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HOMOTOPY EQUIVALENT ALGEBRAIC STRUCTURES IN
MULTICATEGORIES AND PERMUTATIVE CATEGORIES

NILES JOHNSON AND DONALD YAU

Abstract. We show that the free construction from multicategories to permutative
categories is a categorically-enriched non-symmetric multifunctor. Our main result then
shows that the induced functor between categories of algebras is an equivalence of ho-
motopy theories. We describe an application to ring categories.
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1. Introduction

The endomorphism construction provides a Cat-enriched multifunctor

End ∶ PermCatsu Multicat

where PermCatsu is the Cat-enriched multicategory of small permutative categories, mul-
tilinear functors, and multilinear transformations, and Multicat is the Cat-enriched multi-
category of small multicategories, multifunctors, and multinatural transformations. Thus
it induces a functor on categories of algebras

EndO ∶ (PermCatsu)O MulticatO
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for any small Cat-enriched multicategory O.
Regarded as a 2-functor of underlying 2-categories, and restricting to the sub-2-

category PermCatst of strict symmetric monoidal functors, End has a left 2-adjoint F
described in [EM09, Theorem 4.2] and [JY22, Section 5]. With respect to the stable
equivalences created by Segal’s K-theory functor [Seg74], the adjoint pair (F,End) is
shown to be an equivalence of homotopy theories in [JY22, Theorem 7.3].

In this article we show that F extends to a non-symmetric Cat-enriched multifunctor
taking values in PermCatsu. This extension, also denoted F, fails to be adjoint to End; see
Remark 10.4 for further discussion of this detail.

Our main result shows, nevertheless, that the induced functors between categories
of O-algebras do induce an equivalence of homotopy theories, for a non-symmetric Cat-
multicategory O. This is stated as follows.

1.1. Theorem. Suppose O is a small non-symmetric Cat-multicategory. Then F and
E = End induce an equivalence of homotopy theories between categories of non-symmetric
algebras

FO ∶ (MulticatO,S) ((PermCatsu)O,S) ∶ EO,

where, in each category, S denotes the class of componentwise stable equivalences.

The proof of Theorem 1.1 is given in Section 10. Our main application, Corollary 11.3
focuses on ring categories. One key advantage of Multicat over PermCatsu is that the
former has a closed symmetric monoidal structure provided by the Boardman-Vogt tensor
product (Definition 4.4). The related smash product for pointed multicategories gives the
Cat-multicategory structure on PermCatsu, but does not induce a symmetric monoidal
structure (see [JY∞, 5.7.23 and 10.2.17]).

Outline. We begin with several sections reviewing relevant concepts. In Section 2 we
review equivalences of homotopy theories from [GJO17b]. In Sections 3 through 5 we
review enriched multicategories and the Cat-multicategory of permutative categories. The
third of these sections recalls the Cat-multifunctor End from [JY∞]. In Section 6 we review
the definition of the left adjoint F from [EM06, JY22].

The main results of this article are contained in the remaining sections. We show that
F is a non-symmetric Cat-multifunctor in Sections 7 and 8. In Section 9 we develop the
transformations comparing the composites EF and FE with the respective identity func-
tors. The proof of Theorem 1.1 appears in Section 10, after a review of stable equivalences
for multicategories and permutative categories. Section 11 describes the application to
ring categories as E1-algebras in Cat.

Acknowledgment. We thank the referee for several helpful suggestions.

2. Equivalences of Homotopy Theories

In this section we review the theory of complete Segal spaces due to Rezk [Rez01]. An
equivalence of homotopy theories (Definition 2.7) is an equivalence of fibrant replacements
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in the complete Segal space model structure. For further context and development we
refer the reader to [DK80, Hir03, Toë05, BK12].

Complete Segal Spaces. For the purpose of this paper, we only need to know the
existence of the complete Segal space model structure in Theorem 2.3; we will not use
the specific definition of a complete Segal space. The next definition is included only
for the reader’s information. A bisimplicial set is a simplicial object in the category of
simplicial sets. For a bisimplicial set X = {X(n)}n≥0, each object X(n) is a simplicial
set. In the following definition, 2 denotes the nerve, also known as the classifying space,
of the category consisting of two isomorphic objects. See [GJ09, Example I.1.4] or [JY∞,
Definition 7.2.3] for more discussion of the nerve.

2.1. Definition. A bisimplicial set X is a complete Segal space if it satisfies the following
three conditions.

1. X is a fibrant object in the Reedy model structure on bisimplicial sets.

2. For each n ≥ 2 the Segal map

X(n) X(1) ×X(0) ⋯×X(0) X(1)

is a weak equivalence of simplicial sets.

3. The morphism
X(0) ≅Map(∆[0],X) Map(2,X), (1)

which is induced by the unique morphism 2 ∆[0], is a weak equivalence of
simplicial sets.

2.2. Remark. The definition of complete Segal space given above is equivalent to that
given in [Rez01, Section 6] by [Rez01, 6.4].

2.3. Theorem. [Rez01, 7.2] There is a simplicial closed model structure on the category
of bisimplicial sets, called the complete Segal space model structure, that is given as a
left Bousfield localization of the Reedy model structure and in which the fibrant objects are
precisely the complete Segal spaces.

Relative Categories.

2.4. Definition. A relative category is a pair (C,W) consisting of a category C and a
subcategory W containing all of the objects of C. A relative functor

F ∶ (C,W) (C′,W ′)

is a functor from C to C′ that sends morphisms of W to those of W ′.
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2.5. Definition. Suppose (C,W) is a relative category and A is another category. We
let

(C,W)A

denote the subcategory of CA whose objects are functors A C and whose morphisms
are those natural transformations with components in W .

2.6. Definition. Suppose (C,W) is a relative category. The classification diagram of
(C,W) is the bisimplicial set

Ncl(C,W) = Ner ((C,W)∆[ ●])

given by
n Ner ((C,W)∆[n])

where ∆[n] denotes the category consisting of n composable arrows.

2.7. Definition. Suppose (C,W) is a relative category. We say that a bisimplicial set
RNcl(C,W) is a homotopy theory of (C,W) if it is a fibrant replacement of Ncl(C,W) in
the complete Segal space model structure. We say that a relative functor

F ∶ (C,W) (C′,W ′)

is an equivalence of homotopy theories if the induced morphism RNclF between homotopy
theories is a weak equivalence in the complete Segal space model structure.

2.8. Remark. For readers familiar with the notions of hammock localization and DK-
equivalence [DK80], Barwick and Kan have shown in [BK12, 1.8] that a relative functor

F ∶ (C,W) (C′,W ′)

is an equivalence of homotopy theories if and only if it induces a DK-equivalence between
hammock localizations. In that case, F induces equivalences between mapping simpli-
cial sets and between categories of components. In particular, if F is an equivalence of
homotopy theories then the induced functor between categorical localizations

C[W−1] C′[(W ′)−1]

is an equivalence.

2.9. Proposition. [GJO17b, 2.8] Suppose

F ∶ (C,W) (C′,W ′)

is a relative functor and suppose that F induces a weak equivalence of simplicial sets

Ner ((C,W)∆[n]) Ner ((C′,W ′)∆[n]) (2)

for each n. Then F is an equivalence of homotopy theories.
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Proof. The assumption that (2) is a weak equivalence for each n means that

NclF ∶ Ncl(C,W) Ncl(C′,W ′)

is a weak equivalence between classification diagrams in the Reedy model structure [Rez01,
Section 2.4]. Thus NclF is a weak equivalence in the complete Segal space model structure
because it is a localization of the Reedy model structure. As a consequence, NclF induces
a weak equivalence between the homotopy theories given by fibrant replacements.

Because a natural transformation between functors induces a simplicial homotopy on
nerves, we have the following application of Proposition 2.9. Its proof is similar to that
of [JY22, 2.12].

2.10. Proposition. [GJO17b, 2.9] Suppose given relative functors

F ∶ (C,W) (C′,W ′) ∶ E

such that each of the composites EF and FE is connected to the respective identity functor
by a zigzag of natural transformations whose components are in W and W ′, respectively.
Then F and E are equivalences of homotopy theories.

3. Enriched Multicategories

In this section we review the definitions of enriched multicategories, multifunctors, and
multinatural transformations. Detailed discussion of enriched multicategories is in [JY∞,
Chapters 5 and 6] and [Yau16].

Our application of interest will be the case V = (Cat,×,1, ξ) of small categories and
functors with the Cartesian product ×. We begin with some notation.

3.1. Definition. Suppose C is a class.

� Denote by
Prof(C) = ∐

n≥0

C×n

the class of finite ordered sequences of elements in C. An element in Prof(C) is
called a C-profile.

� A typical C-profile of length n = len⟨c⟩ is denoted by ⟨c⟩ = (c1, . . . , cn) ∈ Cn or by
⟨ci⟩i to indicate the indexing variable. The empty C-profile is denoted by ⟨⟩.

� We let ⊕ denote the concatenation of profiles, and note that ⊕ is an associative
binary operation with unit given by the empty tuple ⟨⟩.

� An element in Prof(C) ×C is denoted as (⟨c⟩ ; c′) with c′ ∈ C and ⟨c⟩ ∈ Prof(C).
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3.2. Convention. [Symmetric Monoidal V] Throughout this section we assume that

V = (V,⊗,1, α, λ, ρ, ξ)

is a symmetric monoidal category. Throughout the rest of this work, unless otherwise
specified, we assume that each iterated monoidal product is left normalized with the left
half of each pair of parentheses at the far left. For example, we denote

a⊗ b⊗ c⊗ d = ((a⊗ b) ⊗ c) ⊗ d.

With this convention, we omit most of the parentheses for iterated monoidal products
and tacitly insert the necessary associativity and unit isomorphisms. This is valid because
there is a strong symmetric monoidal adjoint equivalence V Vst with Vst a permutative
category [Yau∞I, 1.3.10]. Because strictification is an equivalence, the strict diagrams
commute if and only if their preimages in V commute.

3.3. Definition. A V-multicategory (M, γ,1) consists of the following data.

� M is equipped with a class ObM of objects. We write Prof(M) for Prof(ObM).

� For c′ ∈ ObM and ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M), M is equipped with an object of V

M(⟨c⟩ ; c′) =M(c1, . . . , cn ; c′) ∈ V

called the n-ary operation object or multimorphism object with input profile ⟨c⟩ and
output c′.

� For (⟨c⟩ ; c′) ∈ Prof(M) × ObM as above and a permutation σ ∈ Σn, M is equipped
with an isomorphism in V

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′),σ
≅

called the right action or the symmetric group action, in which

⟨c⟩σ = (cσ(1), . . . , cσ(n))

is the right permutation of ⟨c⟩ by σ.

� For c ∈ ObM, M is equipped with a morphism

1c ∶ 1 M(c ; c),

called the c-colored unit.
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� For c′′ ∈ ObM, ⟨c′⟩ = (c′1, . . . , c
′

n) ∈ Prof(M), and ⟨cj⟩ = (cj,1, . . . , cj,kj) ∈ Prof(M) for
each j ∈ {1, . . . , n}, let ⟨c⟩ = ⊕j⟨cj⟩ ∈ Prof(M) be the concatenation of the ⟨cj⟩. Then
M is equipped with a morphism in V

M(⟨c′⟩ ; c′′) ⊗
n

⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c⟩ ; c′′)
γ

(3)

called the composition or multicategorical composition.

These data are required to satisfy the following axioms.

Symmetric Group Action For (⟨c⟩ ; c′) ∈ Prof(M)×ObM with n = len⟨c⟩ and σ, τ ∈ Σn,
the following diagram in V commutes.

M(⟨c⟩ ; c′) M(⟨c⟩σ ; c′)

M(⟨c⟩στ ; c′)

στ

σ

τ (4)

Moreover, the identity permutation in Σn acts as the identity morphism of M(⟨c⟩ ; c′).

Associativity Suppose given

� c′′′ ∈ ObM,

� ⟨c′′⟩ = (c′′1 , . . . , c
′′

n) ∈ Prof(M),

� ⟨c′j⟩ = (c′j,1, . . . , c
′

j,kj
) ∈ Prof(M) for each j ∈ {1, . . . , n}, and

� ⟨cj,i⟩ = (cj,i,1, . . . , cj,i,`j,i) ∈ Prof(M) for each j ∈ {1, . . . , n} and each i ∈

{1, . . . , kj},

such that kj = len⟨c′j⟩ > 0 for at least one j. For each j, let ⟨cj⟩ = ⊕
kj
i=1⟨cj,i⟩ denote

the concatenation of the ⟨cj,i⟩. Let ⟨c⟩ = ⊕nj=1⟨cj⟩ denote the concatenation of the
⟨cj⟩. Let ⟨c′⟩ = ⊕nj=1⟨c

′

j⟩ denote the concatenation of the ⟨c′j⟩. Then the associativity
diagram below commutes.

M(⟨c′′⟩ ; c′′′) ⊗ [
n

⊗
j=1

M(⟨c′j⟩ ; c′′j )] ⊗
n

⊗
j=1

[
kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′⟩ ; c′′′) ⊗
n

⊗
j=1

[
kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′) ⊗
n

⊗
j=1

[M(⟨c′j⟩ ; c′′j ) ⊗
kj

⊗
i=1

M(⟨cj,i⟩ ; c′j,i)]

M(⟨c′′⟩ ; c′′′) ⊗
n

⊗
j=1

M(⟨cj⟩ ; c′′j )

M(⟨c⟩ ; c′′′)≅permute

(γ,1)

γ

(1,⊗j γ)

γ

(5)
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Unity Suppose c′ ∈ ObM.

1. If ⟨c⟩ = (c1, . . . , cn) ∈ Prof(M) has length n ≥ 1, then the following right unity
diagram is commutative. Here 1n is the n-fold monoidal product of 1 with
itself.

M(⟨c⟩ ; c′) ⊗ 1n M(⟨c⟩ ; c′)

M(⟨c⟩ ; c′) ⊗
n

⊗
j=1

M(cj ; cj) M(⟨c⟩ ; c′)

1⊗(⊗j1cj )

ρ

1

γ

(6)

2. For any ⟨c⟩ ∈ Prof(M), the left unity diagram below is commutative.

1⊗M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

M(c′ ; c′) ⊗M(⟨c⟩ ; c′) M(⟨c⟩ ; c′)

1c′⊗1

λ

1

γ

(7)

Equivariance Suppose that in the definition of γ (3), len⟨cj⟩ = kj ≥ 0.

1. For each σ ∈ Σn, the following top equivariance diagram is commutative.

M(⟨c′⟩ ; c′′) ⊗
n

⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩σ ; c′′) ⊗
n

⊗
j=1

M(⟨cσ(j)⟩ ; c′
σ(j)

)

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨cσ(1)⟩, . . . , ⟨cσ(n)⟩ ; c′′)

γ

(σ,σ−1)

γ

σ⟨kσ(1),...,kσ(n)⟩

(8)

Here σ⟨kσ(1), . . . , kσ(n)⟩ ∈ Σk1+⋯+kn is right action of the block permutation that
permutes the n consecutive blocks of lengths kσ(1), . . ., kσ(n) as σ permutes
{1, . . . , n}, leaving the relative order within each block unchanged.

2. Given permutations τj ∈ Σkj for 1 ≤ j ≤ n, the following bottom equivariance
diagram is commutative.

M(⟨c′⟩ ; c′′) ⊗
n

⊗
j=1

M(⟨cj⟩ ; c′j) M(⟨c′⟩ ; c′′) ⊗
n

⊗
j=1

M(⟨cj⟩τj ; c′j)

M(⟨c1⟩, . . . , ⟨cn⟩ ; c′′) M(⟨c1⟩τ1, . . . , ⟨cn⟩τn ; c′′)

γ

(1,⊗jτj)

γ

τ1×⋯×τn

(9)

Here the block sum τ1 ×⋯× τn ∈ Σk1+⋯+kn is the image of (τ1, . . . , τn) under the
canonical inclusion

Σk1 ×⋯ ×Σkn Σk1+⋯+kn .
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This finishes the definition of a V-multicategory.
Moreover, we define the following.

� A V-multicategory is small if its class of objects is a set.

� A V-operad is a V-multicategory with one object. If M is a V-operad, then its object
of n-ary operations is denoted by Mn ∈ V.

� A multicategory is a Set-multicategory, where (Set,×,∗) is the symmetric monoidal
category of sets and functions with the Cartesian product.

� An operad is a Set-operad, that is, a multicategory with one object.

� A non-symmetric V-multicategory is defined as above, except it does not have a
designated symmetric group action or satisfy the related action or equivariance
axioms.

3.4. Definition. The initial multicategory has an empty set of objects. The initial
operad I consists of a single object ∗ and a single operation, which is the unit 1∗. The
terminal multicategory T consists of a single object ∗ and a single n-ary operation ιn for
each n ≥ 0.

3.5. Example. [Endomorphism Operad] Suppose M is a V-multicategory and c is an
object of M. Then End(c) is the V-operad consisting of the single object c and n-ary
operation object

End(c)n =M(⟨c⟩ ; c) ∈ V,

where ⟨c⟩ denotes the constant n-tuple at c. The symmetric group action, unit, and
composition of End(c) are given by those of M.

3.6. Example. [Underlying Enriched Category] Each V-multicategory (M, γ,1) has an
underlying V-category with

� the same objects,

� identities given by the colored units, and

� composition given by

M(b ; c) ⊗M(a ; b) M(a ; c)
γ

for objects a, b, c ∈M.

The V-category associativity and unity diagrams as in e.g., [JY∞, 1.2.1], are the unary
special cases of, respectively, the associativity diagram (5) and the unity diagrams (6)
and (7) of a V-multicategory.
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3.7. Definition. A V-multifunctor P ∶ M N between V-multicategories M and N
consists of

� an object assignment P ∶ ObM ObN and

� for each (⟨c⟩ ; c′) ∈ Prof(M) × ObM with ⟨c⟩ = (c1, . . . , cn), a component morphism
in V

P ∶M(⟨c⟩ ; c′) N(P ⟨c⟩ ; Pc′),

where P ⟨c⟩ = (Pc1, . . . , P cn).

These data are required to preserve the symmetric group action, the colored units, and
the composition in the following sense.

Symmetric Group Action For each (⟨c⟩ ; c′) as above and each permutation σ ∈ Σn,
the following diagram in V is commutative.

M(⟨c⟩ ; c′) N(P ⟨c⟩ ; Pc′)

M(⟨c⟩σ ; c′) N(P ⟨c⟩σ ; c′)

≅σ

P

≅σ

P

(10)

Units For each c ∈ ObM, the following diagram in V is commutative.

1

M(c ; c)

N(Pc ; Pc)

1c

1Pc

P (11)

Composition For c′′, ⟨c′⟩, and ⟨c⟩ = ⊕j⟨cj⟩ as in the definition of γ (3), the following
diagram in V is commutative.

M(⟨c′⟩ ; c′′) ⊗
n

⊗
j=1

M(⟨cj⟩ ; c′j) N(P ⟨c′⟩ ; Pc′′) ⊗
n

⊗
j=1

N(P ⟨cj⟩ ; Pc′j)

M(⟨c⟩ ; c′′) N(P ⟨c⟩ ; Pc′′)

γ

(P,⊗jP )

γ

P

(12)

This finishes the definition of a V-multifunctor.
Moreover, we define the following.

1. A multifunctor is a Set-multifunctor.

2. A V-multifunctor M N is also called an M-algebra in N.
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3. For another V-multifunctor Q ∶ N L between V-multicategories, where L has
object class ObL, the composition QP ∶ M L is the V-multifunctor defined by
composing the assignments on objects

ObM ObN ObLP Q

and the morphisms on n-ary operations

M(⟨c⟩ ; c′) N(P ⟨c⟩ ; Pc′) L(QP ⟨c⟩ ; QPc′).P Q

4. The identity V-multifunctor 1M ∶M M is defined by the identity assignment on
objects and the identity morphism on n-ary operations.

5. A V-operad morphism is a V-multifunctor between two V-multicategories with one
object.

6. A non-symmetric V-multifunctor consists of the same data as above, but is not
required to preserve the symmetric group action of its source and target. Thus a
non-symmetric V-multifunctor is only required to preserve the colored units and
composition.

3.8. Definition. Suppose P,Q ∶ M N are V-multifunctors as in Definition 3.7. A
V-multinatural transformation θ ∶ P Q consists of component morphisms in V

θc ∶ 1 N(Pc ; Qc) for c ∈ ObM

such that the following V-naturality diagram in V commutes for each (⟨c⟩ ; c′) ∈ Prof(M)×

ObM with ⟨c⟩ = (c1, . . . , cn).

M(⟨c⟩ ; c′)

1⊗M(⟨c⟩ ; c′) N(Pc′ ; Qc′) ⊗N(P ⟨c⟩ ; Pc′)

N(P ⟨c⟩ ; Qc′)

M(⟨c⟩ ; c′) ⊗
n

⊗
j=1

1 N(Q⟨c⟩ ; Qc′) ⊗
n

⊗
j=1

N(Pcj ; Qcj)

λ−1

ρ−1

θc′ ⊗ P

γ

Q⊗

n

⊗

j=1

θcj
γ

(13)

This finishes the definition of a V-multinatural transformation.
Moreover, we define the following.

� The identity V-multinatural transformation 1P ∶ P P has components

(1P )c = 1Pc for c ∈ ObM.

� A multinatural transformation is a Set-multinatural transformation.

� For non-symmetric multifunctors P,Q ∶ M N, a V-multinatural transformation
θ ∶ P Q has the same definition given above, and we use the same terminology.
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3.9. Definition. Suppose θ ∶ P Q is a V-multinatural transformation between V-
multifunctors as in Definition 3.8.

1. Suppose β ∶ Q R is a V-multinatural transformation for a V-multifunctor R ∶

M N. The vertical composition

βθ ∶ P R (14)

is the V-multinatural transformation with components at c ∈ ObM given by the
following composites in V.

1

1⊗ 1 N(Qc ; Rc) ⊗N(Pc ; Qc)

N(Pc ; Rc)

λ−1

βc ⊗ θc

γ

(βθ)c

2. Suppose θ′ ∶ P ′ Q′ is a V-multinatural transformation for V-multifunctors
P ′,Q′ ∶ N L. The horizontal composition

θ′ ∗ θ ∶ P ′P Q′Q (15)

is the V-multinatural transformation with components at c ∈ ObM given by the
following composites in V.

1

1⊗ 1 L(P ′Qc ; Q′Qc) ⊗N(Pc ; Qc)

L(P ′Qc ; Q′Qc) ⊗ L(P ′Pc ; P ′Qc)

L(P ′Pc ; Q′Qc)
(θ′ ∗ θ)c

λ−1

θ′Qc ⊗ θc
1⊗ P ′

γ

This finishes the definition.

4. The Cat-Multicategory of Small Multicategories

The 2-category Multicat of small multicategories, multifunctors, and multinatural trans-
formations has a closed symmetric monoidal structure given by the Boardman-Vogt tensor
product. This induces a Cat-multicategory structure that we will describe below. We give
only those details necessary for the arguments in the sequel, and refer the reader to [JY∞,
Chapters 5 and 6] for a full treatment of related background.

We begin with preliminary notation.
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4.1. Definition. Given profiles ⟨c⟩ ∈ Prof(C) and ⟨d⟩ ∈ Prof(D) with m = len⟨c⟩ and
n = len⟨d⟩, we define the following profiles.

⟨c⟩ × dj = ⟨(ci, dj)⟩
m
i=1 = ((c1, dj), (c2, dj), . . . , (cm, dj))

ci × ⟨d⟩ = ⟨(ci, dj)⟩
n
j=1 = ((ci, d1), (ci, d2), . . . , (ci, dn))

⟨c⟩ ⊗ ⟨d⟩ = ⟨⟨(ci, dj)⟩
m
i=1⟩

n
j=1 = (⟨c⟩ × d1, . . . , ⟨c⟩ × dn)

⟨c⟩ ⊗t ⟨d⟩ = ⟨⟨(ci, dj)⟩
n
j=1⟩

m
i=1 = (c1 × ⟨d⟩, . . . , cm × ⟨d⟩)

Thus, ⊗ uses the reverse lexicographic order, and ⊗t uses the lexicographic order. We
denote by

ξ⊗ = ξ⊗m,n ∶ ⟨c⟩ ⊗ ⟨d⟩ ≅

⟨c⟩ ⊗t ⟨d⟩

the permutation induced by changing order of indexing.

4.2. Example. Suppose ⟨c⟩ = {c1, c2} and ⟨d⟩ = {d1, d2, d3}. Then the profiles ⟨c⟩ ⊗ ⟨d⟩
and ⟨c⟩ ⊗t ⟨d⟩ are given as follows.

⟨c⟩ ⊗ ⟨d⟩ = {(c1, d1), (c2, d1), (c1, d2), (c2, d2), (c1, d3), (c2, d3)}

⟨c⟩ ⊗t ⟨d⟩ = {(c1, d1), (c1, d2), (c1, d3), (c2, d1), (c2, d2), (c2, d3)}

Note that ξ⊗m,1 and ξ⊗1,n are identity permutations.

4.3. Remark. [Choice of Ordering] Throughout this paper we consistently use the reverse
lexicographic ordering ⊗. This is simply a matter of convenience. In other words, we
can also consistently use the lexicographic ordering ⊗t throughout, and our main results
remain valid, as we explain further in Remark 7.11. The reason we prefer ⊗ over ⊗t is
that, in the profile ⟨c⟩ ⊗ ⟨d⟩, the indices i and j appear in the same left-to-right order as
they do in (ci, dj). Some of our main constructions involve iterating the tensor product;
see (54) and (58). If we use ⊗t instead of ⊗, then (54) would involve the indices

1 ≤ jn ≤ rn, 1 ≤ jn−1 ≤ rn−1, . . . , 1 ≤ j1 ≤ r1,

further complicating the formulas.

4.4. Definition. [Boardman-Vogt Tensor Product of Multicategories] Suppose given
small multicategories M and N. The tensor product M ⊗ N is the multicategory defined
as follows. Its object set is ObM × ObN. For c ∈ ObM and d ∈ ObN, the corresponding
object in M⊗N is denoted (c, d) or c⊗ d.

The operations in M ⊗ N are generated by the following operations for c ∈ ObM,
d ∈ ObN, φ ∈M(⟨ci⟩mi=1 ; c′), and ψ ∈ N(⟨dj⟩nj=1 ; d′).

φ⊗ d ∈ (M⊗N)(⟨(ci, d)⟩
m
i=1 ; (c′, d))

c⊗ ψ ∈ (M⊗N)(⟨(c, dj)⟩
n
j=1 ; (c, d′))

These data are subject to relations (1) through (6) below.
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1. For c ∈M and d ∈ N, we have

1c ⊗ d = 1(c,d) = c⊗ 1d.

2. For operations φ,φ1, . . . , φn in M such that the composite below is defined, we have

γ(φ⊗ d ; φ1 ⊗ d, . . . , φn ⊗ d) = γ(φ ; (φ1, . . . , φn)) ⊗ d.

3. For σ ∈ Σm, we have
(φ⊗ d) ⋅ σ = (φ ⋅ σ) ⊗ d.

4. For operations ψ,ψ1, . . . , ψm in N such that the composite below is defined, we have

γ(c⊗ ψ ; c⊗ ψ1, . . . , c⊗ ψm) = c⊗ γ(ψ ; ψ1, . . . , ψm).

5. For σ ∈ Σn, we have
(c⊗ ψ) ⋅ σ = c⊗ (ψ ⋅ σ).

6. For operations φ ∈M(⟨ci⟩mi=1 ; c′) and ψ ∈ N(⟨dj⟩nj=1 ; d′), we have

γ(c′ ⊗ ψ ; φ⊗ d1, . . . , φ⊗ dn) = γ(φ⊗ d
′ ; c1 ⊗ ψ, . . . , cm ⊗ ψ) ⋅ ξ⊗

in (M⊗N)(⟨c⟩ ⊗ ⟨d⟩ ; (c′, d′)). This is called the interchange relation.

This finishes the definition of M⊗N. Moreover, we define the operations

φ⊗ ψ = γ(c′ ⊗ ψ ; φ⊗ d1, . . . , φ⊗ dn) and

φ⊗t ψ = γ(φ⊗ d′ ; c1 ⊗ ψ, . . . , cm ⊗ ψ),
(16)

which are the two composite operations in relation (6) above.

4.5. Explanation. If we draw an operation as an arrow from its input profile to its
output object, the interchange relation means that the two composites

⟨c⟩ ⊗ ⟨d⟩ c′ × ⟨d⟩

(c′, d′)

⟨c⟩ ⊗t ⟨d⟩ ⟨c⟩ × d′

⟨φ⊗ dj⟩
n
j=1

⟨ci ⊗ ψ⟩
m
i=1

c′ ⊗ ψ

φ⊗ d′

correspond under the bijection

ξ⊗ ∶ (M⊗N)(⟨c⟩ ⊗t ⟨d⟩ ; (c′, d′)) ≅

(M⊗N)(⟨c⟩ ⊗ ⟨d⟩ ; (c′, d′)).

A multifunctor
H ∶M⊗N L

consists of an assignment on objects H(c, d) ∈ ObL for (c, d) ∈ ObM×ObN such that each
H(c,−) and H(−, d) is a multifunctor and such that we have

H(φ⊗ ψ) =H(φ⊗t ψ) ⋅ ξ⊗ (17)

for each φ ∈M(⟨c⟩ ; c′) and ψ ∈ N(⟨d⟩ ; d′).
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4.6. Theorem. [JY∞, 5.7.14, 6.4.3] The tensor product of Definition 4.4 is a Cat-
enriched symmetric monoidal product for Multicat. Its monoidal unit is the initial operad
I of Definition 3.4.

4.7. Explanation. The Cat-enrichment of the symmetric monoidal product for Multicat
is defined as follows. Given multifunctors

F ∶M M′ and G ∶ N N′,

we define a multifunctor
F ⊗G ∶M⊗N M′ ⊗N′

with assignment on generating operations given by

(F ⊗G)(φ⊗ d) = Fφ⊗Gd and (F ⊗G)(c⊗ ψ) = Fc⊗Gψ.

Moreover, with F and G as above, for multinatural transformations

θ ∶ F F ′ and ω ∶ G G′,

we define the tensor product multinatural transformation

θ ⊗ ω ∶ F ⊗G F ′ ⊗G′

with components
(θ ⊗ ω)(c,d) = θc ⊗ ωd

for (c, d) ∈ ObM ×ObN. The right-hand side of the above equality is defined as in (16).

The closed symmetric monoidal structure on Multicat induces a Cat-enriched multi-
category structure that we now describe.

4.8. Definition. Let Multicat also denote the Cat-enriched multicategory whose objects
are small multicategories and whose category of n-ary operations,

Multicat(⟨M⟩ ; N),

consists of multifunctors

H,K ∶
n

⊗
i=1

Mi N (18)

and multinatural transformations θ ∶H K.
For a permutation σ ∈ Σn, the right action

Multicat(⟨M⟩ ; N)
σ
≅

Multicat(⟨M⟩σ ; N)

H ξσ ○H

θ ξσ ∗ θ
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is given by composition and whiskering with the permutation of tensor factors

n

⊗
i=1

Mσ(i)
ξσ
≅

n

⊗
i=1

Mi.

Units are given by identity multifunctors. The composition γ(H ′ ; ⟨H⟩) for multifunc-
tors

Hi ∶
ni

⊗
j=1

Mi,j M′

i for 1 ≤ i ≤ j, and

H ′ ∶
n

⊗
i=1

M′

i M′′,

is given by composition with the associativity isomorphism of ⊗

⊗
i,j

Mi,j
α
≅

n

⊗
i=1

ni

⊗
j=1

Mi,j
⊗iHi

n

⊗
i=1

M′

i
H ′

M′′ (19)

where the first tensor product is the left normalized tensor product (Convention 3.2) of
the concatenation of the ⟨Mi⟩ = ⟨Mi,j⟩

ni
j=1. The V-multicategory axioms for V = Cat follow

from the enriched symmetric monoidal axioms for Multicat. See [JY∞, Section 6.3] for
further details.

Pointed Multicategories. Recall from Definition 3.4 the terminal multicategory T.

4.9. Definition. A pointed multicategory is a multicategory M together with a distin-
guished multifunctor

ι ∶ T M

called the basepoint of M. Pointed multifunctors and multinatural transformations are
those that commute with the basepoint morphisms. The 2-category of small pointed mul-
ticategories, Multicat∗, consists of small pointed multicategories, pointed multifunctors,
and pointed multinatural transformations.

The tensor product of small multicategories induces a smash product of small pointed
multicategories. For small pointed multicategories M and N, the smash product M ∧N is
defined as the following pushout in Multicat.

(M⊗T)∐ (T⊗N) M⊗N

T M ∧N

$M,N (20)

In the diagram above, the left vertical arrow is the unique multifunctor to T. The top
horizontal arrow is induced by the basepoints of M and N. The basepoint of M ∧N is the
bottom horizontal arrow. Thus M∧N has the same objects as M⊗N, and the operations
in M ∧N are represented by those in M⊗N, subject to basepoint conditions.



1172 NILES JOHNSON AND DONALD YAU

The smash product provides the Cat-enriched multicategory structure for small per-
mutative categories, which we will describe further in Section 5. Most details of the
smash product for pointed multicategories will not be needed here, so we refer the reader
to [JY∞, Chapters 4 and 5] for a complete treatment. For our purposes we need only the
following result.

4.10. Theorem. [JY∞, 6.4.4] The smash product of pointed multicategories is a Cat-
enriched symmetric monoidal product for Multicat∗. Its monoidal unit is the coproduct

I+ = I∐T.

As with Multicat, the smash product of pointed multicategories induces a Cat-enriched
multicategory of small pointed multicategories.

4.11. Definition. Let Multicat∗ also denote the Cat-enriched multicategory whose ob-
jects are small pointed multicategories and whose category of n-ary operations

Multicat∗(⟨M⟩ ; N) =Multicat∗(⋀
i

Mi,N)

consists of pointed multifunctors and pointed multinatural transformations out of an
iterated smash product. The symmetric group action, units, and composition are given
by the Cat-enriched symmetric monoidal structure of (Multicat∗,∧, I+).

5. The Cat-Multicategory of Permutative Categories

In this section we define the Cat-enriched multicategory of permutative categories, multi-
linear functors, and multinatural transformations. For further discussion of plain, braided,
and symmetric monoidal categories, we refer the reader to [JS93, ML98, JY21, Yau∞I,
Yau∞II].

5.1. Definition. A permutative category (C,⊕, e, ξ) consists of

� a category C,

� a functor ⊕ ∶ C × C C, called the monoidal sum,

� an object e ∈ C, called the monoidal unit, and

� a natural isomorphism ξ called the symmetry isomorphism with components

ξX,Y ∶X ⊕ Y Y ⊕X

for objects X and Y of C.
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The monoidal sum is required to be associative and unital, with e as its unit. The sym-
metry isomorphism ξ is required to make the following symmetry and hexagon diagrams
commute for objects X,Y,Z ∈ C.

X ⊕ Y X ⊕ Y

Y ⊕X

1X⊕Y

ξX,Y ξY,X

(Y ⊕X) ⊕Z Y ⊕ (X ⊕Z)

(X ⊕ Y ) ⊕Z Y ⊕ (Z ⊕X)

X ⊕ (Y ⊕Z) (Y ⊕Z) ⊕X

ξX,Y ⊕ 1Z 1Y ⊕ ξX,Z

ξX,Y ⊕Z

(21)

A permutative category is also called a strict symmetric monoidal category. The strictness
refers to the conditions that the monoidal sum be strictly associative and unital.

5.2. Definition. Suppose C and D are permutative categories. A symmetric monoidal
functor

(P,P 2, P 0) ∶ C D

consists of a functor P ∶ C D together with natural transformations

PX ⊕ PY P 2

P (X ⊕ Y ) and e P 0

Pe

for objects X,Y ∈ C, called the monoidal constraint and unit constraint, respectively.
These data satisfy the following associativity, unity, and symmetry axioms.

Associativity The following diagram is commutative for all objects X,Y,Z ∈ C.

(PX ⊕ PY ) ⊕ PZ PX ⊕ (PY ⊕ PZ)

P (X ⊕ Y ) ⊕ PZ PX ⊕ P (Y ⊕Z)

P ((X ⊕ Y ) ⊕Z) P (X ⊕ (Y ⊕Z))

P 2
⊕ 1PZ

P 2

1PX ⊕ P 2

P 2

(22)

Unity The following two diagrams are commutative for all objects X ∈ C.

e⊕ PX PX

Pe⊕ PX P (e⊕X)
P 2

P 0
⊕ 1PX and

PX ⊕ e PX

PX ⊕ Pe P (X ⊕ e)P 2

1PX ⊕ P 0

(23)

Symmetry The following diagram is commutative for all objects X,Y ∈ C.

PX ⊕ PY PY ⊕ PX

P (X ⊕ Y ) P (Y ⊕X)

ξPX,PY

PξX,Y
P 2 P 2 (24)
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This finishes the definition of a symmetric monoidal functor.
Composition of symmetric monoidal functors

C P D
Q

E

is given by composition of underlying functors with monoidal and unit constraints given,
respectively, by

(QP )2 = (Q(P 2)) ○Q2 and (QP )0 = (Q(P 0)) ○Q0.

An identity functor is symmetric monoidal with identity monoidal and unit constraints.
A symmetric monoidal functor P is called

� strong if P 0 and P 2 are natural isomorphisms,

� strictly unital if P 0 is the identity natural transformation, and

� strict if both P 0 and P 2 are identities.

5.3. Definition. Suppose P,Q ∶ C D are symmetric monoidal functors between
permutative categories. A monoidal natural transformation

θ ∶ P Q

is a natural transformation between the underlying functors such that the following unity
and constraint compatibility diagrams commute for all X,Y ∈ C.

e

Pe

Qe

P 0

Q0

θe

PX ⊕ PY QX ⊕QY

P (X ⊕ Y ) Q(X ⊕ Y )

θX ⊕ θY

θX⊕Y

P 2 Q2 (25)

This finishes the definition of a monoidal natural transformation. Identity and compos-
ites of monoidal natural transformations are given by those of the underlying natural
transformations.

5.4. Definition. We let PermCat denote the 2-category of small permutative categor-
ies, symmetric monoidal functors, and monoidal natural transformations. We define the
following sub-2-categories consisting of the same objects and restricted collections of func-
tors.

� The 1-cells of PermCatsu are strictly unital symmetric monoidal functors.

� The 1-cells of PermCatsus are strictly unital strong symmetric monoidal functors.

� The 1-cells of PermCatst are strict symmetric monoidal functors.

In each case the 2-cells consist of all monoidal natural transformations between the indi-
cated 1-cells.
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Multilinear Functors and Transformations. Now we recall the definitions of
multilinear functors and transformations between them. See [EM06, Definition 3.2] and
[JY∞, Sections 6.5 and 6.6] for further details and discussion of these structures. Through-
out this section, suppose C1, . . . ,Cn, and D are permutative categories.

5.5. Notation. Suppose
⟨x⟩ = (x1, . . . , xn)

is an n-tuple of symbols, and x′k is a symbol for k ∈ {1, . . . , n}. We denote by

⟨x ○k x
′

k⟩ = ⟨x⟩ ○k x
′

k = (x1, . . . , xk−1

empty if k = 1

, x′k, xk+1, . . . , xn
empty if k = n

)

the n-tuple obtained from ⟨x⟩ by replacing its k-th entry by x′k. Similarly, for k /= ` ∈
{1, . . . , n} and a symbol x′`, we denote by

⟨x ○k x
′

k ○` x
′

`⟩ = ⟨x⟩ ○k x
′

k ○` x
′

`

the n-tuple obtained from ⟨x ○k x′k⟩ by replacing its `-th entry by x′`. We sometimes use
the notation

⟨x ○k xk⟩ = ⟨x⟩

to emphasize the k-th term, xk, in ⟨x⟩. See, for example, the first term in (26).

5.6. Definition. An n-linear functor

n

∏
j=1

Cj D
(P,{P 2

j }
n
j=1)

consists of

� a functor P ∶ C1 ×⋯ × Cn D and

� for each j ∈ {1, . . . , n}, a natural transformation P 2
j , called the j-th linearity con-

straint, with component morphisms

P ⟨X ○j Xj⟩ ⊕ P ⟨X ○j X ′

j⟩ P ⟨X ○j (Xj ⊕X ′

j)⟩ ∈ D
P 2
j

(26)

for objects ⟨X⟩ ∈ ∏jCj and X ′

j ∈ Cj.

These data are subject to the following five axioms.

Unity For objects ⟨X⟩ and morphisms ⟨f⟩ in ∏jCj, the following object and morphism
unity axioms hold for each j ∈ {1, . . . , n}.

{
P ⟨X ○j e⟩ = e

P ⟨f ○j 1e⟩ = 1e
(27)
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Constraint Unity
P 2
j = 1 if any Xi = e or if X ′

j = e. (28)

Constraint Associativity The following diagram commutes for each i ∈ {1, . . . , n} and
objects ⟨X⟩ ∈ ∏jCj, with X ′

i ,X
′′

i ∈ Ci.

P ⟨X ○iXi⟩ ⊕ P ⟨X ○iX
′

i⟩ ⊕ P ⟨X ○iX
′′

i ⟩ P ⟨X ○iXi⟩ ⊕ P ⟨X ○i (X
′

i ⊕X
′′

i )⟩

P ⟨X ○i (Xi ⊕X
′

i)⟩ ⊕ P ⟨X ○iX
′′

i ⟩ P ⟨X ○i (Xi ⊕X
′

i ⊕X
′′

i )⟩

1⊕ P 2
i

P 2
i ⊕ 1 P 2

i

P 2
i

(29)

Constraint Symmetry The following diagram commutes for each i ∈ {1, . . . , n} and
objects ⟨X⟩ ∈ ∏jCj, with X ′

i ∈ Ci.

P ⟨X ○iXi⟩ ⊕ P ⟨X ○iX
′

i⟩ P ⟨X ○i (Xi ⊕X
′

i)⟩

P ⟨X ○iX
′

i⟩ ⊕ P ⟨X ○iXi⟩ P ⟨X ○i (X
′

i ⊕Xi)⟩

P 2
i

ξ P ⟨1 ○i ξ⟩

P 2
i

(30)

Constraint 2-By-2 The following diagram commutes for each

i /= k ∈ {1, . . . , n}, ⟨X⟩ ∈ ∏jCj, X ′

i ∈ Ci, and X ′

k ∈ Ck.

P ⟨X ○iXi ○k Xk⟩ ⊕ P ⟨X ○iX ′

i ○k Xk⟩

⊕P ⟨X ○iXi ○k X ′

k⟩ ⊕ P ⟨X ○iX ′

i ○k X
′

k⟩

P ⟨X ○iXi ○k Xk⟩ ⊕ P ⟨X ○iXi ○k X ′

k⟩

⊕P ⟨X ○iX ′

i ○k Xk⟩ ⊕ P ⟨X ○iX ′

i ○k X
′

k⟩

P ⟨X ○i (Xi ⊕X ′

i) ○k Xk⟩ ⊕ P ⟨X ○i (Xi ⊕X ′

i) ○k X
′

k⟩

P ⟨X ○iXi ○k (Xk ⊕X ′

k)⟩ ⊕ P ⟨X ○iX ′

i ○k (Xk ⊕X ′

k)⟩

P ⟨X ○i (Xi ⊕X ′

i) ○k (Xk ⊕X ′

k)⟩

P 2
i ⊕ P

2
i

P 2
k

1⊕ ξ ⊕ 1

P 2
k ⊕ P

2
k

P 2
i

(31)

This finishes the definition of an n-linear functor.
Moreover, we define the following.

� If n = 0, then a 0-linear functor is a choice of an object in D.

� An n-linear functor (P,{P 2
j }) is strong if each linearity constraint P 2

j is a natural
isomorphism. It is strict if each P 2

j is an identity natural transformation.

� A multilinear functor is an n-linear functor for some n ≥ 0.
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Below, we express the domain of a multilinear functor P either as a product ∏jCj or as
a tuple ⟨C⟩. So, for example, we write

∏jCj
P D or ⟨C⟩ P D

to denote that P is a multilinear functor from ⟨C⟩ to D.

5.7. Example. For permutative categories C and D, the definition of a 1-linear functor
from C to D consists of the same data and axioms as the definition of a strictly unital
symmetric monoidal functor from C to D.

5.8. Definition. Suppose P,Q are n-linear functors as displayed below.

n

∏
j=1

Cj D

(P,{P 2
j })

(Q,{Q2
j})

⇒

θ (32)

An n-linear transformation θ ∶ P Q is a natural transformation of underlying functors
that satisfies the following two multilinearity conditions.

Unity
θ⟨X⟩ = 1e if any Xi = e ∈ Ci. (33)

Constraint Compatibility The diagram

P ⟨X ○iXi⟩ ⊕ P ⟨X ○iX
′

i⟩ P ⟨X ○i (Xi ⊕X
′

i)⟩

Q⟨X ○iXi⟩ ⊕Q⟨X ○iX
′

i⟩ Q⟨X ○i (Xi ⊕X
′

i)⟩

P 2
i

θ ⊕ θ θ

Q2
i

(34)

commutes for each i ∈ {1, . . . , n}, ⟨X⟩ ∈ ∏jCj, and X ′

i ∈ Ci.

A multilinear transformation is an n-linear transformation for some n ≥ 0. Identities and
composition of multilinear transformations are given componentwise.

5.9. Example. The definition of 1-linear transformation between 1-linear functors coin-
cides with that of monoidal natural transformation between corresponding strictly unital
symmetric monoidal functors.

5.10. Definition. We define the following categories of multilinear functors and trans-
formations.

� Let PermCatsu (⟨C⟩ ; D) denote the category of multilinear functors from ⟨C⟩ to D
and multilinear transformations between them.

� Let PermCatsus (⟨C⟩ ; D) denote the full subcategory of strong multilinear functors.

� Let PermCatst (⟨C⟩ ; D) denote the full subcategory of strict multilinear functors.

For each of these, the 1-linear case coincides with the notation of Definition 5.4.

Now we define the rest of the multicategory data for PermCat.
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5.11. Definition. [Symmetric Group Action] Suppose given multilinear functors P and
Q in PermCat(⟨C⟩ ; D) together with a multinatural transformation θ as displayed below.

n

∏
j=1

Cj D

(P,{P 2
j })

(Q,{Q2
j})

⇒

θ (35)

For a permutation σ ∈ Σn, the symmetric group action

PermCat(⟨C⟩ ; D) PermCat(⟨C⟩σ ; D)
σ (36)

sends the data (35) to the following composites and whiskerings, where ξσ denotes the
isomorphism given by permutation of terms in the product.

n

∏
j=1

Cj D
n

∏
j=1

Cσ(j)
ξσ

(P,{P 2
j })

(Q,{Q2
j})

⇒

θ (37)

The j-th linearity constraint of P σ = P ○ ξσ is the composite in D

P σ⟨A⟩ ⊕ P σ⟨A ○j A′

j⟩ P σ⟨A ○j (Aj ⊕A′

j)⟩

P (σ⟨A⟩) ⊕ P (σ⟨A⟩ ○σ(j) A
′

j) P (σ⟨A⟩ ○σ(j) (Aj ⊕A
′

j))

(Pσ)2j

P 2
σ(j)

(38)

for objects

⟨A⟩ = (A1, . . . ,An) ∈
n

∏
j=1

Cσ(j) and A′

j ∈ Cσ(j).

Note that if P is strong, respectively strict, with each P 2
j a natural isomorphism, respec-

tively identity, then P σ is also strong, respectively strict.

5.12. Definition. [Composition] Suppose given, for each j ∈ {1, . . . , n},

� permutative categories ⟨Bj⟩ = (Bj,1, . . . ,Bj,kj),

� objects P ′

j and Q′

j and a 1-cell θj in PermCat(⟨Bj⟩ ; Cj)

as follows.

kj

∏
i=1

Bj,i Cj

P ′

j

Q′

j

⇒

θj (39)
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With ⟨B⟩ = (⟨B1⟩, . . . , ⟨Bn⟩), the multicategorical composition functor

PermCat(⟨C⟩ ; D) ×
n

∏
j=1

PermCat(⟨Bj⟩ ; Cj) PermCat(⟨B⟩ ; D)
γ

(40)

sends the data (35) and (39) to the composites

n

∏
j=1

kj

∏
i=1

Bj,i D

P ○∏jP
′

j

Q ○∏jQ
′

j

Ô
⇒θ ⊗ (∏j θj) (41)

defined as follows.

Composite Multilinear Functor Suppose given tuples of objects

⟨Wj⟩ = (Wj,1, . . . ,Wj,kj) ∈

kj

∏
i=1

Bj,i for j ∈ {1, . . . , n} and

⟨W ⟩ = (⟨W1⟩, . . . , ⟨Wn⟩) ∈
n

∏
j=1

kj

∏
i=1

Bj,i.

(42)

Then we have the object

(P ○∏j P
′

j)⟨W ⟩ = P (P ′

1⟨W1⟩, . . . , P ′

n⟨Wn⟩) in D. (43)

To describe the linearity constraints of the composite P ○∏j P
′

j in (41), in addition
to the objects in (42), consider

� an object W ′

j,i ∈ Bj,i for some choice of (j, i) with ` = k1 +⋯ + kj−1 + i and

� ⟨P ′W ⟩ = (P ′

1⟨W1⟩, . . . , P ′

n⟨Wn⟩) ∈ ∏
n
j=1 Cj.

Note that

⟨Wj ○iW
′

j,i⟩ = (

empty if i = 1

Wj,1, . . . ,Wj,i−1, W
′

j,i,

empty if i = kj

Wj,i+1, . . . ,Wj,kj )

⟨Wj ○i (Wj,i ⊕W
′

j,i)⟩ = (Wj,1, . . . ,Wj,i−1

empty if i = 1

, Wj,i ⊕W
′

j,i,Wj,i+1, . . . ,Wj,kj

empty if i = kj

).

The `-th linearity constraint (P ○∏jP
′

j)
2

`
is defined as the following composite in D.
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P ⟨P ′W ⟩ ⊕ P ⟨P ′W ○j P
′

j⟨Wj ○iW
′

j,i⟩⟩

(P ○∏jP
′

j)⟨W ⟩ ⊕ (P ○∏jP
′

j)⟨W ○`W
′

j,i⟩

P ⟨P ′W ○j (P
′

j⟨Wj⟩ ⊕ P
′

j⟨Wj ○iW
′

j,i⟩)⟩

(P ○∏jP
′

j)⟨W ○` (Wj,i ⊕W
′

j,i)⟩

P ⟨P ′W ○j P
′

j⟨Wj ○i (Wj,i ⊕W
′

j,i)⟩⟩

P 2
j

P ⟨1 ○j (P
′

j)
2
i ⟩

(P ○∏jP
′

j)
2

`
(44)

Note that if P and each P ′

j are strong, respectively, strict, then each linearity con-

straint (P ○ ∏jP
′

j)
2

`
is componentwise invertible, respectively, an identity, and the

composite P ○∏jP
′

j is also strong, respectively, strict.

Composite Multinatural Transformation The multinatural transformation θ⊗(∏j θj)
in (41) is the horizontal composite of the natural transformations ∏j θj and θ. The

component morphism (θ ⊗ (∏j θj))
⟨W ⟩

is the composite

P ⟨P ′

j⟨Wj⟩⟩j P ⟨Q′

j⟨Wj⟩⟩j Q⟨Q′

j⟨Wj⟩⟩j
P ⟨(θj)⟨Wj⟩

⟩j θ⟨Q′

j⟨Wj⟩⟩j (45)

in D.

The following construction of pointed multicategories from permutative categories
leads to an alternative description of multilinearity via the smash product of pointed
multicategories.

5.13. Definition. Suppose C is a small permutative category. The endomorphism mul-
ticategory End(C) is the small multicategory with object set ObC and with

End(C)(⟨X⟩ ; Y ) = C(X1 ⊕⋯⊕Xn, Y )

for Y ∈ ObC and ⟨X⟩ = (X1,⋯,Xn) ∈ (ObC)×n. An empty ⊕ means the unit object e.
The canonical basepoint of End(C) is determined by the multifunctor

T End(C)

sending the single object of T to the monoidal unit e in C and the n-ary operation ιn to
the identity morphism of

n

⊕
i=1

e = e.

Strictly unital monoidal functors, and monoidal natural transformations between
them, induce pointed multifunctors and pointed multinatural transformations, respec-
tively, on endomorphism multicategories. This defines a 2-functor

End ∶ PermCatsu Multicat
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by [JY∞, 5.3.6]. Equipped with canonical basepoints, End takes values in Multicat∗.

The following result identifies multilinear functors and transformations between per-
mutative categories with multifunctors and multinatural transformations of endomor-
phism categories.

5.14. Proposition. [JY∞, 6.5.10 and 6.5.13] For permutative categories C1, . . . ,Cn, and
D, the 2-functor End induces an isomorphism of categories

End ∶ PermCatsu (⟨C⟩ ; D)
≅ Multicat∗(⟨End(C)⟩ ; End(D))

=Multicat∗( ∧i End(Ci),End(D)),

between the category of n-linear functors and transformations ⟨C⟩ D and the category
of pointed multifunctors and multinatural transformations ∧iEnd(Ci) End(D).

5.15. Definition. Let PermCatsu denote the Cat-enriched multicategory whose category
of n-ary operations

PermCatsu (⟨C⟩ ; D)

is the category of n-linear functors and n-linear transformations

⟨C⟩ D.

The symmetric group action and composition in PermCatsu are those of Definitions 5.11
and 5.12, respectively. The multicategory axioms for PermCatsu follow from Proposi-
tion 5.14 and the symmetric monoidal axioms of the smash product. Independently, a
direct verification is given in [JY∞, Section 6.6].

We let PermCatsus denote the Cat-enriched sub-multicategory whose n-ary operations
consist of strong n-linear functors and n-linear transformations.

5.16. Remark. The multicategory structure on PermCatsu is not induced by a symmetric
monoidal structure. For example, the unit for the smash product of multicategories is not
a permutative category. See [JY∞, Propositions 5.7.23 and 10.2.17] for further discussion
of this point.

5.17. Remark. [Strict Unity] In the rest of this paper, we mainly work with PermCatsu

instead of other variants in Definitions 5.4 and 5.10. We now briefly discuss the technical
advantages of PermCatsu over other variants.

1. For a symmetric monoidal functor P ∶ C D between small permutative categor-
ies, the endomorphism multifunctor

End(P ) ∶ End(C) End(D)

is not a pointed multifunctor in general, where End(C) and End(D) are equipped
with the canonical basepoints given by their respective monoidal units. The multi-
functor End(P ) is pointed precisely when P is strictly unital. The Cat-multicategory
structure on PermCatsu is canonically induced by the one on Multicat∗ via End, as
in Proposition 5.14. In this sense, PermCatsu is more convenient than PermCat.



1182 NILES JOHNSON AND DONALD YAU

2. As we recall in Proposition 6.6 below, the free permutative category 2-functor F
has codomain the 2-category PermCatst, with strict symmetric monoidal functors
as 1-cells. However, in order to extend F to a non-symmetric Cat-multifunctor
(Theorem 8.1), we will need to precompose the assignment of F on 1-cells and 2-cells
with a strong multilinear functor S; see (64). While S (Definition 7.4) is a strong
multilinear functor, it is not strict because its linearity constraints, defined in (61),
are generally not identity morphisms. Thus, the non-symmetric Cat-multicategorical
extension of F should not use the codomain PermCatst, since we must allow non-
identity linearity constraints.

3. Segal’s K-theory functor [Seg74]

KSe ∶ PermCatsu SymSp

is most naturally defined on PermCatsu; see [JY∞, Chapter 8] for a detailed discus-
sion of KSe. In Section 10 we will use KSe to define stable equivalences in PermCatsu

and Multicat. The functor KSe is a composite of three functors, the first of which,
called Segal J-theory and denoted JSe, lands in the category Γ-Cat of Γ-categories.
For a small permutative category C, each level of the Γ-category JSeC is a category in
which an object is a system of objects {Cs} in C along with some gluing morphisms,
satisfying several axioms. Among these axioms is an object unity axiom—see [JY∞,
(8.3.2)]—that says

C∅ = e,

the monoidal unit in C. For P as in (1) above, in order for P to induce a morphism
of Γ-categories

JSeP ∶ JSeC JSeD,

we need the condition
P (C∅) = Pe = e,

the monoidal unit in D. In other words, we need P to be strictly unital.

6. Free Permutative Category on a Multicategory

In this section we recall from [JY22, Section 5] the free construction

F ∶Multicat PermCatsu .

In Section 8 we show that F is a non-symmetric Cat-enriched multifunctor. The definition
of F makes use of sequences ⟨x⟩, indexing functions f , and permutations σkg,f . We make
the following preliminary definitions.

6.1. Definition. For a natural number r ≥ 0 we let

r = {1, . . . , r}

denote the finite set with r elements.
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6.2. Definition. Suppose M is a multicategory, and suppose ⟨x⟩ is a sequence of length
r, with each xi ∈M. Suppose

f ∶ r s and g ∶ s t

are functions of finite sets, for r, s, t ≥ 0. Then we define the following.

� For j ∈ s, let
⟨x⟩f−1(j) = ⟨xi⟩i∈f−1(j) (46)

denote the sequence formed by those xi with i ∈ f−1(j), ordered as in ⟨x⟩. Similarly,
for a length-s sequence of operations ⟨φ⟩ in M and k ∈ t, let

⟨φ⟩g−1(k) = ⟨φj⟩j∈g−1(k).

� For k ∈ t, let σkg,f ∈ Σt be the unique permutation such that

[ ⊕
j∈g−1(k)

⟨x⟩f−1(j)] ⋅ σ
k
g,f = ⟨x⟩(gf)−1(k), (47)

where the sequence on the left hand side is the concatenation of sequences in the
order specified by g−1(k). We will use the action of these permutations on both
objects and operations.

6.3. Definition. Suppose M is a multicategory. Define a permutative category FM,
called the free permutative category on M, as follows.

Objects The objects of FM are given by the (ObM)-profiles: finite ordered sequences
⟨x⟩ = (x1, . . . , xr) of objects of M, with r ≥ 0.

Morphisms Given sequences ⟨x⟩ and ⟨y⟩ with lengths r and s, respectively, the mor-
phisms from ⟨x⟩ to ⟨y⟩ in FM are given by pairs (f, ⟨φ⟩) consisting of

� a function
f ∶ r s

called the index map and

� an ordered sequence of operations

⟨φ⟩ with φj ∈M(⟨x⟩f−1(j) ; yj)

for j ∈ s, with ⟨x⟩f−1(j) defined in (46).

The identity morphism on ⟨x⟩ is given by 1r and the tuple of unit operations 1xi .
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Composition The composition of a pair of morphisms

⟨x⟩
(f, ⟨φ⟩)

⟨y⟩
(g, ⟨ψ⟩)

⟨z⟩

is the pair
(gf, ⟨θk ⋅ σ

k
g,f ⟩k∈t), (48)

where, for each k ∈ t,

θk = γ (ψk ; ⟨φ⟩g−1(k)) ∈M
⎛

⎝
⊕

j∈g−1(k)

⟨x⟩f−1(j) ; zk
⎞

⎠
. (49)

Note that the input profile for θk is the concatenation of ⟨x⟩f−1(j) for j ∈ g−1(k).
By definition (47), the right action of σkg,f permutes this input profile to ⟨x⟩(gf)−1(k).
Composition of morphisms is verified to be unital and associative in [JY22, Propo-
sition 5.7].

Monoidal Sum The monoidal sum

⊕ ∶ FM ×FM FM

is given on objects by concatenation of sequences. The monoidal sum of morphisms

(f, ⟨φ⟩) ∶ ⟨x⟩ ⟨y⟩ and (f ′, ⟨φ′⟩) ∶ ⟨x′⟩ ⟨y′⟩,

is the pair
(f ⊕ f ′, ⟨φ⟩ ⊕ ⟨φ′⟩)

where f ⊕ f ′ denotes the composite

r + r′ ≅ r∐ r′
f ∐ f ′

s∐ s′ ≅ s + s′

given by the disjoint union of f with f ′ and the canonical order-preserving iso-
morphisms. Functoriality of the monoidal sum follows because disjoint union of
indexing functions preserves preimages and the operations in a composite (48) are
determined elementwise for the indexing set of the codomain.

Monoidal Unit The monoidal unit is the empty sequence ⟨⟩. The unit and associativity
isomorphisms for ⊕ are identities.

Symmetry The symmetry isomorphism for sequences ⟨x⟩ of length r and ⟨x′⟩ of length
r′ is

ξ⟨x⟩,⟨x′⟩ = (τr,r′ , ⟨1⟩) (50)

where
τr,r′ ∶ r + r′ ≅ r∐ r′ r′∐ r ≅ r′ + r

is induced by the block-transposition of r with r′, keeping the relative order within
each block fixed.

Concatenation of sequences is strictly associative and unital. The symmetry and
hexagon axioms (21) follow from the corresponding equalities of block permutations.

This completes the definition of FM.
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6.4. Definition. Suppose H ∶ M N is a multifunctor. Define a strict symmetric
monoidal functor

FH ∶ FM FN

via the following assignment on objects and morphisms. For a sequence ⟨x⟩ of length r,
define

(FH)⟨x⟩ = ⟨Hxi⟩i∈r.

For a morphism (f, ⟨φ⟩), define

(FH)(f, ⟨φ⟩) = (f, ⟨Hφj⟩j). (51)

The multifunctoriality of H shows that this assignment is functorial on morphisms.
Since the monoidal sum is defined by concatenation in FM and FN, the functor FH is
strict monoidal. Compatibility with the symmetry of FM and FN follows because FH
preserves the index map of each morphism and H preserves unit operations.

6.5. Definition. Suppose κ ∶ H K ∶ M N is a multinatural transformation.
Define a monoidal natural transformation

Fκ ∶ FH FK

via components
(Fκ)⟨x⟩ = (1, ⟨κxi⟩i) ∶ ⟨Hx⟩ ⟨Kx⟩ (52)

for each sequence ⟨x⟩ in FM. Naturality of Fκ follows from multinaturality of κ (13)
because each σjf,1 and σj1,f is an identity permutation and we have

(1, ⟨κyj⟩j)(f, ⟨Hφj⟩j) = (f, ⟨γ(κyj ; Hφj)⟩j)

= (f, ⟨γ(Kφj ; ⟨κxi⟩i∈f−1(j))⟩j)

= (f, ⟨Kφj⟩j)(1, ⟨κxi⟩i)

for each morphism (f, ⟨φ⟩) ∶ ⟨x⟩ ⟨y⟩ in FM.
The monoidal naturality axioms (25) for Fκ follow because the monoidal sum in FN

is given by concatenation of object and operation sequences. The component (Fκ)⟨⟩ is
the identity morphism (1∅, ⟨⟩) ∶ ⟨⟩ ⟨⟩.

6.6. Proposition. [JY22, Proposition 5.13] The free permutative category construction
given in Definitions 6.3 and 6.4 provides a 2-functor

F ∶Multicat PermCatst .
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6.7. Example. For the terminal multicategory T, the free permutative category FT is
isomorphic to the natural number category N whose objects are given by natural numbers
and morphisms are given by morphisms of finite sets

N(r, s) = Set(r, s).

The natural number r ∈ N corresponds to the length-r sequence whose terms are the
unique object of T. Each morphism f ∶ r s corresponds to the morphism

(f, ⟨φ⟩) ∈ FT

where φj is the unique operation in T of arity ∣f−1(j)∣.

6.8. Example. For the initial operad I, the free permutative category FI is isomorphic
to the permutation category Σ with objects given by natural numbers and morphisms
given by permutations

Σ(r, s) =

⎧⎪⎪
⎨
⎪⎪⎩

Σr, if r = s,

∅, if r /= s

for each pair of natural numbers r and s.

7. Assignment on Multimorphism Categories

Throughout this section we suppose n ≥ 0 and consider small multicategories M1, . . . ,
Mn, and N. The purpose of this section is to define the assignment on multimorphism
categories

F ∶Multicat(⟨M⟩ ; N) PermCatsu (⟨FM⟩ ; FN).

This assignment is provided by a strong n-linear functor of permutative categories

S ∶ ⟨FM⟩ F(
n

⊗
i=1

Mi)

and the 2-functoriality of F. We will use the following notation in the definition of S
below, in the case n > 0.

7.1. Definition. Suppose given objects

⟨xi⟩ ∈ FMi for 1 ≤ i ≤ n,

where each ⟨xi⟩ = (xi1, . . . , x
i
ri
). So ⟨xi⟩ has length ri and each xij is an object of Mi. For

each n-tuple of indices (j1, . . . , jn) with 1 ≤ ji ≤ ri, define

x1⋯n
j1,...,jn = (x1

j1 , x
2
j2 , . . . , x

n
jn) ∈

n

⊗
i=1

Mi.
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Then define an object

⟨x1⋯n⟩ ∈ F(
n

⊗
i=1

Mi)

of length r1⋯n, where

r1⋯n =
n

∏
i=1

ri and (53)

⟨x1⋯n⟩ = ⟨⋯⟨x1⋯n
j1,...,jn⟩

r1

j1=1
⋯⟩

rn

jn=1
. (54)

Using the tensor product of profiles from Definition 4.1, the tuple ⟨x1⋯n⟩ from (54) is the
iterated tensor product of the tuples ⟨xi⟩, with the reverse lexicographic ordering in the
subscripts.

7.2. Example. To illustrate Definition 7.1, consider the case with n = 3 and the following
objects.

⟨x1⟩ = (x1
1, x

1
2) ∈ FM1

⟨x2⟩ = (x2
1, x

2
2, x

2
3) ∈ FM2

⟨x3⟩ = (x3
1, x

3
2) ∈ FM3

(55)

For each triple of indices (j1, j2, j3) with j1 ∈ {1,2}, j2 ∈ {1,2,3}, and j3 ∈ {1,2}, we have
the object

x123
j1,j2,j3 = (x1

j1 , x
2
j2 , x

3
j3
) ∈M1 ⊗M2 ⊗M3.

This object is obtained from the array (55) by forming a vertical product, using the j1-th
object in the first row, the j2-th object in the second row, and the j3-th object in the
third row. For example, for the indices (j1, j2, j3) = (2,3,1), we have the object

x123
231 = (x1

2, x
2
3, x

3
1) ∈M1 ⊗M2 ⊗M3.

The object in (54)
⟨x123⟩ ∈ F(M1 ⊗M2 ⊗M3)

is the following sequence of 2 ⋅ 3 ⋅ 2 = 12 objects, with each object in M1 ⊗M2 ⊗M3, read
left to right in the first row and then the second row.

j2 =1

x123
111 x123

211

j2 =2

x123
121 x123

221

j2 =3

x123
131 x123

231 j3 = 1

x123
112 x123

212

j2 =1

x123
122 x123

222

j2 =2

x123
132 x123

232

j2 =3

j3 = 2

In the previous display, the two rows correspond to j3 = 1 and 2, as indicated by the last
subscripts. In each row, the three pairs from left to right correspond to j2 = 1,2, and 3,
as indicated by the middle subscripts. Within each pair, the two objects correspond to
j1 = 1 and 2, as indicated by the first subscript.
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7.3. Definition. Suppose given objects and morphisms

(f i, ⟨φi⟩) ∶ ⟨xi⟩ ⟨yi⟩ in FMi for 1 ≤ i ≤ n,

where

� each ⟨xi⟩ has length ri,

� each ⟨yi⟩ has length si,

� each f i ∶ ri si, and

� each φij ∈Mi(⟨xi⟩(f i)−1(j) ; yij).

Define f 1⋯n as the composite below, where the unlabeled isomorphisms are given by the
reverse lexicographic ordering of the products:

r1⋯n ∏iri ∏isi s1⋯n.
≅ ≅∏if

i

f1⋯n

(56)

For each n-tuple of indices (k1, . . . , kn) with 1 ≤ ki ≤ si, let

⟨x1⋯n⟩f ;k1,...,kn = ⟨⋯⟨x1⋯n
j1,...,jn⟩

j1∈(f1)−1(k1)
⋯⟩

jn∈(fn)−1(kn)

and define
φ1⋯n
k1,...,kn

∶ ⟨x1⋯n⟩f ;k1,...,kn y1⋯n
k1,...,kn

(57)

as the tensor product ⊗ni=1φ
i
ki

. Then define

⟨φ1⋯n⟩ = ⟨⋯⟨φ1⋯n
k1,...,kn

⟩
s1

k1=1
⋯⟩

sn

kn=1
. (58)

This defines a morphism

(f 1⋯n, ⟨φ1⋯n⟩) ∶ ⟨x1⋯n⟩ ⟨y1⋯n⟩

in F(⊗
n
i=1 Mi).

Recall the initial operad I (Definition 3.4), which is the monoidal unit for the tensor
product of small multicategories (Theorem 4.6). Also recall from Example 6.8 that F(I)
is the permutation category Σ.
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7.4. Definition. [Multilinear S] Suppose n ≥ 0 and suppose given small multicategories
M1, . . . , Mn. Define an n-linear functor

(S,S2
b ) ∶

n

∏
i=1

FMi F(
n

⊗
i=1

Mi)

as follows.
For n = 0, we define S by choice of object 1 ∈ Σ. For n > 0, we make the following

definitions. Suppose given objects and morphisms

(f i, ⟨φi⟩) ∶ ⟨xi⟩ ⟨yi⟩ in FMi for 1 ≤ i ≤ n,

as in Definition 7.3.

Underlying Functor The underlying functor S is given by the following assignments,
using (54), (56), and (58):

S(⟨x1⟩, . . . , ⟨xn⟩) = ⟨x1⋯n⟩ and (59)

S((f 1, ⟨φ1⟩), . . . , (fn, ⟨φn⟩)) = (f 1⋯n, ⟨φ1⋯n⟩). (60)

Linearity Constraints Suppose 1 ≤ b ≤ n and suppose ⟨x̂b⟩ is an object in FMb with
length r̂b. Let

r̃b = rb + r̂b and ⟨x̃b⟩ = ⟨xb⟩ ⊕ ⟨x̂b⟩.

Then define
⟨x̂1⋯n⟩ and ⟨x̃1⋯n⟩

as in (54), using ⟨x̂b⟩ and ⟨x̃b⟩, respectively, in place of ⟨xb⟩.

The bth linearity constraint, S2
b , is defined by components

S2
b = (ρrb,r̂b , ⟨1⟩) ∶ ⟨x

1⋯n⟩ ⊕ ⟨x̂1⋯n⟩ ⟨x̃1⋯n⟩ (61)

where ⟨1⟩ is the tuple of identity operations and ρrb,r̂b is the unique permutation of
entries determined by the source and target of S2

b . Naturality of S2
b with respect to

morphisms in ∏iFMi follows from the uniqueness of ρrb,r̂b .

This finishes the definition of S as an assignment on objects and morphisms, and the
definition of natural transformations S2

b . We verify that S is functorial in Proposition 7.5.
We verify the multilinearity axioms of Definition 5.6 in Proposition 7.6.

7.5. Proposition. In the context of Definition 7.4, S is a functor.
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Proof. If each (f i, ⟨φi⟩) is an identity, then so are f 1⋯n and each ⟨φ1⋯n⟩. Therefore S
preserves identities.

Suppose given composable morphisms

⟨xi⟩
(f i, ⟨φi⟩)

⟨yi⟩
(gi, ⟨ψi⟩)

⟨zi⟩ in FMi

for 1 ≤ i ≤ n. Then by (48) and (49) we have

(gi, ⟨ψi⟩) ○ (f i, ⟨φi⟩) = (gif i, ⟨θi`i ⋅ σ
`i
gi,f i

⟩`i), with θi`i = γ(ψ
i
`i

; ⟨φi⟩(gi)−1(`i)).

Applying S to the tuple of these composites, we have

S(∏i (g
if i, ⟨θi`i ⋅ σ

`i
gi,f i

⟩`i)) = (h1⋯n, ω1⋯n),

where hi = gif i and
ω1⋯n
`1,...,`n

= ⊗i(θ
i
`i
⋅ σ`i

gi,f i
).

Alternatively, applying S and then composing results in the following:

S(∏i (g
i, ⟨ψi⟩)) ○ S(∏i (f

i, ⟨φi⟩)) = (g1⋯n, ⟨ψ1⋯n⟩) ○ (f 1⋯n, ⟨φ1⋯n⟩)

= (g1⋯nf 1⋯n, ⟨π1⋯n
`1,...,`n

⋅ σ`1,...,`n
g1⋯n, f1⋯n

⟩(`1,...,`n))

where
π1⋯n
`1,...,`n

= γ(ψ1⋯n
`1,...,`n

; ⟨φ1⋯n⟩(g1⋯n)−1 (`1,...,`n))

and σ`1,...,`n
g1⋯n, f1⋯n

is the permutation as in (47) corresponding to the index (`1, . . . , `n).

Functoriality of the Cartesian product for maps of sets implies that h1⋯n = g1⋯nf 1⋯n.
To show that S is functorial, it remains to show

⊗i(θ
i
`i
⋅ σ`i

gi,f i
) = γ(ψ1⋯n

`1,...,`n
; ⟨φ1⋯n⟩(g1⋯n)−1 (`1,...,`n)) ⋅ σ

`1,...,`n
g1⋯n, f1⋯n

(62)

for each index (`1, . . . , `n).
Since the domain of S is a Cartesian product, it suffices to verify (62) in the cases

where (f i, ⟨φi⟩) is an identity for i /= a and (gi, ⟨φi⟩) is an identity for i /= b, for some
1 ≤ a ≤ n and 1 ≤ b ≤ n.

If a = b, then (62) follows from relations among operations in the tensor product,
Definition 4.4 (2) through (5). If a /= b then the permutations σ`i

gi,f i
on the left hand side

of (62) are identities. For a < b, the permutation σ`1,...,`n
g1⋯n, f1⋯n

on the right hand side of (62)

is also an identity and there is nothing to check. For a > b, the permutation σ`1,...,`n
g1⋯n, f1⋯n

is

an instance of ξ⊗ and the equality holds by Definition 4.4 (6).
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7.6. Proposition. In the context of Definition 7.4, (S,S2
b ) is a strong multilinear func-

tor.

Proof. Functoriality of S is verified in Proposition 7.5. Now we verify the multilinearity
axioms of Definition 5.6. For n = 0 there is nothing to check. For n > 0, first note that, if
any ⟨xi⟩ is the empty tuple, then so is ⟨x1⋯n⟩. Similarly, if any (f i, ⟨φi⟩) is equal to

(∅ ∶ 0 0, ⟨⟩) ∶ ⟨⟩ ⟨⟩,

the identity morphism of the empty tuple, then f 1⋯n is the empty morphism and ⟨φ1⋯n⟩

is also empty. Thus S satisfies the unity axiom (27) of Definition 5.6.
The constraint unity axiom (28) for S2

b holds because the permutations ρ0,r̂b and
ρrb,0 are identities. The other three constraint axioms of Definition 5.6 for S2

b follow
from uniqueness of the permutations ρrb,r̂b . Since the components S2

b are determined by
permutations, S is a strong multilinear functor.

7.7. Remark. In the context of Definition 7.4, for the case b = n, the permutations ρrn,r̂n
are identities for any rn and r̂n. In particular, if n = 1 then S is the identity monoidal
functor. For n > 1 and b < n, the permutations ρrb,r̂b are generally nontrivial.

7.8. Lemma. The multilinear functors S are 2-natural with respect to multifunctors and
multinatural transformations

Mi Ni.

Hi

Ki

⇒

θi

Proof. First we verify that the following diagram of permutative categories and multi-
linear functors commutes.

∏
i

FMi

F(⊗
i

Mi)

∏
i

FNi

F(⊗
i

Ni)

∏iFHi

F(⊗iHi)

S S (63)

Commutativity on objects and morphisms follows because, by Definition 6.4, the strict
monoidal functor F(⊗iHi) is given by applying ⊗iHi componentwise to tuples of objects
and operations. Therefore, both composites around the diagram above are given on
objects and morphisms by the assignments

(⟨x1⟩, . . . , ⟨xn⟩) ⟨(Hx)1⋯n⟩

((f 1, ⟨φ1⟩), . . . , (fn, ⟨φn⟩)) (f 1⋯n, ⟨(Hφ)1⋯n⟩),
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where

(Hx)1⋯n
j1,...,jn = ⊗i(Hix

i
ji
) and

(Hφ)1⋯n
k1,...,kn

= ⊗i(Hiφ
i
ki
).

Because F(⊗iHi) is strict monoidal, the bth linearity constraint of both composites around
the diagram is given by

(ρrb,r̂b , ⟨1⟩) = (F(⊗iHi))(S
2
b ).

Thus the two composites in (63) are equal as multilinear functors.
For multinatural transformations θi ∶Hi Ki, a similar analysis using Definition 6.5

shows that
1S ∗ (∏i Fθi) = F( ⊗i θi) ∗ 1S

This completes the proof of 2-naturality for S.

Now we define F on multimorphism categories.

7.9. Convention. To avoid ambiguity, we let

F ∶Multicat(M,N) PermCatsu(FM,FN)

denote the assignment F on 1- and 2-cells as in Definitions 6.4 and 6.5.

7.10. Definition. Define an assignment on multimorphism categories

F ∶Multicat(⟨M⟩ ; N) PermCatsu (⟨FM⟩ ; FN)

by sending data such as the following

⟨M⟩ N

H

K

⇒

θ

to the composites and whiskerings

⟨FM⟩ F(
n

⊗
i=1

Mi) FN.

FH

FK

S ⇒

Fθ (64)

Multilinearity of FH = (FH)○S follows from multilinearity of S and FH being strict sym-
metric monoidal. Likewise, multinaturality of Fθ = (Fθ) ∗ 1S follows from multilinearity
of S and Fθ being monoidal natural.
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7.11. Remark. In our definition of the functor S, we consistently use ⊗ of profiles from
Definition 4.1, with reverse lexicographic ordering, to define

1. ⟨x1⋯n⟩ in (54),

2. f 1⋯n in (56), and

3. ⟨φ1⋯n⟩ in (58).

This is convenient because the indices j1, . . . , jn and k1, . . . , kn in those definitions iterate
in left-to-right order.

However, we can also use the other choice, namely, ⊗t in Definition 4.1, which cor-
responds to lexicographic ordering. In other words, in (1) above we can redefine ⟨x1⋯n⟩

as the iterated ⊗t-product of the tuples ⟨xi⟩, and likewise for (2) and (3). With these
consistent changes, the results about S in Section 7, the definition of F in (64), and the
results in later sections are also valid.

8. Non-Symmetric Cat-Multifunctoriality of F

In this section we verify the non-symmetric Cat-multifunctoriality axioms for F, from
Definition 3.7 (6).

8.1. Theorem. In the context of Definition 7.10, F is a non-symmetric Cat-multifunctor.

Proof. To verify the axiom for units, recall from Remark 7.7 that S is the identity
monoidal functor if n = 1. Since F is functorial, we have

F(1M) = 1FM

for each small multicategory M.
To verify the composition axiom, suppose given

Ha ∈Multicat(⟨Ma⟩ ; M′

a) for 1 ≤ a ≤ n, and

H ′ ∈Multicat(⟨M′⟩ ; M′′).

The two multilinear functors

F(γ(H ′ ; ⟨H⟩)) and γ(FH ′ ; ⟨FH⟩)

are given by the two composites around the boundary in the following diagram, where
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the unlabeled isomorphisms are given by reordering terms.

∏
a,b

FMa,b

F(⊗
a,b

Ma,b) F(⊗
a
⊗
b

Ma,b) F(⊗
a
M′

a) FM′′

∏
a
∏
b

FMa,b

∏
a

F(⊗
b

Ma,b) ∏
a

FM′

aS

≅ F(⊗aHa) FH ′

≅

∏aS

∏aF(Ha)

SS

In the above diagram, the two composites around the middle rectangle are equal as
multilinear functors by naturality of S (Lemma 7.8) with respect to the multifunctors
Ha. The rectangle at left commutes, as a diagram of underlying functors, by associativity
of the products (54) and (57). The linearity constraints for the composites around the
rectangle at left are (ρ, ⟨1⟩) for the same permutation ρ by the definition of S2

b , (61),
and, in the case of the top right composite, the definition of S on morphisms, (60), and
the definition of composition, (48). A similar diagram for multinatural transformations
Ha Ka and H ′

a K ′

a commutes by the 2-naturality of S.

8.2. Example. [Non-Symmetry of F] Suppose given a permutation σ ∈ Σn. The following
diagram for compatibility of F with the action of σ generally does not commute for n ≥ 2.

n

∏
i=1

FMi

n

∏
i=1

FMσ(i)

F(
n

⊗
i=1

Mi)

F(
n

⊗
i=1

Mσ(i))

σ F(σ)

S

S

(65)

Indeed, suppose n = 2 with σ the nontrivial transposition and consider

⟨x1⟩ = (x1
1, x

1
2, x

1
3) ∈ FM1

⟨x2⟩ = (x2
1, x

2
2) ∈ FM2.

Then the assignments along the top and right of (65) are the following, respectively,

(⟨x2⟩, ⟨x1⟩) (x21
11 , x

21
21 , x

21
12 , x

21
22 , x

21
13 , x

21
23)

(x12
11 , x

12
12 , x

12
21 , x

12
22 , x

12
31 , x

12
32).

On the other hand, the assignments along the left and bottom of (65) are the following,
respectively,

(⟨x2⟩, ⟨x1⟩) (⟨x1⟩, ⟨x2⟩)

(x12
11 , x

12
21 , x

12
31 , x

12
12 , x

12
22 , x

12
32).
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Thus the composites around (65) differ by a generally nontrivial permutation.

9. Two Transformations

Recall from Definition 5.13 that the endomorphism multicategory End(C) associated to a
permutative category C defines a 2-functor

End ∶ PermCatsu Multicat.

Throughout this section we let E = End. We recall from [JY22] two constructions that will
be used to develop componentwise multinatural weak equivalences between the composites
EF, FE, and the respective identity multifunctors.

Comparing EF and the Identity.

9.1. Definition. Suppose M is a small multicategory. Define a component

η = ηM ∶M EFM

as follows. For an object w ∈ M and an operation φ ∈ M(⟨x⟩ ; y), let (w) and (φ) denote

the corresponding length-1 sequences. For each r ≥ 0, let ιr ∶ r 1 be the unique map
of finite sets. Then η = ηM is the following assignment:

ηw = (w) for w ∈M, and

ηφ = (ιr, (φ)) ∶ ⟨x⟩ (y)

where φ ∈M(⟨x⟩ ; y) and ∣⟨x⟩∣ = r. Note that ⟨x⟩ is an r-fold concatenation of length-1 se-
quences (xi) and the morphism (ιr, (φ)) in FM is an r-ary operation in EFM. Lemma 9.2
shows that each ηM is multifunctorial and that the components are Cat-multinatural.

9.2. Lemma. The components ηM of Definition 9.1 define a Cat-multinatural transfor-
mation

η ∶ 1Multicat EF.

Proof. To check multifunctoriality of each component η = ηM, first note that η preserves
unit operations because ι1 is the identity on 1. For compatibility with the symmetric
group actions, first recall that the symmetry ξ in FM, (50), has the form (τ, ⟨1⟩) and the
symmetric group action in an endomorphism multicategory is given by permuting input
objects (Definition 5.13). Thus, for an operation φ ∈M(⟨x⟩ ; y) and a permutation σ ∈ Σr,
where r = ∣⟨x⟩∣, the operation

(ηφ) ⋅ σ ∶ ⟨x⟩σ (y) in EFM

is given by the composite (ιr, (φ)) ○ (σ, ⟨1⟩). We have

(ιr, (φ)) ○ (σ, ⟨1⟩) = (ιr, (φ ⋅ σ)) = η(φ ⋅ σ),
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where the first equality follows from composition (48) in FM and right unity (6) in M.
For compatibility with composition, suppose given

ψ ∈M(⟨x′⟩ ; x′′) where ∣⟨x′⟩∣ = s, and

φj ∈M(⟨xj⟩ ; x′j) where ∣⟨xj⟩∣ = rj for j ∈ s.

Let r = ∑j rj. Then the composite in EFM of

ηψ = (ιs, (ψ)) and ⟨ηφj⟩
s
j=1 = ⟨(ιrj , (φj))⟩j

is given by composing the morphisms

(ιs, (ψ)) and ⊕
j∈s

(ιrj , φj) = ( ⊕j∈s ιrj , ⟨φ⟩) (66)

in FM. For g = ιs and f = ⊕jιrj , the permutation σ1
g,f of (47) is the identity on r.

Therefore the composite of the morphisms (66) is

(ιs ○ (⊕jιrj), γ(ψ ; ⟨φ⟩)) = (ιr, γ(ψ ; ⟨φ⟩)) = ηγ(ψ ; ⟨φ⟩).

Multinaturality of η with respect to multifunctors

H ∶
n

⊗
a=1

Ma N

is given by commutativity of the following outer diagram.

⊗
a
Ma

⊗
a
EFMa

EFN

N

⋀
a
EFMa

EF(⊗
a
Ma)

⊗aηMa (EF)H

H ηN

$

ES
E(FH) (67)

In the above diagram, the multifunctor $ is the n-variable version of the universal mor-
phism

$M,N ∶M⊗N M ∧N

in (20). The multifunctor ES is the image of

S ∶ ∏
a

FMa F(⊗
a
Ma) in PermCatsu (⟨FM⟩ ; F(⊗

a
Ma))



HOMOTOPY EQUIVALENT ALGEBRAIC STRUCTURES 1197

under the isomorphism

E ∶ PermCatsu (⟨FM⟩ ; F(⊗
a
Ma))

≅ Multicat∗(⟨EFM⟩ ; EF(⊗
a
Ma))

from Proposition 5.14. Thus the inner triangular region commutes by functoriality of
E and the equality (EF)H = E(FH). The remaining region commutes because both
composites around its boundary have underlying assignments

⊗axa (H(⊗axa)) for xa ∈Ma and

⊗aφa (ιr,H(⊗aφa)) for φa ∈Ma(⟨xa⟩ ; ya),

where each φa has arity ra and r = ∏ara is the arity of ⊗aφa. Multinaturality of η with
respect to multinatural transformations κ ∶ H K follows similarly. This completes
the proof that

η ∶ 1Multicat EF

is a Cat-enriched multinatural transformation.

9.3. Remark. For readers familiar with Cat-enriched symmetric monoidal structure as
in [JY∞, Sections 1.4 and 1.5], the diagram (67) reduces, in the case n = 2 and H = 1, to
the axiom for Cat-monoidal naturality of η.

Comparing FE and the Identity.

9.4. Definition. Suppose C is a small permutative category. Define a component sym-
metric monoidal functor

ρ = ρC ∶ C FEC

by the inclusion of length-1 tuples, as follows:

ρx = (x) and

ρφ = (11, (φ))

for objects x and morphisms φ in C. The monoidal and unit constraints are given by the
following morphisms for objects x and x′ in C:

(ρ2
C)x,x′ = (ι2,1x⊕x′) ∶ (x,x

′) (x⊕ x′) and

ρ0
C = (ι0,1e) ∶ ⟨⟩ (e).

Functoriality of ρ follows from the formula (48) for composition in FEC. The associativity
and unity axioms for (ρC, ρ2

C, ρ
0
C) follow because the product in FEC is given by concate-

nation of tuples and e is a strict unit for C. The symmetry axiom follows because the
symmetric group action on EC is given by composition with the symmetry isomorphism
of C (and iterates thereof).
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9.5. Remark. One can show that the components ρC are multinatural with respect to
multilinear functors and transformations. However, these components are not strictly
unital because the unit constraints ρ0 are not identities. Thus the components ρC are
not 1-cells in PermCatsu. To address this, we recall the following construction, replacing a
general symmetric monoidal functor with a zigzag of strictly unital symmetric monoidal
functors.

9.6. Definition. Define a functor

(−) � ∶ PermCat PermCatsu

that adjoins a new monoidal unit, as follows.

Objects Suppose (C,⊕, e) is a permutative category. Let C � denote the permutative
category whose objects, morphisms, and symmetric monoidal structure are given by
those of C, together with an additional object 0 that is a strict monoidal unit and
an additional morphism t ∶ 0 e.

Let I = {0 1} denote the permutative category formed by two idempotent
objects and a single morphism from the monoidal unit to the other object. Then
C � is the permutative category obtained by adjoining I to C by identifying the
objects 1 and e.

Morphisms Suppose P ∶ C D is a symmetric monoidal functor. Let

P � ∶ C � D � (68)

be the strictly unital symmetric monoidal functor that is given by P on objects and
morphisms of C, and that sends the additional morphism t in C � to the composite

0 t eD P 0

P (eC)

in D �.

The monoidal constraint of P � is given by that of P for objects x, y ≠ 0 in C. If
either x or y is 0, then P �(0) = 0 ∈ D and the monoidal constraint is an identity
morphism.

There is a strict symmetric monoidal functor

C � rC C (69)

that is the identity on objects and morphisms of C and sends the additional morphism t
of C � to the identity morphism of e in C. We call this the retraction for C �. We let

C
jC C � (70)

denote the inclusion, so that rCjC is the identity on C. Note that rC ⊣ jC is an adjunction
of underlying categories.
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9.7. Explanation. [Composition and Monoidal Sum in C �] The morphisms 0 x in
C �, for x ≠ 0, are given by composition with t. Thus, the morphism sets in C � are given
as follows, for x, y ≠ 0

C �(0,0) = {10} C �(0, e) = {t}

C �(0, x) = C(e, x) × {t} C �(x,0) = ∅

C �(x, y) = C(x, y).

The composition
C �(x, y) × C �(0, x) C �(0, y)

sends a pair of morphisms f ∶ x y and gt ∶ 0 e x to (fg)t.
The monoidal sum ⊕ on morphisms in C � is defined as follows.

1. For morphisms f ∶ e x and g ∶ e y in C,

(0 t e
f

x) ⊕ (0 t e
g

y) = (0 t e
1e e⊕ e

f ⊕ g
x⊕ y).

In particular, t⊕ t = t.

2. For morphisms f ∶ e x and h ∶ a b in C,

(0 t e
f

x) ⊕ (a h b) = (0⊕ a
1a e⊕ a

f ⊕ h
x⊕ b).

Similarly, h⊕ (ft) = (h⊕ f).

It will be helpful to introduce additional notation for the following slight variant of the
above construction (−) �. The variant is used in the statement of Lemma 9.9 and other
discussion below.

9.8. Definition. Given a symmetric monoidal functor

(P,P 2, P 0) ∶ C D,

let C● = C � and let P ● denote the composite of P � with rD shown in the following diagram.

C●

C �

D

D �

P ●

P �
rD (71)

Thus, P ● extends P by sending the additional morphism t of C● to the unit constraint
P 0.

The construction (−)● provides a multifunctor

PermCatsu PermCatsu

determined by composition and whiskering with the canonical pointed multifunctors

⋀
i

E(C●i ) (⋀
i

ECi)
●

that are strictly unital and determined by the identity on each ECi.
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9.9. Lemma. Using the constructions of (69) and Definition 9.8, the components ρC
define a zigzag of Cat-multinatural transformations

1PermCatsu
r

(−)●
ρ●

FE.

Proof. For a multilinear functor
⟨C⟩ P D,

the left half of the diagram below commutes by definition of (−)● on multilinear functors
P .

∏
a

Ca ∏
a

C●a ∏
a

FECa

D D● FED

∏arCa

rD

∏aρ
●

Ca

ρ●D

P FEP(P )●
(72)

Away from the new unit objects 0 ∈ C●a, the right half of the above diagram commutes
because ρ is the inclusion of length-one tuples. Commutativity for unit objects follows
because each arrow strictly preserves units. A similar analysis applies to multilinear
transformations θ ∶ P Q.

10. Equivalence of Homotopy Theories

For permutative categories and for multicategories, we define stable equivalences via the
stable equivalences on K-theory spectra. We let SymSp denote the Hovey-Shipley-Smith
category of symmetric spectra [HSS00]. We let

KSe ∶ PermCatsu SymSp

denote Segal’s K-theory functor [Seg74] that constructs a connective symmetric spectrum
from each small permutative category. See [JY∞, Chapters 7 and 8] for a review and
further references.

10.1. Definition. We define stable equivalences, S, of permutative categories and mul-
ticategories via the three functors

PermCat

Multicat

PermCatsu SymSp

(−)
�

F

KSe

as follows.

� A strictly unital symmetric monoidal functor P is a stable equivalence if KSeP is a
stable equivalence of connective spectra.
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� A multifunctor H is a stable equivalence if FH is a stable equivalence of permutative
categories.

� A general symmetric monoidal functor P is a stable equivalence if P � is a stable
equivalence in PermCatsu. That is, P is a stable equivalence if KSe(P �) is a stable
equivalence of connective spectra. Proposition 10.2 below shows that when P is
strictly unital, then KSe(P �) is a stable equivalence of connective spectra if and
only if KSeP is so.

Thus, the stable equivalences in each of PermCatsu, PermCat, and Multicat, respectively,
are reflected by KSe, (−) �, and F. We let S denote the class of stable equivalences in each
case.

The following result shows that the homotopy theories determined by stable equiv-
alences in PermCat and PermCatsu are equivalent. The result is well known to experts;
see e.g., [Man10, Theorem 3.9] and [GJO17a, Theorem 2.15] for discussion of the general
symmetric monoidal case. For completeness, we present a short proof based on [GJO17a,
Theorem 1.11].

10.2. Proposition. There is an adjunction (−) � ⊣ I that induces an equivalence of
homotopy theories

(−) � ∶ (PermCat,S) ∼ (PermCatsu,S) ∶ I (73)

where I is the inclusion.

Proof. The unit and counit of the adjunction are given by

jC ∶ C C � = I(C �) and

rC ∶ (IC)
� = C � C

from (70) and (69), respectively. Because I is a subcategory inclusion, it is a map exten-
sion in the sense of [GJO17a, Definition 1.9]. Moreover, each component of the counit, r,
is a stable equivalence in PermCatsu because rC ⊣ jC is an adjunction of underlying categor-
ies. Thus, the adjunction (−) � ⊣ I satisfies the conditions of [GJO17a, Theorem 1.11 (3)]:
the left adjoint creates stable equivalences and each component of the counit is a stable
equivalence. Therefore, condition [GJO17a, Theorem 1.11 (2)] also holds: the right ad-
joint I creates stable equivalences and the unit is componentwise a stable equivalence in
PermCat. It follows that (73) is an adjoint stable equivalence of homotopy theories.

Next we recall further properties of η and ρ from [JY22].

10.3. Proposition. [JY22, 6.11, 6.13, 7.3] The following statements hold for a small
multicategory M and a small permutative category C.

1. The component
η ∶M EFM

is a stable equivalence of multicategories.
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2. The component
ρ ∶ C FEC

is a right adjoint of underlying categories.

10.4. Remark. Both statements of Proposition 10.3 are proved by using construction of
strict symmetric monoidal functors [JY22, 6.4]

ε = εC ∶ FEC C

for each small permutative category C, given by the following assignments:

ε⟨x⟩ =⊕
i

xi and (74)

ε(f, ⟨φ⟩) = (⊕
j

φj) ○ ξf (75)

where ⟨x⟩ is an object of FEC, (f, ⟨φ⟩) ∶ ⟨x⟩ ⟨y⟩ is a morphism of FEC, and ξf is
a certain permutation of summands [JY22, 9.2] determined by f . The results in [JY22]
show that η and ε are the unit and counit of a 2-adjunction between the 2-categories
Multicat and PermCatst, where the 1-cells are strict monoidal functors. Moreover, for each
C the components (εC, ρC) are an adjunction of underlying categories.

However, the components εC are not natural with respect to general strictly unital
symmetric monoidal functors. More generally, the following multinaturality diagram for
ε with respect to a multilinear functor

⟨C⟩ P D

fails to commute unless each of the linearity constraints P 2
a is an identity.

∏
a

FECa

∏
a

Ca

D

FED

∏aεCa P

FEP
εD

(76)

Thus the components ε do not provide a counit for F and E to be adjunction between
Multicat and PermCatsu, either as 2-categories or as Cat-multicategories.

10.5. Definition. Suppose O is a small non-symmetric Cat-multicategory. A non-
symmetric O-algebra in a Cat-multicategory M is a non-symmetric Cat-multifunctor

O M.

The morphisms of non-symmetric O-algebras are Cat-multinatural transformations. The
category of non-symmetric O-algebras and their morphisms in M is denoted MO. Consid-
ering the underlying 1-category of M, suppose (M,W) is a relative category. We define
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WO as the subcategory of MO that contains all the non-symmetric O-algebras and the
morphisms that are componentwise in W . We consider the pair (MO,WO) as a relative
category.

Now we come to the proof of Theorem 1.1.

Proof Proof of Theorem 1.1. The Cat-multifunctoriality of E and F (non-symmetric
in the latter case) is described in Sections 5 and 8, respectively. By Lemma 9.2 and Propo-
sition 10.3 (1), η provides a natural stable equivalence

ηO ∶ 1 (EO)(FO). (77)

Naturality of ηO with respect to algebra morphisms follows from Cat-multinaturality of η
in Lemma 9.2.

For the other composite, Cat-multinaturality of the zigzag

1 r
(−)●

ρ●

FE

in Lemma 9.9 induces a zigzag of natural transformations between endofunctors of

(PermCatsu )
O

1 (−)● (FO)(EO). (78)

For each permutative category C, the adjunction of underlying categories rC ⊣ jC implies
that rC is a stable equivalence in PermCatsu and jC is a stable equivalence in PermCat.
Furthermore, each ρC is a stable equivalence in PermCat because it is a right adjoint of
underlying categories, by Proposition 10.3 (2). Therefore, by the 2-out-of-3 property for
stable equivalences and the factorization

ρC = ρ
●

C ○ jC ∶ C FEC,

each ρ●C is a stable equivalence in PermCat. By Proposition 10.2, each ρ●C is therefore also a
stable equivalence in PermCatsu. This implies that (78) is a zigzag of stable equivalences.

Therefore, by Proposition 2.10, FO and EO are equivalences of homotopy theories.
This completes the proof.

11. Application to Ring Categories

As a consequence of Theorem 1.1, the functors FO and EO induce equivalences of ho-
motopy theories of non-symmetric O-algebras. This section gives an application to ring
categories, which are non-symmetric algebras over the Cat-enriched associative operad,
As, by [JY∞, 11.2.16]. We recall the essential definitions.
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11.1. Definition. [EM06] A ring category is a tuple

(C, (⊕,0, ξ⊕), (⊗,1), (∂l, ∂r))

consisting of the following data.

The Additive Structure (C,⊕,0, ξ⊕) is a permutative category.

The Multiplicative Structure (C,⊗,1) is a strict monoidal category.

The Factorization Morphisms ∂l and ∂r are natural transformations

(A⊗C) ⊕ (B ⊗C) (A⊕B) ⊗C

(A⊗B) ⊕ (A⊗C) A⊗ (B ⊕C)

∂lA,B,C

∂rA,B,C
(79)

for objects A,B,C ∈ C, which are called the left factorization morphism and the
right factorization morphism, respectively.

We often abbreviate ⊗ to concatenation, with ⊗ always taking precedence over ⊕ in the
absence of clarifying parentheses. The subscripts in ξ⊕, ∂l, and ∂r are sometimes omitted.

The above data are required to satisfy the following seven axioms for all objects A,
A′, A′′, B, B′, B′′, C, and C ′ in C. Each diagram is required to be commutative.

The Multiplicative Zero Axiom

1 × C C C × 1

C × C C C × C

0×1C

≅

0

≅

1C×0

⊗ ⊗

In this diagram, the top horizontal isomorphisms drop the 1 argument. Each 0

denotes the constant functor at 0 ∈ C and 10.

The Zero Factorization Axiom

∂l0,B,C = 1B⊗C ∂r0,B,C = 10

∂lA,0,C = 1A⊗C ∂rA,0,C = 1A⊗C

∂lA,B,0 = 10 ∂rA,B,0 = 1A⊗B

The Unit Factorization Axiom

∂lA,B,1 = 1A⊕B

∂r
1,B,C = 1B⊕C
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The Symmetry Factorization Axiom

AC ⊕BC (A⊕B)C

BC ⊕AC (B ⊕A)C

ξ⊕

∂l

ξ⊕1C

∂l

AB ⊕AC A(B ⊕C)

AC ⊕AB A(C ⊕B)

ξ⊕

∂r

1Aξ
⊕

∂r

The Internal Factorization Axiom

AB ⊕A′B ⊕A′′B (A⊕A′)B ⊕A′′B

AB ⊕ (A′ ⊕A′′)B (A⊕A′ ⊕A′′)B

1⊕∂l

∂l⊕1

∂l

∂l

AB ⊕AB′ ⊕AB′′ A(B ⊕B′) ⊕AB′′

AB ⊕A(B′ ⊕B′′) A(B ⊕B′ ⊕B”)

1⊕∂r

∂r⊕1

∂r

∂r

The External Factorization Axiom

ABC ⊕A′BC (A⊕A′)BC

(AB ⊕A′B)C (A⊕A′)BC

∂l
AB,A′B,C

∂l
A,A′,BC

∂l
A,A′,B

1C

ABC ⊕AB′C (AB ⊕AB′)C

A(BC ⊕B′C) A(B ⊕B′)C

∂r
A,BC,B′C

∂l
AB,AB′,C

∂r1C
1A∂

l
B,B′,C

ABC ⊕ABC ′ AB(C ⊕C ′)

A(BC ⊕BC ′) AB(C ⊕C ′)

∂r
A,BC,BC′

∂r
AB,C,C′

1A∂
r
B,C,C′

The 2-By-2 Factorization Axiom

A(B ⊕B′) ⊕A′(B ⊕B′)

AB ⊕AB′ ⊕A′B ⊕A′B′

(A⊕A′)(B ⊕B′)

AB ⊕A′B ⊕AB′ ⊕A′B′

(A⊕A′)B ⊕ (A⊕A′)B′

∂r ⊕ ∂r

∂l

1⊕ ξ⊕ ⊕ 1

∂l ⊕ ∂l
∂r

This finishes the definition of a ring category.

Recall, e.g., from [JY∞, Section 11.1] the Cat-enriched associative operad As detects
monoid structures. Since As is the free symmetric operad on the terminal non-symmetric
operad, which we denote As′, monoid structures are also detected by non-symmetric
algebras over As′. This yields the following equivalent formulation of [JY∞, 11.2.16].
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11.2. Theorem. [JY∞, 11.2.16] For each small permutative category C, there is a canon-
ical bijective correspondence between

� ring category structures on C and

� non-symmetric Cat-enriched multifunctors

H ∶ As′ PermCatsu such that H(∗) = C.

Defining the morphisms of ring categories via morphisms of non-symmetric As′-
algebras, Theorem 11.2 yields the following application of Theorem 1.1.

11.3. Corollary. The Cat-multifunctors (non-symmetric in the case of F)

F ∶Multicat PermCatsu ∶ E,

induce an equivalence of homotopy theories between associative monoids in Multicat and
ring categories (Definition 11.1).
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