the multiplication ⊗ : V × V → V . Moreover, since ⊗ preserves suprema, we also
have (

∨
i ui)⊗ v =

∨
i(ui ⊗ v).

2.35. Proposition. There exists a 2-functor V -Cat�sep → PosV∨ that associates to a
copowered V -category (X, a) its underlying ordered sets (X,≤a) with the action given by
−� =: V ⊗X → V .
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2.36. Remark. From the adjoint functor theorem, it follows that

ρ(
∨
i

ui, x) =
∨
i

ρ(ui, x)

is equivalent to the statement: ρx = ρ(−, x) : V → X has a right adjoint for all x ∈ X. In
particular, when we apply this to (V,≤), we get as a right adjoint the internal hom [x,=].
This crucial observation will allow us to define a V -structure starting from the action and
it is a particularization to the quantale-enriched case of a the more general construction
made for closed bicategories and described in [8] which we are going to briefly present.

Let (X,≤X , ρ) be an object of PosV∨ . By Remark 2.36, for all x ∈ X, there exists a
monotone map a(x,=) : X → V which is right adjoint to ρx : V → X. Thus we have, for
all x, y ∈ X and v ∈ V ,

ρ(v, x) ≤ y ⇐⇒ v ≤ a(x, y).

In this way we can define a V -relation a : X −7−→ X. As one might expect, this relation
defines a V -structure on X; moreover, with such structure, (X, a) becomes a copowered
category, with copowers given by ρx for all x ∈ X. In this way we can define a 2-functor

PosV∨ → V -Cat�sep.

2.37. Theorem. [8, Theorem 3.7] The two 2-functors

V -Cat�sep PosV∨

establish a 2-equivalence between V -Cat�sep and PosV∨ .

Remember that a sufficient and necessary condition for a V -category (X, a) to be
cocomplete is to be copowered and to have all conical suprema (see [19]). In the light of
this result, it is natural to ask if we can restrict ♠ to a 2-equivalence of the form:

CoCts(V -Catsep) ' CoCts(Pos)V? ,

where ? reflects the a priori unknown property (or properties) that we have to add in
order to obtain an equivalence.

Before we dip further into our quest, let us spend a few words about CoCts(Pos).
We know that

CoCts(Pos) ' Sup ' SetP2 .

Here Sup denotes the 2-category of suplattices with suprema preserving monotone maps
among them, while SetP2 is the Eilenberg-Moore category for the powerset monad P2.
Since P2 is a commutative monad, Sup becomes a closed symmetric monoidal category
(see Appendix 8 or [17] for a more direct construction) (Sup,⊗2,2) with the monoidal
structure that classifies bimorphisms. Here a bimorphism in Sup is a monotone map of
type f : X ⊗ Y → Z such that f preserves suprema separately in both variables and
where ⊗ is the tensor product we defined in Example 7 of Examples 2.12. We have the
following lemma.
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2.38. Lemma. [39] Let (X, a) be a cocomplete separated V -category. Then its underlying
ordered set (X,≤a) is cocomplete. Moreover, if f : (X, a) → (Y, b) is a cocontinuous V -
functor between cocomplete V -categories, then f : (X,≤a)→ (Y,≤b) preserves suprema.

In the light of what we wrote before, and because of the properties of arrows in PosV∨ ,
the copower of a cocomplete separated V -category (X, a) extends to a unique suprema
preserving map

(V,≤)⊗2 (X,≤a)→ (X,≤a).

This shows that we have a 2-functor

CoCts(V -Catsep)→ V -Mod,

where the latter is the category whose objects are suplattices (X,≤X) endowed with an
action ρ : V ⊗2 X → X and whose arrows are suprema preserving equivariant monotone
maps.

As one might expect, we obtain the analogue of Theorem 2.37.

2.39. Theorem. [39] The 2-equivalence

V -Cat�sep ' PosV∨

restricts to a 2-equivalence

CoCts(V -Catsep) ' V -Mod.

3. Refining V -Mod ' SetPV

In Section 2.26 we recalled the equivalence

V -Mod ' SetPV .

In this section, first we prove that both categories can be equipped with a monoidal struc-
ture, and then we prove that the aforementioned equivalence extends to the corresponding
categories of monoids.

In Proposition 8.7 we recalled that SetPV admits a closed symmetric monoidal struc-
ture (⊗PV , V ) for which the free functor

PV : Set→ SetPV

becomes strong monoidal. This monoidal structure comes from the fact that the V -
powerset monad (PV , u, n) is commutative—as shown in [9]. Moreover, this monoidal
structure has another interesting property: it classifies bimorphisms—as shown in [20].
This means that there exists a natural isomorphism (for all (X,α), (Y, β), (Z, θ) ∈ SetPV )

BimSetPV (X × Y, Z) ' SetPV (X ⊗PV Y, Z),
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where
BimSetPV (X × Y,=) : SetPV → Set

is the functor that sends an algebra (Z, θ), to the set of bimorphisms of the form f :
X × Y → Z. Here a function f : X × Y → Z, is a bimorphism if, for all x ∈ X, y ∈ Y ,

fx : Y → Z, y 7→ f(x, y) and fy : X → Z, x 7→ f(x, y)

are morphisms in SetPV (see Definition 8.8 and Proposition 8.10).

3.1. Remark. When V = 2 one obtains the well known monoidal structure on suplat-
tices. See [17] for its description.

In [17], Joyal and Tierney defined the tensor product X⊗V Y of V -modules (X,≤X , ρ)
and (Y,≤Y , η) as the coequalizer of

V ⊗2 X ⊗2 Y X ⊗2 Y. (where τV,X : V ⊗2 X ' X ⊗2 V )
τV,X⊗2η

ρ⊗2Id

With this tensor product one can prove that V -Mod becomes a symmetric closed monoidal
category. Moreover, ⊗V classifies bimorphisms, where a bimorphism f : X × Y → Z be-
tween V -modules is function such that, for all x ∈ X, y ∈ Y ,

fx : Y → Z, y 7→ f(x, y) and fy : X → Z, x 7→ f(x, y)

are morphisms in V -Mod.
Let f : X×Y → Z, be a bimorphism between V -modules. Since for all x ∈ X, y ∈ Y ,

fx : Y → Z, y 7→ f(x, y) and fy : X → Z, x 7→ f(x, y)

are morphisms in V -Mod, by applying the forgetful functor V -Mod → Sup, we get
two morphisms in Sup. Since the monoidal structure on Sup classifies bimorphisms too,
we get a unique morphism f : X ⊗2 Y → Z in Sup that makes the following diagram
commutes

X × Y X ⊗2 Y

Z.
f

f

This shows that we can define a bimorphism in V -Mod in two equivalent ways:

� As a function f : X×Y → Z, such that f is a morphism in V -Mod in each variable
separately;

� A suprema preserving map f : X ⊗2 Y → Z such that its associate arrow f :
X × Y → Z, is equivariant in each variable separately.

In other words, we have the following natural bijections:

BimV -Mod(X × Y, Z) ' BimV -Mod(X ⊗2 Y, Z) ' V -Mod(X ⊗V Y, Z).
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3.2. Remark. It is possible to prove that the forgetful functor U : V -Mod → Sup is
monadic (see [36] for a more general perspective on the problem). The resulting monad
is T = (V⊗2 =, η, µ) and it has as unit

ηX : X
∼−→ 1⊗2 X → V ⊗2 M,

and as multiplication

µX : V ⊗2 V ⊗2 X
(−⊗=)⊗2Id−−−−−−−→ V ⊗2 X.

3.3. Remark. The monoidal structure on V -Mod we have described is obtained from the
monoidal structure on Sup via the commutative monad T = (V⊗2 =, η, µ) we introduced
in Remark 3.2, where the strength is defined as

tX,Y : X ⊗2 TY
τX,V ⊗2Id−−−−−→ T (X ⊗2 Y ).

See [36] for more details.

3.4. Remark. From Remark 8.5, it follows that the left unitor lM : V ⊗V X ' X, of
the monoidal structure on V -Mod, is the unique morphism associated to the bimorphism
ρ : V ⊗2 X → X, where (X,≤X , ρ) is in V -Mod.

3.5. Proposition. The equivalence

V -Mod ' SetPV

extends to an equivalence between the corresponding category of monoids

Mon(V -Mod,⊗V , V ) 'Mon(SetPV ,⊗PV , V ).

Proof. Let us call [−] : V -Mod → SetPV the functor which realizes the equivalence
V -Mod ' SetPV which is the composite of V -Mod ' CoCts(V -Catsep) we obtained
in Theorem 2.39 with CoCts(V -Catsep) ' SetPV we described in Subsection 2.18. Let
f : X×Y → Z be a bimorphism between V -modules. Since equivalences preserve products
we have [X ×Y ] ' [X]× [Y ]. Moreover, because for all x, y ∈ X, Y , fx, fy are morphisms
in V -Mod, we have [fx] and [fy] are morphisms in SetPV . From [X × Y ] ' [X] × [Y ]
it follows that [fx] = [f ]x and [fy] = [f ]y. This implies that f defines a bimorphism
f : [X]× [Y ]→ [Z] in SetPV . This shows that we have a bijection

BimV -Mod(X × Y, Z) ' BimSetPV ([X]× [Y ], [Z])

which can be easily seen to be natural (since [−] is a functor and all the ”change of base”
components are given by pre-post composition). Now, from

V -Mod(X ⊗V Y, Z) ' SetPV ([X ⊗V Y ], [Z])
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and from
BimV -Mod(X × Y, Z) ' BimSetPV ([X]× [Y ], [Z]), (2)

it follows that
SetPV ([X]⊗PV [Y ], [Z]) ' SetPV ([X ⊗V Y ], [Z]),

from which we can deduce that

[X]⊗PV [Y ] ' [X ⊗V Y ].

The compatibility of [−] and the associators follows from the bijection (2) and from the
fact that both associators derive from the associator of the cartesian product Set.
Moreover, since [V ] ' V, and the unitors are compatible with [−], the result follows (see
the next remarks for further details).

3.6. Remark. The PV -algebra V has the structure given by

n1 : PV (PV (1))→ PV (1), j 7→
∨
w

j(w)⊗ w,

while the PV -algebra associated to the cocomplete V -category (V, [−,=]) is (V, α), where

α(j) = SupV (j) =
∨
w

j(w)⊗ w, where j(w) =
∨
v

[w, v]⊗ j(v).

In order to show that [V ] ' V , we need to prove that the two structures are the same,
that is to say ∨

w

j(w)⊗ w =
∨
w

(
∨
v

[w, v]⊗ j(v))⊗ w.

But since [−, v] = yV (v), we have SupV (yV (v)) =
∨
v[w, v] ⊗ v = v. Thus the result

follows.

3.7. Remark. The (left) unitor in the monoidal category SetPV , at an object (X,α), is
the corresponding morphism to the bimorphism

PV (1)×X → X, (v, x) 7→ α(v ⊗ eX(x)).

While the (left) unitor in the monoidal category V -Mod, at an object (X, ρ), is the cor-
responding morphism to the bimorphism

V ×X → X, (v, x) 7→ ρ(v, x).

The equivalence [−] sends (X, ρ) to the cocomplete V -category (X, a) that has ρ as copower.
The category (X, a) is then sent to the PV -algebra (X,α′), where α′ = SupX(− ◦ a). In
this way, we get that the unitor

V ×X → X, (v, x) 7→ ρ(v, x),
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becomes the copower of (X, a) which is then sent to the map

PV (1)×X → X, (v, x) 7→ v �ρ x.

In order to conclude, we notice that

SupX(v ⊗ eX(x) ◦ a) = SupX(v ⊗ yX(x)),

= v �ρ x.

4. Quantale-Enriched Multicategories

(L, V )-categories are a special case of the more general (T, V )-categories, where the list
monad L is considered. They are also the order-enriched version of multicategories (see
[27] and [14] for an account on them, and [24] for a historical perspective). The basic idea
is that, instead of having arrows with just a single object as the domain, we allow them
to have as domain a list of objects.

In this section we introduce (L, V )-categories and some of their basic constructions,
by mirroring what we have done in the previous section.

4.1. (L, V )-Categories and (L, V )-functors. Recall that the list monad is the monad
whose underlying functor L : Set→ Set is given by

f : X → Y 7→ Lf : qn≥0X
n → qm≥0Y

m, x = (x1, ..., xn) 7→ (f(x1), ..., f(xn)),

and whose unit and multiplication at a set X are defined as:

� eX : X → L(X), x 7→ (x);

� mX : L2(X)→ L(X), (x1, ..., xn) 7→ (x11, ..., x1k, ..., xn1, ..., xnl).

4.2. Remark. Let x, w be lists. In order to avoid possible confusion with the list of lists
y = (x,w), we denote the list obtained by concatenating x and w as (x;w). Moreover, in

the case in which one of the two is a single element list, we use the shortcut (x;w) instead
of (x; (w)).

We can extend (in a functorial way) the list monad L to V -Rel by defining, for
r : X −7−→ Y :

L̃r : L(X) −7−→ L(Y ), (x, y) 7→

{
r(x1, y1)⊗ ...⊗ r(xn, yn) if they have the same length,

⊥ otherwise.

This particular extension—which is the Barr-Extension of the list monad (see [14])—
defines a monad on V -Rel that, moreover, preserves the involution

(−)◦ : V -Relop → V -Rel.
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4.3. Remark. From now on we will use L for both the ordinary list monad and its
extension to V -Rel.

4.4. Remark. It is possible to prove that the extension of the list monad we have just
described, extends to a 2-monad on V -Cat (see [3, Theorem 4.4]). Strict algebras for this
monad are monoidal V -categories, where a monoidal V -category (X, a, ∗, uX) is sent to
(X, a, α), where

α : L(X)→ X, x 7→ x1 ∗ ... ∗ xn, (−) 7→ uX ;

algebra morphisms correspond to strict monoidal V -functors (2.16). In this way we have
a 2-equivalence V -CatL 'Mon(V -Cat,⊗, V ), see [23].

This allows us to define the order-enriched category (L, V )-Rel in which a morphism
r : X −⇀◦ Y is a V -relation of the form

r : L(X) −7−→ Y,

and in which composition is given by

s • r = s ◦ Lr ◦m◦X ,

and where the relation e◦X : X −⇀◦ X is the identity morphism.

4.5. Remark. Note that, due to the Kleisli-style composition we defined, −• r preserves
suprema, but s • (=) does not in general.

4.6. Definition. An (L, V )-category is a pair (X, a), where X is a set and a : X −⇀◦ X
is an (L, V )-relation that satisfies:

� e◦X ≤ a;

� a • a ≤ a.

4.7. Remark. When V = 2, the (L,2)-structure of an (L,2)-category (X, a) is a subset
a ⊆ L(X)×X such that:

� for all x ∈ X, ((x), x) ∈ a;

� given (z1, ..., zn) ∈ L2(X), x ∈ LX, and y ∈ X, such that

((z1, ..., zn), x) ∈ La, and (x, y) ∈ a,

then
((z1; ...; zn), y) ∈ a.

The relation La is the subset that corresponds to the relation La : L2(X)× LX → 2 that
one obtains by applying the extension of the list monad to the relation a : LX ×X → 2.
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4.8. Remark. Let (M, ∗,≤) be an ordered monoid, that is to say, a monoid endowed
with an order relation that is compatible with its multiplication. We can define a (L,2)-
structure aM on M in the following way, for x1, ..., xn, y ∈M ,

aM(x1, ..., xn, y) ⇐⇒ x1 ∗ ... ∗ xn ≤ y.

4.9. Definition. Let (X, a) and (Y, b) be (L, V )-categories. An (L, V )-functor f : (X, a)→
(Y, b) is a function between the underlying sets such that

a ≤ f ◦ ◦ b ◦ Lf,

which, in pointwise terms, means that, for all x ∈ LX, y ∈ X,

a(x, y) ≤ b(Lf(x), f(y)).

If the equality holds, we call f fully faithful.

4.10. Remark. If V = 2, then an (L,2)-functor f : (X, a) → (Y, b) satisfies, for all
x ∈ LX, y ∈ X,

(x, y) ∈ a implies (Lf(x), f(y)) ∈ b.

Notice how this generalizes the classical monotonicity condition.

4.11. Remark. A map f : (M, ∗M ,≤M) → (N, ∗N ,≤N) between ordered monoids is
called submultiplicative (see [25]) if, for all x1, ..., xn, x ∈M ,

x1, ..., xn ≤M x implies f(x1), ..., f(xn) ≤N f(x).

With the (L,2)-structures aM , aN defined in Remark 4.8, f : (M,aM)→ (N, aN) becomes
an (L,2)-functor.

In this way we define (L, V )-Cat as the category whose objects are (L, V )-categories
and whose arrows are (L, V )-functors, moreover, (L, V )-Cat becomes an order-enriched
category if we define, for two (L, V )-functors f, g : (X, a)→ (Y, b),

f ≤ g whenever k ≤
∧
x∈X

b(Lf((x)), g(x)).

4.12. Examples.

1. Every set X defines an (L, V )-category with e◦X as (L, V )-structure. In particular,
we define the one-point (L, V )-category E = (1, e◦1).

2. Every set X defines an (L, V )-category if we consider the free L-algebra on X,
(LX,mX).

3. V itself defines an (L, V )-category where [v, w] = [v1 ⊗ ...⊗ vn, w].
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4. Let (X, a) and (Y, b) be (L, V )-categories. We can form their tensor product X⊗Y =
(X × Y, a⊗ b), where

a⊗ b(γ, (x, y)) = a(Lπ1(γ), x)⊗ b(Lπ2(γ), y).

Here γ ∈ L(X × Y ) and π1, π2 are the obvious projections. Unluckily, in general it
is not true that X ⊗ E ' X.

5. Quantum B-algebras [34] and their enriched counterpart [29] are examples of order-
enriched multicategories and of quantale-enriched multicategories, respectively.

6. More generally, promonoidal categories enriched in a quantale are examples of quan-
tale-enriched multicategories, see [29, Proposition 6.8] for a direct proof, or for a
more general overview on the subject [27].

In [3] it is shown that there exists a 2-functor

Kmp : V -CatL → (L, V )-Cat,

that sends an algebra (X, a, β) to the (L, V )-category (X, â), where â = a ◦ β. This
2-functor has a left adjoint

M : (L, V )-Cat→ V -CatL,

that sends an (L, V )-category (X, a) to the V -CatL algebras (LX,La ◦m◦X ,mX) and an
(L, V )-functor f to Lf [3, Theorem 5.4]. Using the aforementioned adjunction, we can
extend the monad L to a Kock-Zöberlein monad on (L, V )-Cat, denoted by L̂, [3, Theo-
rem 6.1]) . Moreover, one can prove (see [3, Theorem 7.2]) that there is a 2-equivalence

V -CatL ' (L, V )-CatL̂,

where the latter is the 2-category of pseudo-algebras for the monad L̂, whose objects are
called representable (L, V )-categories.

The 2-equivalence V -CatL ' (L, V )-CatL̂, allows us to generalize Remarks 4.8, 4.11
for an arbitrary quantale V . In Remark 4.4 we mentioned that V -CatL is 2-equivalent
to Mon(V -Cat,⊗, V ), where a monoidal V -category (X, a, ∗, uX) is sent to the algebra
(X, a, α). The 2-functor Kmp sends this algebra to the (L, V )-category that has the same
underlying set and whose (L, V )-structure is given by â = a ◦ α. This means that, for
x ∈ LX and y ∈ X,

a(x, y) = a(x1 ∗ ... ∗ xn, y),

which, when we consider V = 2, coincides with the structure we defined in Remark 4.8.

4.13. Remark. As we showed in the examples, quantale-enriched multicategories provide
a common roof for several categories studied in the literature. In particular [29] shows
how they allow to unify several results that appeared in the literature regarding injective
hulls, such as for example [25, 35].
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4.14. Remark. A priori, due to the non-symmetric form of arrows in (L, V )-Rel, it is
not clear how to define an (L, V )-category that seems to play the role of a dual. Luckily,
we can use the adjunction Kmp aM and the involution in V -Rel to define, for an (L, V )-
category (X, a), its opposite category as Xop = (LX,mX ◦ La◦ ◦mX). At first this might
be seen as an ad hoc definition, but if we apply this construction to a V -category (X, a),
seen as an (L, V )-category (LX, e◦X ◦ a), we get

Xop = Kmp(LX,La◦),

where (LX,La◦) is the dual, as a V -category, of (LX,La). See [4, 5, 3, 11] for further
details.

For any (L, V )-category (X, a) we can form the (L, V )-category DL(X)[−,=] whose
underlying set consists of all (L, V )-functors of the form: f : Xop⊗E → V , where ⊗ was
defined in Example 4, and whose (L, V )-structure is given by

DL(X)[f, g] =
∧

(x1,...,xn)∈LX2

[(f1(x1), ..., fn(xn)), g(mX((x1, ..., xn))))],

where f ∈ L(DL(X)) and g ∈ DL(X).

4.15. Remark. We have a fully faithful functor, called the Yoneda embedding,

yX : X → DL(X), x 7→ a(−, x).

Moreover, it can be proved (see [4]) that

DL(X)[LyX(x), g] = g(x).

The last result is known as the Yoneda Lemma.

4.16. The Presheaf Monad. As in the V -case, the presheaf construction for quantale-
enriched multicategories is part of a monad defined on (L, V )-Cat (see [11]). The under-
lying 2-functor of this monad is

DL(−) : (L, V )-Cat→ (L, V )-Cat, f : X → Y 7→ DL(f) := − • f⊕⊗ : DL(X)→ DL(Y ),

where f⊕⊗ : Y −⇀◦ X, f⊕⊗(y, x) = b(y, f(x)). The unit at X is the Yoneda embedding,

yX : X → DL(X);

while its multiplication is given by

− • (yX)⊕⊗ : DL(X)2 → DL(X),

where (yX)⊕⊗ : X −⇀◦ DL(X), (yX)⊕⊗(x, g)) = g(x). In particular, as in the V -case, from
the Yoneda lemma it follows that (DL(−),yX ,− • (yX)⊕⊗) is of Kock–Zöberlein type.

Similarly to what happens in the V -case, one can prove that (pseudo)-algebras for the
monad DL are exactly cocomplete categories (see ibid. for more details). Moreover, since
(DL(−),y−,−• (y−)⊕⊗) is of Kock–Zöberlein type, we have the analogue of Theorem 2.20
(see ibid.).
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4.17. Theorem. Let (X, a) be an (L, V )-category. The following are equivalent:

� (X, a) is a cocomplete (L, V )-category;

� There exists an (L, V )-functor

SupX : DL(X)→ X,

such that, for every x ∈ X, SupX(yX(x)) ' x;

� (X, a) is pseudo-injective with respect to fully faithful (L, V )-functors. That is to
say, for every (L, V )-functor f : (Y, b)→ (X, a) and for every fully faithful (L, V )-
functor i : (Y, b) → (Z, c), there exists an extension f ′ : (Z, c) → (X, a) such that
f ′ · i ' f .

4.18. Monadicity over Set. As in the V -case, we restrict ourself to consider only sep-
arated (L, V )-categories. An (L, V )-category (X, a) is called separated (see [15]) whenever
f ' g implies f = g, for all (L, V )-functors of the form f, g : (Y, b)→ (X, a). We have
the analogue of Theorem 2.22.

4.19. Theorem. Let (X, a) be an (L, V )-category. The following are equivalent:

� (X, a) is a separated cocomplete (L, V )-category;

� There exists an (L, V )-functor

SupX : DL(X)→ X,

such that, for every x ∈ X, SupX(yX(x)) = x;

� (X, a) is injective with respect to fully faithful (L, V )-functors. That is to say, for
every (L, V )-functor f : (Y, b) → (X, a) and for every fully faithful (L, V )-functor
i : (Y, b)→ (Z, c), there exists an extension f ′ : (Z, c)→ (X, a) such that f ′ · i = f .

One can prove that the forgetful functor (L, V )-Cat → Set has a left adjoint given
by

d : Set→ (L, V )-Cat, X 7→ (X, e◦X).

Thus, the forgetful functor

CoCts((L, V )-Catsep)→ Set,

where CoCts((L, V )-Catsep) denotes the (2-)category formed by cocomplete separated
(L, V )-category and cocontinuous (L, V )-functors among them, has a left adjoint which
is given by the composite

Set
d−→ (L, V )-Catsep

DL(−)−−−→ CoCts((L, V )-Catsep).

As in the V -case we have (see Theorem 2.23 of [11]) that this functor is monadic.
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4.20. Theorem. The forgetful functor G : CoCts((L, V )-Catsep)→ Set is monadic.

Define PL = DL · d. Then the monad which arises from the previous theorem is the
monad (PL, e, n) whose unit and multiplication, at a set X, are given by

eX : X → PL(X), x 7→ yX(x) = e◦X(−, x),

nX = − • (yX)⊕⊗ : PLPL(X)→ PL(X).

In Section 6 we will study better this monad and its algebras.

5. First Interlude: Algebras and Modules

In this section we study further the category Mon(V -Mod,⊗V , V ). In commutative alge-
bra it is well known that monoids in the category of modules over a commutative ring R are
(associative and unital) R-algebras. In our case the quantale V plays the role of the base
ring R, thus one might expect that a similar result holds also for Mon(V -Mod,⊗V , V ).
The answer is positive but it requires us to restrict our attention to a particular subcate-
gory of V ↓ Quant.

5.1. Definition. We define (V ↓ Quant)♠ to be the full subcategory of the coslice cate-
gory V ↓ Quant whose objects are morphisms of quantales f : V → Q such that, for all
v ∈ V, u ∈ Q, f(v) ∗Q u = u ∗Q f(v).

5.2. Remark. At the time the author was writing this article he was not aware that the
following result was already proven in [7] as pointed out by the referee. I decided to keep
the original proof in order to be as self-contained as possible.

5.3. Proposition. There is an equivalence of categories:

Mon(V -Mod,⊗V , V ) ' (V ↓ Quant)♠.

Proof. Since the monoidal structure on V -Mod is the one induced by a commutative
monad, as we explained in Remark 3.3, by Theorem 8.3, it follows that the functor

V⊗2 =: Sup→ V -Mod, X 7→ V ⊗2 X,

is strong monoidal. This implies, by doctrinal adjunction [18], that the forgetful functor

U : V -Mod→ Sup

is lax monoidal. Let X and Y be V -modules. Then the laxator

π : X ⊗2 Y → X ⊗V Y,

is the universal bimorphism that “defines” ⊗V , while

2→ V
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is the canonical inclusion. Moreover, since U is lax monoidal, it sends monoids in V -Mod
to monoids in Sup.

Let e : V → X, m : X⊗VX → X, α : V⊗2X → X be an object of Mon(V -Mod,⊗V , V ).
Then X = (X,m ·π, e ·k) is a monoid in Sup, thus a quantale. In order to have an object
in (V ↓ Quant)♠, we have to show that e : V → X is a quantale homomorphism and
that it satisfies the condition e(v) ∗X x = x ∗X e(v) (where ∗X is a shortcut for m · π, the
multiplication of X seen as a quantale).

The first condition follows from the fact that in every monoidal category (C,⊗, 1)
the unit 1 is a monoid and, for every monoid (M,m, e) in C, e : 1 → M is a monoid
homomorphism. The second condition is the pointwise expression of the image under U
of the unit axioms for X

V ⊗V X X X ⊗V V

X.

e⊗V Id

m

Id⊗V e

Thus we have a functor

F : Mon(V -Mod,⊗V , V )→ (V ↓ Quant)♠.

This functor is clearly faithful, and with a little effort it is possible to show that F is also
full. Let us prove that F is essentially surjective. Let f : V → Q, ∗Q : Q⊗2Q→ Q, e :
2→ Q be and object of (V ↓ Quant)♠. We have that

V ⊗2 Q Q⊗2 Q Q
f⊗2Id ∗Q

defines an action, call it ρ. The compatibility of ρ with the unit follows from the unital
condition for the multiplication of Q, while the associativity condition follows from the
fact that f is a quantale homomorphism and from the associativity of ∗Q.

We can prove that ∗Q : Q⊗2 Q→ Q coequalizes the fork that defines Q⊗V Q, hence
that there is a unique ∗Q : Q⊗V Q→ Q that makes the following diagram commute

Q⊗2 Q Q.

Q⊗V Q

π

∗Q

∗Q

Let us prove this statement. In the fork that defines Q⊗V Q the two arrows are defined
as follows

V ⊗2 Q⊗2 Q V ⊗2 Q
ρ⊗2Id

and

V ⊗2 Q⊗2 Q Q⊗2 V ⊗2 Q Q⊗2 Q.
τ⊗2Id Id⊗2ρ
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But, since ρ = ∗Q · (f ⊗2 Id), and since the condition f(v) ∗Q u = u ∗Q f(v) means

Q⊗2 Q Q Q⊗2 Q

V ⊗2 Q Q⊗2 V

∗Q ∗Q

f⊗2Id

τV,Q

Id⊗2f

by using (Id⊗2 f)⊗2 Id = Id⊗2 (f ⊗2 Id) and ∗Q · (Id⊗2 ∗Q) = ∗Q · (∗Q ⊗2 Id), we have

∗Q · (Id⊗2 ρ) · (τ ⊗2 Id) = ∗Q · (Id⊗2 ∗Q) · (Id⊗2 (f ⊗2 Id)) · (τ ⊗2 Id)

= ∗Q · (∗Q ⊗2 Id) · ((Id⊗2 f)⊗2 Id) · (τ ⊗2 Id)

= ∗Q · ((∗Q · (Id⊗2 f) · τ)⊗2 Id)

= ∗Q · ((∗Q · (f ⊗2 Id))⊗2 Id)

= ∗Q · (ρ⊗2 Id).

The associativity of ∗Q follows from the associativity of ∗Q, while the unit condition
follows from f being a morphism of quantales.

From the fact that f is a morphism of quantales, and since the action on V its is
multiplication, it follows that f : V → Q is equivariant. This ends the proof of the
proposition.

5.4. Remark. Note that in the case in which V = 2, (V ↓ Quant)♠ ' Quant. Every
morphism of quantales f : 2→ Q satisfies f(v) · u = u · f(v) and:

2 ↓ Quant ' Quant.

6. Second Interlude: Injectives and Monoids

The enriched powerset monad PV is commutative. This means (see Proposition 8.7) that
the free functor

PV : Set→ SetPV

is strong monoidal. Thus PV extends to a functor, which we denote again as PV , between
the corresponding categories of monoids:

PV : Mon→Mon(SetPV ,⊗PV , V ).

Since PV is left adjoint to the forgetful functor

SetPV → Set,

by doctrinal adjunction [18], we can conclude that

PV : Mon→Mon(SetPV ,⊗PV , V ),
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has a right adjoint. Hence

W : Mon(SetPV ,⊗PV , V )→ Set,

which is the functor obtained by composing the right adjoint of PV with the forgetful
functor Mon→ Set, it is the right adjoint of

PVL : Set→Mon(SetPV ,⊗PV , V ).

We want to show that W : Mon(SetPV ,⊗PV , V )→ Set is monadic.
In order to do so, we use the strategy deployed in [31]. We introduce a category in

which Mon(SetPV ,⊗PV , V ) is closed with respect to epimorphisms. Then we prove that
such category satisfies the ”hard” part of Beck’s monadicity Theorem, namely that is
equipped with a functor to Set that creates coequalizers of split pairs.

6.1. Definition. Alg(T+) is the category of algebras for the endofunctor

T+ : SetPV → SetPV , X 7→ (X ⊗PV X)q V.

That is to say, the the category whose objects are of the form m : (X ⊗PV X) q V → X
(here m is an arrow in SetPV ) and whose arrows f : (X,m)→ (Y, n) are those in SetPV

that make the following diagram commute

(X ⊗PV X)q V (Y ⊗PV Y )q V

X Y.

m

(f⊗PV
f)qId

n

f

6.2. Remark. Because W just forgets the structure, we can immediately define

W : Alg(T+)→ Set,

again as the forgetful functor; it is clear that its restriction to Mon(SetPV ,⊗PV , V ) is W .

6.3. Lemma. Mon(SetPV ,⊗PV , V ) is closed in Alg(T+) with respect to epimorphisms.

Proof. (Based on [31], Proposition 2.6)
Let (N, n, en) be an object of Mon(SetPV ,⊗PV , V ) and let d : (N, n, en)→ (M,m, em) be
an epimorphism in Alg(T+).
From diagram chasing over

N ⊗PV N ⊗PV N N ⊗PV N

M ⊗PV M ⊗PV M M ⊗PV M

N ⊗PV N N

M ⊗PV M M

d⊗PV
d⊗PV

d

n⊗PV
Id

Id⊗PV
n

d⊗PV
d
n

m⊗PV
Id

Id⊗PV
m

d⊗PV
d

n

d
m

m
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we get

m · (m⊗PV Id) · (d⊗PV d⊗PV d) = m · (Id⊗PV m) · (d⊗PV d⊗PV d),

which implies, since d⊗PV d⊗PV d is an epimorphism (being ⊗PV a closed structure), that

m · (m⊗PV Id) = m · (Id⊗PV m).

In a similar way one proves the corresponding equation for the unit from which it follows
that (M,m, em) is an object of Mon(SetPV ,⊗PV , V ).

6.4. Lemma. The functor W : Alg(T+)→ Set creates coequalizers of W -split pairs.

Proof. Let
R X

be a W -split pair. Let

R X Q,

t

π

s

be its (splitting) coequalizer in Set.
Since the monoidal structure in SetPV classifies bimorphisms, we have that, associated
to the ”monoid structure without equations” of R and X: r̃ : R ⊗PV R → R and m̃ :
X ⊗PV X → X, there exist two unique bimorphisms r : R×R→ R and m : X ×X → X.
Because π is an epimorphism and × is closed, it follows that π × π is an epimorphism
too, hence

R×R X ×X Q×Q

t×t

π×π

s×s

is again a split coequalizer in Set. Moreover, since we obtained W first by forgetting
the ”free monoid structure” and then by forgetting the PV -structure, and since SetPV is
monadic over Set, it follows that there exists a unique PV -structure on Q such that π
becomes a PV -algebra morphism.

Since
R X

are both T+-morphisms, by using the split and the universal property of coequalizers we
get a unique function n : Q×Q→ Q, as displayed in the following diagram

R×R X ×X Q×Q

R X Q.

n (3)

Since π · m · (π × π) and π · m are both bimorphisms in SetPV , it follows that n is a
bimorphism too. Indeed, fix q ∈ Q, then—in Set—we have that the diagram
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X Q

X ×X Q×Q

X Q

π

〈x,Id〉 〈q,Id〉

m n

π

commutes, where π(x) = q and 〈q, Id〉(w) = (q, w). Because π is and epimorphism and

π ·m · 〈x, Id〉 : X → Q

is a PV -algebra morphism, it follows that n · 〈q, Id〉 is a PV -algebra morphism too. We
can do the same for 〈Id, q〉, thus showing that n is a bimorphism. This shows that there
exists a unique arrow ñ : Q⊗PV Q→ Q, in SetPV that makes the diagram

Q×Q Q

Q⊗PV Q

n

ñ

commute.
In order to have an object of Alg(T+), we also need a PV -algebra morphism

V → Q.

Since X is in Alg(T+), we have IX : V → X; by taking the composite IQ := π · IX : V →
X → Q we get our desired arrow. In order to show that π : X → Q is in Alg(T+), we
appeal to the following diagram

(R⊗PV R)q V (X ⊗PV X)q V (Q⊗PV Q)q V

R X Q

r̃qIR m̃qIX ñqIQ

whose commutativity follows from the universal property of bimorphisms and from Dia-
gram 3.

In order to conclude our proof we are left to show that Q is the coequalizer of

R X

in Alg(T+).
Since we have already noticed that Q is a coequalizer in SetPV , for every (appropriate)

arrow g : X → E in Alg(T+), we get a unique PV -algebra morphism such that the
following diagram
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R X Q

E

π

g
f

commutes. In this way we get a unique morphism f ⊗PV f : Q ⊗PV Q → E ⊗PV E.
What we want to show is that f : E → Q is a morphism in Alg(T+), thus that the
following diagram commutes, where the vertical arrows are the multiplication on Q and
E respectively,

Q⊗PV Q E ⊗PV E

Q E

ñ

f⊗PV
f

ẽ

f

which would then imply the commutativity of

(Q⊗PV Q)q V (E ⊗PV E)q V

Q E.

(f⊗PV
f)qId

fqId

Since
R×R X ×X Q×Q

is a coequalizer in Set, it follows that the following diagram commutes

Q×Q E × E

Q E

n

f×f

e

f

(4)

were e : E × E → E is the unique bimorphism associates to ẽ : E ⊗PV E → E. Indeed,
from the following commutative diagram

E × E

X ×X Q×Q

E

X Q

e

π×π

m

g×g f×f

π

g
q

f
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it follows that
e · (f × f) · (π × π) = f · q · (π × π),

which implies that
e · (f × f) = f · q,

since π × π is an epimorphism.
This allows us to conclude. Indeed, from the commutativity of Diagram 4, by using

the universal property of bimorphisms, we can deduce the commutativity of the following
diagram

Q⊗PV Q E ⊗PV E

Q E

ñ

f⊗PV
f

ẽ

f

as required. This ends the proof of the lemma.

6.5. Proposition. The functor W : Mon(SetPV ,⊗PV , V )→ Set is monadic.

Proof. Let
R X

be a W -split pair in Mon(SetPV ,⊗PV , V ). By Lemma 6.4 we know that there exists the
coequalizer of following diagram in Alg(T+)

R X Q.e

Since e is an epimorphism in Alg(T+), by Lemma 6.3, it follows that Q is an object of
Mon(SetPV ,⊗PV , V ). Moreover, since Mon(SetPV ,⊗PV , V )→ Alg(T+) is fully faithful it
follows that Q is the coequalizer of

R X.

Now, from W
∣∣
Mon(SetPV ,⊗PV

,V )
= W , it also follows that Q is preserved by W . The fact

that W reflects isomorphisms is straightforward.

The last proposition shows that objects of Mon(SetPV ,⊗PV , V ) are algebras for the
monad induced by the adjunction PVL a W . In order to study better this monad, we use
the following remark.
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6.6. Remark. Suppose that we have two adjunctions

C D E

F ′

G′

a

F

G

a

with units and counits given by

η′ : Id⇒ G′F ′, η : Id⇒ GF, ε′ : F ′G′ ⇒ Id, ε : FG⇒ Id.

Then FF ′ a G′G, with unit and counit given by

η = G′ηF ′η
′, ε = εF (ε′).

If we apply Remark 6.6 to the adjunction

PV a U : Mon Mon(SetPV ,⊗PV , V )

whose unit and counit, at a monoid (M, ·, 1M) and at an object

(Q,α, ∗Q, kQ) of Mon(SetPV ,⊗PV , V ),

are
ηM : M

p∆Mq−−−→ PV (M),

(where p∆Mq is the transpose of the diagonal ∆M : M ×M → V ) and

εQ : PV (Q)
α−→ Q,

and to the adjunction

L a U ′ : Set Mon

whose unit and counit, at a set X and at a monoid (M, ·, 1M), are

η′X : X → L(X), x 7→ (x),

ε′M : L(M) −→M, (m1, ...,mn) 7→ m1 · ... ·mn,

we get that the unit and the counit of the adjunction PVL a W are

ηX : X → PV (L(X)), x 7→ p∆Xq((x)),

εQ : PV (L(Q))
PV (ε′Q)
−−−−→ PV (Q)

α−→ Q.

Hence the monad structure on PVL is defined as

ηX = ηX : X → PV (L(X)), x 7→ p∆Xq((x)),
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µX = U ′εPV L : (PVL)(PVL)(X)→ PVL(X).

Let us decompose a little bit more the multiplication. First of all, we notice that the
PV -structure PVL(X) possesses is the multiplication of the enriched powerset monad PV
at L(X)

nX : PV PV (LX)→ PV (LX), nX(Φ)(x) =
∨

φ∈V L(X)

Φ(φ)⊗ φ(x).

We can write nX(Φ)(x) as the relational composite of Φ viewed as a V -relation

Φ : PVL(X) −7−→ 1,

with the V -relation

evLX : LX −7−→ PVL(X), evLX(x, φ) = φ(x).

Interestingly enough, we can also write PV (ε′PV L) as the composition of V -relations. Indeed,
for an element ψ ∈ PV (LX) seen as a V -relation

ψ : L(X) −7−→ 1,

we have that PV (ε′PV L)(ψ) = ε
′◦
PV L
◦ ψ.

In this way we can write the multiplication µX as the composite of

LX
evLX− 7−→ PVLX

ε
′◦
PV L−7−→ LPVLX

(−)−7−→ 1.

In Section 4.18 we stated that

CoCts((L, V )-Catsep) ' SetPL ,

where PL is the Set-monad we obtained by composing the presheaf monad DL : (L, V )-Cat
→ (L, V )-Cat with the “discrete” functor d : Set → (L, V )-Cat. We showed that its
unit and multiplication at X are given by

eX : X → PL(X), x 7→ yX(x) = e◦X(−, x),

nX = − • y⊕⊗ : PLPL(X)→ PL(X).

A brief calculation shows that

PL(X) = V -Rel(L(X), 1) = PV (L(X)).

Notice that e◦X(−, x) = p∆Xq((x)) and, furthermore, the two V -relations evLX and y⊕⊗,
by the Yoneda lemma, are the same.

6.7. Proposition. There is an equivalence of categories:

Mon(SetPV ,⊗PV , V ) ' CoCts((L, V )-Catsep).
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Proof. If we prove that PVL ' PL as monads, i.e. in the sense of [37], we are able to
prove our proposition.

As we noticed, the unit of PVL and the unit of PL are the same. Hence, in order to
conclude, we have to show that also the two multiplications are compatible.

If we decompose the two multiplications, we have that pointwise they are defined as

LX
m◦X−7−→ LLX

Ly⊕⊗−7−→ LPVLX
(−)−7−→ 1 (multiplication of PL)

and as

LX
evLX− 7−→ PVLX

ε
′◦
PV L−7−→ LPVLX

(−)−7−→ 1. (multiplication of PVL)

Because in V -Rel y⊕⊗ is the same as evLX , once we have shown that in V -Rel the following
diagram commutes

LX �y⊕⊗ //

_m◦X
��

PVLX

_ε
′◦
PV L
��

LLX �Ly⊕⊗ // LPVLX

(5)

we can conclude that the two monads are the same.
The monoid structure on PVL(X) is defined as

PV (LX)× PV (LX) −→ PV (LX × LX) −→ PVL(X)

(ψ, φ) 7−→ ψ ⊗ φ 7−→ m2 · (ψ ⊗ φ)

where

m2 : LX × LX −→ LX

(x, y) 7−→ mX(x, y).

Hence it follows that ε′PV L is the composite

L(PVL(X))
q⊗n

−7−→ PV (LLX)
PV (mX)−−−−→ PVL(X),

where, for a list φ ∈ L(PVL(X)), (q⊗n)(φ) = φ1 ⊗ ...⊗ φn.
In this way we can decompose Diagram 5 as follows

LX �y⊕⊗ //

_m◦X
��

PVLX

_PV (mX)◦

��
LLX �(yLX)⊕⊗//

�
Ly⊕⊗ %%

PVLLX

_(q⊗n)◦

��
LPVLX.
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We can easily prove that the two sub diagrams commute. Let x ∈ LX and φ ∈ PVLX,
then we have

PV (mX)◦ • y⊕⊗(x, φ) = y⊕⊗(x, PV (mX)(φ))

= PV (mX)(φ)(x)

(from the Yoneda lemma)

=
∨

{x∈LLX , mX(x)=x}

φ(x)

(by definition of PV )

=
∨

x∈LLX

m◦X(x, x)⊗ y⊕⊗(x, φ)

(from the Yoneda lemma applied to φ(x))

= ((yLX)⊕⊗ •m◦X)(x, φ),

which proves the commutativity of the upper square. If we fix x ∈ LLX and φ ∈ LPVLX,
we have

(q⊗n)◦ • (yLX)⊕⊗(x, φ) = (q⊗n)(φ)(x)

= φ1(x1)⊗ ...⊗ φn(xn)

= Ly⊕⊗(x, φ),

which proves the commutativity of the lower triangle and concludes the proof of the
proposition.

6.8. Remark. There is another interesting and conceptual way to prove that

LX �y⊕⊗ //

_m◦X
��

PVLX

_PV (mX)◦

��
LLX �(yLX)⊕⊗// PVLLX

commutes. Consider it as a diagram in V -Dist, the 2-category of distributors [1], with
LX seen as a discrete V -category and use the fact that y⊕⊗ is the unit of a monad—hence
a natural transformation in V -Dist. We have that PV (mX)∗ = PV (mX)◦ and, because
mX a m∗X in V -Dist, we get that PV (mX) a PV (m∗X) and PV (mX) a PV (mX)∗; by unicity
of adjoints, it follows that PV (m∗X) = PV (mX)∗. In this way, from the commutativity of

LLX �y⊕⊗ //

_mX

��

PVLLX

_PV (mX)
��

LX �(yLX)⊕⊗// PVLX

follows the commutativity of the desired one, since

PV (m◦X) = PV (m∗X) = PV (mX)∗ = PV (mX)◦.
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6.9. Corollary. CoCts((L,2)-Catsep) ' Quant.

Proof. Since we have just proven that

CoCts((L,2)-Catsep) 'Mon(SetP2 ,⊗2,2),

from SetP2 ' Sup, and since—by definition—quantales are monoids in the category of
suplattices, the result follows.

6.10. Remark. In [29] the author gave another proof of the characterization of cocom-
plete multicategories exposed in Proposition 6.7. The main difference is the approach used;
in [29], the author obtained his result by using the machinery of (L, V )-colimits which are
a generalization to the realm of (L, V )-categories of the notion of weighted colimits, while
in Proposition 6.7 we compared two monads. The advantage of the latter is that it gives a
more manageable description of the category of algebras as a generalization to the enriched
case of the notion of quantales. We must point out that the proof of Proposition 6.7 came
before [29, Theorem 6.19] and it was the guiding principle that led to the proof of [29,
Theorem 6.19].

7. Conclusions

We are now ready to conclude our tour de force and finally prove our desired result.

7.1. Definition. Let V -Mod(Quant) be the category whose objects are quantales (Q, ∗,
kQ) equipped with an action ρ : V ⊗2 Q→ Q that is a monoid homomorphism and whose
arrows are equivariant morphisms of quantales.

7.2. Remark. Notice that the action functor V ⊗2 (=) : Sup → V -Mod extends to a
functor V ⊗2(=) : Quant→ V -Mod(Quant); as in the case of suplattices, this extension
is left adjoint to the forgetful functor V -Mod(Quant)→ Quant.

7.3. Remark. To give an arrow ρ : V ⊗2 Q→ Q in Sup, is equivalent to give an arrow

ρ′ : V ⊗ Q→ Q

in Ord that preserves suprema in each variable. Moreover, ρ is an action iff ρ′ is an
action. It is also true that ρ is a monoid homomorphism iff ρ′ is a monoid homomorphism.

7.4. Proposition. V -Mod(Quant) ' (V ↓ Quant)♠.

Proof. Let f : V → (Q, ∗Q, kQ) be an object of (V ↓ Quant)♠. Define the following
function:

ρ′f : V ⊗ Q→ Q, (v, q) 7→ f(v) ∗Q q.
Because f is a morphism of quantales and the multiplication of a quantale preserves
suprema, it follows that ρ′f defines a unique arrow

ρf : V ⊗2 Q→ Q
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in Sup. It is straightforward to show that ρ′f is an action, hence ρf is an action too.
By using the fact that f : V → Q is an object of (V ↓ Quant)♠, we can also prove that
ρ′f is a monoid homomorphism. Indeed, let v1, v2 ∈ V and q1, q2 ∈ Q, then we have

ρ′f ((v1, q1) ∗V⊗Q (v2, q2)) = ρ′f (v1 ⊗ v2, q1 ∗Q q2)

= f(v1 ⊗ v2) ∗Q q1 ∗Q q2

= f(v1) ∗Q f(v2) ∗Q q1 ∗Q q2

= f(v1) ∗Q q1 ∗Q f(v2) ∗Q q2

= ρ′f (v1, x1) ∗V⊗Q ρ′f (v2, x2).

Thus (Q, ρ) is an object of V -Mod(Quant). Let h : Q → W , where f : V → Q and
g : V → W are objects of (V ↓ Quant)♠, be a morphism in (V ↓ Quant)♠. It is
straightforward to verify that h : (Q, ρf ) → (W, ρg) is a morphism in V -Mod(Quant).
Thus we have a functor

F : (V ↓ Quant)♠ → V -Mod(Quant).

Let ρ : V ⊗2 (Q, ∗, kQ) → (Q, ∗, kQ) be an object of V -Mod(Quant) and let ρ′ :
V ⊗ Q→ Q be as in Remark 7.3. Define the following morphism of quantales

fρ′ : V → Q, v 7→ ρ′(v, kQ).

We have, for q ∈ Q, v ∈ V ,

fρ′(v) ∗Q q = ρ′(v, kQ) ∗V⊗Q ρ′(k, q) = ρ′(v, q) = ρ′(k, q) ∗V⊗Q ρ′(v, kQ) = q ∗Q fρ′(v).

If h : (Q, ρ)→ (W, θ) is an arrow in V -Mod(Quant), then h · fρ′ = fθ′ . Thus we have a
functor

G : V -Mod(Quant)→ (V ↓ Quant)♠.

Easy calculations show that F and G establish an equivalence between V -Mod(Quant)
and (V ↓ Quant)♠.

7.5. Remark. If (X, ρ,≤X) is an object in V -Mod, then the map ρ(v,=) : X → X
defines a morphism in Sup. Let ρ : V ⊗ Q → Q be an object of V -Mod(Quant).
We might be tempted to see (or at least, the author was) if something similar holds.
Unfortunately, ρ(v,=) : Q → Q does not define a morphism of quantales. Consider
q1, q2 ∈ Q, then we would have

ρ(v, q1 ∗Q q2) = ρ(v, q1) ∗Q ρ(v, q2)

which is not true in general. In the previous proposition we showed that every ρ : V ⊗Q→
Q is “essentially” of the form f(−)∗Q =, for an object f : V → Q of (V ↓ Quant)♠. It
is easy to see that

ρ(v, q1 ∗Q q2) := f(v) ∗Q q1 ∗Q q2,



QUANTALE-ENRICHED MULTICATEGORIES VIA ACTIONS 1099

in general is not equal to

ρ(v, q1) ∗Q ρ(v, q2) := f(v) ∗Q q1 ∗ f(v) ∗Q q2.

For example, one can take Q = [0,∞]op, V = [0,∞]op and f = Id.

The last proposition allows us to conclude:

7.6. Theorem. CoCts((L, V )-Catsep) ' V -Mod(Quant).

Proof. We have the following chain of equivalences

CoCts((L, V )-Catsep) 'Mon(SetPV ,⊗PV , V ) (by Proposition 6.7)

'Mon(V -Mod,⊗V , V ) (by Proposition 3.5)

' (V ↓ Quant)♠ (by Proposition 5.3)

' V -Mod(Quant). (by Proposition 7.4)

As an immediate corollary we have.

7.7. Corollary. The forgetful functor V -Mod(Quant)→ Set is monadic.

7.8. Remark. From the previous theorem it follows that the forgetful functor

V -Mod(Quant)→ Set

is monadic. Moreover, since Quant is monadic over Set too and since V ⊗2 (=) is left
adjoint to V -Mod(Quant)→ Quant, if we compose the two free functors,

P
(2)
L : Set→ Quant (see 6.9),

V ⊗2 (=) : V -Mod(Quant)→ Quant (see 7.2),

we obtain the left adjoint to V -Mod(Quant)→ Set.

7.9. Remark. Theorem 7.6 has a nice consequence. The categories CoCts((L, V )-Catsep)
and V -Mod(Quant) are monadic over Set (see Theorem 4.20 and Remark 7.8), thus it
follows there is an equivalence of monads:

PL ' V ⊗2 P
(2)
L (=),

where the latter is the PL monad in the ordered case. Notice how this generalizes the well-
known result (see [17, 36]) that relates the enriched powerset monad PV to the “classical”
powerset monad PV , namely the equivalence of monads:

PV ' V ⊗2 P2(=).
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8. Appendix: Commutative Monads

In this appendix we present the main results of [16] about commutative monads and we
apply them to CoCts(V -Catsep), which is equivalent to the category of algebras for the
V -powerset monad (PV , u, n).

8.1. Definition. Let (C,⊗, 1) be a monoidal category and (T, e,m) be a monad with
T : C → C. The monad (T, e,m) is called strong if it is equipped with a natural transfor-
mation, called strength, with components

stX,Y : X ⊗ TY → T (X ⊗ Y ),

compatible with the monoidal structure defined on C, as expressed in [16].
If C is a symmetic monoidal category, the monad (T, e,m) is called commutative if

the following diagram commutes

TX ⊗ TY T (TX ⊗ Y ) T 2(X ⊗ Y )

T (X ⊗ TY ) T 2(X ⊗ Y ) T 2(X ⊗ Y ),

stTX,Y

st′X,TY

Tst′X,Y

mX⊗Y

TstX,Y mX⊗Y

where

st′X,Y : TX ⊗ Y
γTX,Y−−−→ Y ⊗ TX

stY,X−−−→ T (Y ⊗X)
TγX,Y−−−→ T (X ⊗ Y )

is called co-strength.

8.2. Definition. Let (C,⊗, 1) be a symmetric monoidal category and let (T, e,m) be a
strong monad defined on it. Suppose (X,α), (Y, β), (Z, γ) are T -algebras. An arrow (in
C) f : X ⊗ Y → Z is called a bimorphism if the following diagrams commute

X ⊗ TY T (X ⊗ Y ) TZ

X ⊗ Y Z

Id⊗β

stX,Y Tf

γ

f

TX ⊗ Y T (X ⊗ Y ) TZ

X ⊗ Y Z.

α⊗Id

st′X,Y Tf

γ

f

In this way, for all X, Y ∈ CT , we define a functor

Bim(X ⊗ Y,=) : CT → Set,

where Bim(X ⊗ Y, Z) denotes the sets of bimorphisms from X ⊗ Y to Z.

The main result about strong monads we are interested in is contained in the following
theorem.
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8.3. Theorem. [16, Lemmas 5.1-5.3] Let (T, e,m) be a strong monad on a symmet-
ric monoidal category (C,⊗, 1) such that its associated category of algebras CT has co-
equalizers of reflexive pairs. Then, for each algebras (X,α), (Y, β), Bim(X ⊗ Y,=) is
representable by an algebra (X ⊗T Y, α⊗T β).

If additionally (T, e,m) is commutative, then CT becomes a symmetric monoidal cat-
egory with ⊗T as tensor product and with the free algebra (T1,m1) as the unit; moreover,
the free functor F : C → CT becomes strong monoidal. If C has equalizers and its
monoidal structure is closed, then also CT becomes a closed monoidal category.

8.4. Remark. Let (T,m, e) be a monad with T : Set → Set. Then, if we assume the
axiom of choice, SetT is cocomplete (see [28]). Thus, Eilenberg-Moore categories for
strong monads defined on Set always satisfy the hypothesis of Theorem 8.3.

8.5. Remark. We obtain the associator in CT from the one in C by using the universal
property of bimorphisms. Similarly, we can obtain the unitors in CT by using the tensorial
strength. As an example, the left unitor at an object (X,α) is the arrow associated to the
bimorphism

T1⊗X
st′1,X−−−→ T (1⊗X)

'−→ T (X)
α−→ X.

Consider Set as a monoidal category in the usual way, that is to say, with its cartesian
structure and let (PV , u, n) be the V -powerset monad. Consider the following function

stX,Y : X × PV Y → PV (X × Y ), (x, φ) 7→ (uX(x)⊗ φ),

where (uX(x)⊗ φ)(x̃, y) = uX(x)(x̃)⊗ φ(y).
Long and boring computations show that this makes (PV , u, n) into a strong monad.

8.6. Remark. The strongness of (PV , u, n) follows from the fact that every functor F :
Set→ Set is a Set-functor (where the monoidal structure on Set is the usual one), and
from the fact that to give a Set-enrichment, for a Set-monad (T, e,m), is equivalent to
give a strength (see Propositions 1.1, 1.2 of [21]).

Moreover, since we always assume our base quantale V to be commutative, it is easy
to show that (PV , u, n) is also commutative, with the co-strength st′ given by

st′X,Y : PVX × Y → PV (X × Y ), (ψ, y) 7→ ψ ⊗ uY .

By applying Theorem 8.3 we get the following result (see [9, 20]).

8.7. Proposition. The category SetPV of algebras for the V -powerset monad (PV , u, n)
admits a symmetric closed monoidal structure ⊗PV with unit given by PV (1) = V such
that the free functor

PV : Set→ SetPV , X 7→ (PV (X), nX)

becomes strong monoidal. Moreover, ⊗PV classifies bimorphisms in the sense of Definition
8.2.
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The last thing we have to do is to tune a little bit more the notion of bimorphism
in our particular case, in order to have a more manageable formulation. The notion of
bimorphism in categories in which the notion of ”point” resembles the one in Set seems to
reduce to the ”componentwise preserving structure” notion like in Sup. This motivates
us to introduce the following definition.

8.8. Definition. Suppose (X,α), (Y, β), (Z, γ) are in SetPV . A function f : X×Y → Z
is called a bimorphism if the following diagrams commute, for all x, y ∈ X, Y ,

PV (X) PV (X)× 1 PV (X × Y ) PV (Z)

X X × 1 X × Y Z

'

α α×1

PV (Id×y) PV f

γ

' Id×y f

PV (Y ) 1× PV (Y ) PV (X × Y ) PV (Z)

Y 1× Y X × Y Z.

'

β 1×β

PV (x×Id) PV f

γ

' x×Id f

8.9. Remark. Let f : (X,α)× (Y, β)→ (Z, γ) be a bimorphism according to Definition
8.8. This is amount to say that, for all x, y ∈ X, Y , fy and fx are algebra morphisms,
where

fx : Y → Z, y 7→ f(x, y), and fy : X → Z, x 7→ f(x, y).

Now we have not only one but two notions of bimorphism! Of course, as one might
expect, the two notions coincide.

8.10. Proposition. Suppose (X,α), (Y, β), (Z, γ) are in SetPV . A function f : X×Y →
Z is a bimorphism according to Definition 8.2 iff it is so according to Definition 8.8.
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Proof. Let us do the case in which we ”fix” y ∈ Y , the other one is similar.
The proof follows by contemplating the following diagram

PV (X × 1)

♣ ♦

PV (X) PV (X)× 1 PV (X)× Y PV (X × Y ) PV (Z)

♠

X X × 1 X × Y Z.

PV (1X×y)

'

α

'

st′

1PV X×y

α×1 α×IdY

st′ PV f

γ

' 1×y f

Here ♣ commutes since PV is a strong monad while ♦ commutes because st′ is a natural
transformation.

Suppose f is a bimorphism according to 8.2, then ♠ commutes, hence the outer dia-
gram too. This implies that f is a bimorphism according to 8.8 too.

If f is a bimorphism according to 8.8, then the outer diagram commutes, hence, for
all y ∈ Y , we have

γ · PV f · st′ · 1PVX × y = f · α× IdY · 1PVX × y.

Since (1PVX × y : PV (X) × 1 → PV (X) × Y )y∈Y , is a jointly epic family, we can jointly
cancel them in the previous equation. Thus we obtain the commutativity of ♠ which
implies that f is a bimorphism according to 8.2 too.

8.11. Remark. In Theorem 2.23 we proved that the category of algebras for this monads
is equivalent to CoCts(V -Catsep). Hence the monoidal structure on SetPV transfers to
a monoidal structure on CoCts(V -Catsep).

In particular, from the previous proposition, and since the equivalence

SetPV ' CoCts(V -Catsep)

changes only the corresponding structures (and it leaves the underlying sets and arrows
unchanged), we have that a V -functor f : (X, a)⊗ (Y, b)→ (Z, c) is a bimorphism if, for
all x, y ∈ X, Y , one has

fx : (Y, b)→ (Z, c), y 7→ f(x, y),

fy : (X, a)→ (Z, c), x 7→ f(x, y),
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are cocontinuous V -functor.
Since these kind of bimorphisms are classified by a monoidal structure on the category

CoCts(V -Catsep), as described at the end of [19], by arguments similar to the one we
used in Proposition 3.5, we get that the monoidal structure on CoCts(V -Catsep), induced
by the equivalence SetPV ' CoCts(V -Catsep), and the one studied in [19] coincide.
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