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ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS

PAUL BRESSLER AND JUAN DIEGO ROJAS

Abstract. DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe.
By adapting the method of P. Deligne to the setting of DQ-algebroids we show that
this 2-gerbe admits a canonical global section, namely that every symplectic manifold
admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies
on methods of non-abelian cohomology and local computations in the Weyl algebra. As
a corollary we obtain a classification of symplectic DQ-algebroids.

1. Introduction

While deformation quantization was originally developed in the context of (sheaves of)
algebras, it became apparent from the work of M. Kashiwara [Kashiwara, 1996] and
M. Kontsevich [Kontsevich, 2001] that the broader context of algebroid stacks provides
a natural setting for the theory. These developments lead to the introduction of DQ-
algebroids by M. Kashiwara and P. Schapira [Kashiwara & Schapira, 2012].

The classical limit of a DQ-algebroid on a manifold X is not the structure sheaf OX

but a linear version of a O×
X-gerbe. The study of deformation quantization of gerbes was

initiated in [Bressler, Gorokhovsky, Nest & Tsygan, 2007] where various earlier results on
deformations of (sheaves of) associative algebras were generalized. In particular, deforma-
tion quantizations of a gerbe on a symplectic manifold were classified using an extension
of B.V. Fedosov’s approach.

The question of existence and classification of symplectic deformation quantizations in
the C∞ setting was resolved by M. De Wilde and P.B.A. Lecomte [De Wilde & Lecomte,
1983, De Wilde & Lecomte, 1985], and by B.V. Fedosov [Fedosov, 1985]. An account
of their work which uses some tools of nonabelian cohomology was given by P. Deligne
in [Deligne, 1995]. In the present note we adapt the method of [Deligne, 1995] to the
problem of classification of symplectic DQ-algebroids.

Suppose that X is a symplectic manifold with the symplectic form denoted by ω. Since
all locally defined DQ-algebroids which give rise to ω are locally equivalent, it follows
that the 2-stack DQω

X of such is in fact a 2-gerbe. Moreover, for any locally defined DQ-
algebroid C∈ DQω

X the stack of autoequivalences is equivalent to the gerbe C[[t]]×[1] of
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C[[t]]×-torsors and, therefore, DQω
X is a twisted form of (i.e. is locally equivalent to) the 2-

gerbe C[[t]]×[2] of C[[t]]×-gerbes. The problem of existence of deformation quantization of
(X,ω) may therefore be restated as the problem of showing that the 2-category DQω

X(X)
is non-empty.

The main result of the present work, Theorem 7.2 says that this is indeed the case
and that, in fact, there is a canonical choice of a quantization Ccan ∈ DQω

X(X), while
Theorem 7.4 gives an answer to the the classification problem in the form of the canonical
equivalence between DQω

X and C[[t]]×[2] which induces a bijection between the set of
equivalence classes or quantizations π0DQω

X(X) and H2(X;C[[t]]×).
Previously, existence of canonical quantization as well classification results had been

established in the complex-analytic context by M. Kashiwara, A. d’Agnolo and P. Pole-
sello in terms of sheaves of algebras of microdifferential and WKB operators in [Kashiwara,
1996], [D’Agnolo & Polesello, 2005], [Polesello, 2008], [D’Agnolo & Kashiwara, 2011].

The treatment presented here relies on elementary properties of the Moyal-Weyl star-
product and makes heavy use of the theory of abelian (higher) torsors and gerbes. To
give a uniform treatment of a range of cases which includes plain C∞ manifolds as well
as complex-analytic manifolds, we work in the natural generality of a C∞ manifold X
equipped with an integrable complex distribution Pwhich satisfies the technical condition
(36) (see Appendix A for definitions and notation).

The paper is organized as follows. In Section 2 we review the basics of symplectic DQ-
algebras and introduce dilation equivariance structures (DES) on DQ-algebras following
[Deligne, 1995]. In Section 3 we recall the basic definitions and facts about DQ-algebroids
and describe the stack of symplectic DQ-algebroids equipped with DES. Section 4 is
devoted to the study of the behavior of the DES under the classical limit map. In Section
5 we introduce the self-duality structures on symplectic DQ-algebroids and describe the
stack of symplectic DQ-algebroids equipped with self-duality structures. In Section 6 we
define what it means for a DES and a self-duality structure to be compatible and describe
the stack of symplectic DQ-algebroids equipped with compatible DES and self-duality
structures. In Section 7 we identify the canonical quantization and state the classification
result for symplectic DQ-algebroids.

For the reader’s convenience we include two appendices whose content, to a large de-
gree, is borrowed from [Bressler, Gorokhovsky, Nest & Tsygan, 2017]. The relevant basic
facts on calculus in the presence of an integrable complex distribution are summarized in
Appendix A. In Appendix B we give a condensed account of the basic theory of abelian
(higher) torsors and gerbes and introduce the notation used throughout the main body
of the article. A more detailed presentation of the subject may be found in [Breen, 1994]
and [Milne, 2003].

2. DQ-algebras

Throughout the paper X is a C∞ manifold equipped with an integrable complex distri-
bution P which satisfies (36) (see Appendix A for definitions and notations). We denote
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by OX (respectively, OX/P) the sheaf of complex valued C∞ functions (respectively, the
subsheaf of P-invariant functions).

In the context of complex manifolds the notion of a DQ-algebra was introduced in
[Kashiwara & Schapira, 2012].

2.1. Star-products. A star-product on OX/P is a map

OX/P⊗C OX/P→ OX/P[[t]].

of the form

f ⊗ g 7→ f ⋆ g = fg +
∞∑
i=1

Pi(f, g)t
i, (1)

where Pi are bi-differential operators. Such a map admits a unique C[[t]]-bilinear extension
OX/P[[t]]⊗C[[t]] OX/P[[t]]→ OX/P[[t]]

and the latter is required to define a structure of an associative unital C[[t]]-algebra on
OX/P[[t]].

2.2. Proposition. [Kashiwara & Schapira, 2012, Proposition 2.2.3] Let ⋆ and ⋆′ be star-
products and let φ : (OX/P[[t]], ⋆)→ (OX/P[[t]], ⋆

′) be a morphism of C[[t]]-algebras. Then,
there exists a unique sequence of differential operators {Ri}i≥0 on X such that R0 = 1

and φ(f) =
∞∑
i=0

Ri(f)t
i for any f ∈ OX/P. In particular, φ is an isomorphism.

2.3. Remark. The paper [Kashiwara & Schapira, 2012] and, in particular, Proposition
2.2.3 of loc. cit. pertain to the holomorphic context, i.e. the case when P is a complex
structure. However, it is easy to see that the proof as well as the results it is based upon
carry over to the case of a general integrable distribution.

2.4. DQ-algebras. A DQ-algebra is a sheaf of C[[t]]-algebras locally isomorphic to a
star-product on OX/P. For a DQ-algebra A there is a canonical isomorphism A/t · A ∼=
OX/P. Therefore, there is a canonical map (reduction modulo t) A σ−→ OX/P of C[[t]]-
algebras.

A morphism of DQ-algebras is a morphism of sheaves of C[[t]]-algebras.

2.5. The associated Poisson structure. Suppose that A is a DQ-algebra. The
composition

A⊗ A [·,·]−→ A σ−→ OX/P

is trivial. Therefore, the commutator A⊗ A [·,·]−→ A takes values in tA. The composition

A⊗ A [·,·]−→ tA t−1

−−→ A σ−→ OX/P

factors uniquely as

A⊗ A σ⊗σ−−→ OX/P⊗ OX/P
{·,·}−−→ OX/P

The latter map, {·, ·} : OX/P ⊗ OX/P → OX/P is a Poisson bracket on OX/P, hence corre-

sponds to a bi-vector π ∈ Γ(X;
∧2

TX/P).
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2.6. Lemma. [Bressler, Gorokhovsky, Nest & Tsygan, 2017, Lemma 2.6] Locally isomor-
phic DQ-algebras give rise to the same associated Poisson bracket.

2.7. Symplectic DQ-algebras. A DQ-algebra is called symplectic if the associated
Poisson structure is non-degenerate.

2.8. Example. Suppose that {·, ·} is a symplectic Poisson bracket on OX/P. Thus,
rkOX/P

TX/P is even, i.e. equal to 2n for suitable n. Let U ⊂ X be an open subset and

pi, qi ∈ OX/P(U), i = 1, . . . , n, satisfy the canonical relations. We denote by
∂

∂p1
, . . . ,

∂

∂pn
,

∂

∂q1
, . . . ,

∂

∂qn
the basis dual to dp1, . . . , dpn, dq1, . . . , dqn. The Moyal-Weyl product is given

by

f ⋆ g = exp

(
t

2

n∑
i=1

(
∂

∂pi
⊗ ∂

∂qi
− ∂

∂qi
⊗ ∂

∂pi

))
f ⊗ g

∣∣∣∣∣
∆

where restriction to the diagonal ∆ signifies the multiplication map OX/P⊗COX/P→ OX/P.

2.9. Proposition. [Quantum Darboux Lemma] Suppose that A is a symplectic DQ-
algebra. Then, every point x ∈ X has a neighborhood x ∈ U ⊂ X such that for a collection

of functions pi, qi ∈ OX/P(U), i = 1, . . . ,
1

2
rkTX/P which satisfy canonical relations there

exist sections p̂i, q̂i ∈ A(U) such that σ(p̂i) = pi, σ(q̂i) = qi and and [p̂i, p̂j] = [q̂i, q̂j] = 0,
[p̂i, q̂j] = δij.

2.10. Corollary.

1. Symplectic DQ-algebras with the same associated Poisson bracket are locally isomor-
phic.

2. The unit map C[[t]]→ A is an isomorphism onto the center.

3. The sequence

0→ 1

t
C[[t]]→ 1

t
A ad−→ DerC[[t]](A)→ 0 (2)

is exact.

4. The sequence of groups

1→ exp(C[[t]])→ exp(A)→ Aut(A)→ 1 (3)

is exact.

In (3), exp(A) is the pro-unipotent group associated to the pro-nilpotent Lie algebra
A equipped with the commutator bracket, and the map exp(A) → Aut(A) is given by
“ exp ”(a) 7→ exp(ad(a)).

Proof. Follows from Proposition 2.9 and well-known properties of the Moyal-Weyl star-
product.



68 PAUL BRESSLER AND JUAN DIEGO ROJAS

2.11. Dilation equivariance structures. Suppose that A is a symplectic DQ-
algebra. The inclusion C[[t]]→ A is injective onto the center, so that there is a canonical
isomorphism C[[t]] ∼= Z(A). The ”restriction to the center” gives rise to the map

(·)|Z(A) : DerC(A)→ DerC(C[[t]]).

In what follows, we denote by ∂t the derivation
d

dt
.

2.12. Lemma. Locally on X there exists D ∈ DerC(A) such that D|Z(A) = t∂t.

Proof. Since the question is local, it is sufficient to consider the case of the Moyal-Weyl

product described in Example 2.8. The natural action of the vector field
1

2

n∑
i=1

(pi
∂

∂pi
+

qi
∂

∂qi
) on OX/P(U) is easily seen to be a derivation of the Moyal-Weyl product. Hence,

D = t∂t +
1

2

n∑
i=1

(pi
∂

∂pi
+ qi

∂

∂qi
) has the required properties.

Let l denote the C-submodule of DerC(C[[t]]) locally generated by the derivation t∂t.
We define a subsheaf L(A) of DerC(A) by the pull-back square

L(A) −−−→ ly y
DerC(A)

(·)|Z(A)−−−−→ DerC(C[[t]])

2.13. Corollary. The sequence

0→ DerC[[t]](A)→ L(A)
(·)|Z(A)−−−→ l→ 0 (4)

is exact.

The extension (4) spliced with the extension (2) gives rise to the exact sequence

0→ 1

t
C[[t]]→ 1

t
A ad−→ L(A)

(·)|Z(A)−−−→ l→ 0 (5)

Since the extension (4) is split locally on X, the exact sequence (5) gives rise to a

Hom(l,
1

t
C[[t]])[1] ∼=

1

t
C[[t]][1]-torsor (see B.7) which we denote by DES(A).

A dilation equivariance structure (DES) on (the symplectic DQ-algebra) A is a an

object L̃ ∈ DES(A). Explicitly, a DES on A is an extension L̃ of l by
1

t
A which lifts L,
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i.e. there is a commutative diagram of sheaves of vector spaces

0 0y y
0 −−−→ 1

t
C[[t]]

1

t
C[[t]] −−−→ 0y y y

0 −−−→ 1

t
A −−−→ L̃ −−−→ l −−−→ 0

ad

y y ∥∥∥
0 −−−→ DerC[[t]](A) −−−→ L(A)

(·)|Z(A)−−−−→ l −−−→ 0y y y
0 0 0

(6)

with exact rows and columns.

2.14. The canonical bracket on DES. A DES L̃ on A admits a canonical structure
of a sheaf of Lie algebras. Let D ∈ L̃ denote a locally defined section which projects to

t∂t. Then, every section of L̃ is of the form a+ λ ·D, a ∈ 1

t
A, λ ∈ C. The bracket on L̃

is defined by

[a1 + λ1 ·D, a2 + λ2 ·D] = [a1, a2] + λ1 ·D(a2)− λ2 ·D(a2), (7)

where D is the image of D in L(A).

2.15. Lemma. The bracket (7) is independent of the choice of D.

Proof. Indeed, any other choice is of the form D + b with b ∈ 1

t
A. Then, ai + λi ·D =

(ai − λib) + λi · (D + b), i = 1, 2, and

[a1 − λ1b, a2 − λ2b] + λ1 · (D + b)(a2 − λ1b)− λ2 · (D + b)(a2 − λ2b)
= [a1, a2] + λ1 ·D(a2)− λ2 ·D(a2).

Since the map L̃ → l admits a section locally on X, it follows that the Lie algebra
structure described above is well-defined. We shall refer to the above Lie algebra structure
as canonical.
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2.16. Proposition.

1. The canonical bracket endows a DES with a structure of a Lie algebra.

2. All maps in the diagram (6) are morphisms of Lie algebras.

3. A morphism of DES is a morphism of Lie algebras with respect to the canonical
brackets.

Proof. Direct calculation left to the reader.

2.17. The canonical action of units. Suppose that A is a symplectic DQ-algebra
and L̃ is a DES on A. An automorphism ϕ : A→ A induces a Lie algebra automorphism
c(ϕ) : DerC(A)→ DerC(A) defined by D 7→ ϕ◦D◦ϕ−1. The automorphism c(ϕ) preserves
the subalgebras DerC[[t]](A) and L(A) and induces the trivial automorphism on l.

The group A× of units (invertible elements of A) acts on the latter by conjugation; for
u ∈ A× we denote by c(u) the corresponding automorphism of A.

2.18. Lemma. Suppose that L̃ is a DES on A and u ∈ A×.

1. The automorphism of DerC(A) induced by c(u) is given by D 7→ D−ad(D(u) ·u−1).

2. The formula
D 7→ D − [D, u] · u−1 = D −D(u) · u−1, (8)

where u ∈ A× and D is the image of D in L(A), defines an action of A× on L̃.

3. The maps
1

t
A→ L̃→ L(A) are A×-equivariant.

Proof. Direct calculation left to the reader.

We shall refer to the action defined by (8) as canonical.

2.19. Push-forward of DES. Suppose that ϕ : A1 → A0 is a morphism of symplectic
DQ-algebras. The morphism ϕ restricts to the identity map between the respective cen-
ters identified with C[[t]] and induces the morphism of Lie algebras c(ϕ) : DerC(A1) →
DerC(A0) defined by D 7→ ϕ ◦ D ◦ ϕ−1. Therefore, c(ϕ) gives rise to the commutative
diagram

0 −−−→ 1

t
C[[t]] −−−→ 1

t
A1

ad−−−→ L(A1) −−−→ l −−−→ 0∥∥∥ ϕ

y c(ϕ)

y ∥∥∥
0 −−−→ 1

t
C[[t]] −−−→ 1

t
A0

ad−−−→ L(A0) −−−→ l −−−→ 0

and, hence, a morphism of Hom(l,
1

t
C[[t]])[1] ∼=

1

t
C[[t]][1]-torsors

ϕ∗ : DES(A1)→ DES(A0) (9)
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3. Symplectic DQ-algebroids

3.1. Definition. [Kashiwara & Schapira, 2012, Definition 2.3.1] A DQ-algebroid C is
a C[[t]]-algebroid such that for each open set U ⊆ X with C(U) ̸= ∅ and any L ∈ C(U)
the C[[t]]-algebra EndC(L) is a DQ-algebra on U .

In other words, a DQ-algebroid is a C[[t]]-algebroid locally equivalent to a star-product.

3.2. Proposition. [Bressler, Gorokhovsky, Nest & Tsygan, 2017, Proposition 7.3] There
exists a unique Poisson bracket

{·, ·}C : OX/P⊗ OX/P→ OX/P

such that for any U ⊂ X with C(U) ̸= ∅ and any L ∈ C(U) the restriction of {·, ·}C to
U coincides with the Poisson bracket associated to the DQ-algebra EndC(L).

3.3. Notation. We denote by πC ∈ Γ(X;
∧2

TX/P) the Poisson bi-vector which corre-
sponds to {·, ·}C.

The assignment C 7→ πC give rise to the canonical morphism

DQX/P→ Λ2TX/P (10)

For π ∈ Γ(X; Λ2TX/P) we denote by DQπ
X/P the fiber of (10) over π.

3.4. Symplectic DQ-algebroids. If ω ∈ Γ(X; Ω2,cl
X/P) is a symplectic form and π =

ω−1 we shall denote by DQω
X/P the 2-stack DQπ

X/P.

3.5. Example. Let (X,ω) be a symplectic manifold. Suppose U ⊂ X is an open subset
which admits coordinates satisfying canonical relations as in Example 2.8. We denote by
AMW := (OU/P[[t]], ⋆) the corresponding Moyal-Weyl algebra. Then A+

MW (see Appendix
B.9) is an object of DQω

X/P(U).

3.6. Proposition.

1. For any symplectic DQ-algebroid C the canonical morphism C[[t]] → Z(C) is an
isomorphism.

2. For any symplectic DQ-algebroid C the canonical morphism (see Appendix B.9)
C[[t]]× [1] → AutDQω

X/P
(C) and the morphism AutDQω

X/P
(C) → C[[t]]× [1] : F 7→

HomAut(C)(Id, F ) are mutually quasi-inverse monoidal equivalences.

3. The 2-stack DQω
X/P is a C[[t]]×[1]-gerbe (see Appendix B.5).
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Proof. Recall that a symplectic DQ-algebroid C is locally equivalent to A+, where A is
a symplectic DQ-algebra.

1. The problem is local on X. Therefore, Z(C) ∼= Z(A) and the claim follows from (2)
of Corollary 2.10.

2. The claim follows from the fact that all automorphisms of A are inner by (4) of
Corollary 2.10.

3. In view of the equivalence Aut(C)→ C[[t]]× [1] it remains to show that DQω
X/P is

locally non-empty and locally-connected. Example 3.5 shows that DQω
X/P is locally

non-empty. Local connectedness follows from (1) of Corollary 2.10.

3.7. DES enhancement. Suppose that C is a symplectic DQ-algebroid.
For Li ∈ C, L̃i ∈ DES(EndC(Li)), i = 0, 1, a morphism (L1, L̃1) → (L0, L̃0) is a

pair (f, s), where f : L1 → L0 is an isomorphism in C and s : L̃1 → L̃0 is a morphism of
sheaves of k-vector spaces such that the diagrams

1

t
EndC(L1) −−−→ L̃1 −−−→ l

c(f)

y s

y ∥∥∥
1

t
EndC(L0) −−−→ L̃0 −−−→ l

and
1

t
C[[t]] −−−→ L̃1 −−−→ L(EndC(L1))∥∥∥ s

y c(f)

y
1

t
C[[t]] −−−→ L̃0 −−−→ L(EndC(L0))

are commutative. Composition of morphisms is defined in the obvious way.
We denote by C̃ the stack with (locally defined) objects pairs (L, L̃), L ∈ C, L̃ ∈

DES(EndC(L)) and morphisms defined as above. The assignment (L, L̃) 7→ L extends to
morphism

pC : C̃→ iC

which makes C̃ a category cofibered in Ext1(l,
1

t
C[[t]])-torsors over iC.

3.8. Functoriality of the DES enhancement. Suppose that F : C1 → C0 is a
1-morphism of symplectic DQ-algebroids. For L ∈ C1, the morphism of DQ-algebras

F : EndC1
(L)→ EndC0

(F (L))
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gives rise to the morphism of stacks

F∗ : DES(EndC1
(L))→ DES(EndC0

(F (L))) .

as in 2.19.
The assignment (L, L̃) 7→ F̃ (L, L̃) := (F (L), F∗L̃) extends to a morphism of stacks

F̃ : C̃1 → C̃0 such that the diagram

C̃1
F̃−−−→ C̃0

pC1

y ypC0

iC1
F−−−→ iC0

is commutative and represents a morphism of Ext1(l,C[[t]])-torsors.

3.9. Action of 2-morphisms. Suppose that Fi : C1 → C0, i = 0, 1, are 1-morphisms of
symplectic DQ-algebroids and f : F1 → F0 is a 2-morphism. For L ∈ C1 the composition

EndC1
(L)

F1−→ EndC0
(F1(L))

c(f)−−→ EndC0
(F0(L))

coincides with the map EndC1
(L)

F0−→ EndC0
(F0(L)). Therefore, for (L, L̃) ∈ C̃1 there is a

canonical isomorphism c(f)∗F1∗L̃ ∼= F0∗L̃. Let f∗L : F1∗L̃→ F0∗L̃ denote the composition

F1∗L̃→ c(f)∗F1∗L̃
∼=−→ F0∗L̃. The 2-morphism f∗ : F1∗ → F0∗ is defined by L 7→ f∗L.

The 2-morphism F̃1 → F̃0 induced by f : F1 → F0 is defined by

f̃ := (f, f∗) : F̃1 → F̃0.

3.10. Definition.A dilation equivariance structure (DES) on a symplectic DQ-algebroid

C is a section ∇ : iC→ C̃ of the projection pC : C̃→ iC such that for L ∈ C the induced
map

AutC(L) = EndC (L)
× → Aut

C̃
(∇(L))

coincides with the canonical action 2.17.

A morphism f : ∇1 → ∇0 of DES on C is a morphism of sections of the projection
pC, i.e. f ⋄ IdpC

= IdIdC
.

We denote the category of DES on C by DES(C). The assignment U 7→ DES(C|U)
extends to a stack in groupoids which we denote DES(C).

3.11. Symplectic DQ-algebroids with DES. Symplectic DQ-algebroids equipped
with DES form a 2-category in the following manner.

Objects The objects are pairs (C,∇), where C is a symplectic DQ-algebroid and ∇ ∈
DES(C).
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1-morphisms: Suppose that Ci are symplectic DQ-algebroids and ∇i ∈ DES(Ci), i = 0, 1, a 1-
morphism (C1,∇1)→ (C0,∇0) is a pair (F, θ), where F : C1 → C0 is a 1-morphism
and

θ : F̃ ◦ ∇1 → ∇0 ◦ F

is a 2-morphism between 1-morphisms C1 → C̃0 which is compatible with the
respective projections, that is, the composition

F = pC0 ◦ F̃ ◦ ∇1

IdpC0
⋄ θ

−−−−→ pC0 ◦ ∇0 ◦ F

coincides with IdF .

Composition: Suppose that (C2,∇2)
(G,ρ)−−−→ (C1,∇1)

(F,θ)−−−→ (C0,∇0) are 1-morphisms. The compo-
sition

∇2 ◦ G̃ ◦ F = ∇2 ◦ G̃ ◦ F̃
ρ⋄Id

F̃−−−→ G ◦ ∇1 ◦ F̃
IdG⋄θ−−−→ G ◦ F ◦ ∇0 (11)

gives rise to the 1-morphism (C2,∇2) → (C0,∇0) defined to be the composition
(G, ρ) ◦ (F, θ).

Identity: The identity morphism Id(C,∇) is given by the pair (IdC, Id∇).

2-morphisms: Suppose that (Fi, θi), i = 0, 1, are 1-morphisms (C1,∇1)→ (C0,∇0). A 2-morphism
f : (F1, θ1)→ (F0, θ0) is a 2-morphism f : F1 → F0 such that the diagram

F̃1 ◦ ∇1
θ1−−−→ ∇0 ◦ F1

f̃⋄Id∇1

y yId∇0
⋄f

F̃0 ◦ ∇1
θ0−−−→ ∇0 ◦ F0

is commutative.

Composition: Horizontal and vertical composition of 2-morphism are defined as those in the 2-
category of categories.

For a symplectic form ω we denote by D̃Qω
X/P the 2-stack with (locally defined) objects

pairs (C,∇) with C ∈ DQω
X/P, ∇ ∈ DES(C), and 1- and 2-morphism as above. The

assignment (C,∇) 7→ C extends to a morphism D̃Qω
X/P→ DQω

X/P.

3.12. Example. Suppose that A is a symplectic DQ-algebra. Let L̃ ∈ DES(A). For an

open subset U ⊆ X, the assignment ∗ 7→ (∗, L̃|U) extends to a functor ∇L̃,U : A(U)
+ →

Ã+(U). Since Ã+ is a stack, as U varies the functors ∇L̃,U give rise to the morphism

of stacks ∇L̃ : A
+ → Ã+ which is a DES. The assignment L̃ 7→ ∇L̃ defines a morphism

of stacks DES(A) → DES(A+) which is an equivalence. A quasi-inverse is given by
∇ 7→ ∇(∗).
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3.13. Suppose that ∇ is a DES on a symplectic DQ-algebroid C and (F, θ) ∈ Aut(C,∇).
Horizontal composition with Id∇ gives rise to the map C[[t]]-modules

HomAut(C)(IdC, F )→ HomHom(iC,C̃)(∇,∇ ◦ F ) : ψ 7→ Id∇ ⋄ ψ.

Another map is given by the composition

HomAut(C)(IdC, F )
(̃·)−→ HomAut( C̃)(Id C̃

, F̃ )
(·)⋄Id∇−−−−→

HomHom(iC,C̃)(∇, F̃ ◦ ∇)
θ◦(·)−−→ HomHom(iC,C̃)(∇,∇ ◦ F )

Since, for ψ ∈ HomAut(C)(IdC, F ),

IdpC
⋄ (θ ◦ (ψ̃ ⋄ Id∇)) = (IdpC

⋄ θ) ◦ (IdpC
⋄ Id∇ ⋄ ψ) =

IdF ◦ (ψ ⋄ IdpC
⋄ Id∇) = ψ = IdpC

⋄ (Id∇ ⋄ ψ)

it follows that θ◦(ψ̃⋄Id∇) and Id∇⋄ψ are in the same orbit of the action of AutDES(C)(∇) =
1

t
C[[t]] on HomHom(iC,C̃)(∇,∇ ◦ F ). Therefore, the difference map

c(F, θ) : HomAut(C)(IdC, F )→
1

t
C[[t]] (12)

given by the formula
c(F, θ)(ψ) = θ ◦ (ψ̃ ⋄ Id∇)− Id∇ ⋄ ψ

is defined.

3.14. Lemma. The map (12) satisfies

c(F, θ)(f · ψ) = c(F, θ)(ψ) + t∂t log(f) ,

where ψ ∈ HomAut(C)(IdC, F ) and f ∈ C[[t]]×.

Proof. Since c(f · ψ) = c(f), it follows that that for any L ∈ C the maps ∇(L) →
∇(F (L)) induced by θ ◦ (ψ̃ ⋄ Id∇) and θ ◦ (f̃ · ψ ⋄ Id∇) coincide. Therefore,

c(F, θ)(f · ψ)− c(F, θ)(ψ) =

(θ ◦ (f̃ · ψ ⋄ Id∇)− Id∇ ⋄ (f · ψ))− (θ ◦ (f̃ψ ⋄ Id∇)− Id∇ ⋄ ψ) =
− (Id∇ ⋄ (f · ψ)− Id∇ ⋄ ψ) = −Id∇ ⋄ (f · ψ − ψ)

The latter expression is calculated using the embedding C[[t]]× ⊂ Aut(L), and the canon-
ical action of units (8). Namely, for f ∈ C[[t]]× and D ∈ ∇(L) such that D|Z(EndC(L)) =

t
d

dt
= t∂t, the canonical action is given by

D 7→ D −D(f) · f−1 = D − t∂t log(f)

which implies the desired result.
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3.15. Corollary. The pair (HomAut(C)(IdC, F ), c(F, θ)) is a (C[[t]]× t∂t log−−−→ 1

t
C[[t]])-

torsor.

The assignment (F, θ) 7→ (HomAut(C)(IdC, F ), c(F, θ)) extends to a morphism

Aut
D̃Qω

X/P

(C,∇)→ (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[1] . (13)

The canonical morphism C[[t]]×[1]→ AutDQω
X/P

(C) lifts to the morphism

(C[[t]]× t∂t log−−−→ 1

t
C[[t]])[1]→ Aut

D̃Qω
X/P

(C,∇) : (T, c) 7→ (T ⊗ (·), c). (14)

3.16. Proposition.

1. The morphism (14) and the morphism (13) are mutually quasi-inverse monoidal
equivalences.

2. The 2-stack D̃Qω
X/P is a (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[1]-gerbe.

Proof. It is clear that (14) and the morphism (13) are mutually quasi-inverse.

In view of the equivalence Aut
D̃Qω

X/P

(C,∇) ∼= (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[1] it remains to

show that D̃Qω
X/P is locally non-empty and locally connected. These properties follow

from the fact that any symplectic DQ-algebroid is locally equivalent to one of the form
A+, where A is a symplectic DQ-algebra, and Example 3.12.

4. Classical limits of DES

4.1. Classical limit of DES on DQ-algebras. Suppose that A is a symplectic
DQ-algebra. Let π denote the associated Poisson bi-vector and let ω = π−1 denote the
corresponding symplectic form.

Let FiA = t−iA. The t-adic filtration F•A induces the filtration denoted F•DerC(A),
hence filtrations F•DerC[[t]](A), F•L(A).

4.2. Lemma.

1. GrF• A = OX/P[t] with the Poisson structure given by tπ.

2.

DeriC(OX/P[t]) =


0 if i ≥ 2

OX · ∂t if i = 1

t−i
(
TX/P⊕ OX/P⊗ l

)
if i ≤ 0

Proof. Left to the reader.
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Let Der0C(OX/P[t], tπ) denote the subsheaf of Der0C(OX/P[t]) of derivations which pre-
serve tπ, i.e. those D ∈ Der0C(OX/P[t]) which satisfy [D, tπ]SN = 0. Here and below we
denote by [ , ]SN the Schouten-Nijenhuis bracket. For λ ∈ C,

[tπ, ξ + λ · t∂t]SN = t([π, ξ]SN + λπ) ,

i.e. ξ + λ · t∂t ∈ Der0C(OX/P[t], tπ)⇔ [π, ξ]SN + λπ = 0.
The sheaf Tπ−conf

X/P of (π-)conformal vector fields is defined by the pull-back square

Tπ−conf
X/P −−−→ Der0C(OX/P[t], tπ)y y
l

1⊗Id−−−→ OX/P⊗ l

The map Tπ−conf
X/P → TX/P is a monomorphism so that we can and will regard the former

as a subsheaf of the latter.

4.3. Lemma.

1. The map GrF0 DerC(A)→ Der0C(OX/P[t]) is injective with image Der0C(OX/P[t], tπ).

2. The map GrF0 DerC[[t]](A) → GrF0 DerC(A) is injective and the image of the compo-
sition GrF0 DerC[[t]](A)→ GrF0 DerC(A)→ Der0C(OX/P[t]) is equal to Tπ

X/P.

3. The map GrF0 L(A)→ Der0C(OX/P[t]) is injective with image Tπ−conf
X/P .

Proof. Left to the reader.

Since π is nondegenerate, the Lichnerowicz-Poisson complex

0→ 1

t
OX/P

[tπ, · ]SN−−−−−→ TX/P
[tπ, · ]SN−−−−−→ t ·

∧2
TX/P

[tπ, · ]SN−−−−−→ · · · (15)

satisfies the Poincaré Lemma.
In what follows we shall identify l with C using the global section t∂t. Hence, there is

a canonical map Tπ−conf
X/P → C.

4.4. Proposition. The diagram

0 −−−→ 1

t
C −−−→ 1

t
OX

[tπ, · ]SN−−−−−→ Tπ−conf
X/P −−−→ C −−−→ 0∥∥∥ ∥∥∥ y y17→tπ

0 −−−→ 1

t
C −−−→ 1

t
OX/P

[tπ, · ]SN−−−−−→ TX/P
[tπ, · ]SN−−−−−→ t ·

∧2
TX/P

[tπ, · ]SN−−−−−→ · · ·

(16)

where the bottom row is the complex (15), is a pull-back diagram with exact rows. Thus,

the top row represents the class of
1

t
ω in H2(X;

1

t
C).

Proof. Follows from Lemma 4.2, Lemma 4.3 and the Poincaré Lemma.
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The principal symbol map σA : A→ OX gives rise to the map of exact sequences

0 −−−→ 1

t
C[[t]] −−−→ 1

t
A ad−−−→ L(A)

(·)|Z(A)−−−−→ l −−−→ 0

σ

y σA

y σA

y yt∂t 7→1

0 −−−→ 1

t
C −−−→ 1

t
OX/P

[tπ, · ]SN−−−−−→ Tπ−conf
X/P −−−→ C −−−→ 0

hence to the morphism of torsors (Appendix B.7)

gr : DES(A)→
∫

1

t
ω, (17)

where
∫

1
t
ω denotes the

1

t
C[1]-torsor corresponding to the top row of (16), relative to the

morphism of Picard stacks
1

t
C[[t]][1] σ−→ 1

t
C[1].

The morphism (17) is natural in A in the sense that it commutes with the direct image
functors (9).

4.5. Des obstructions parasites. Since the map of complexes

(C× 0−→ 1

t
C⊕ C)→ (C[[t]]× t∂t log−−−→ 1

t
C[[t]])

is quasi-isomorphism, it follows that there is a canonical equivalence

(C[[t]]× t∂t log−−−→ 1

t
C[[t]])[3] ∼= C×[3]× 1

t
C[2]× C[2] . (18)

Thus, D̃Qω
X/P determines a class in π0(C×[3](X)× 1

t
C[2](X)×C[2](X)) = H3(X;C×)×

H2(X;
1

t
C)×H2(X;C). In [Deligne, 1995], 4.7, P. Deligne refers to the last two compo-

nents as obstructions parasites.

4.6. Classical limit of DES on DQ-algebroids. For C∈ DQω
X/P the assignment

C̃∋ (L, L̃) 7→ gr L̃ (cf. 3.7 and (17)) extends to a functor

g̃rC : C̃→
∫

1

t
ω

which is equivariant with respect to the morphism of Picard stacks

Ext1(l,
1

t
C[[t]]) ∼=

1

t
C[[t]][1]→ 1

t
C[1]

induced by reduction modulo t.
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For a 1-morphism F : C1 → C0 and (L, L̃) ∈ C̃1 the map EndC1
(L) → EndC0

(F (L))

induces the identity map after reduction modulo t. Therefore, the isomorphism L̃ →
F∗L̃ of C[[t]]-modules induces the identity map gr L̃ → grF∗L̃. Moreover, the functor

F̃ : C̃1 → C̃0 satisfies g̃rC0
◦ F̃ = g̃rC1

.

For (C,∇) ∈ D̃Qω
X/P the composition iC

∇−→ C̃
g̃rC−−→

∫
1
t
ω is locally constant. For a

1-morphism (F, θ) : (C1,∇1) → (C0,∇0), the 2-morphism θ gives rise to the morphism
gr(θ) : g̃rC1

∇1(iC1)→ g̃rC0
∇0(iC0). In particular, under the identifications (13) and (14),

the assignment Aut(C,∇) ∋ (F, θ) 7→ gr(θ) ∈ 1

t
C defines a functor (with discrete target)

which corresponds to the morphism of Picard stacks (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[1] → 1

t
C[1].

We summarize the foregoing discussion in the following proposition.

4.7. Proposition. The assignment D̃Qω
X/P ∋ (C,∇) 7→ g̃rC∇(iC) ∈

∫
1
t
ω extends to a

morphism of torsors

g̃r : D̃Qω
X/P→

∫
1

t
ω (19)

relative to the morphism of Picard stacks (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[2]→ 1

t
C[1].

Thus, under the morphism (C[[t]]× t∂t log−−−→ 1

t
C[[t]])[3] → 1

t
C[2], the (C[[t]]× t∂t log−−−→

1

t
C[[t]])[1]-gerbe D̃Qω

X/P is mapped to the
1

t
C-gerbe

∫
1
t
ω. In particular, the component

of the class of D̃Qω
X/P in H2(X;

1

t
C) is equal to the cohomology class of 1

t
ω.

5. Self-duality structures

5.1. Self-duality. We denote by a : C[[t]] → C[[t]] the automorphism determined by
t 7→ −t. Note that a is an involution: a ◦ a = Id. For a C[[t]]-module M we denote
by aM the C-vector space M with the C[[t]]-module structure given by the composition
C[[t]] a−→ C[[t]]→ EndC(M).

The automorphism C[[t]] a−→ C[[t]] induces an automorphism a : DQX/P → DQX/P.
For C∈ DQX/P the DQ-algebroid aC admits the following description:

Objects: The algebroid aC has the same objects as C; for an object L ∈ Cwe denote by aL
the corresponding object of aC

Morphisms: For L0, L1 ∈ C, HomaC(aL1, aL0) = aHomC(L1, L0).

The DQ-algebroids (aC)op and a (Cop) coincide. We will denote the common value of
(aC)op and a (Cop) by C†. The assignment C 7→ C† extends to a morphism (•)† : DQX/P→
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DQco
X/P.

1 The functor (•)† is an involution: C†† = C. Moreover, if C ∈ DQπ
X/P then

C† ∈ DQπ
X/P, i.e. the involution (•)† restricts to an involution (•)† : DQπ

X/P→ DQπ
X/P.

The algebroid C† admits the following description:

Objects: The algebroid C† has the same objects as C; for an object L ∈ C we denote by L†

the corresponding object of aC

Morphisms: For L0, L1 ∈ C, HomC†(L†
1, L

†
0) = aHomC(L0, L1).

A 1-morphism F : C1 → C0 induces the 1-morphism F † : C
†
1 → C

†
0 with F †(L†) =

F (L)† and the effect on morphisms given by

Hom
C
†
0
(L†

1, L
†
0) = aHomC0(L0, L1)

F−→ aHomC1(F (L0), F (L1))

= Hom
C
†
1
(F (L1)

†, F (L0)
†) = Hom

C
†
1
(F †(L†

1), F
†(L†

0))

For F,G : C1 → C0 and L ∈ C1,

HomC0(F
†(L†), G†(L†)) = HomC0(F (L)

†, G(L)†) = aHomC0(G(L), F (L)).

Hence,

Hom(F †, G†) = aHom(G,F ), and HomDQX/P
(C†

1, C
†
0) = aHomDQX/P

(C1, C0)
op.

For a functor F : C → C†, the functor F † : C† → C†† = C is given on objects by
F †(L†) = F (L). For L0, L1 ∈ C the map F † : HomC†(L†

1, L
†
0) → HomC(F (L1), F (L0)) is

the map aF : aHomC(L0, L1)→ HomC(F (L1), F (L0))

5.2. Definition. A self-duality structure on a DQ-algebroid C is a 1-morphism T : C→
C†.

5.3. DQ-algebroids with self-duality structures.DQ-algebroids equipped with
self-duality structures form a 2-category.

Objects: The objects are pairs (C, T ), where C is a DQ-algebroid and T is a self-duality
structure on C.

1-morphisms: Suppose that (Ci, Ti), i = 0, 1, are DQ-algebroids equipped with transposition struc-
tures. A 1-morphism (F, ξ) : (C1, T1)→ (C0, T0) is a pair (F, ξ), where F : C1 → C0

is a 1-morphism and ξ : T0 ◦ F → F † ◦ T1 is a 2-morphism between 1-morphisms
C1 → C

†
0.

1For a 2-category S, the 2-category Sco has same objects and 1-morphisms, with HomSco(·, ·) =
HomS(·, ·)op.
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Composition: Suppose that (C2, T2)
(G,η)−−−→ (C1, T1)

(F,ξ)−−→ (C0, T0) are 1-morphisms. The composi-
tion

T0 ◦ F ◦G
ξ⋄IdG−−−→ F † ◦ T1 ◦G

Id
F†⋄η−−−−→ F † ◦G† ◦ T2 = (F ◦G)† ◦ T2 (20)

gives rise to the 1-morphism (F ◦ G, (20)) : (C2, T2) → (C0, T0) defined to be the
composition (F, ξ) ◦ (G, η).

Identity: The identity 1-morphism Id(C,T ) is given by the pair (IdC, IdIdT ).

2-morphisms: Suppose that (Fi, ξi), i = 0, 1, are 1-morphisms (C1, T1)→ (C0, T0)). A 2-morphism
f : (F1, ξ1)→ (F0, ξ0) is a 2-morphism f : F1 → F0 such that

(f † ⋄ IdT1) ◦ ξ0 ◦ (IdT0 ⋄ f) = ξ1

Composition: Horizontal and vertical compositions of 2-morphisms are defined as those in the
2-category of categories.

We denote by DQω,t
X/P the 2-stack with locally defined objects the pairs (C, T ) with

C∈ DQω
X/P and 1- and 2-morphisms as above.

5.4. Example. For a symplectic DQ-algebra A, the DQ-algebroids (A†)+ and (A+)†

coincide. Thus, a morphism of DQ-algebras A ϕ−→ A† induces a self-duality structure on

A+ via A+ ϕ+

−→ (A†)+ = (A+)†.
Let AMW = (OX/P[[t]], ⋆) be the Moyal Weyl star-product of Example 2.8. It is easy

to verify that the identity map of OX/P[[t]] is an isomorphism AMW → A†
MW and we shall

identify A†
MW with AMW from now on.

Hence, (A+
MW )† = A+

MW and the identity morphism is a self-duality structure on A+
MW

which we denote by Tcan.
In particular, any morphism ϕ : AMW → A†

MW is an automorphism of AMW . By
Corollary 2.10 any automorphism of AMW is inner. Therefore, any self-duality structure
on A+

MW is isomorphic to Tcan.

5.5. Suppose that T is a self-duality structure on a symplectic DQ-algebroid C and
(F, ξ) ∈ AutDQω,t

X/P
(C, T ).

For α, β ∈ HomAut(C)(IdC, F ) let ⟨α, β⟩ξ : T → T denote the composition

T = T ◦ IdC
IdT ⋄α−−−→ T ◦ F ξ−→ F † ◦ T β†⋄IdT−−−−→ IdC ◦ T = T

The assignment (α, β) 7→ ⟨α, β⟩ξ defines a “hermitian” pairing

⟨·, ·⟩(F,ξ) : HomAut(C)(IdC, F )× aHomAut(C)(IdC, F )→ EndHom(C,C†)(T ) = C[[t]]× . (21)

Let
q(F,ξ) : HomAut(C)(IdC, F )→ C[[t]]× (22)

denote the associated quadratic form given by q(F,ξ)(α) = ⟨α, α⟩(F,ξ).
Let q0 : C[[t]]× → C[[t]]× denote the map f(t) 7→ f(t) · f(−t).
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5.6. Lemma. The map (22) satisfies q(F,ξ)(f · α) = q0(f) · q(F,ξ)(α).

Proof. Since the pairing (21) satisfies ⟨f(t) · α, g(t) · β⟩(F,ξ) = f(t) · g(−t) · ⟨α, β⟩(F,ξ),
the associated quadratic form satisfies q(F,ξ)(f(t) · α) = f(t) · f(−t) · q(F,ξ)(α) = q0(f(t)) ·
q(F,ξ)(α).

5.7. Corollary. The pair (HomAut(C)(IdC, F ), q(F,ξ)) is a (C[[t]]× q0−→ C[[t]]×)-torsor.

The assignment (F, ξ) 7→ (HomAut(C)(IdC, F ), q(F,ξ)i) extends to a morphism

AutDQω,t
X/P

(C, T )→ (C[[t]]× q0−→ C[[t]]×)[1]. (23)

The canonical morphism C[[t]]×[1]→ AutDQω
X/P

(C) lifts to the morphism

(C[[t]]× q0−→ C[[t]]×)[1]→ AutDQω,t
X/P

(C, T ) : (S, q) 7→ (S ⊗ (·), q). (24)

5.8. Proposition.

1. The morphism (23) and the morphism (24) are mutually quasi-inverse monoidal
equivalences.

2. The 2-stack DQω,t
X/P is a (C[[t]]× q0−→ C[[t]]×)[1]-gerbe.

Proof. It is clear that the morphisms (23) and (24) are mutually quasi-inverse monoidal

equivalences. In view of the equivalence Aut(C, T )) ∼= (C[[t]]× q0−→ C[[t]]×)[1] it remains
to show that DQω,t

X/P is locally non-empty and locally connected.

Since, locally, every DQ-algebroid is equivalent to one of the form A+
MW of Example

5.4, it follows that DQω,t
X/P is locally non-empty and locally connected.

5.9. Classical limits of self-duality structures. We denote by gr× C the stack
associated to the prestack i(C/tC).

Recall that, according to [Bressler, Gorokhovsky, Nest & Tsygan, 2017], the classical
limit functor

gr× : DQω
X/P→ O×

X/P[2] : C 7→ gr× C,

admits a canonical lifting

g̃r× : DQω
X/P→ (O×

X/P

d log−−→ Ω1
X/P

d−→ Ω2,cl
X/P)[2]

Since the map C× → (O×
X/P→ Ω1

X/P→ Ω2,cl
X/P) is a quasiisomorphism, we will regard the

morphism g̃r× as taking values in C×[2].
Suppose that T is a self-duality structure on a symplectic DQ-algebroid C∈ DQω

X/P.
The quasi-classical limit of T is an equivalence

g̃r×(T ) : g̃r×C→ g̃r×(C†) = (g̃r×C)op = (g̃r×C)⊗−1
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The equivalence g̃r×C
g̃r×(T )−−−−→ (g̃r×C)⊗−1 determines a structure of a µ2-gerbe on g̃r×C,

where µ2 := ker(C× λ 7→λ2

−−−→ C×) is the group of square roots of one. Denoting this structure

by g̃r×(C, T ) we obtain the commutative diagram

DQω,t
X/P

g̃r×−−−→ µ2[2]y y
DQω

X/P

g̃r×−−−→ C×[2]

6. Compatibility of DES with self-duality structures

6.1. Duality and derivations. Suppose that A is an associative C-algebra. We denote
by ALie the Lie algebra structure on A given by the commutator bracket.

� Since the algebras A and Aop share the underlying vector space, it follows that
EndC(A) = EndC(A

op). Under this identification the subspaces DerC(A) and DerC(A
op)

coincide. Thus, DerC(A) = DerC(A
op) as Lie algebras.

� The identity map is an isomorphism of Lie algebras (ALie)op = (Aop)Lie.

� Under these identifications the map of Lie algebras adop : (Aop)Lie → DerC(A
op) is

given by − ad: ALie → DerC(A).

Recall that the C-algebra automorphism a : C[[t]] → C[[t]] is given by t 7→ −t. Con-
jugation by a induces the Lie algebra automorphism c(a) : DerC(C[[t]]) → DerC(C[[t]]).
Since c(a)(t∂t) = t∂t, the automorphism c(a) restricts to the identity map on l = C · t∂t.

Let A be an associative C[[t]]-algebra. The C[[t]]-algebras (aA)op and a(Aop) coincide
and we denote their common value by A†.

� Since the algebras A and A† share the underlying vector space, it follows that
EndC(A) = EndC(A

†). Under this identification the subspaces DerC(A) and DerC(A
†)

coincide. Thus, DerC(A) = DerC(A
†) as Lie algebras.

� The subspaces DerC[[t]](A) and DerC[[t]](A
†) of DerC(A) = DerC(A

†) coincide. Thus,
DerC[[t]](A) = DerC[[t]](A

†) as Lie algebras.

Suppose that A is a symplectic DQ-algebra.

� The subsheaves L(A) and L(A†) of EndC(A) coincide. Thus, L(A) = L(A†) as Lie
algebras.

�

1

t
A† =

1

t
Aop as Lie algebras.
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� The diagram

1

t
C[[t]] −−−→ 1

t
A ad−−−→ DerC[[t]](A) −−−→ L(A) −−−→ l

−Id

y −Id

y ∥∥∥ ∥∥∥ ∥∥∥
1

t
C[[t]] −−−→ 1

t
A† ad−−−→ DerC[[t]](A†) −−−→ L(A†) −−−→ l

is commutative.

6.2. Duality and DES. Suppose that A is a symplectic DQ-algebra. For L̃ ∈ DES(A),
the sheaf L̃† is defined by the push-out diagram

1

t
A −−−→ L̃

−Id

y y
1

t
A† −−−→ L̃†

(25)

The assignment L̃ 7→ L̃† extends to a functor

(·)† : DES(A)→ DES(A†).

Moreover, for a morphism ϕ : A1 → A0 of symplectic DQ-algebras the diagram

DES(A1)
(·)†−−−→ DES(A†

1)

ϕ∗

y yϕ†
∗

DES(A0)
(·)†−−−→ DES(A†

0)

is commutative.
Suppose that C is a symplectic DQ-algebroid. For L ∈ C, L̃ ∈ DES(EndC(L)) let

(L, L̃)† := (L†, L̃†).
For ∇ ∈ DES(C), the assignment L† 7→ ∇(L)† defines a DES on C† which we denote

by ∇†. The assignment ∇ 7→ ∇† extends to a morphism of stacks

(·)† : DES(C)→ DES(C†).

6.3. Definition. Let C be a symplectic DQ-algebroid, let T be a self-duality structure
on C, and let ∇ ∈ DES(C).

A compatibility between T and ∇ is a 2-morphism τ : T̃ ◦ ∇ → ∇† ◦ T such that the
pair (T, τ) is a 1-morphism (C,∇)→ (C†,∇†) of DQ-algebroids with DES (see 3.11).
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6.4. Symplectic DQ-algebroids with compatible self-duality and DES. Sym-
plectic DQ-algebroids equipped with compatible self-duality and dilation-equivariance
structures form a 2-category in the following manner.

Objects: The objects are quadruples (C,∇, T, τ), where C is a symplectic DQ-algebroid, ∇
is a DES on C, T is a self-duality structure on C, and τ is a compatibility between
T and ∇.

1-morphisms: Suppose that (Ci,∇i, Ti, τi), i = 0, 1, are objects as above. A 1-morphism (C1,∇1, T1, τ1)
→ (C0,∇0, T0, τ0) is a triple (F, θ, ξ) such that (F, θ) is a 1-morphism (C1,∇1) →
(C0,∇0) of DQ-algebroids with DES and (F, ξ) is a 1-morphism (C1, T1)→ (C0, T0)
of DQ-algebroids with a self-duality structures (see 5.3) subject to the commutativ-
ity condition

T̃0 ◦ ∇0 ◦ F

T̃0 ◦ F̃ ◦ ∇1 ∇†
0 ◦ T0 ◦ F

F̃ † ◦ T̃1 ◦ ∇1 ∇†
0 ◦ F † ◦ T1

F̃ † ◦ ∇†
1 ◦ T1

τ0⋄IdFId
T̃0

⋄θ

ξ̃⋄Id∇1
Id

∇†
0

⋄ξ

Id
F̃†⋄τ1 θ†⋄IdT1

(26)

Composition: Suppose that (C2,∇2, T2, τ2)
(G,ρ,η)−−−−→ (C1,∇1, T1, τ1)

(F,θ,ξ)−−−→ (C0,∇0, T0, τ0) are 1-
morphisms. The composition (F, θ, ξ) ◦ (G, ρ, η) is given by (F ◦G, (11), (20)).

Identity: The identity automorphism of (C,∇, T, τ) is given by the triple (IdC, Id∇, IdT ).

2-morphisms: Suppose that (Fi, θi, ξi), i = 0, 1, are 1-morphisms (C1,∇1, T1, τ1)→ (C0,∇0, T0, τ0).
A 2-morphism f : (F1, θ1, ξ1) → (F0, θ0, ξ0) is a 2-morphism f : F1 → F0 such that
f : (F1, θ1) → (F0, θ0) is a 2-morphism between 1-morphisms (C1,∇1) → (C0,∇0)
of DQ-algebroids with DES and f : (F1, ξ1) → (F0, ξ0) is a 2-morphism between
1-morphisms (C1, T1)→ (C0, T0) of DQ-algebroids with a self-duality structures.

Composition: Horizontal and vertical composition of 2-morphisms are defined as in the 2-category
of all categories.

We denote by D̃Qω,t
X/P the 2-stack with locally defined objects (C,∇, T, τ) with Ci ∈

DQω
X/P, and 1- and 2-morphisms as above.
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6.5. Example. Let L̃ be a DES on AMW associated to a splitting of (4). Let ∇ denote
the associated DES on A+

MW as described in Example 3.12. The identification (A+
MW )† =

A+
MW , induces the identifications ˜(A+

MW )† = Ã+
MW , Tcan = Id, T̃can = Id and ∇† = ∇.

Then, the 2-morphism Id : ∇ → ∇ is a compatibility between Tcan and ∇.
In fact any two quadruples Qi := (A+

MW , Ti,∇i, τi), i = 0, 1, are isomorphic. Without
loss of generality we may assume that T0 = T1 = Tcan and ∇0 = ∇1 are associated to a

split DES L̃ =
1

t
AMW ⊕ l as above. If (Id, θ, Id) : Q1 → Q0 is a 1-morphism, the condition

(26) reduces to commutativity of the diagram of morphisms of DES

L̃
θ−−−→ L̃

τ1

y yτ0

L̃† θ†−−−→ L̃†

(27)

In terms of the identifications L̃ =
1

t
AMW ⊕ l and L̃† =

1

t
AMW ⊕ l given by the induced

splitting, the isomorphism L̃
∼=−→ L̃† in (25) is given by

[
−1 0
0 1

]
. Therefore, if θ : L̃ → L̃

is represented by

[
1 ϕ
0 1

]
, then θ† : L̃† → L̃† is represented by

[
1 −ϕ
0 1

]
.

If τi is represented by

[
1 ψi

0 1

]
, the condition (27) is equivalent to ψ0 + ϕ = ψ1 = ϕ,

which is to say ϕ =
1

2
(ψ1 − ψ0).

6.6. Suppose that (C,∇, T, τ) ∈ D̃Qω,t
X/P.

Since, for ν ∈ EndHom(C,C†)(T ),

Idp
C†
⋄ τ = Idp

C†
⋄ (τ ◦ (ν̃ ⋄ Id∇))

it follows that the map

EndHom(C,C†)(T )→ Hom
Hom(iC, C̃†)

(T̃ ◦ ∇,∇† ◦ T ) : ν 7→ τ − τ ◦ (ν̃ ⋄ Id∇) (28)

factors through the canonical map
1

t
C[[t]]→ Hom

Hom(iC, C̃†)
(T̃ ◦∇,∇† ◦T ). Moreover, the

diagram

C[[t]]×
1

t
C[[t]]

EndHom(C,C†)(T ) Hom
Hom(iC, C̃†)

(T̃ ◦ ∇,∇† ◦ T )

t∂t log

≃

(28)
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is commutative.
Suppose that (F, θ, ξ) is an automorphism of (C,∇, T, τ). Then,

HomAut(C)(IdC, F )
1

t
C[[t]]

EndHom(C,C†)(T ) Hom
Hom(iC, C̃†)

(T̃ ◦ ∇,∇† ◦ T )

c(F,θ)

q(F,ξ) τ◦avg

(28)

(29)

where avg(f) = f + a(f), is a commutative diagram of morphisms of torsors relative to
the commutative diagram of morphisms of sheaves of groups

C[[t]]× t∂t log−−−→ 1

t
C[[t]]

q0

y yavg

C[[t]]× t∂t log−−−→ 1

t
C[[t]]

(30)

The commutativity of (29) and (30) implies that the pair

(HomAut(C)(IdC, F ), (q(F,ξ), c(F, θ)))

is a torsor under

τ⩽1(C[[t]]×
(q0, t∂t log)−−−−−−→ C[[t]]× ⊕ 1

t
C[[t]] t∂t log− avg−−−−−−−→ 1

t
C[[t]])

= (C[[t]]× (q0, t∂t log)−−−−−−→ ker(t∂t log− avg))

6.7. Lemma. The map of complexes
1

t
C

0

x
µ2

 −→

ker(t∂t log− avg))x(q0, t∂t log)

C[[t]]×


with components given by

1

t
C

(1, 1
t
C↪→ 1

t
C[[t]])

−−−−−−−−−→ ker(t∂t log− avg)) and the inclusion µ2 ↪→
C[[t]]× is a quasiisomorphism.

Proof. We leave it to the reader to show that ker(q0, t∂t log) = µ2.

Let f ∈ C[[t]]×, g ∈ 1

t
C[[t]]. Then, (f, g) ∈ ker(t∂t log− avg)) if and only if t∂t log f =

avg(g).
Suppose that (f, g) ∈ ker(t∂t log− avg)). Since Im(t∂t log) = tC[[t]], we may assume

that g =
a

t
+ b ∈ 1

t
C ⊕ C so that t∂t log(f) = avg(g) = 2b is constant which must be

equal to zero since t∂t log(f) ∈ tC[[t]]. This implies that f is constant, i.e. f ∈ C× and,

hence, (f, g) is cohomologous to a pair of the form (1,
1

t
λ), λ ∈ C.
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The assignment (F, θ, ξ) 7→ (HomAut(C)(IdC, F ), (q0, t∂t log)) extends to a morphism

Aut
D̃Qω,t

X/P

(C,∇, T, τ)→ (C[[t]]× (q0, t∂t log)−−−−−−→ ker(t∂t log− avg))[1] (31)

The canonical morphism C[[t]]× → AutDQω
X/P

(C) lifts to the morphism

(C[[t]]× (q0, t∂t log)−−−−−−→ ker(t∂t log− avg))[1]→ Aut
D̃Qω,t

X/P

(C,∇, T, τ) (32)

given by
(S, (q, c)) 7→ (S ⊗ (·), c, q)

6.8. Proposition.

1. The morphism (31) and the morphism (32) are mutually quasi-inverse monoidal
equivalences.

2. The 2-stack D̃Qω,t
X/P is a (C[[t]]× (q0, t∂t log)−−−−−−→ ker(t∂t log− avg))[1]-gerbe.

Proof. It is clear that (31) and the morphism (32) are mutually quasi-inverse monoidal
equivalences.

Example 6.5 shows that D̃Qω,t
X/P is locally non-empty and locally connected and there-

fore a Aut
D̃Qω,t

X/P

(C,∇, T, τ) ∼= (C[[t]]× (q0, t∂t log)−−−−−−→ ker(t∂t log− avg))[1]-gerbe.

7. Classification of symplectic DQ-algebroids

In what follows we work with a fixed non-degenerate Poisson bi-vector π ∈ Γ(X;
∧2

TX/P)
and set ω = π−1.

7.1. Canonical quantization. From Proposition 4.7 and Proposition 6.8 we know
that the morphism of quasi-classical limit (see 5.9) and the morphism (19) give rise to
the equivalence

D̃Qω,t
X/P

(g̃r×, (19))−−−−−−→ µ2[2]×
∫

1

t
ω (33)

which makes the diagram

D̃Qω,t
X/P

(g̃r×, (19))−−−−−−→ µ2[2]×
∫

1
t
ωy y

DQω
X/P

g̃r×−−−→ C×[2]

commutative.
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7.2. Theorem. Every µ2-gerbe on X admits a canonical quantization.

Proof. Let D̃Qω,t
X/P/

1
t
C[1] denote the push-out of D̃Qω,t

X/P along the morphism of com-
plexes 

ker(t∂t log− avg))x(q0, t∂t log)

C[[t]]×

 −→

ker(t∂t log− avg))/

1

t
Cx(q0, t∂t log)

C[[t]]×


It follows from Lemma 6.7 that D̃Qω,t

X/P/
1
t
C[1] is a µ2[2]-torsor. The equivalence (33)

induces the equivalence D̃Qω,t
X/P/

1
t
C[1] g̃r×−−→ µ2[2] which makes the diagram

D̃Qω,t
X/P/

1
t
C[1] g̃r×−−−→ µ2[2]y y

DQω
X/P

g̃r×−−−→ C×[2]

commutative. Hence, there are morphisms

DQω
X/P(X)←− D̃Qω,t

X/P/
1
t
C[1](X)

g̃r×−−→ µ2[2](X)

where g̃r× is an equivalence.

We denote by Ccan ∈ DQω
X/P(X) the image under the morphism D̃Qω,t

X/P/
1
t
C[1](X)→

DQω
X/P(X) of the object of D̃Qω,t

X/P/
1
t
C[1](X) which corresponds to µ2[1] ∈ µ2[2](X).

In what follows we refer to Ccan as the canonical quantization.

7.3. Classification of symplectic DQ-algebroids. For C0, C1 ∈ DQω
X/P let [C1 :

C0] := HomDQω
X/P

(C0, C1) ∈ C[[t]]×[2] by analogy with the difference class of [Deligne,

1995].

Let DQω
X/P,0 denote the fiber of g̃r× : DQω

X/P → C×[2] over C×[1]. The objects

of DQω
X/P,0 are quantizations of the trivial gerbe O×

X/P equipped with the trivial flat
structure.

7.4. Theorem. The morphisms

[ • : Ccan] : DQω
X/P→ C[[t]]×[2] : C 7→ [C : Ccan] (34)

and
C×[2]×DQω

X/P,0 → DQω
X/P : (S, C) 7→ S⊗ C (35)

are equivalences.

Proof. A quasi-inverse to (34) is given by S 7→ S⊗ Ccan.

A quasi-inverse to (35) is given by C 7→ (g̃r×C, g̃r×C⊗−1 ⊗ C).
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7.5. The Fedosov class. Under the isomorphism C[[t]]× = C×× exp(tC[[t]]) the mor-

phism g̃r× coincides with the composition

DQω
X/P

[ • :Ccan]−−−−−→ C[[t]]×[2]→ C×[2]

Since Ccan ∈ DQω
X/P,0, the morphism [ • : Ccan] restricts to the equivalence

[ • : Ccan] : DQω
X/P,0 → exp(tC[[t]])[2]

Let Φ: DQω
X/P,0 → C[[t]][2] denote the composition

DQω
X/P,0

[ • :Ccan]−−−−−→ exp(tC[[t]])[2]
1
t
log
−−→ C[[t]][2]

The construction of the Fedosov class of a quantization of the structure sheaf was
extended to the setting of algebroids in [Bressler, Gorokhovsky, Nest & Tsygan, 2007]. The

construction associates to C∈ DQω
X/P,0(X) the Fedosov class Θ(C) ∈ 1

t
ω+H2(X;C[[t]]).

It is shown in [Nest & Tsygan, 2004] that Θ(Ccan) =
1

t
ω. An argument similar to that

in [Deligne, 1995] for the case of DQ-algebras shows that for C0, C1 ∈ DQω
X/P,0(X), the

class of
1

t
log([C1, C0]) in H

2(X;C[[t]]) coincides with Θ(C1)−Θ(C0).

Since Φ(Ccan) = 0 and, clearly,
1

t
log([C1, C0]) = Φ(C1) − Φ(C0), it follows that

Θ(C) =
1

t
ω + Φ(C).

A. Calculus in the presence of an integrable distribution

In this section we briefly review basic facts regarding differential calculus in the presence
of an integrable complex distribution. We refer the reader to [Kostant, 1970], [Rawnsley,
1977] and [Fischer & Williams, 1979] for details and proofs.

For a C∞ manifold X we denote by OX (respectively, Ωi
X) the sheaf of complex valued

C∞ functions (respectively, differential forms of degree i) on X. Throughout this section
we denote by TR

X the sheaf of real valued vector fields on X. Let TX := TR
X ⊗R C.

A.1. Complex distributions. A (complex) distribution on X is a sub-bundle2 of TX .
A distribution P is called involutive if it is closed under the Lie bracket, i.e. [P,P] ⊆

P.
For a distribution P on X we denote by P⊥ ⊆ Ω1

X the annihilator of P (with respect
to the canonical duality pairing).

A distribution P of rank r on X is called integrable if, locally on X, there exist
functions f1, . . . , fr ∈ OX such that df1, . . . , dfr form a local frame for P⊥.

2A sub-bundle is an OX -submodule which is a direct summand locally on X.
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It is easy to see that an integrable distribution is involutive. The converse is true when
P is real, i.e. P = P (Frobenius) and when P is a complex structure, i.e. P∩ P = 0
and P⊕ P = TX (Newlander-Nirenberg). More generally, according to Theorem 1 of
[Rawnsley, 1977], a sufficient condition for integrability of a complex distribution P is

P∩P is a sub-bundle and both P and P+P are involutive. (36)

A.2. The Hodge filtration. Suppose that P is an involutive distribution on X.
Let F•Ω

•
X denote the filtration by the powers of the differential ideal generated by P⊥,

i.e. F−iΩ
j
X =

∧i
P⊥ ∧ Ωj−i

X ⊆ Ωj
X . Let ∂ denote the differential in GrF• Ω

•
X . The wedge

product of differential forms induces a structure of a commutative differential-graded
algebra (DGA) on (GrF• Ω

•
X , ∂).

In particular, GrF0 OX = OX , Gr
F
0 Ω

1
X = Ω1

X/P
⊥ and ∂ : OX → GrF0 Ω

1
X is equal to

the composition OX
d−→ Ω1

X → Ω1
X/P

⊥. Let OX/P := ker(OX
∂−→ GrF0 Ω

1
X). Equivalently,

OX/P = (OX)
P ⊂ OX , the subsheaf of functions locally constant along P. Note that ∂ is

OX/P-linear.
Theorem 2 of [Rawnsley, 1977] says that, if P satisfies the condition (36), the higher

∂-cohomology of OX vanishes, i.e.

H i(GrF0 Ω
•
X , ∂) =

{
OX/P if i = 0
0 otherwise.

(37)

In what follows we will assume that the complex distribution P under consideration is
integrable and satisfies (37). The latter is implied by the condition (36).

A.3. ∂-operators. Suppose that E is a vector bundle onX, i.e. a locally free OX-module
of finite rank. A connection along P on E is, by definition, a map∇P : E→ Ω1

X/P
⊥⊗OX E

which satisfies the Leibniz rule ∇P(fe) = f∇P(e) + ∂f · e for e ∈ E and f ∈ OX .
Equivalently, a connection along P is an OX-linear map ∇P

(•) : P → EndC(E) which

satisfies the Leibniz rule∇P
ξ (fe) = f∇P

ξ (e)+∂f ·e for e ∈ Eand f ∈ OX . In particular,∇P
ξ

is OX/P-linear. The two avatars of a connection along P are related by ∇P
ξ (e) = ιξ∇P(e).

A connection along P on E is called flat if the corresponding map∇P
(•) : P→ EndC(E)

is a morphism of Lie algebras. We will refer to a flat connection along P on E as a ∂-
operator on E.

A connection on E along P extends uniquely to a derivation ∂E of the graded GrF0 Ω
•
X-

module GrF0 Ω
•
X ⊗OX E which is a ∂-operator if and only if ∂

2

E = 0. The complex
(GrF0 Ω

•
X ⊗OX E, ∂E) is referred to as the (corresponding) ∂-complex. Since ∂E is OX/P-

linear, the sheaves H i(GrF0 Ω
•
X ⊗OX E, ∂E) are OX/P-modules. The vanishing of higher

∂-cohomology of OX (37) generalizes easily to vector bundles.

A.4. Lemma. Suppose that E is a vector bundle and ∂E is a ∂-operator on E. Then,
H i(GrF0 Ω

•
X ⊗OX E, ∂E) = 0 for i ̸= 0, i.e. the ∂-complex is a resolution of ker(∂E).

Moreover, ker(∂E) is locally free over OX/P of rank rkOX Eand the map OX⊗OX/P
ker(∂E)→

E (the OX-linear extension of the inclusion ker(∂E) ↪→ E) is an isomorphism.
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A.5. Remark. Suppose that F is a locally free OX/P-module of finite rank. Then,
OX ⊗OX/P

F is a locally free OX-module of rank rkOX/P
F and is endowed in a canoni-

cal way with a ∂-operator, namely, ∂ ⊗ Id. The assignments F 7→ (OX ⊗OX/P
F, ∂ ⊗ Id)

and (E, ∂E) 7→ ker(∂E) are mutually inverse equivalences of suitably defined categories.

A.6. Calculus. The adjoint action of P on TX preserves P, hence descends to an action
on TX/P. The latter action defines a connection along P, i.e. a canonical ∂-operator
on TX/P which is easily seen to coincide with the one induced via the duality pairing
between the latter and P⊥.3 Let TX/P := (TX/P)P (the subsheaf of P invariant section,

equivalently, the kernel of the ∂-operator on TX/P). The Lie bracket on TX (respectively,
the action of TX on OX) induces a Lie bracket on TX/P (respectively, an action of TX/P on
OX/P). The bracket and the action on OX/P endow TX/P with a structure of an OX/P-Lie
algebroid.

The action of P on Ω1
X by Lie derivative restricts to a flat connection along P, i.e. a

canonical ∂-operator on P⊥ and, therefore, on
∧i

P⊥ for all i. It is easy to see that the
multiplication map GrF0 Ω

• ⊗
∧i

P⊥ → GrF−iΩ
•[i] is an isomorphism which identifies the

∂-complex of
∧i

P⊥ with GrF−iΩ
•[i]. Let Ωi

X/P := H i(GrF−iΩ
•
X , ∂) (so that OX/P := Ω0

X/P).

Then, Ωi
X/P ⊂

∧i
P⊥ ⊂ Ωi

X . The wedge product of differential forms induces a structure

of a graded-commutative algebra on Ω•
X/P := ⊕iΩ

i
X/P[−i] = H•(GrFΩ•

X , ∂). The multipli-

cation induces an isomorphism
∧i

OX/P
Ω1

X/P→ Ωi
X/P. The de Rham differential d restricts

to the map d : Ωi
X/P→ Ωi+1

X/P and the complex Ω•
X/P := (Ω•

X/P, d) is a commutative DGA.
The Hodge filtration F•Ω

•
X/P is defined by

FiΩ
•
X/P = ⊕j≥−iΩ

j
X/P,

so that the inclusion Ω•
X/P ↪→ Ω•

X is filtered with respect to the Hodge filtration. It follows
from Lemma A.4 that it is, in fact, a filtered quasi-isomorphism.

The duality pairing TX/P⊗P⊥ → OX restricts to a non-degenerate pairing TX/P⊗OX/P

Ω1
X/P→ OX/P. The action of TX/P on OX/P the pairing and the de Rham differential are

related by the usual formula ξ(f) = ιξdf , for ξ ∈ TX/P and f ∈ OX/P.

A.7. Symplectic geometry. A Poisson bracket on OX/P is a bi-derivation

{·, ·} : OX/P⊗ OX/P→ OX/P

which satisfies the Jacobi identity, i.e. defines a C-Lie algebra structure on OX/P. A

Poisson bracket corresponds to a Poisson bi-vector π ∈ Γ(X;
∧2

TX/P) by the formula
{f, g} = π(df, dg). If the Poisson bi-vector π is non-degenerate, then ω = π−1 is a closed
non-degenerate 2-form usually referred to as the symplectic form, and the Poisson bracket
is said to be symplectic. Clearly, existence of a symplectic Poisson bracket implies that
rkOX/P

TX/P is even.

3In the case of a real polarization this connection is known as the Bott connection.
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Suppose that {·, ·} is a symplectic Poisson bracket. Let rkOX/P
TX/P = 2n. Darboux

Lemma says that every point x ∈ X has a neighborhood x ∈ U ⊂ X such that there exist
functions pi, qi ∈ OX/P(U), i = 1, . . . , n, which satisfy the canonical relations {pi, pj} =
{qi, qj} = 0, {pi, qj} = δij.

B. Torsors and gerbes

In what follows we will be considering gerbes with abelian lien. Below we briefly recall
some relevant notions and constructions with the purpose of establishing notations. We
refer the reader to [Deligne, 1973], [Breen, 1994] and [Milne, 2003] for detailed treatment
of Picard stacks and gerbes respectively.

Suppose that X is a topological space.

B.1. Picard stacks. We recall the definitions from 1.4.Champs de Picard strictement
commutatifs of [Deligne, 1973].

A (strictly commutative) Picard groupoid P is a non-empty groupoid equipped with
a functor +: P×P→ P and functorial isomorphisms

� σx,y,z : (x+ y) + z → x+ (y + z)

� τx,y : x+ y → y + x

rendering + associative and strictly commutative, and such that for each object x ∈ P

the functor y 7→ x+ y is an equivalence.
A Picard stack on X is a stack in groupoids P equipped with a functor +: P×P→ P

and functorial isomorphisms σ and τ as above, which, for each open subset U ⊆ X, endow
the category P(U) a structure of a Picard groupoid.

B.2. Torsors. Suppose that A is a sheaf of abelian groups on X. The stack of A-torsors
will be denoted by A[1]; it is a gerbe since all A-torsors are locally trivial.

Suppose that ϕ : A→ B is a morphism of sheaves of abelian groups. The assignment
A[1] ∋ T 7→ ϕT := T ×A B ∈ B[1] extends to a morphism ϕ : A[1] → B[1] of stacks.
There is a canonical map of sheaves of torsors ϕ = ϕT : T → ϕT compatible with the map
ϕ of abelian groups and respective actions.

Suppose that A and B are sheaves of abelian groups. The assignment A[1] × B[1] ∋
(S, T ) 7→ S×T ∈ (A×B)[1] extends to a morphism of stacks × : A[1]×B[1]→ (A×B)[1].

Suppose that A is a sheaf of abelian groups with the group structure +: A × A →
A. The latter is a morphism of sheaves of groups since A is abelian. The assignment
A[1]× A[1] ∋ (S, T ) 7→ S + T := +(S × T ) defines a structure of a Picard stack on A[1].
If ϕ : A → B is a morphism of sheaves of abelian groups the corresponding morphism
ϕ : A[1]→ B[1] is a morphism of Picard stacks.

As a consequence, the set π0A[1](X) of isomorphism classes of A-torsors is endowed
with a canonical structure of an abelian group. There is a canonical isomorphism of
groups π0A[1](X) ∼= H1(X;A).
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B.3. Gerbes.A gerbe onX is a stack in groupoids which is locally non-empty and locally
connected. For a sheaf A of abelian groups a A-gerbe S is a gerbe together with functorial
isomorphisms A(U) ∼= Aut(s), where U ⊆ X is an open subset such that S(U) ̸= ∅ and
s ∈ S(U). Morphisms of A-gerbes are required to respect the above identifications.

Thus, a A-gerbe is a twisted form of (i.e. locally equivalent to) A[1]. The 2-stack of
A-gerbes will be denoted A[2]. Since all A-gerbes are locally equivalent the 2-stack A[2]
is a 2-gerbe.

Via the equivalence Eq
A
(A[1],S) ∼= S every A-gerbe S (is equivalent to one which)

admits a canonical action of the Picard stack A[1] by autoequivalences denoted +: A[1]×
S→ S, (T, L) 7→ T + L endowing S with a structure of a 2-torsor under A[1]. We shall
not make distinction between A-gerbes and 2-torsors under A[1] and use the notation A[2]
for both.

Suppose that ϕ : A → B is a morphism of sheaves of abelian groups and S is an A-
gerbe. In particular, for any two (locally defined) objects s1, s2 ∈ S the sheaf HomS(s1, s2)
is an A-torsor. The stack ϕS is defined as the stack associated to the prestack with the
same objects as S and HomϕS(s1, s2) := ϕHomS(s1, s2). Then, ϕS is a B-gerbe and
the assignment S 7→ ϕS extends to a morphism ϕ : A[2] → B[2]. There is a canonical
morphism of stacks ϕ = ϕS: S→ ϕS which induces the map ϕ : A → B on groups of
automorphisms.

The Picard structure on A[1] gives rise to one on A[2] defined in analogous fashion.
As a consequence, the set π0A[2](X) of equivalence classes of A[1]-torsors is endowed with
a canonical structure of an abelian group. There is a canonical isomorphism of groups
π0A[2](X) ∼= H2(X;A).

B.4. Picard stacks and complexes. Let A0 d−→ A1 be a complex of sheaves of abelian

groups on X concentrated in degrees zero and one. Recall that a (A0 d−→ A1)-torsor is a
pair (T, τ), where T is a A0-torsor and τ is a trivialization (i.e. a section) of the A1-torsor

d(T ) = T ×A0 A1. A morphism of (A0 d−→ A1)-torsors ϕ : (S, σ)→ (T, τ) is a morphism of
A0-torsors ϕ : S → T such that the induced morphism of A1-torsors d(ϕ) : dS → dT which

commutes with respective trivializations, i.e. d(ϕ)(σ) = τ . Alternatively, a (A0 d−→ A1)-
torsor is a pair (T, c), where T is a A0-torsor and c : T → A1 is a map of sheaves which
satisfies c(t+a) = c(t)+da. The latter is obtained from a trivialization as the composition

T
t7→(t,0)−−−−→ T×A0A1 ∼= A1. Conversely, c extends canonically to the morphism of A1-torsors

d(T ) = T ×A0 A1 → A1.

The monoidal structure on the category of (A0 d−→ A1)-torsors is defined as follows.

Suppose that (S, σ) and (T, τ) are (A0 d−→ A1)-torsors. The sum (S, σ) + (T, τ) is repre-
sented by (S + T, σ + τ), where σ + τ is the trivialization of d(S) + d(T ) = d(S + T )
induced by σ and τ .

Locally defined (A0 d−→ A1)-torsors form a Picard stack on X which we will denote

by (A0 d−→ A1)[1]. By a result of P. Deligne ([Deligne, 1973], Proposition 1.4.15) all
Picard stacks arise in this way. The group (under the operation induced by the monoidal
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structure) of isomorphism classes of (A0 d−→ A1)-torsors on X, i.e. π0(A
0 d−→ A1)[1](X) is

canonically isomorphic to H1(X;A0 d−→ A1).
A morphism of complexes

ϕ = (ϕ0, ϕ1) : (A0 dA−→ A1)→ (B0 dB−→ B1)

induces the morphism of Picard stacks ϕ : (A0 dA−→ A1)[1] → (B0 dB−→ B1)[1] defined by
ϕ(S, σ) = (ϕ0S, ϕσ), where ϕσ : ϕ0S → B1 is the unique trivialization of dBϕ

0S such that

the composition S → ϕ0S
ϕσ−→ B1 is equal to ϕ1 ◦ σ.

B.5. 2-torsors. A (2-)torsor under the Picard stack P is a stack S endowed with an
action +: P× S→ Swhich is locally equivalent as P equipped with the action of P by
translations. The 2-stack of P-torsors will be denoted by P[1]. Torsors under the Picard

stack (A0 d−→ A1)[1] admit an alternative description as (A0 d−→ A1)-gerbes.

A (A0 d−→ A1)-gerbe is equivalent to the data (S, τ), where S is an A0-gerbe and τ is
a trivialization of the A1-gerbe dS, i.e. an equivalence τ : dS→ A1[1]. The composition

S
d−→ dS

τ−→ A1[1] is a functorial assignment of an A1-torsor τ(s) to a (locally defined)
object s ∈ S.

A 1-morphism of (A0 d−→ A1)-gerbes (S, τS)→ (T, τT) is a pair (F, λ), where F : S→ T

is a 1-morphism of A0-gerbes and λ is a 2-morphism τS→ τT ◦ dF .
A 2-morphism η : (F, λF ) → (G, λG) between 1-morphisms (S, τS) → (T, τT) is a

2-morphism η : F → G which satisfies λG = (IdτT ⋄ dη) ◦ λF .
The 2-stack of (A0 d−→ A1)-gerbes will be denoted (A0 d−→ A1)[2].

Every (A0 d−→ A1)-gerbe admits a canonical action of (A0 d−→ A1)[1] by autoequivalences

as follows. The action of A0[1] on S extends to an action of (A0 d−→ A1)[1] on (S, τ).

Namely, (T, λ) ∈ (A0 d−→ A1)[1] gives rise to the autoequivalence (T + (·), λ).
The Picard structure on (A0 d−→ A1)[1] gives rise to one on (A0 d−→ A1)[2] defined in an

analogous fashion. As a consequence, the set π0(A
0 d−→ A1)[2](X) of equivalence classes of

(A0 d−→ A1)-gerbes is endowed with a canonical structure of an abelian group. There is a

canonical isomorphism of groups π0(A
0 d−→ A1)[2](X) ∼= H2(X;A0 d−→ A1).

B.6. Extensions and torsors. Suppose that A and B are sheaves of modules over a
sheaf of rings k on X. We denote by Ext1k(A,B) the category of extensions

E : 0→ B → E → A→ 0

The morphisms in Ext1k(A,B) are maps of short exact sequences which induce the identity
maps on A and B. As any such map is an isomorphism, the category Ext1k(A,B) is a
groupoid. The Baer sum of extensions endows the category Ext1k(A,B) with a structure
of a Picard groupoid. A zero object is given by the split extension E◦ = B ⊕ A.
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The assignment X ⊇ U 7→ Ext1k(A|U , B|U), U an open subset, defines a Picard stack
on X denoted Ext1k(A,B). For any injective resolution I0 → I1 → · · · of B there is
an equivalence of Picard stacks (τ⩽1Homk(A, I

•))[1] ∼= Ext1k(A,B) and, in particular,
π0 Ext1k(A,B) = Ext1k(A,B) and π1 Ext1k(A,B) = Homk(A,B), where ϕ ∈ Homk(A,B)
acts by (b, a) 7→ (b+ ϕ(a)).

The canonical functor Homk(A,B)[1]→ Ext1k(A,B) defined by T 7→ T ×Homk(A,B)E◦
is fully faithful with essential image the subcategory of extensions which admit a splitting
locally on X. Conversely, suppose that the extension E is split locally on X. Then, the
map Homk(A,E)→ Homk(A,A) is an epimorphism and E/IdA := Homk(A,E)×Homk(A,A)

IdA, where IdA : ∗X → Homk(A,A) is the global section IdA ∈ Homk(A,A), is the
corresponding Homk(A,B)-torsor.

In particular, using the canonical identification Homk(k,B) = B, we obtain the canon-
ical equivalence B[1] → Ext1k(k,B). A quasi-inverse associates to T ∈ B[1] the unique
extension

0→ B → T̃ → k → 0

such that T = ∗X ×k T̃ , where ∗X
1−→ k is the unit section.

B.7. Extensions and 2-torsors. We continue with notations introduced in B.6. An
extension

Ẽ : 0→ C → Ẽ → E → 0 ∈ Ext1k(E,C)

gives rise to the extension Ẽ/B := B ×E Ẽ ∈ Ext1k(B,C). The assignment Ẽ 7→
Ẽ/B extends to a morphism of Picard stacks Ext1k(E,C) → Ext1k(B,C); for K ∈
Ext1k(B,C) we denote by Ext1k(E,C)/K the corresponding fiber. The Baer sum op-
eration on Ext1k(E,C) restricts to the pairings

Ext1k(E,C)/K × Ext1k(E,C)/L → Ext1k(E,C)/K∔L

and, in particular, a structure of a Picard stack on Ext1k(E,C)/0, where 0 is the split
extension, and to a structure of a Ext1k(E,C)/0-torsor on Ext1k(E,C)/K .

The morphism of Picard stacks

Ext1k(A,C)→ Ext1k(E,C) : F 7→ E ×A F

establishes the canonical equivalence Ext1k(A,C)
∼= Ext1k(E,C)/0. A quasi-inverse is

given by Ẽ 7→ coker(B → Ẽ), where the map B → Ẽ is deduced form the splitting of

Ẽ/B. In what follows we shall regard Ext1k(E,C)/K as a torsor under Ext1k(A,C).
We apply the above considerations to an exact sequence

0→ C → E0 → E1 → A→ 0 (38)

with B = coker(C → E0) = ker(E1 → A), E = E1 and K = E0 to obtain the
Ext1k(A,C)-torsor Ext1k(E

1, C)/E0 . The latter is equivalent to the category of com-
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mutative diagrams
0 0y y

0 −−−→ C C −−−→ 0y y y
0 −−−→ E0 −−−→ Ẽ1 −−−→ A −−−→ 0y y ∥∥∥
0 −−−→ B −−−→ E1 −−−→ A −−−→ 0y y y

0 0 0

with exact rows and columns and morphisms thereof which induced identity maps on all

objects except Ẽ1.
Suppose that

0 −−−→ C −−−→ E0 −−−→ E1 −−−→ A −−−→ 0y ϕ0

y yϕ1

∥∥∥
0 −−−→ D −−−→ F 0 −−−→ F 1 −−−→ A −−−→ 0

is a commutative diagram with exact rows. Let K := coker(D → F 0) = ker(F 1 → A).

Let ϕ∗Ẽ1 := F 0
⊔

E0 Ẽ1. The composition

ϕ∗Ẽ1 = F 0
⊔
E0

Ẽ1 → K
⊔
F 0

F 0
⊔
E0

Ẽ1 ∼= K
⊔
B

B
⊔
E0

Ẽ1 ∼= K
⊔
B

E1 → F 1

gives rise to the exact sequence

0→ D → ϕ∗Ẽ1 → F 1 → 0.

Moreover, the canonical map F 0 → K ×F 1 ϕ∗Ẽ1 is an isomorphism, hence ϕ∗Ẽ1 ∈
Ext1k(F

1, D)/F 0 . The assignment Ẽ1 7→ ϕ∗Ẽ1 extends to a morphism

ϕ∗ : Ext1k(E
1, C)/E0 → Ext1k(F

1, D)/F 0 .

of torsors relative to the morphism of Picard stacks Ext1k(A,C)→ Ext1k(A,D) induced
by the map ϕ0|C : C → D.

Suppose that A = k. Then, Ext1k(A,C)
∼= C[1], and the class of the C[1]-torsor

Ext1k(E
1, C)/E0 in H2(X;C) is equal to that of the extension (38).
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B.8. 2-gerbes. For a Picard stack P a P-gerbe is a 2-stack in 2-groupoids S which is
locally non-empty and locally connected together with the data of equivalences ηs : P|U →
AutS(s), where U ⊆ X is an open subset such that S ̸= ∅ and s ∈ S(U) which are
coherent in the sense specified in [Breen, 1994]. The collection of P-gerbes naturally
forms a 3-category and the associated 3-stack is denoted by P[2]. A P-gerbe G naturally

defines a torsor under P[1], namely Eq(P[1],S). If P= (A0 d−→ A1)[1], then the common

value of (A0 d−→ A1)[1][2] = (A0 d−→ A1)[2][1] is denoted by (A0 d−→ A1)[3]. The 3-stack

(A0 d−→ A1)[3] admits a natural Picard structure so that π0(A
0 d−→ A1)[3](X) is an abelian

group which is canonically isomorphic to H3(X,A0 d−→ A1).
For a map of complexes morphism of complexes

ϕ = (ϕ0, ϕ1) : (A0 dA−→ A1)→ (B0 dB−→ B1)

and a (A0 dA−→ A1)[1]-gerbe S, the (B0 dB−→ B1)[1]-gerbe ϕS is defined as the 2-stack
associated to the pre-2-stack with same objects as S and HomϕS(s, t) = ϕHomS(s, t).

B.9. Algebroids. Let k a commutative ring with unit. Recall that a k-algebroid is a
stack in k-linear categories C such that the substack of isomorphisms iC (which is a stack
in groupoids) is a gerbe.

For a k-algebra A we denote by A+ the k-linear category with one object denoted by
∗, whose endomorphism algebra is A.

Suppose that A is a sheaf of k-algebras on X. The assignment U 7→ A(U)+, U ⊆ X
an open subset, defines a prestack on X; we denote the associated stack by A+. Note
that A+ is equivalent to the stack of Aop-modules locally isomorphic to A. Clearly, the
category A+(X) is non-empty.

Conversely, let C be a k-algebroid such that the category C(X) is non-empty. Let
L ∈ C(X), and let A := EndC(L)

op. The assignment U 7→ (A(U)+ → C(U) : ∗ 7→ L|U)
extends to an equivalence A+ → C.

For a sheaf of k-algebras A on X a twisted form of A is a k-algebroid locally k-linearly
equivalent to A+.

For a k-algebra A we denote by Z(A) the center of A. For a k-linear stack Cwe denote
by Z(C) the center of C, i.e. the sheaf of k-algebras defined by U 7→ Endk(IdC|U ). Note
that, for a sheaf of k-algebras A, Z(A+) = Z(A).

For a k-algebroid C there is a canonical action of Z(C)×-torsors on C, denoted L 7→
T ⊗L, for L ∈ C, T ∈ Z(C)×[1], hence a canonical monoidal functor Z(C)×[1]→ Aut(C).
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4). Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin-New York, 1973,
481–587.
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Email: paul.bressler@gmail.com

juandrojas33@gmail.com

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Jǐŕı Rosický, Masaryk University: rosicky@math.muni.cz
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