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PRESENTATIONS AND ALGEBRAIC COLIMITS OF

ENRICHED MONADS FOR A SUBCATEGORY OF ARITIES

RORY B. B. LUCYSHYN-WRIGHT AND JASON PARKER

Abstract. We develop a general framework for studying signatures, presentations,
and algebraic colimits of enriched monads for a subcategory of arities, even when the
base of enrichment V is not locally presentable. When V satisfies the weaker require-
ment of local boundedness, the resulting framework is sufficiently general to apply to
the Φ-accessible monads of Lack and Rosický and the J -ary monads of the first au-
thor, while even without local boundedness our framework captures in full generality
the presentations of strongly finitary monads of Lack and Kelly as well as Wolff’s pre-
sentations of V -categories by generators and relations. Given any small subcategory of
arities j : J ↪→ C in an enriched category C , satisfying certain assumptions, we prove
results on the existence of free J -ary monads, the monadicity of J -ary monads over
J -signatures, and the existence of algebraic colimits of J -ary monads. We study a no-
tion of presentation for J -ary monads and show that every such presentation presents
a J -ary monad. Certain of our results generalize earlier results of Kelly, Power, and
Lack for finitary enriched monads in the locally finitely presentable setting, as well as
analogous results of Kelly and Lack for strongly finitary monads on cartesian closed
categories. Our main results hold for a wide class of subcategories of arities in locally
bounded enriched categories.

1. Introduction

When the basic concepts of universal algebra are defined in the usual way via signatures
or similarity types, i.e. sets of operation symbols with specified arities, there arises the
well-known complication that a given pair of varieties of algebras over two different signa-
tures may turn out to be isomorphic as concrete categories over Set, as exemplified by the
fact that the familiar notion of group admits multiple distinct presentations. An elegant
solution to this problem was given by Lawvere [22], whose algebraic theories (or Lawvere
theories) classify varieties up to isomorphism (qua concrete categories over Set). Lawvere
was therefore able to regard systems of equations over signatures as presentations of Law-
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vere theories [22, II.2], the latter providing a presentation-independent notion of algebraic
theory. By way of the equivalence between Lawvere theories and finitary monads on Set,
Lawvere’s work provides also an elegant approach to presentations of finitary monads that
has since been generalized to the setting of enriched category theory by Kelly and Power
[18], and the present paper is a contribution to this line of generalization.

In [18], Kelly and Power showed that if C is a locally finitely presentable V -category
over a locally finitely presentable symmetric monoidal closed category V , then the for-
getful functor W : Mndf (C ) → Endf (C ) from finitary V -monads on C to finitary V -
endofunctors on C is monadic, and the forgetful functor U : Mndf (C ) → Sigf (C ) from
finitary V -monads on C to finitary signatures in C is of descent type (see [18, 5.1]), which
entails in particular that U has a left adjoint and that every finitary V -monad on C has
a presentation given by abstract operations and equations. In [17], Kelly and Lack estab-
lished analogous results for strongly finitary V -monads on cartesian closed categories V ,
while Borceux and Day [8, 2.6.2] had earlier exposited and credited to Kelly an analogue
of one of these results, formulated in terms of enriched theories in the slightly more general
setting of their π-categories. In [20], Lack provided a further substantial advance in this
area by showing that U is in fact monadic (see [20, Corollary 3]). A different approach to
enriched equational presentations was introduced by Fiore and Hur [12], with existence
results under hypotheses involving the preservation of colimits of chains indexed by a
given limit ordinal.

An area of recent interest in enriched category theory has been the study of classes
of enriched monads and theories defined relative to a given class of weights or a given
subcategory of arities, i.e., a full subcategory that is dense in the enriched sense. In the
setting of ordinary Set-enriched category theory, the latter theme goes back to Linton
[23] and includes the theories and monads with arities of Berger, Melliès, and Weber
[6]. In [21], Lack and Rosický defined the concept of Φ-accessible V -monad for a class
of weights Φ satisfying their Axiom A, along with the notion of Lawvere Φ-theory. In
the 2016 paper [25], the first author studied enriched J -theories and J -ary monads
for a system of arities J ↪→ V , which is a (possibly large) subcategory of arities closed
under the monoidal structure. The 2019 paper [9] of Bourke and Garner studied monads
and theories relative to a small subcategory of arities A ↪→ C in a locally presentable
V -category C over a locally presentable closed category V . While the latter work is not
primarily concerned with presentations, Bourke and Garner show that their A -nervous
monads are monadic over A -signatures, and that the category of A -nervous monads is
cocomplete (even locally presentable), with small colimits therein being algebraic (see [9,
Proposition 31, Theorem 38]). However, since the latter work is situated in the locally
presentable setting, it does not subsume any of the following frameworks in full generality:
(1) the Φ-accessible monads of Lack and Rosický [21]; (2) the J -ary monads of [25]; (3)
the enriched theories of Borceux and Day [8], which are encompassed by 1 and by 2; (4)
the strongly finitary V -monads of Lack and Kelly [17], which are encompassed by 1, 2,
and 3. Indeed, in settings (1)-(4), V0 is not required to be locally presentable. Moreover,
it is clear from the work of Kelly [16, Chapter 6], the paper of Lack and Rosický [21],
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and the present paper that various methods of enriched-categorical algebra are applicable
at least in the locally bounded closed categories V of Kelly [16, 6.1] and, more generally,
the locally bounded V -categories [29] over such V . This ensures that these methods may
be applied to the various locally bounded closed categories that provide backgrounds
for mathematics and computer science (see [29, §5.3]), and which need not be locally
presentable, along with the various locally bounded V -categories of structures in such V
([16, Chapter 6], [29, §11]).

The first purpose of this paper is to develop a theory of presentations and colimits
of enriched monads for subcategories of arities with sufficient generality to accommodate
the following general classes of examples when V is locally bounded: (1) the Φ-accessible
V -monads of Lack and Rosický [21], and (2) the J -ary V -monads for a small and
eleutheric system of arities J ↪→ V [25]. The second purpose of this paper is to ensure
that the resulting theory of presentations and algebraic colimits covers in full generality
the following specific settings, even when V is not locally bounded: (a) the strongly
finitary V -monads of Lack and Kelly [17] when V is a complete and cocomplete cartesian
closed category V or, more generally, a π-category in the sense of Borceux and Day [8],
and (b) Wolff’s presentations of V -categories by generators and relations, for an arbitrary
complete and cocomplete V [35], which (as we show in §11.1) are recovered by taking the
subcategory of arities to be the Yoneda embedding for a discrete V -category.

We accomplish these objectives by working with enriched monads for a suitable sub-
category of arities j : J ↪→ C in a V -category C , where V is a complete and cocomplete
symmetric monoidal closed category that need not be locally presentable. Our results
apply when C is a locally bounded V -category over a locally bounded closed category V ,
and in some cases even without these assumptions, e.g. when V is a π-category. Certain
of our results generalize the results of Kelly, Power, and Lack mentioned above.

To obtain our results, we make some modest completeness and cocompleteness as-
sumptions on the V -category C , and two main assumptions on the subcategory of arities
j : J ↪→ C . First, we generally assume that j : J ↪→ C is small and eleutheric (cf.
[25]), which is a certain ‘exactness’ condition that guarantees that the V -endofunctors on
C that are left Kan extensions along j are precisely those that preserve left Kan exten-
sions along j; we call these the J -ary V -endofunctors. We also assume that j : J ↪→ C
satisfies a mild boundedness condition, which we define in terms of certain notions from
Kelly’s classic paper [14] on transfinite constructions in category theory, where the reader
can find a list of references regarding the rich history of the theme of existence of free
constructions. Our main results on free J -ary monads, algebraic colimits of J -ary
monads, and presentations of J -ary monads then hold for any bounded and eleutheric
subcategory of arities j : J ↪→ C in a V -category C satisfying mild assumptions.

In order to further clarify the relation of this paper to the existing literature, we
now further contrast this work with aspects of the recent paper of Bourke and Garner
[9]. In the latter paper it is assumed that both V and C are locally presentable, while
the present paper is applicable to a much broader class of enriched categories, including
locally bounded V -categories C over a locally bounded V . On the other hand, here we
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require that the subcategory of arities J ↪→ C be bounded and eleutheric, while Bourke
and Garner allow an arbitrary small subcategory of arities A ↪→ C with C and V locally
presentable. However, in the latter locally presentable setting, every small subcategory
of arities A is necessarily bounded and is actually contained in a larger subcategory of
arities J = Cα ↪→ C that is not only bounded but also eleutheric, consisting of the
(enriched) α-presentable objects for a suitable cardinal α (3.9, 6.1.12). Hence, in the
Bourke-Garner setting, presentations relative to A may be viewed also as presentations
relative to J = Cα, and the A -nervous monads that they present are, in particular, α-ary
monads and, for some purposes, may be studied as such, by way of the earlier methods
of Kelly-Power [18] and Lack [20]. In the present paper, we escape the locally presentable
setting by asking for a given bounded and eleutheric subcategory of arities J ↪→ C to
play a role analogous to that of Cα. It is important to note that in this general setting we
can once again consider arbitrary small subcategories of arities A ↪→ C with A ⊆ J ,
and again any A -presentation may be viewed as a J -presentation and so, by the results
in this paper, presents a J -ary monad.

In a subsequent paper [30], we shall further explore the implications of the theory
developed in this paper, and in particular we shall provide additional ‘user-friendly’ tech-
niques for constructing presentations of J -ary monads, which will allow us to easily
define many further examples of such presentations in a manner that closely resembles or-
dinary mathematical practice. Furthermore, these techniques will enable us to generalize
the adjunction between A -pretheories and V -monads of Bourke and Garner [9] beyond
the locally presentable setting, by letting A ↪→ C be an arbitrary subcategory of arities
that is contained in a given bounded and eleutheric subcategory of arities J ↪→ C , as
described above.

We now provide a detailed overview of the paper. After reviewing some notation and
background on enriched category theory in §2, in §3 we begin by defining the notion of
an eleutheric subcategory of arities j : J ↪→ C in a V -category C (originally defined in
[25] for C = V ), and in §4 we define the notions of J -ary V -endofunctor and J -ary
V -monad on C . In §5 we develop the theory of algebraically free monads in the enriched
context, generalizing aspects of Kelly’s work on this topic in the ordinary Set-enriched
context in [14]. We begin §6 by defining the notion of a bounded subcategory of arities,
and we show that our running examples have this property, as does any small subcategory
of arities in a locally bounded V -category over a locally bounded closed category V . We
then prove our first main results in 6.2.5 and 6.2.6, which show that if j : J ↪→ C is a
bounded subcategory of arities in a cocomplete and cotensored V -category C , then the
forgetful functor W : MndJ (C ) → EndJ (C ) from J -ary V -monads on C to J -ary V -
endofunctors on C is monadic, and the free J -ary V -monad on a J -ary V -endofunctor
is algebraically free.

We commence §7 by defining the notion of a Σ-algebra for a J -signature Σ in C ,
relative to a subcategory of arities j : J ↪→ C , and we then show in 7.7 under certain
hypotheses that the forgetful functor EndJ (C ) → SigJ (C ) from J -ary V -endofunctors
on C to J -signatures in C is monadic. We then deduce in 7.9 that U : MndJ (C ) →
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SigJ (C ) has a left adjoint, and that the V -category of algebras for the free J -ary V -
monad on a J -signature Σ is isomorphic to the V -category Σ-Alg of Σ-algebras, which
is defined more directly in terms of the signature Σ. In §8 we use a theorem of Lack [20]
to prove in 8.2 that the forgetful functor U : MndJ (C ) → SigJ (C ) is actually monadic.

§9 is concerned with algebraic colimits of J -ary V -monads, and is divided into three
subsections. In §9.1 we first review some necessary background material on limits in
V -CAT and V -CAT/C , and we prove some results about limits and colimits in limit V -
categories. We then use this material in §9.2 to define and study the notion of an algebraic
colimit of V -monads, thereby enriching the corresponding notion studied by Kelly in [14].
The final subsection 9.3 defines the notion of an algebraic colimit of J -ary V -monads,
and we then prove in 9.3.8 that if j : J ↪→ C is bounded, then the category MndJ (C )
of J -ary V -monads on C has small algebraic colimits.

We begin §10 by defining the notion of a J -presentation P = (Σ, E) for a subcategory
of arities j : J ↪→ C , consisting of a J -signature Σ and a system of J -ary equations
E = (Γ ⇒ U (TΣ)), i.e. a pair of J -signature morphisms from a J -signature Γ (the
signature of equations) to the underlying J -signature of the free J -ary V -monad TΣ

on Σ. From results in §9 we then deduce in 10.1.8 that every J -presentation P presents
a J -ary V -monad TP , whose V -category of algebras we show in 10.2.14 is isomorphic
to the V -category P -Alg of P -algebras for the J -presentation P = (Σ, E), i.e. the full
sub-V -category of Σ-Alg consisting of those Σ-algebras that satisfy the equations in E,
in a suitable sense. In 10.1.10, we also deduce that every J -ary V -monad has a J -
presentation, using our results on algebraic colimits and monadicity of J -ary monads.
In §11 we discuss some examples of J -presentations; firstly, we show that presentations
of V -categories by generators and relations are recovered as examples when J consists
of the representables in a power of V , and secondly we discuss presentations of strongly
finitary V -monads in cartesian closed topological categories over Set, treating examples
including internal modules and affine spaces over internal rigs (i.e. semirings).

In §12 we summarize the main results of the paper, noting that our running examples
satisfy the hypotheses of these results, as does any small and eleutheric subcategory of
arities in a locally bounded V -category over a locally bounded closed category V .

2. Notation and background

We make substantial use of the methods of enriched category theory throughout this
paper; for more details, one can consult (e.g.) the classic texts [10, 16]. For the most
part, we use the notation of Kelly’s text [16]. Throughout, we let V = (V0,⊗, I) be a
symmetric monoidal closed category with V0 locally small, complete, and cocomplete.

A weight is a V -functor W : B → V with B a (not necessarily small) V -category,
while we say that the weightW is small if B is small. A weighted diagram in a V -category
C is a pair (W,D) consisting of a weight W : B → V and a V -functor D : B → C . A
cylinder for the weighted diagram (W,D) is a pair (C, λ) consisting of an object C ∈ obC
and a V -natural transformation λ : W → C (C,D−). A (weighted) limit of (W,D) is an
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object {W,D} of C equipped with the structure of a limit cylinder ({W,D}, λ) for (W,D),
i.e. a limit of D indexed by W in the sense of [16, §3.1].

It is convenient to define a dually weighted diagram in C to be a pair (W,D) consisting
of a weight W : Bop → V and a V -functor D : B → C , noting that (W,Dop) is then
a weighted diagram in C op. A cylinder for the dually weighted diagram (W,D) is, by
definition, a cylinder for the weighted diagram (W,Dop), and a (weighted) colimit W ∗D
of (W,D) is a limit {W,Dop} of (W,Dop).

Given a class of weighted diagrams Λ, a V -functor F : C → D creates Λ-limits
provided that for every weighted diagram (W,D) ∈ Λ in C and every limit cylinder
(C, λ) for (W,FD) that exists in D , there is a unique cylinder

(
C̄, λ̄

)
for (W,D) with(

FC̄, F λ̄
)
= (C, λ), and moreover

(
C̄, λ̄

)
is a limit cylinder for (W,D). Dually, we have

the notion of creation of Λ-colimits for a class of dually weighted diagrams Λ. Given
instead a class of weights Φ, F creates Φ-limits if F creates Λ-limits for the class Λ of all
weighted diagrams with weights in Φ; dually, we have the notion of creation of Φ-colimits.

Given a V -functor F : C → D and a class of (possibly large) weights Φ, we say that
F conditionally preserves Φ-limits [25, 2.3] provided that for every limit {W,D} that
exists in C with W ∈ Φ, if {W,FD} exists in D then F preserves the limit {W,D}. It is
then easy to see that F conditionally preserves Φ-limits if F creates Φ-limits, and that F
preserves Φ-limits if D has Φ-limits and F conditionally preserves Φ-limits. We also have
the dual notion of conditional preservation of Φ-colimits.

Given a class of weights Φ, a V -category C is Φ-(co)complete if C admits all Φ-
(co)limits, and a V -functor is Φ-(co)continuous if it preserves all Φ-(co)limits. In par-
ticular, a V -category C is(co)complete if it is Φ-(co)complete for the class Φ of all small
weights, and a V -functor is (co)continuous if it is Φ-(co)continuous for this same class
Φ. Given objects V ∈ obV and C ∈ obC , we denote the cotensor of C by V in C (if it
exists) by [V,C], and the tensor of C by V in C (if it exists) by V ⊗ C.

We let V -CAT be the category of (possibly large) V -categories. Given a V -category
C , a V -category over C is an object (A , U) of the slice category V -CAT/C , i.e., a V -
category A equipped with a specified V -functor U : A → C . We often write A to
denote (A , U). We say that A is a strictly monadic V -category over C if U is
strictly monadic, i.e., if U has a left adjoint and the comparison V -functor of [10, II] is an
isomorphism, equivalently, if A ∼= T-Alg in V -CAT/C for some V -monad T on C , where
we equip the V -category T-Alg of T-algebras with its forgetful V -functor.

We write V -Prof to denote the bicategory in which an object is a small V -category,
a 1-cell F : A |−→B is a V -profunctor, i.e. a V -functor F : Bop ⊗ A → V , and a
2-cell is a V -natural transformation. Writing V -Profop for the bicategory obtained by
reversing only the 1-cells in V -Prof, there is an isomorphism (−)◦ : V -Profop → V -Prof
that is given on objects by A 7→ A op and sends each 1-cell F : A |−→B to the 1-cell

F ◦ : Bop |−→A op obtained as the composite A ⊗ Bop ∼−→ Bop ⊗ A
F−→ V . Given an

object A of a bicategory K , we write MndK (A ) to denote the category of monads on
A in K , i.e. monoids in K (A ,A ), noting that MndK (A ) = MndK op(A ).
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3. Eleutheric subcategories of arities

We begin by defining the fundamental notion of a subcategory of arities in an enriched
category:

3.1. Definition. A subcategory of arities in a V -category C is a (not necessarily
small) V -category J equipped with a dense, fully faithful V -functor j : J → C . For
most purposes we may assume that j : J ↪→ C is a full and dense sub-V -category
j : J ↪→ C .

3.2. Remark. In [25] the first author defined the notion of a system of arities j : J ↪→ V
in the symmetric monoidal closed category V , which is (equivalently, see [25, 3.8]) a full
sub-V -category that is closed under ⊗ and contains the unit object I (and hence is auto-
matically dense by [16, 5.17]). In this paper, we are generalizing from systems of arities
in V to subcategories of arities in arbitrary V -categories. Our notion of subcategory of
arities essentially agrees with that of [9], except that their subcategories of arities are
always small, and are only defined relative to locally presentable V -categories over locally
presentable closed categories V . Nevertheless, most of the subcategories of arities that
we consider in this paper will indeed be small.

If j : J ↪→ C is a subcategory of arities in a V -category C , then we let ΦJ be the class of
(not necessarily small) weights C (j−, C) : J op → V with C ∈ obC . We now generalize
[25, 7.1] from systems of arities in V to subcategories of arities in arbitrary V -categories:

3.3. Definition. A subcategory of arities j : J ↪→ C is eleutheric if C is ΦJ -
cocomplete and C (J,−) : C → V preserves ΦJ -colimits for each J ∈ obJ .

Equivalently (see [25, 7.3]), the subcategory of arities j : J ↪→ C is eleutheric if every
V -functor H : J → C has a left Kan extension along j that is preserved by each
C (J,−) : C → V (J ∈ obJ ).

The notion of eleutheric subcategory of arities is related to the notion of saturated
subcategory of arities defined in [9, Definition 39], where (in our notation) a subcategory
of arities j : J ↪→ C is saturated if the composition of any two V -endofunctors on C
that are left Kan extensions along j is itself a left Kan extension along j. Using [25,
7.9], it is easy to see that any eleutheric subcategory of arities is saturated, but a priori
the notion of saturatedness is (slightly) weaker; however, all of the examples of saturated
subcategories of arities provided in [9, Examples 41 and 44] are actually eleutheric by 3.8
below.

Before providing examples in 3.9, we first prove some useful properties and charac-
terizations of eleutheric subcategories of arities. Recall from [19, Page 402] that the
saturation Φ∗ of a class of small weights Φ is defined as follows: a small weight W belongs
to Φ∗ iff every Φ-cocomplete V -category is {W}-cocomplete and every Φ-cocontinuous
V -functor between Φ-cocomplete V -categories is {W}-cocontinuous. Recall also (see
[19, 3.7] and [16, 5.35]) that if F : C → D is a V -functor and Φ is a class of small
weights, then F presents D as a free Φ-cocompletion of C if D is Φ-cocomplete and
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for every Φ-cocomplete V -category E , precomposition with F induces an equivalence of
categories Φ-Cocts(D ,E )

∼−→ V -CAT(C ,E ), where Φ-Cocts(D ,E ) is the full subcategory
of V -CAT(D ,E ) consisting of the Φ-cocontinuous V -functors D → E .

For a small subcategory of arities j : J ↪→ C , we let ΨJ be the class of all small
J -flat weights, where a weight W is J -flat if each C (J,−) : C → V (J ∈ obJ )
preserves W -colimits. The following lemma is now immediate from the definitions:

3.4. Lemma. Let j : J ↪→ C be a small subcategory of arities in a ΦJ -cocomplete
V -category C . Then J is eleutheric iff ΦJ ⊆ ΨJ .

3.5. Lemma. Let j : J ↪→ C be a small subcategory of arities, and let Ψ be a class of
small weights such that ΦJ ⊆ Ψ and C is Ψ-cocomplete. Then j presents C as a free
Ψ-cocompletion of J iff Ψ ⊆ ΨJ .

Proof. The forward implication follows immediately from [19, 4.2]. Assuming that Ψ ⊆
ΨJ , i.e. that each C (J,−) : C → V (J ∈ obJ ) preserves Ψ-colimits, it then remains by
[19, 4.3] to show that each C ∈ obC is a Ψ∗-colimit of a diagram in J . But the density
of j : J ↪→ C entails that each C ∈ obC is a ΦJ -colimit of a diagram in J (see [16,
5.1]), and so the desired claim follows from the inclusions ΦJ ⊆ Ψ ⊆ Ψ∗.

The following result now generalizes [25, 7.8] from systems of arities J in V to subcate-
gories of arities J in arbitrary V -categories (though here we assume J is small):

3.6. Proposition. Let j : J ↪→ C be a small subcategory of arities. Then J is
eleutheric iff j presents C as a free ΦJ -cocompletion of J .

Proof. This follows immediately from 3.4 and 3.5.

3.7. Proposition. If j : J ↪→ C is a small and eleutheric subcategory of arities such
that C is ΨJ -cocomplete, then j presents C as a free ΨJ -cocompletion of J .

Proof. This follows immediately from 3.4 and 3.5.

3.8. Proposition. Let j : J ↪→ C be a small full sub-V -category. Then j is an
eleutheric subcategory of arities iff there is a class of small weights Ψ such that j presents
C as a free Ψ-cocompletion of J .

Proof. The forward implication follows immediately from 3.6. For the converse, suppose
j is a free Ψ-cocompletion. By [19, 3.11, 4.2], j is dense, C is Ψ-cocomplete, ΦJ ⊆ Ψ∗,
and each C (J,−) : C → V (J ∈ obJ ) preserves Ψ-colimits, so that Ψ ⊆ ΨJ . But
ΨJ is clearly saturated, so ΦJ ⊆ Ψ∗ ⊆ ΨJ , while C is Ψ∗-cocomplete and hence ΦJ -
cocomplete, so j is eleutheric by 3.4.
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3.9. Example. We now provide the following examples of eleutheric subcategories of
arities:

(1) Let V be locally α-presentable as a (symmetric monoidal) closed category in the sense
of [15, 7.4]. If C is a locally α-presentable V -category and Cα is a skeleton of the full
sub-V -category consisting of the (enriched) α-presentable objects, then j : Cα ↪→ C is a
small and eleutheric subcategory of arities. Indeed, by [15, 7.2, 7.4] we deduce firstly that
Cα is small and secondly that j : Cα ↪→ C presents C as a free cocompletion of Cα under
small conical α-filtered colimits, so this follows from 3.8.

In fact, any small subcategory of arities j : J ↪→ C in a locally α-presentable V -category
C (over a locally α-presentable closed category V ) is contained in a small and eleutheric
subcategory of arities. Because if J is small, then there is a regular cardinal β ≥ α such
that every J ∈ obJ is β-presentable in the enriched sense by [15, 7.4], so that J is
contained in the small subcategory of arities Cβ ↪→ C , which is eleutheric by the above
because C is locally β-presentable.

(2) In particular, if V = Set, then the subcategory of arities j : FinCard ↪→ Set consisting
of the finite cardinals, which may be regarded as the classical subcategory of arities from
universal algebra, is eleutheric, by [25, 7.5.2].

(3) If V is cartesian closed, or more generally if V is a π-category in the sense of [8],
then the subcategory of arities j : SF(V ) = {n · I | n ∈ N} ↪→ V on the finite copowers
of the unit object of V is eleutheric, by [25, 7.5.5]. If V is cartesian closed, then SF(V )
is isomorphic to the free V -category on FinCard, by [17, §3].

(4) The inclusion {I} ↪→ V of the unit object is an (obviously small) eleutheric subcate-
gory of arities [25, 7.5.4].

(5) Given an arbitrary V -category C , it is readily verified that the identity V -functor
1C : C → C is a (not generally small) eleutheric subcategory of arities (generalizing the
case where C = V in [25, 7.5.3]).

(6) Let A be a small V -category. By 3.8, the Yoneda embedding yA : A op ↪→ [A ,V ]
is an eleutheric subcategory of arities, since yA presents [A ,V ] as a free cocompletion of
A op under all small colimits by [16, 4.51].

(7) Let Φ be a class of small weights that satisfies Axiom A of Lack-Rosický [21] and
is locally small in the sense of [19, 8.10] (as in [21, p. 370]). Let T be a Φ-theory,
i.e. a small V -category T with Φ-limits, and let C = Φ-Mod(T ) be the V -category of
models of T in V , i.e. the full sub-V -category of [T ,V ] consisting of the Φ-continuous
V -functors. Following [21], we call such V -categories C locally Φ-presentable—noting,
however, that C0 and V0 need not be locally presentable (see 12.3(5) below). Recall that
a small weight W : Bop → V is Φ-flat [19] if W -colimits commute in V with Φ-limits,
equivalently, if W ∗ (−) : [B,V ] → V is Φ-continuous. By [21, §6.4], C is cocomplete and
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the (corestricted) Yoneda embedding yΦ : T op → C presents C as a free cocompletion of
T op under small Φ-flat colimits. Hence, by 3.8 we find that yΦ : T op ↪→ C is an eleutheric
subcategory of arities.

(8) As a special case of (7), if D is any small class of small categories that is a sound
doctrine in the sense of [2], and V is locally D-presentable as a ⊗-category in the sense
of [21, 5.4], then we can take Φ := ΦD to be the saturation of the class of (small) weights
for conical D-limits and cotensors by D-presentable objects of V , which satisfies Axiom
A by [21, 5.22] and is locally small by the remarks in [19, p. 421], as it is the saturation
of a small class of weights (in view of [21, 5.20]).

We emphasize that in examples (3)-(7), V0 and C0 need not be locally presentable.

4. J -ary V -endofunctors and V -monads

We now define the notion of a J -ary V -endofunctor or V -monad (cf. [25, 11.1] for the
original definition in the context of systems of arities in V ):

4.1. Definition. Let j : J ↪→ C be a subcategory of arities in a V -category C . A
V -functor H : C → C is J -ary (or j-ary) if it preserves ΦJ -colimits, or equivalently if
it preserves left Kan extensions along j. A V -monad T on C is J -ary if its underlying
V -endofunctor is J -ary.

When J is eleutheric, J -ary V -endofunctors can also be characterized as follows:

4.2. Proposition. Let j : J ↪→ C be a small and eleutheric subcategory of arities, and
let H : C → C be a V -functor. The following are equivalent:

1. H is J -ary (i.e. H is ΦJ -cocontinuous);

2. H is a left Kan extension along j (equivalently, H ∼= Lanj(Hj)).

If C is ΨJ -cocomplete, then (1) and (2) are also equivalent to the following:

3. H preserves small J -flat colimits (i.e. H is ΨJ -cocontinuous).

Moreover, if Ψ is any class of small weights such that j is a free Ψ-cocompletion, then (1)
and (2) are equivalent to the following:

4. H is Ψ-cocontinuous.

Proof. Firstly, if Ψ is any class of small weights such that j is a free Ψ-cocompletion,
then (2) is equivalent to (4) by [19, 3.6]. In particular, since j is a free ΦJ -cocompletion
by 3.6, this entails that (2) is equivalent to (1). If C is ΨJ -cocomplete, then j is also a
free ΨJ -cocompletion by 3.7, so (2) is equivalent to (3).
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4.3. Remark. When j : J ↪→ C is not assumed eleutheric, the implication (1)⇒(2) in
4.2 still holds, because if H is ΦJ -cocontinuous then HC ∼= H(C (j−, C)∗j) ∼= C (j−, C)∗
Hj V -naturally in C ∈ C , by the density of j, so H ∼= Lanj(Hj).

4.4. Let j : J ↪→ C be a subcategory of arities in a V -category C . We let End(C ) be
the ordinary category of V -endofunctors on C and V -natural transformations, and we let
EndJ (C ) be its full subcategory consisting of the J -ary V -endofunctors on C . We let
Mnd(C ) be the ordinary category of V -monads on C and V -monad morphisms, and we
let MndJ (C ) be its full subcategory consisting of the J -ary V -monads on C . Regarding
EndJ (C ) as a strict monoidal category with composition as monoidal product and the
identity V -functor as unit, we have that MndJ (C ) = Mon

(
EndJ (C )

)
, the category of

monoids in EndJ (C ).

4.5. Let j : J ↪→ C be a small eleutheric subcategory of arities. Then, by 3.6, j
presents C as a free ΦJ -cocompletion of J , so we have an equivalence V -CAT (J ,C ) ≃
EndJ (C ), given by restriction and left Kan extension along j (in view of [19, 3.6]).

4.6. It is shown in [25, 11.8] that if j : J ↪→ V is an eleutheric system of arities in
V (3.2), then the category MndJ (V ) of J -ary V -monads on V is equivalent to the
category ThJ of J -theories, where a J -theory is a V -category T equipped with an
identity-on-objects V -functor τ : J op → T that preserves J -cotensors [25, 4.1].

4.7. Example. We now characterize the J -ary V -endofunctors and V -monads for the
following eleutheric subcategories of arities j : J ↪→ C (see 3.9):

(1) If V is locally α-presentable as a closed category and C is a locally α-presentable
V -category with the associated small and eleutheric subcategory of arities j : Cα ↪→ C ,
then because j : Cα ↪→ C presents C as a free cocompletion of Cα under small conical α-
filtered colimits (3.9), it follows by 4.2 that the Cα-ary V -endofunctors on C are precisely
the α-ary V -endofunctors, i.e. the V -endofunctors that preserve small conical α-filtered
colimits. When C = V , the α-ary V -monads on V correspond to an α-ary generalization
of the enriched Lawvere theories of [32].

(2) In particular, if V = Set and j : FinCard ↪→ Set is the classical system of arities in
universal algebra, then the FinCard-ary endofunctors on Set are precisely the usual finitary
endofunctors, i.e. the endofunctors that preserve small filtered colimits, and the finitary
monads on Set correspond to Lawvere theories in the usual sense [22].

(3) If j : SF(V ) ↪→ V is the eleutheric subcategory of arities on the finite copowers of the
unit object in a symmetric monoidal closed π-category V , then a V -functor H : V → V
is SF(V )-ary iff H preserves small SF(V )-flat colimits (i.e. small colimits that commute in
V with finite powers) by 4.2. The SF(V )-ary V -monads on V correspond to the enriched
algebraic theories of Borceux and Day [8], by [25, 4.2]. In the case where V is cartesian
closed, SF(V ) is the free V -category on FinCard (3.9), so SF(V )-ary V -endofunctors are
precisely the strongly finitary endofunctors of Kelly and Lack [17, §3].
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(4) For the eleutheric subcategory of arities j : {I} ↪→ V , the {I}-ary endofunctors on
V are precisely those V -endofunctors that are isomorphic to X ⊗ (−) : V → V for some
X ∈ obV , in view of [25, 7.5(4)] and 4.2. The {I}-ary V -monads on V correspond to
monoids in V by [25, 4.2(5), 11.8].

(5) For the eleutheric subcategory of arities 1C : C → C in a V -category C , the C -ary
endofunctors on C are arbitrary V -endofunctors by [25, 11.3.2]. So when C = V , the V -
ary V -monads on V are arbitrary V -monads on V , which correspond to the V -theories
of Dubuc [11].

(6) Consider the small and eleutheric subcategory of arities yA : A op ↪→ C = [A ,V ]
for a small V -category A . Since yA presents C as a free cocompletion of A op under
all small colimits, we deduce from 4.2 that a V -functor H : C → C is yA -ary iff H
preserves small colimits. The equivalences EndyA

(C ) ≃ V -CAT(A op,C ) ∼= V -CAT(A ⊗
A op,V ) ∼= V -CAT(A op⊗A ,V ) underlie equivalences of monoidal categories EndyA

(C ) ≃
V -Prof(A op,A op) ∼= V -Profop(A ,A ) by §2. Hence the category of yA -ary V -monads
MndyA

(C ) is equivalent to the category MndV -Profop(A ) = MndV -Prof(A ) of V -profunctor
monads on A (by §2). But MndV -Prof(A ) is equivalent to the coslice category A /
V -Cat(obA ), where V -Cat(obA ) is the category whose objects are V -categories with
object set obA , and whose morphisms are identity-on-objects V -functors (by, e.g., [25,
10.4]). Hence a yA -ary V -monad on C = [A ,V ] is equivalently given by a V -category
T equipped with an identity-on-objects V -functor A → T .

(7) Let Φ be a locally small class of small weights satisfying Axiom A of [21], and let
C = Φ-Mod(T ) be the V -category of models of a Φ-theory T , with the small and
eleutheric subcategory of arities yΦ : T op ↪→ C consisting of the representables. By 4.2,
a V -functor H : C → C is yΦ-ary iff H preserves small Φ-flat colimits (since yΦ presents
C as a free cocompletion of T op under small Φ-flat colimits). Hence yΦ-ary V -monads
on C are the Φ-accessible V -monads of [21]; [21, 7.7] provides a correspondence between
these and Lawvere Φ-theories in C .

(8) In particular, given a sound doctrine D, if V is locally D-presentable as a ⊗-category
and we let C = ΦD-Mod(T ) for a ΦD-theory T , with subcategory of arities yΦD : T op ↪→
C , then a V -endofunctor H : C → C is yΦD-ary iff H preserves small ΦD-flat colimits,
which is equivalent to H preserving small conical D-filtered colimits by the following
lemma:

4.8. Lemma. Let D be a sound doctrine, let V be locally D-presentable as a ⊗-category,
and let C ,C ′ be ΦD-cocomplete V -categories. Then a V -functor F : C → C ′ preserves
small ΦD-flat colimits iff F preserves small conical D-filtered colimits.

Proof. The forward implication holds because small conical D-filtered colimits are ΦD-
flat (as remarked before [21, 5.21]). Conversely, suppose that F preserves small conical
D-filtered colimits. If W : Bop → V is a small ΦD-continuous weight, meaning that B
is ΦD-cocomplete and W preserves ΦD-limits, then W is a conical D-filtered colimit of
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representables by [21, 5.22], and thus W belongs to the saturation of the class of weights
for small conical D-filtered colimits by [19, 3.12]. Our hypothesis then entails that F also
preserves small ΦD-continuous weighted colimits. Now let W : Bop → V be an arbitrary
small ΦD-flat weight and D : B → C a V -functor, and let us show that F preserves
the colimit W ∗ D. Consider the free ΦD-cocompletion i : B → ΦD(B) of B, which is
small because B is small and ΦD is locally small (3.9). Then ΦD(B)op is a small and
ΦD-complete V -category equipped with a fully faithful V -functor iop : Bop → ΦD(B)op.
Since W is ΦD-flat, it follows by [21, 2.4] that LaniopW : ΦD(B)op → V is ΦD-flat and
hence ΦD-continuous by [21, 5.22]. Since C is ΦD-cocomplete and ΦD(B) is the free
ΦD-cocompletion of B, there is a (ΦD-cocontinuous) V -functor D′ : ΦD(B) → C with
D′ ◦ i ∼= D. By [21, 2.1] we now have canonical isomorphisms

F (W ∗D) ∼= F (W ∗D′i) ∼= F (LaniopW ∗D′) ∼= LaniopW ∗ FD′ ∼= W ∗ FD′i ∼= W ∗ FD,

the third isomorphism existing because the small weight LaniopW is ΦD-continuous and F
preserves small ΦD-continuous weighted colimits.

4.9. Example: V -categories as V -matrix monads. Let X be a set, and write also
X to denote the discrete V -category on X. Specializing Example 4.7(6) to the case where
A = X, consider the eleutheric subcategory of arities yX : X → [X,V ] = V X given by
yX(x) = X(x,−). Let us write V -Mat to denote the bicategory of V -matrices, i.e. the full
sub-bicategory of V -Prof consisting of the small, discrete V -categories (which we regard
also as sets). As a special case of 4.7(6), the category MndyX (V

X) of yX-ary V -monads on
V X is equivalent to the category MndV -Mat(X) = MndV -Matop(X) of V -matrix monads on
X, i.e. monads on X in V -Mat, which in turn is equivalent to the category V -Cat(X) of
V -categories with object setX (with identity-on-objects V -functors). Given a V -category
T with obT = X, let us write HomT to denote the V -matrix monad on X determined
by T . Writing composition of 1-cells in V -Mat as ⊗, the unit V -category I determines
a homomorphism of bicategories V -Mat(−, I) : V -Matop → Cat that sends HomT to
a monad (−) ⊗ HomT on V -Mat(X, I) = V -CAT(X,V ), which underlies a V -monad
(−) ⊗ HomT on [X,V ] = V X . Under the equivalence MndV -Mat(X) ≃ MndyX (V

X) of
4.7(6), the yX-ary V -monad T corresponding to T is precisely (−)⊗HomT : V X → V X .
Hence T-Alg = ((−)⊗HomT )-Alg is the V -category of right HomT -modules in V X for the
monoid HomT in V -Mat(X,X) (relative to the right action of the latter monoidal category
on V X by V -matrix composition). But right HomT -modules in V X are equivalently
described as (covariant!) V -functors from T to V , and moreover

T-Alg ∼= [T ,V ] .

4.10. Definition. Let j : J ↪→ C be a subcategory of arities, and let A be a V -
category equipped with a V -functor U : A → C . We say that is U is strictly J -
monadic if there is a J -ary V -monad T on C with A ∼= T-Alg in V -CAT/C , in which
case we say that A is a strictly J -monadic V -category over C .
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In general, if Ψ is a class of weights and T is a V -monad on a Ψ-cocomplete V -category
C , then T : C → C preserves Ψ-colimits if and only if UT : T-Alg → C creates Ψ-colimits,
from which we obtain the following:

4.11. Proposition. In the situation of 4.10, suppose that C is ΦJ -cocomplete. Then U
is strictly J -monadic if and only if U is strictly monadic and U creates ΦJ -colimits.

5. Algebraically free V -monads in general

To achieve our first main objectives in §6, we first need to extend certain techniques and
results on algebraically free monads [14] from the ordinary to the enriched context.

5.1. Given an endofunctor H, we write H-Alg for the category of H-algebras [3, 5.37].
Given instead a V -endofunctor H : C → C , we call the objects of H0-Alg simply H-
algebras, and H0-Alg underlies a V -category H-Alg that is defined as in [10, II.1] and is
equipped with a (V -)faithful V -functor UH : H-Alg → C given on objects by (A, a) 7→ A.
If T = (T, η, µ) is a V -monad on C , then Eilenberg-Moore T-algebras constitute a full
sub-V -category T-Alg ↪→ T -Alg, and we write UT : T-Alg → C to denote the restriction
of UT .

5.2. A pointed V -endofunctor on a V -category C is a pair P = (P, π) consisting of
a V -endofunctor P : C → C and a V -natural transformation π : 1C → P . A P-algebra
is then a P -algebra (A, a) with a ◦ πA = 1A. We write P-Alg to denote the full sub-V -
category of P -Alg consisting of the P-algebras, and we write UP : P-Alg → C to denote
the restriction of UP .

Pointed V -endofunctors on C are the objects of a category End∗(C ), in which a
morphism α : P → Q is a V -natural transformation α : P → Q that commutes with
the associated transformations 1C → P and 1C → Q.

5.3. The semantics functor Alg : Mnd(C )op → V -CAT/C [10, II] sends each V -monad
T to T-Alg, equipped with its associated V -functor UT : T-Alg → C , and sends each
morphism of V -monads α : T → T′ to the unique V -functor α∗ : T′-Alg → T-Alg that is
given on objects by (A, a) 7→ (A, a ◦ αA) and commutes with the faithful V -functors UT′

and UT. The semantics functor Alg is fully faithful by [10, Pages 74–75].
More basically, one can similarly show that there is a functor End∗(C )op → V -CAT/C

that is given on objects by P 7→ P-Alg and sends each morphism α : P → Q in End∗(C ) to
the unique V -functor α∗ : Q-Alg → P-Alg that is given on objects by (A, a) 7→ (A, a ◦αA)
and commutes with the faithful V -functors UQ and UP.

The following serves as an enrichment of the corresponding definition for ordinary cate-
gories in [14, §22], but we provide a different formulation of this definition that we find
conceptually clarifying and technically convenient:
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5.4. Definition. Let P = (P, π) be a pointed V -endofunctor on a V -category C and T
a V -monad on C . Then T is an algebraically free V -monad on P if T-Alg ∼= P-Alg
in V -CAT/C . Since the semantics functor Alg : Mnd(C )op → V -CAT/C is fully faithful
(5.3), it follows that an algebraically free V -monad on P is unique up to isomorphism if
it exists, in which case we denote it by TP. Note that the algebraically free V -monad on
P exists iff P-Alg is a strictly monadic V -category over C .

Writing W∗ : Mnd(C ) → End∗(C ) for the forgetful functor, our aim is now to enrich
[14, 22.2] to show that an algebraically free V -monad on a pointed V -endofunctor P is
also a free V -monad on P, with respect to W∗. To do this, we first require the following
enrichment and reformulation of [14, 22.1]:

5.5. Lemma. Let T = (T, η, µ) be a V -monad on C . Then

(V -CAT/C )(T-Alg,P-Alg) ∼= End∗(C )(P,W∗(T))

naturally in P ∈ End∗(C ).

Proof. Through a straightforward enrichment of the proof of [14, 22.1], we can show
that the inclusion T-Alg ↪→ W∗(T)-Alg is the counit of a representation of the needed
form.

We now have the following enrichment of [14, 22.2]:

5.6. Proposition. Let P be a pointed V -endofunctor on a V -category C , and suppose
that the algebraically free V -monad TP on P exists. Then TP is also a free V -monad on
P, with respect to the forgetful functor W∗ : Mnd(C ) → End∗(C ).

Proof. By definition TP-Alg ∼= P-Alg in V -CAT/C , so since the semantics functor is fully
faithful (5.3) we compute that

Mnd(C )(TP,U) ∼= (V -CAT/C )(U-Alg,TP-Alg)
∼= (V -CAT/C )(U-Alg,P-Alg)
∼= End∗(C )(P,W∗(U))

naturally in U ∈ Mnd(C ).

We now require the following lemma on creation of limits and colimits, whose proof is
a straightforward variation and enrichment of the corresponding well-known result for
(ordinary) monads:

5.7. Lemma. Let H (resp. P) be a V -endofunctor (resp. a pointed V -endofunctor)
on a V -category C , let A be the V -category of H-algebras (resp. P-algebras), and let
U : A → C be the forgetful V -functor. Then U creates all limits. Also, if Λ is a class
of dually weighted diagrams and H (resp. P ) preserves (W,UD)-colimits for every dually
weighted diagram (W,D) ∈ Λ in A , then U creates Λ-colimits.

We can now prove the following enrichment of [14, 22.3]:
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5.8. Theorem. Let P = (P, π) be a pointed V -endofunctor on a V -category C . Then
the algebraically free V -monad TP on P exists iff the forgetful V -functor UP : P-Alg → C
has a left adjoint F P; and then TP is the V -monad arising from the adjunction F P ⊣ UP.

Proof. By 5.7, UP creates conical coequalizers of UP-split pairs, so by [10, II.2.1] we
deduce that UP is strictly monadic iff UP has a left adjoint, and the result follows, in view
of 5.4.

Thus, the algebraically free V -monad on a pointed V -endofunctor P is the free P-algebra
V -monad (if it exists).

If H : C → C is a V -endofunctor and C has (conical) binary coproducts, so that
End(C ) does as well, then it is easy to verify that PH := (1C +H, in1) is the free pointed
V -endofunctor on H, where in1 : 1C → 1C +H is the first coproduct insertion.

5.9. Definition. Let H : C → C be a V -endofunctor on a V -category C , and let
P = (P, π) be a pointed V -endofunctor on C . Then P is an algebraically free pointed
V -endofunctor on H if H-Alg ∼= P-Alg in V -CAT/C .

We now have the following lemma, whose proof is a straightforward enrichment of the
considerations in [14, §18]:

5.10. Lemma. Let H : C → C be a V -endofunctor on a V -category C with conical
binary coproducts. Then the free pointed V -endofunctor PH on H is an algebraically free
pointed V -endofunctor on H.

5.11. Definition. Let H : C → C be a V -endofunctor on a V -category C , and let T be
a V -monad on C . Then T is an algebraically free V -monad on H if H-Alg ∼= T-Alg
in V -CAT/C . Since the semantics functor is fully faithful (5.3), an algebraically free
V -monad on H is unique up to isomorphism if it exists, in which case we denote it by
TH .

5.12. Corollary. Let H be a V -endofunctor on a V -category C with conical binary
coproducts, and suppose that the algebraically free V -monad TH on H exists. Then TH

is a free V -monad on H.

Proof. Let PH := (1C +H, in1) be the free pointed V -endofunctor on H. By hypothesis
and 5.10 we have isomorphisms TH-Alg ∼= H-Alg ∼= PH-Alg in V -CAT/C , so TH is alge-
braically free on PH and hence free on PH by 5.6, so TH is free on H.

5.13. Theorem. Let H be a V -endofunctor on a V -category C with conical binary co-
products. Then the algebraically free V -monad TH on H exists iff the forgetful V -functor
UH : H-Alg → C has a left adjoint FH : C → H-Alg; and then TH is the V -monad
arising from the adjunction FH ⊣ UH .

Proof. Since H-Alg ∼= PH-Alg in V -CAT/C by 5.10, this follows from 5.8.
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6. The free J -ary V -monad on a J -ary V -endofunctor

The objective of this section is to show that if j : J ↪→ C is a subcategory of arities
satisfying certain hypotheses, then every J -ary V -endofunctor on C has an algebraically
free J -ary V -monad on C , so that in particular the forgetful functor W : MndJ (C ) →
EndJ (C ) has a left adjoint. In the special case of the canonical subcategory of arities j :
Cℵ0 ↪→ C in a locally finitely presentable V -category C over a locally finitely presentable
V , a result of the latter form was proved by Kelly and Power in [18, §4], and an analogous
result for strongly finitary V -monads on a cartesian closed category V was proved by Kelly
and Lack in [17, §3].

6.1. Bounded subcategories of arities.

In this section, we identify hypotheses on J ↪→ C that will enable us to prove in §6.2 that
every J -ary V -endofunctor H : C → C has an algebraically free J -ary V -monad TH ,
by showing that the forgetful V -functor UH : H-Alg → C has a left adjoint, then invoking
5.13 and proving that the induced V -monad is J -ary. The hypotheses that we impose
on J to enable this proof strategy involve enriched factorization systems. A standard
reference on factorization systems for ordinary categories is e.g. [13], while we refer the
reader to [24] for the definition of an enriched factorization system on a V -category. We
recall that an enriched factorization system (E ,M ) is proper if the left class E is contained
in the V -epimorphisms and the right class M in the V -monomorphisms (defined as in
[10, 0.1]). If the V -category C is tensored and cotensored, then the V -epimorphisms (V -
monomorphisms) in C coincide with the epimorphisms (monomorphisms) in C0 by [24,
2.4], so that an enriched factorization system (E ,M ) on C is proper iff the underlying
ordinary factorization system on C0 is proper.

6.1.1. Definition. A factegory is a category C equipped with a factorization system
(E ,M ), while a factegory C is proper if (E ,M ) is proper. The factegory C is cocom-
plete if the category C is cocomplete and has arbitrary cointersections of E -morphisms
(i.e., wide pushouts of arbitrary families of E -morphisms with the same domain). A facte-
gory C is E -cowellpowered if each C ∈ obC has just a (small) set of E -quotients, i.e.
isomorphism classes of E -morphisms with domain C.

Note that if C is a cocomplete factegory, then E consists of epimorphisms by [14, 1.3].
In particular, this is true when C is an E -cowellpowered factegory with small colimits.
Every category C can be equipped with the structure of an E -cowellpowered factegory
by taking (E ,M ) = (Iso,All), where Iso is the class of all isomorphisms in C and All is
the class of all morphisms in C .

The term factegory was recently introduced by the authors in [29] in the case where
(E ,M ) is proper, along with the following terminology:

6.1.2. Definition.A (symmetric monoidal) closed factegory is a symmetric monoidal
closed category V equipped with a V -enriched factorization system (E ,M ).
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6.1.3. Assumption. For the remainder of the paper, we assume (along with our blanket
assumptions in §2) that V is a closed factegory with enriched factorization system (E ,M ).

6.1.4. Definition. Let C be a V -category equipped with an enriched factorization sys-
tem (EC ,MC ). Then (EC ,MC ) is compatible with (E ,M ) if each C (C,−) : C → V
(C ∈ obC ) preserves the right class (i.e. m ∈ MC implies C (C,m) ∈ M ).

This notion of compatibility for enriched factorization systems was first introduced by the
authors in [29], in the case where the factorization systems are proper, and it leads to the
following concept, which also was introduced in [29] in the proper case:

6.1.5. Definition. A V -factegory is a V -category C equipped with an enriched fac-
torization system (EC ,MC ) compatible with (E ,M ), while we say that C is proper if
(EC ,MC ) is proper. The V -factegory C is cocomplete if the V -category C is cocomplete
and C has arbitrary (conical) cointersections of EC -morphisms.

Where this will not cause confusion, we shall (also) write (E ,M ) for the enriched fac-
torization system of a V -factegory C . We can now formulate the important notion of
boundedness, which is based on Kelly’s taxonomy of the preservation of E -tightness of
various classes of cocones by ordinary functors in [14, 2.3]:

6.1.6. Definition. Let C and D be V -factegories with small conical colimits, and
let F : C → D be a V -functor. Given a regular cardinal α, we say that F is α-
bounded if for every small α-filtered diagram D : A → C0 and every M -cocone
m = (mA : DA → C)A∈A on D (i.e. mA ∈ M for all A ∈ obA ), if the induced morphism

m : colim D → C lies in E , then the induced morphism Fm : colim FD → FC lies in E .
To say that F is α-bounded in this sense is to say that F preserves the E -tightness of small
α-filtered M -cocones, following the terminology of [14, 2.3]. We say that F : C → D is
bounded if F is α-bounded for some regular cardinal α.

Given an object C of a V -factegory C with small conical colimits, we say that C is
(α-)bounded if the V -functor C (C,−) : C → V is (α-)bounded.

Note that if each of (E ,M ), (EC ,MC ), (ED ,MD) is the trivial factorization system (Iso,All),
then a V -functor F : C → D is α-bounded iff F preserves small conical α-filtered colim-
its. So the notion of α-boundedness can be regarded as a factorization-system-theoretic
variant of the notion of having rank ≤ α.

We mention in passing that the slightly weaker notion of preservation of the E -tightness
of (M , α)-cocones [14, 2.3(i)] is defined analogously to α-boundedness but employs α-
chains rather than α-filtered diagrams in general. This weaker notion is used in various
of the existence results in [14] and, consequently, still suffices in enabling the central
existence results in this paper (namely 6.2.5, 7.9, 9.3.8) when substituted in place of
(α-)boundedness.

6.1.7. Remark. We now discuss how the boundedness of certain V -functors between
proper V -factegories admits an intuitive equivalent characterization in terms of M -
unions. This special case forms part of the foundation of the theory of locally bounded
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V -categories, recently introduced by the authors in [29], generalizing the locally bounded
categories of Freyd and Kelly ([13], [16, §6.1]).

Let C be a cocomplete proper V -factegory. A small sink (mi : Ci → C)i∈I (i.e. a
small family of morphisms with shared codomain) is E -tight (or is jointly in E ) if the
induced morphism

∐
i Ci → C lies in E . A sink (mi)i is an M -sink if each mi ∈ M

(i ∈ I), while a small M -sink (mi)i is α-filtered if for every J ⊆ I with |J | < α, there is
some i ∈ I such that every mj (j ∈ J) factors through mi.

Given a V -functor F : C → D between cocomplete proper V -factegories, we say
that F preserves the E -tightness of α-filtered M -sinks if F sends every E -tight α-filtered
M -sink to an E -tight sink. Since C and D are proper, we can show that F is α-bounded
iff F preserves the E -tightness of α-filtered M -sinks. To see this, first observe that
if m = (mA : DA → C)A∈A is a cocone on a small diagram D : A → C0, then m :
colim D → C lies in E iff the cocone m is an E -tight sink. Indeed, the induced morphism
[mA]A :

∐
A DA → C factors through the canonical morphism

∐
ADA → colimD, which

is a regular epimorphism (by the construction of conical colimits from coproducts and
coequalizers) and hence is an E -morphism by properness. By composition and cancellation
properties of factorization systems, it then follows that [mA]A :

∐
ADA → C lies in E iff

m : colimD → C lies in E , as desired. Given this observation, the stated equivalence for
F : C → D is now almost immediate.

In a cocomplete proper V -factegory C one can also define the union of an M -sink
(mi : Ci → C)i∈I to be an M -morphism m :

⋃
iCi → C through which the given M -sink

(mi)i factors via an E -tight sink (ei : Ci →
⋃

i Ci)i (i.e. m ◦ ei = mi for each i ∈ I).
The union of (mi)i can be obtained as the M -component of the (E ,M )-factorization∐

i∈I Ci
e−→
⋃

i∈I Ci
m−→ C of [mi]i :

∐
i∈I Ci → C.

Given cocomplete proper V -factegories C and D and a V -functor F : C → D that
preserves the right class (i.e. m ∈ M implies Fm ∈ M ), we say that F preserves (α-
filtered) M -unions if whenever (mi)i is an (α-filtered) M -sink in C with union m, then
the M -morphism Fm is a union of the M -sink (Fmi)i. It is remarked in [29, 4.31] that
if F preserves the right class, then F preserves α-filtered M -unions iff F preserves the
E -tightness of α-filtered M -sinks, iff (by the previous paragraph) F is α-bounded in the
sense of 6.1.6. In particular, since C (C,−) : C → V (C ∈ obC ) preserves the right
class by 6.1.4, it follows that C is α-bounded iff C (C,−) : C → V preserves α-filtered
M -unions. This fact will be used in 6.1.13 below.

Our motivation for considering bounded V -functors is to make use of the following im-
portant result proved by Kelly in [14, 18.1]:

6.1.8. Theorem. (Kelly [14]) If H : C → C is a bounded endofunctor on a cocomplete
factegory C , then UH : H-Alg → C has a left adjoint.

We now enrich 6.1.8 as follows:

6.1.9. Theorem. If H : C → C is a bounded V -endofunctor on a cocomplete V -
factegory C that is cotensored, then the V -functor UH : H-Alg → C has a left adjoint.
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Proof. The hypotheses imply that C0 is a cocomplete factegory and that H0 : C0 → C0

is a bounded endofunctor. So from 6.1.8 we deduce that UH0 : H0-Alg → C0 has a left
adjoint, i.e. that UH

0 : H-Alg0 → C0 has a left adjoint. Since C is cotensored, it follows
by 5.7 that H-Alg is cotensored and that UH : H-Alg → C preserves cotensors, so that
UH : H-Alg → C then has a left adjoint by [16, 4.85].

Using the notion of enriched α-bounded object (6.1.6), we now introduce a new property
of subcategories of arities that is central to this paper:

6.1.10. Definition. Let j : J ↪→ C be a subcategory of arities in a V -factegory C
with small conical colimits. Then J is α-bounded if J is small and every J ∈ obJ
is α-bounded, while J is bounded if there is a regular cardinal α for which J is
α-bounded.

6.1.11. Remark. In the situation of 6.1.10, assuming that J is small, we find that J
is bounded iff each J ∈ obJ is bounded. Indeed, if for each J ∈ obJ there is a regular
cardinal αJ such that J is αJ -bounded, then (because J is small) we can find a regular
cardinal α larger than every αJ , so that every J ∈ obJ will be α-bounded.

6.1.12. Example. We now show that most of the (eleutheric) subcategories of arities
from 3.9 are bounded:

(1) Suppose that V is locally α-presentable as a closed category and that C is a locally
α-presentable V -category with associated subcategory of arities j : Cα ↪→ C consisting of
α-presentable objects. Regarding V as a closed factegory by taking (E ,M ) to be (Iso,All),
we may regard C as a V -factegory equipped also with (Iso,All). For every J ∈ obCα,
the V -functor C (J,−) : C → V preserves small conical α-filtered colimits and hence is
α-bounded. So the subcategory of arities j : Cα ↪→ C is α-bounded.

In fact, every small subcategory of arities j : J ↪→ C in a locally presentable V -category
C (over a locally presentable closed category V ) is bounded by 6.1.11, because for each
C ∈ obC , there is some regular cardinal α for which C is α-presentable by [15, 7.4].

(2) More generally, we shall show in 6.1.14 below that if C is a locally bounded V -category
[29] over a locally bounded closed category V [16, §6.1], then every small subcategory of
arities in C is bounded, with respect to the proper factorization system carried by C .

(3) If V is a π-category in the sense of [8], then the eleutheric subcategory of arities
j : SF(V ) ↪→ V is ℵ0-bounded. Indeed, by the definition of π-category (see [8, 2.1.1]),
we know for each V ∈ obV that the functor V × (−) : V → V preserves small filtered
colimits. It then follows by a slight variation of the proof of [15, 3.8] that (−)n : V → V
preserves small filtered colimits for each n ∈ N. So if we take (E ,M ) = (Iso,All), then
for each n ∈ N it follows that V (n · I,−) ∼= V (I,−)n ∼= (−)n : V → V preserves small
filtered colimits and thus is ℵ0-bounded.

(4) If we consider the subcategory of arities j : {I} ↪→ V on the unit object in V , then we
can take (E ,M ) = (Iso,All) and α := ℵ0, because V (I,−) ∼= 1V : V → V will certainly
be ℵ0-bounded.
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(5) Let A be a small V -category, and consider the subcategory of arities yA : A op ↪→
[A ,V ]. If we equip both V and [A ,V ] with the trivial enriched factorization system
(Iso,All), then yA : A op → [A ,V ] will be an ℵ0-bounded subcategory of arities. Indeed,
if A ∈ obA , then the V -functor [A ,V ](yA A,−) : [A ,V ] → V will be ℵ0-bounded, i.e.
will preserve small conical filtered colimits, because this V -functor is isomorphic (by the
enriched Yoneda lemma) to the cocontinuous evaluation V -functor EvA : [A ,V ] → V .

(6) Let Φ be a locally small class of small weights satisfying Axiom A of [21], and let
C = Φ-Mod(T ) be the V -category of models of a Φ-theory T . Then, by 6.1.15 below, if
V is a locally bounded closed category that is E -cowellpowered, then yΦ : T op ↪→ C is a
bounded subcategory of arities, with respect to an associated proper factorization system
on C .

(7) Again letting C = Φ-Mod(T ) as in (6), but for an arbitrary V as in §2, if there
is a regular cardinal α for which every small conical α-filtered weight is Φ-flat, then
yΦ : T op ↪→ C will be an α-bounded subcategory of arities with respect to the (Iso,All)
factorization systems on V and on C . Indeed, since yΦ presents C as a free cocompletion
of T op under small Φ-flat colimits, it follows by [19, 4.2(iv)] that each C (yΦT,−) : C → V
(T ∈ obT ) preserves small Φ-flat colimits and hence small conical α-filtered colimits, so
yΦT is α-bounded.

(8) As a special case of (7), suppose that ΦD is the class of small weights determined by a
sound doctrine D as in 3.9, where V is locally D-presentable as a ⊗-category. Since D is a
small class of small categories, we can find a regular cardinal α such that every D ∈ D is
α-small. Then because Set is locally α-presentable, small α-filtered colimits commute in
Set with α-small limits and hence with D-limits for every D ∈ D, so that small α-filtered
colimits are D-filtered. Since the weights for small conical D-filtered colimits are ΦD-flat
(see [21, §5.4]), it then follows from (7) that yΦ : T op ↪→ ΦD-Mod(T ) is an α-bounded
subcategory of arities for the (Iso,All) factorization systems.

6.1.13. Example: Locally bounded V -categories. We now discuss in detail the
general class of examples 6.1.12(2), in locally bounded V -categories C over locally bounded
closed categories V , and we show that any small subcategory of arities in such a V -
category C is bounded, with the useful consequence that all of our main results in this
paper will hold for any small and eleutheric subcategory of arities in such a V -category.

We begin by recalling the relevant definitions from [29]. Let V be a cocomplete
proper closed factegory (e.g. V = Set). If C is a cocomplete proper V -factegory and
G ⊆ obC is small, then G is an enriched (E ,M )-generator if for each C ∈ obC the
canonical morphism

∐
G∈G C (G,C) ⊗ G → C lies in E , where C (G,C) ⊗ G is the V -

enriched tensor. Recall from 6.1.7 that (in this context) an object C ∈ obC is α-bounded
iff C (C,−) : C → V preserves α-filtered M -unions. A V -category C is then locally
α-bounded if C is a cocomplete proper V -factegory with an enriched (E ,M )-generator
consisting of α-bounded objects. In this case, it follows that C is also complete, by [29,
4.27].
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A symmetric monoidal closed category V is then locally α-bounded (as a closed cat-
egory) if V0 is a locally α-bounded (Set-)category, the associated proper factorization
system (E ,M ) is V -enriched, the unit object I is α-bounded, and G⊗G′ is α-bounded
for all G,G′ ∈ G (the (E ,M )-generator of V0). By the above, it then follows that V0 is
also complete.

We refer the reader to [29, §5.3] for many examples of locally bounded closed categories,
which include any locally presentable closed category, any cartesian closed topological
category over Set, any cocomplete locally cartesian closed category with a generator and
arbitrary cointersections of epimorphisms, and various categories of models of symmetric
monoidal limit theories in locally bounded and E -cowellpowered closed categories. We
now have the following result:

6.1.14. Proposition. Let C be a locally bounded V -category over a locally bounded
closed category V . If j : J ↪→ C is a small subcategory of arities, then J is bounded.

Proof. If J ∈ obJ , then by [29, 6.4] there is a regular cardinal α such that J is α-
bounded, so we deduce the result by 6.1.11 and the smallness of J .

6.1.15. Example. In the situation of 6.1.12(6), if V is a locally bounded closed category
that is E -cowellpowered, then Φ-Mod(T ) carries the structure of a locally bounded V -
category by [29, 11.9], so the small subcategory of arities yΦ : T op ↪→ Φ-Mod(T ) is
bounded, by 6.1.14.

6.2. Existence of free J -ary V -monads on J -ary V -endofunctors.

In this section, we prove that every J -ary V -endofunctor H has an algebraically free
V -monad TH that is J -ary, provided that the subcategory of arities j : J ↪→ C is
bounded and that C is a cocomplete V -factegory and is cotensored. We begin with two
lemmas:

6.2.1. Lemma. Let F : C → D be a V -functor between cocomplete V -factegories.
If F preserves small conical colimits and the left class (i.e. e ∈ E implies Fe ∈ E ),
then F preserves the E -tightness of all small cocones. Explicitly, if D : A → C0 is a
small diagram and m = (mA : DA → C)A∈A is a cocone on D whose induced morphism

m : colimD → C lies in E , then the induced morphism Fm : colimFD → FC lies in E .

Proof. Since F preserves small conical colimits, it suffices to show that the morphism
Fm : F (colimD) → FC lies in E , which is true because m ∈ E and F preserves the left
class.

If B is a small V -category, then since V is a closed factegory (6.1.3) the presheaf V -
category [Bop,V ] is a V -factegory [29, 4.7], whose enriched factorization system is defined
pointwise.

6.2.2. Lemma. Let D : B → C be a V -functor from a small V -category B to a
cocomplete V -factegory C . Then the colimit V -functor (−) ∗D : [Bop,V ] → C is a left
adjoint that preserves the left class.
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Proof. The right adjoint of (−) ∗D is the V -functor C (D−, ?) : C → [Bop,V ] defined
by C 7→ C (D−, C), and this right adjoint preserves the right class because (EC ,MC ) is
compatible with (E ,M ) and the right class of [Bop,V ] is defined pointwise. It follows
that the left adjoint (−) ∗D preserves the left class [29, 3.4].

The following result will be central for proving the main theorems of this paper:

6.2.3. Proposition. Let j : J ↪→ C be an α-bounded subcategory of arities in a
cocomplete V -factegory C . Then every V -endofunctor H : C → C that is a left Kan
extension along j is α-bounded. In particular, every J -ary V -endofunctor H : C → C
is α-bounded.

Proof.The last assertion follows from the previous one because every J -ary V -endofunctor
is a left Kan extension along j by 4.3. So let H = LanjD : C → C for some D : J → C .
Then H is isomorphic to the composite V -functor

C
yj−→ [J op,V ]

(−)∗D−−−→ C (6.2.i)

where yj is the restricted Yoneda V -functor defined by yj(C) = C (j−, C) (C ∈ C ). Since
J is α-bounded, it follows that yj is α-bounded. Also, (−) ∗ D : [J op,V ] → C is a
left adjoint that preserves the left class, by 6.2.2, so (−) ∗D preserves the E -tightness of
all small cocones, by 6.2.1, and hence the composite (6.2.i) preserves the E -tightness of
small α-filtered M -cocones, i.e. is α-bounded.

The preceding result will enable us to invoke 6.1.9 to deduce the existence of the alge-
braically free V -monad TH on a J -ary endofunctor H under certain hypotheses, while
the following will enable us to deduce that TH is J -ary:

6.2.4. Lemma. Let j : J ↪→ C be a subcategory of arities in a ΦJ -cocomplete V -
category C , let H : C → C be J -ary, and suppose that the forgetful V -functor UH :
H-Alg → C has a left adjoint FH . Then the induced V -monad T on C is J -ary.

Proof. Since H preserves ΦJ -colimits, we deduce by 5.7 that UH creates ΦJ -colimits,
so UH preserves ΦJ -colimits since C has ΦJ -colimits, and the result follows.

We now prove our main result of this section:

6.2.5. Theorem. Let j : J ↪→ C be a bounded subcategory of arities in a cocomplete V -
factegory C that is cotensored. Every J -ary V -endofunctor H on C has an algebraically
free V -monad TH that is J -ary, so that UH : H-Alg → C is strictly J -monadic.

Proof. Since H is J -ary and hence bounded by 6.2.3, we deduce from 6.1.9 that UH :
H-Alg → C has a left adjoint, and the resulting free H-algebra V -monad TH is J -ary
by 6.2.4. We also know by 5.13 that TH is an algebraically free V -monad on H, and the
result follows.
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From 5.12, 6.2.5, and [33, Fact 3.1] we now deduce:

6.2.6. Corollary. Let j : J ↪→ C be a bounded subcategory of arities in a cocomplete
V -factegory C that is cotensored. Then the forgetful functor W : MndJ (C ) → EndJ (C )
is monadic.

7. Free J -ary V -monads on J -signatures

In this section, we first define the notion of Σ-algebra for a J -signature Σ on a sub-
category of arities j : J ↪→ C , and then we show under certain hypotheses that every
J -signature has a free J -ary V -monad TΣ whose V -category of Eilenberg-Moore alge-
bras is isomorphic to the V -category of Σ-algebras.

7.1. Definition. Let j : J ↪→ C be a subcategory of arities in a V -category C . A
J -signature (in C ) is an ordinary functor Σ : obJ → C0, where obJ is the discrete
category on the objects of J . Thus, a J -signature in C is just an obJ -indexed family
of objects of C . The category of J -signatures is then SigJ (C ) := CAT (obJ ,C0).

In the locally presentable setting, the notion of signature for a subcategory of arities
appears in [9, Definition 37] and (in a special case) in [18, §5].

7.2. Definition. Let Σ be a J -signature for a subcategory of arities j : J ↪→ C
in a tensored V -category C . A Σ-algebra (in C ) is a pair (A, a) with A ∈ obC and
a = (aJ : C (J,A)⊗ ΣJ → A)J∈J an obJ -indexed family of morphisms in C . Given

Σ-algebras (A, a) and (B, b), a Σ-homomorphism f : (A, a) → (B, b) is a morphism
f : A → B in C such that the following diagram commutes for every J ∈ obJ :

C (J,A)⊗ ΣJ C (J,B)⊗ ΣJ

A B

aJ

C (J,f)⊗ΣJ

bJ

f

We let Σ-Alg0 be the ordinary category of Σ-algebras and Σ-homomorphisms.

7.3. Remark. If C is cotensored, then one may also define Σ-algebras in C in the
following way, which is equivalent to the above if C is also tensored. A Σ-algebra is a
pair (A, a) with A ∈ obC and a = (aJ : ΣJ → [C (J,A), A])J∈J an obJ -indexed family

of morphisms in C , while a morphism f : (A, a) → (B, b) of such Σ-algebras in C is a
morphism f : A → B in C such that the following diagram commutes for every J ∈ obJ :

ΣJ [C (J,A), A]

[C (J,B), B] [C (J,A), B]

aJ

bJ

[C (J,f),1]

[1,f ]
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This definition of Σ-algebra is perhaps closer to the traditional notion from universal
algebra. In that context, where C = V = Set and J = FinCard, a Σ-algebra (under
this second definition) consists of a set A and for each finite cardinal n, a function an :
Σn → Set (An, A) that interprets each operation symbol ω ∈ Σn of arity n as an operation
ωA : An → A. Under Definition 7.2, we instead have an : An×Σn → A, which sends each
pair (x⃗, ω) to the value ωA(x⃗) of the operation ωA at the input x⃗.

7.4. If C is tensored and V has pairwise equalizers of obJ -indexed families of parallel
pairs in the sense of [27, 2.1] (which is true if J is small or V has wide intersections
of strong monomorphisms), then the category Σ-Alg0 underlies a V -category Σ-Alg de-
fined as follows. For all Σ-algebras (A, a) and (B, b) in C , we define the hom-object
Σ-Alg ((A, a), (B, b)) ∈ obV to be the pairwise equalizer of the following obJ -indexed
family of parallel pairs:

C (A,B)
C (aJ ,1)−−−−→ C (C (J,A)⊗ ΣJ,B) ,

C (A,B)
(C (J,−)⊗ΣJ)AB−−−−−−−−−→ C (C (J,A)⊗ ΣJ,C (J,B)⊗ ΣJ)

C (1,bJ )−−−−→ C (C (J,A)⊗ ΣJ,B) .

Thus we obtain a V -category Σ-Alg that is equipped with an evident faithful V -functor
UΣ : Σ-Alg → C , and we call Σ-Alg the V -category of Σ-algebras (in C ).

We now wish to show (under certain hypotheses) that every J -signature Σ generates a
free J -ary V -endofunctor HΣ : C → C .

7.5. The free V -endofunctor on a J -signature. Let j : J ↪→ C be a small sub-
category of arities in a cocomplete V -category C . We write simply obJ for the free V -
category on the discrete category obJ , which is just the discrete V -category with object
set obJ . Hence SigJ (C ) = CAT (obJ ,C0) may be identified with V -CAT (obJ ,C ).
Writing j′ : obJ → C for the canonical V -functor, we obtain a ‘forgetful’ functor

V -CAT(j′,C ) : End(C ) −→ SigJ (C )

that is given by restriction along j′ and sends each V -endofunctor H : C → C to its
underlying J -signature (HJ)J∈obJ . This forgetful functor has a left adjoint

Lanj′ : SigJ (C ) −→ End(C )

that is given by left Kan extension along j′ and so sends each J -signature Σ to the
polynomial V -endofunctor

HΣ := Lanj′Σ : C −→ C ,

given by

HΣC =
∐
J∈J

C (J,C)⊗ ΣJ

V -naturally in C ∈ C .
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7.6. Proposition. Let Σ be a J -signature for a small subcategory of arities j : J ↪→ C
in a cocomplete V -category C . Then (1) HΣ : C → C is a left Kan extension along j;
(2) if J is eleutheric then HΣ is J -ary; while (3) if C is a cocomplete V -factegory and
J is bounded then HΣ is bounded.

Proof. Writing i : obJ → J for the canonical V -functor, we have that j′ = j ◦ i, so
HΣ

∼= LanjLaniΣ and hence (1) holds, and (2) now follows by 4.2, while (3) follows by
6.2.3.

In the situation of 7.6, if J is eleutheric thenHΣ is therefore a free J -ary V -endofunctor
on Σ, with respect to the evident forgetful functor EndJ (C ) → SigJ (C ). The latter
functor is in fact monadic in this case:

7.7. Proposition. Let j : J ↪→ C be a small and eleutheric subcategory of arities in a
cocomplete V -category C . Then the forgetful functor EndJ (C ) → SigJ (C ) is monadic.

Proof. In view of the equivalence V -CAT (J ,C ) ≃ EndJ (C ) (see 4.5), it suffices to show
that the functor i∗ = V -CAT(i,C ) : V -CAT (J ,C ) → V -CAT (obJ ,C ) is monadic,
where i : obJ → J is the canonical V -functor. But i∗ has a left adjoint Lani and is
conservative since i is identity-on-objects, while V -CAT (J ,C ) has pointwise coequalizers
preserved by i∗, so i∗ is monadic by Beck’s monadicity theorem.

The proof of the following result is a straightforward generalization and enrichment of [4,
5.15].

7.8. Proposition. Let j : J ↪→ C be a small subcategory of arities in a cocomplete
V -category C , and let Σ be a J -signature. Then HΣ-Alg ∼= Σ-Alg in V -CAT/C .

Throughout the rest of the paper, we write

U : MndJ (C ) −→ SigJ (C )

to denote the composite of the forgetful functors MndJ (C ) → EndJ (C ) → SigJ (C ).

7.9. Theorem. Let j : J ↪→ C be a bounded and eleutheric subcategory of arities in
a cocomplete V -factegory C that is cotensored. Every J -signature Σ has a free J -ary
V -monad TΣ on C with TΣ-Alg ∼= Σ-Alg in V -CAT/C , so that the forgetful V -functor
UΣ : Σ-Alg → C is strictly J -monadic. In particular, U : MndJ (C ) → SigJ (C ) has a
left adjoint.

Proof. This follows immediately from 5.12, 6.2.5, 7.7, and 7.8.

A weaker version of 7.9 holds even if J is not eleutheric:

7.10. Theorem. Let j : J ↪→ C be a bounded subcategory of arities in a cocomplete V -
factegory C that is cotensored. Every J -signature Σ has a free V -monad TΣ on C with
TΣ-Alg ∼= Σ-Alg in V -CAT/C , so that the forgetful V -functor UΣ : Σ-Alg → C is strictly
monadic. In particular, the forgetful functor Mnd(C ) → SigJ (C ) has a left adjoint.
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Proof. By 7.5, HΣ is a free V -endofunctor on Σ. Also, HΣ is bounded by 7.6, so by
6.1.9 we deduce that UHΣ : HΣ-Alg → C has a left adjoint. Hence, the induced V -monad
TΣ on C is an algebraically free V -monad on HΣ by 5.13 and so is a free V -monad on
HΣ by 5.12. The result now follows, using 7.8.

Contrasting 7.9 and 7.10, the additional assumption of eleuthericity in 7.9 allows us to
deduce that the free V -endofunctor HΣ on a J -signature Σ is J -ary, which in turn
allows us to deduce that the free V -monad TΣ is J -ary. The latter property of TΣ

will be quite important in developing a theory of presentations and algebraic colimits for
J -ary monads in the remainder of the paper, particularly because it is only since TΣ is
J -ary that we shall be able to deduce that TΣ is bounded, which in turn is what enables
us to form the quotients of TΣ presented by systems of J -ary equations over TΣ (9.3.8,
10.1.8).

7.11. Example. Let us recall the familiar special case of Theorem 7.9 in the classical
setting of universal algebra, with C = V = Set and J = FinCard. Every (FinCard-
)signature Σ has a free finitary endofunctor HΣ : Set → Set and a free finitary monad
TΣ =

(
TΣ, η

Σ, µΣ
)
on Set. Here, HΣ is the polynomial endofunctor induced by Σ, given

by HΣX =
∐

n X
n×Σn. HΣ-algebras may be identified with the traditional Σ-algebras of

7.3 and, in turn, with Eilenberg-Moore algebras for the free Σ-algebra monad TΣ, which
admits the following explicit description. For any set X, the set TΣX is the set of terms
constructed from variables inX and operation symbols in Σ. The function ηΣX : X → TΣX
then sends each x ∈ X to itself (qua variable), while the function µΣ

X : TΣ(TΣX) → TΣX
acts by substitution.

7.12. Remark. Under the assumptions of 7.9, we now provide a more concrete descrip-
tion of the (algebraically) free J -ary V -monad on a J -ary V -endofunctor, and in partic-
ular of the free J -ary V -monad on a J -signature. Recall that if H : C → C is J -ary,
then the (algebraically) free J -ary V -monad on H is the free H-algebra V -monad TH

on C . In view of 5.1, the free H-algebra THC on an object C of C is equally the free
H0-algebra on C for the underlying ordinary functor H0 : C0 → C0, so we can obtain an
explicit description of THC in the case where C is E -cowellpowered by consulting Kelly’s
description of free algebras for ordinary endofunctors in [14, §20]. Letting Ord denote
the preordered class of ordinals, one defines a transfinite sequence C(−) : Ord → C0 by
setting C0 := C, setting Cβ+1 := C +HCβ for each ordinal β, setting Cα := colimβ<α Cβ

for each limit ordinal α, and defining C(−) suitably on inequalities α ≤ β. The V -functor
H : C → C is J -ary and hence bounded, by 6.2.3, and therefore H0 : C0 → C0 is
bounded, so since C0 is E -cowellpowered, it follows by [14, 15.6] that this sequence con-
verges, i.e. there is an ordinal α with Cα → Cα+1 an isomorphism (see [14, 5.2]). By [14,
20.4], it then follows that the underlying object of the free H0-algebra on C is Cα, so that
THC = Cα.

In particular, if Σ is a J -signature, so that Σ has a free J -ary V -endofunctor HΣ on
C and free J -ary V -monad TΣ on C , then TΣ admits the following explicit description
if C is E -cowellpowered. With H = HΣ in the preceding paragraph and C ∈ obC , the
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transfinite sequence C(−) : Ord → C0 has the following form (recall the explicit description
ofHΣ from 7.5): we have C0 := C, we have Cβ+1 := C+HΣCβ = C+

∐
J∈J C (J,Cβ)⊗ΣJ

for each ordinal β, and we have Cα := colimβ<α Cβ for each limit ordinal α. Since HΣ

is J -ary and hence bounded, this transfinite sequence converges at some ordinal α, so
that TΣC = Cα. One may think of each Cβ as the C -object of Σ-terms of depth ≤ β
with variables from C, and of TΣC as the C -object of all Σ-terms with variables from C.
For example, in the classical situation of j : FinCard ↪→ Set, where TΣX is the set of all
Σ-terms with variables from the set X, then an element of Xβ+1 for an ordinal β is either
a variable from X, or an element of Set (n,Xβ)×Σn = Xn

β ×Σn for some finite cardinal
n, consisting of an n-ary operation symbol ω ∈ Σn and an n-tuple of terms t1, ..., tn ∈ Xβ

of depth ≤ β; the resulting term of depth ≤ β + 1 is usual written as ω(t1, ..., tn).

7.13. Free strongly finitary V -monads on cartesian closed topological
categories.

We now pause to consider a class of examples in which V is a cartesian closed topological
category over Set, meaning that V is cartesian closed and the functor V := V0(1,−) :
V0 → Set is topological (see e.g. [3, 21.1]). The functor V , which we write also as |−|,
is then faithful [3, 21.3], so that morphisms in V0 may be regarded as certain functions
between the underlying sets of objects of V0. Also, V0 is complete and cocomplete, with
limits and colimits formed as in Set (e.g. by [3, 21.16]), so that |−| strictly preserves
limits and colimits.

The subcategory of arities SF(V ) ↪→ V is eleutheric (3.9) and is bounded when V
is equipped with its (Iso,All) factorization system (6.1.12). Strongly finitary V -monads
are the SF(V )-ary V -monads for this subcategory of arities, and in this subsection we
prove that every free SF(V )-ary V -monad TΣ on an SF(V )-signature Σ is a lifting of a
free finitary monad T|Σ| on Set. Here we write |Σ| to denote the underlying FinCard-
signature of Σ, defined by |Σ|(n) := |Σn| for each n ∈ N. With this notation, a Σ-algebra
(A, a) is equivalently given by an object A of V and a |Σ|-algebra structure on |A| whose
associated maps An × Σ(n) → A are V -morphisms. In particular, each Σ-algebra (A, a)
has an underlying |Σ|-algebra (|A|, |a|). We obtain a commutative square

Σ-Alg0 V0

|Σ|-Alg Set

UΣ
0

V Σ V = |−|

U |Σ|

(7.13.i)

in which the functor V Σ sends each Σ-algebra to its underlying |Σ|-algebra. We now show
that this square satisfies the hypotheses of Wyler’s taut lift theorem (see [3, 21.28]).

7.13.1. Proposition. Given an SF(V )-signature Σ in a cartesian closed topological cat-
egory V over Set, the functor V Σ in (7.13.i) is topological, and UΣ

0 sends V Σ-initial sources
to V -initial sources.
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Proof. We shall omit from our notation all applications of the forgetful functors in
(7.13.i). Given a |Σ|-algebra A together with Σ-algebras Bλ and |Σ|-homomorphisms
fλ : A → Bλ (λ ∈ Λ), we can equip A with the structure of a Σ-algebra such that
the maps fλ constitute a V Σ-initial source, as follows. Since V is topological, we may
equip the set A with the structure of an object of V such that the maps fλ constitute
a V -initial source in V0. Using the V -initiality of the fλ and the fact that the fλ are
|Σ|-homomorphisms, we can readily show that the maps an : An × |Σ|(n) → A carried by
the |Σ|-algebra A are morphisms an : An × Σ(n) → A in V0. Thus we may regard A as
a Σ-algebra. Since the |Σ|-homomorphisms fλ are also morphisms in V0, it follows that
these maps fλ are also morphisms in Σ-Alg. The V -initiality of (fλ : A → Bλ)λ∈Λ now
entails also its V Σ-initiality.

7.13.2. Adapting Beck’s [5] terminology to the setting of a cartesian closed topological
category V over Set (cf. also [1, §5]), we say that an (ordinary) monad T = (T, η, µ)
on V0 is a strict lifting of a monad S = (S, e,m) on Set if V T = SV , V η = eV , and
V µ = mV . It then follows that S = V TD, e = V ηD, and m = V µD, where D is the
left adjoint section of V [3, 21.12]. T is a non-strict lifting of S if there is an isomorphism
φ : V T

∼−→ SV such that φ ·V η = eV and mV ·Sφ ·φT = φ ·V µ. We say that a V -monad
T on V is a strict (resp. non-strict) lifting of a monad S on Set if its underlying ordinary
monad T0 is a strict (resp. non-strict) lifting of S.

7.13.3. Proposition. Let V be a cartesian closed topological category over Set, and
let Σ be an SF(V )-signature. The free SF(V )-ary V -monad TΣ is a non-strict lifting of
the free finitary monad T|Σ| on Set. Moreover, we may construct TΣ in such a way that
it is a strict lifting of T|Σ|.

Proof. By 7.13.1, the square (7.13.i) satisfies the hypothesis of Wyler’s taut lift theorem
[3, 21.28], which therefore entails the result.

In the situation of 7.13.3, ifX is an object of V then the underlying set of TΣX is therefore
the set T|Σ||X| of terms over |Σ| with variables in the set |X| underlying X.

8. Monadicity of J -ary V -monads over J -signatures

Let j : J ↪→ C be a subcategory of arities satisfying the hypotheses of 7.9, where we
have shown that the forgetful functor U : MndJ (C ) → SigJ (C ) has a left adjoint. We
now show that U is monadic. In the special case where C is a locally α-presentable V -
category over a locally α-presentable closed category V and J = Cα, this was achieved
by Lack in [20].

We first define a functor ♢ : EndJ (C )× SigJ (C ) → SigJ (C ) by ♢(H,Σ) := HΣ. So
♢ is a strict action (see [7, 1.4b]) of the strict monoidal category EndJ (C ) on SigJ (C ),
and the forgetful functor X : EndJ (C ) → SigJ (C ) strictly preserves the actions, in the
sense that ♢ (H,X (H ′)) = X (H ◦H ′) naturally in H,H ′ ∈ EndJ (C ). We now recall [20,
Theorem 2]:
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8.1. Theorem. (Lack [20]) Let E be a monoidal category such that (−) ⊗ H : E → E
preserves coequalizers for each H ∈ obE . Let B be a category with a functor ♢ : E ×
B → B, and let X : E → B be a monadic functor with isomorphisms ♢(H,X (H ′)) ∼=
X (H ⊗ H ′) natural in H,H ′ ∈ E . If the forgetful functor W : Mon(E ) → E has a left

adjoint, then the composite Mon(E )
W−→ E

X−→ B is monadic.

In [20, Theorem 2], the stronger assumption of E being a right-closed monoidal category
is made; however, upon inspection of the proof of [20, Theorem 2], it is clear that the
only use of this assumption occurs in the proof of [20, Lemma 1], in which one just uses
the fact that each functor (−)⊗X : E → E (X ∈ obE ) preserves coequalizers.

Taking E to be the strict monoidal category EndJ (C ) and taking B to be the category
SigJ (C ) of J -signatures, we now want to use 8.1 to show the monadicity of

U =
(
MndJ (C ) = Mon

(
EndJ (C )

) W−→ EndJ (C )
X−→ SigJ (C )

)
.

8.2. Theorem. Let j : J ↪→ C be a bounded and eleutheric subcategory of arities in
a cocomplete V -factegory C that is cotensored. The forgetful functor U : MndJ (C ) →
SigJ (C ) is monadic.

Proof. Since colimits commute with colimits, EndJ (C ) is closed under pointwise colimits
in End(C ), so for each H ∈ EndJ (C ) the functor (−)◦H : EndJ (C ) → EndJ (C ) preserves
small colimits. Also, X : EndJ (C ) → SigJ (C ) is monadic by 7.7, and W : MndJ (C ) →
EndJ (C ) has a left adjoint by 6.2.6. Since the required natural isomorphisms for ♢ and
X hold (as equalities) as discussed above, we now deduce the result from 8.1.

9. Algebraic colimits of J -ary V -monads

In this section we study algebraic colimits of (J -ary) V -monads. We first develop some
supporting material on weighted limits and colimits in limit V -categories.

9.1. Weighted limits and colimits in limit V -categories.

We first recall the description of small limits in V -CAT. So let K be a small category and
A : K → V -CAT a functor, so that for each k ∈ obK we have a V -category Ak and for
each morphism f : k → k′ in K we have a V -functor Af : Ak → Ak′ . Since V is complete,
we obtain a limit V -category limA with the following explicit description. The objects
of limA are obK -indexed families A = (Ak)k∈K with Ak ∈ obAk for each k ∈ obK ,
satisfying the compatibility condition Af (Ak) = Ak′ for each morphism f : k → k′ in K .
Given two such families A,B ∈ ob (limA ), the hom-object limA (A,B) ∈ obV is the limit
of the functor A(−)(A(−), B(−)) : K → V that sends k ∈ obK to Ak (Ak, Bk) and sends
f : k → k′ to the structural morphism (Af )AkBk

: Ak (Ak, Bk) → Ak′ (Ak′ , Bk′). We then
have projection V -functors Pk : limA → Ak for each k ∈ obK with Af◦Pk = Pk′ for each
f : k → k′ in K . If D : B → limA is a V -functor, then we write Dk := PkD : B → Ak

for each k ∈ obK .
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9.1.1. Let W : B → V be a weight. Regarding V -CAT as a Set′-category for some
category of (large) sets Set′, there is a functor Cyl(W,−) : V -CAT → Set′ that sends
each V -category C to the set Cyl(W,C ) of all triples (D,C, γ) in which D : B → C is a
V -functor and (C, γ) is a cylinder on the weighted diagram (W,D). Writing I for the unit
V -category, with ob I = {∗}, we may regard W as a V -functor W : Iop ⊗ B → V and so
as a V -profunctor. The collage of W is the V -category CollW with objects ob I + obB,
with homs CollW (X, Y ) defined as I(X, Y ) if X, Y ∈ ob I, as B(X, Y ) if X, Y ∈ obB,
as W (X, Y ) if X ∈ ob I and Y ∈ obB, and as 0 if X ∈ obB and Y ∈ ob I, with the
evident composition and identities. There is an evident V -functor B : B → CollW with
the property that CollW (∗, B−) = W : B → V , so that (∗, 1W ) is a cylinder on the
weighted diagram (W,B) in CollW and hence (B, ∗, 1W ) ∈ Cyl(W,CollW ).

The functor Cyl(W,−) is representable, as Cyl(W,−) ∼= V -CAT(CollW ,−) with unit
(B, ∗, 1W ). Hence Cyl(W,−) preserves limits, so if A : K → V -CAT is any small diagram,
then Cyl(W, limA ) ∼= limk Cyl(W,Ak). Hence, given any V -functor D : B → limA , a
(W,D)-cylinder (C, γ) is equivalently given by a family of (W,Dk)-cylinders (Ck, γk) =
(PkC,Pkγ) (k ∈ obK ) that is compatible in the sense that (AfCk,Afγk) = (Ck′ , γk′) for
each f : k → k′ in K .

9.1.2. Proposition. Let A : K → V -CAT be a small diagram. The projection V -
functors Pk : limA → Ak (k ∈ obK ) jointly reflect limits. Explicitly, if (W : B →
V , D : B → limA ) is a weighted diagram in limA and (L, λ) is a cylinder for (W,D)
such that for each k ∈ obK , the associated cylinder (Lk, λk) for (W,Dk) is a limit
cylinder, then (L, λ) is itself a limit cylinder.

Proof. Although B is not assumed small, we may form the V ′-category [B,V ], with the
notation of [16, §3.11, 3.12]. Now fix X ∈ ob (limA ) and consider the following diagram
in V ′ for each k ∈ obK :

limA (X,L) [B,V ](W, limA (X,D−))

Ak(Xk, Lk) [B,V ] (W,Ak (Xk, Dk−))

(Pk)XL [B,V ](1,Pk)

∼

The lower morphism is induced by λk as in [16, 3.3] and is an isomorphism since (Lk, Pkλ)
is a limit cylinder, while the upper morphism is defined similarly. The morphisms (Pk)XL

(k ∈ obK ) constitute a limit cone, as do the morphisms [B,V ] (1, Pk) (k ∈ obK ).
Since the diagram commutes for all k (because Pkλ = λk), it then follows that the upper
morphism is an isomorphism, as required.

Now 9.1.1 and 9.1.2 immediately entail the following result:

9.1.3. Corollary. Let A : K → V -CAT be a small diagram, and let (W,D) be a
weighted diagram in limA . Then a limit cylinder (L, λ) for (W,D) is equivalently given



PRESENTATIONS AND ALGEBRAIC COLIMITS OF ENRICHED MONADS 1465

by a family of limit cylinders (Lk, λk) for the (W,Dk) (k ∈ obK ) that is compatible in
the sense of 9.1.1.

We now wish to consider colimits in a limit V -category. First, we have the automorphism
of (mere) categories (−)op : V -CAT

∼−→ V -CAT that (therefore) preserves limits, so that
for a given small diagram A : K → V -CAT we have (limA )op = (limk Ak)

op = limk A op
k .

Hence, a dually weighted diagram (W,D) in limA is equivalently given by a weighted
diagram (W,Dop) in limk A op

k . Therefore, by 9.1.1, a cylinder (C, γ) on the dually weighted
diagram (W,D) in limA is equivalently given by a compatible family of cylinders (Ck, γk)
(k ∈ obK ) on the weighted diagrams (W,Dop

k ) in A op
k , which is equally a compatible

family of cylinders on the dually weighted diagrams (W,Dk) in Ak. Thus, 9.1.3 entails
the following dual result, for colimits:

9.1.4. Corollary. Let A : K → V -CAT be a small diagram, and let (W,D) be a
dually weighted diagram in limA . Then a colimit cylinder (L, λ) for (W,D) is equivalently
given by a compatible family of colimit cylinders (Lk, λk) for the (W,Dk) (k ∈ obK ).

We now wish to consider small limits in the slice category V -CAT/C for a V -category C .
So fix a small category K , and let K ⊤ be the category obtained from K by adjoining a
terminal object ⊤. Then limits of shape K in V -CAT/C can be defined in terms of limits
of shape K ⊤ in V -CAT, which we briefly review as follows. Let A : K → V -CAT/C be
a functor, so that for each k ∈ obK we have a V -functor Uk : Ak → C , and for each
morphism f : k → k′ in K we have a V -functor Af : Ak → Ak′ with Uk′ ◦ Af = Uk. We
then obtain an induced functor A ⊤ : K ⊤ → V -CAT as follows: A ⊤(k) := Ak ∈ V -CAT
for each k ∈ obK and A ⊤(⊤) := C ∈ V -CAT, A ⊤(f) := Af : Ak → Ak′ for each
morphism f : k → k′ in K , and A ⊤(!k) := Uk : Ak → C for each k ∈ obK , where
!k : k → ⊤ is the unique arrow from k to the terminal object ⊤ in K ⊤. We then have
the limit V -category limA ⊤, which we write simply as limA , with projection V -functors
Pk : limA → Ak for each k ∈ obK and U : limA → C , with Uk ◦ Pk = U : limA → C
for each k ∈ obK and Af ◦ Pk = Pk′ : limA → Ak′ for each f : k → k′ in K . It is
then a standard result about limits in slice categories that U : limA → C with the limit
projections Pk : limA → Ak (k ∈ obK ) is the limit of A : K → V -CAT/C . From 9.1.3
we now deduce the following:

9.1.5. Theorem. Let C be a V -category, and let A : K → V -CAT/C be a small
diagram with limit U : limA → C . Let Λ be a class of weighted diagrams with the
property that (W,Dk) ∈ Λ for every weighted diagram (W,D) ∈ Λ in limA and every
k ∈ obK . Suppose that Uk : Ak → C creates Λ-limits for each k ∈ obK . Then
U : limA → C creates Λ-limits.

Proof. Let (W : B → V , D : B → limA ) be a weighted diagram in Λ, and let (L, λ)
be a limit cylinder for (W,UD : B → C ). We must show that there is a unique cylinder(
L̄, λ̄

)
for (W,D) with

(
UL̄, Uλ̄

)
= (L, λ), and moreover that

(
L̄, λ̄

)
is a limit cylinder for

(W,D). For each k ∈ obK , since U = UkPk, the limit cylinder (L, λ) is a limit cylinder
for (W,UkDk). Hence for each k ∈ obK , since Uk : Ak → C creates Λ-limits and



1466 RORY B. B. LUCYSHYN-WRIGHT AND JASON PARKER

(W,Dk) ∈ Λ, there is a unique cylinder (L̄k, λ̄k) for (W,Dk) with
(
UkL̄k, Ukλ̄k

)
= (L, λ),

and moreover (L̄k, λ̄k) is a limit cylinder for (W,Dk). It is now essentially immediate that
the limit cylinders (L, λ), (L̄k, λ̄k) (k ∈ obK ) form a compatible family in the sense of
9.1.1 (for the induced functor A ⊤ : K ⊤ → V -CAT). So by 9.1.1 and 9.1.3, we obtain
a unique cylinder

(
L̄, λ̄

)
for (W,D) with the properties

(
PkL̄, Pkλ̄

)
= (L̄k, λ̄k) for each

k ∈ obK and
(
UL̄, Uλ̄

)
= (L, λ), and moreover

(
L̄, λ̄

)
is a limit cylinder for (W,D). The

required uniqueness of
(
L̄, λ̄

)
easily follows from the uniqueness of the cylinders (L̄k, λ̄k)

(k ∈ obK ).

We now obtain a dual result, for colimits:

9.1.6. Corollary. Let C be a V -category, and let A : K → V -CAT/C be a small
diagram with limit U : limA → C . Let Λ be a class of dually weighted diagrams with the
property that (W,Dk) ∈ Λ for every (W,D) ∈ Λ in limA and every k ∈ obK . Suppose
that Uk : Ak → C creates Λ-colimits for each k ∈ obK . Then U : limA → C creates
Λ-colimits.

Proof. There is an isomorphism of (mere) categories (−)op : V -CAT/C → V -CAT/C op,
so Uop : (limA )op → C op is a limit of the composite diagram (−)op ◦ A : K → V -CAT/
C op, and hence the result follows from 9.1.5.

9.2. Algebraic colimits of V -monads in general.

We now use the material in 9.1 to study algebraic colimits of V -monads on a V -category
C . We begin with enriched generalizations of concepts from [14, §26], some of which
we reformulate in terms of the semantics functor. Let M : K → Mnd(C ) be a small
diagram. For each k ∈ obK we thus have a V -monad Mk on C , and for every morphism
f : k → k′ in K we have a morphism of V -monads Mf : Mk → Mk′ . By composing with

the semantics functor (5.3), we obtain a functor K op Mop

−−→ Mnd(C )op
Alg−−→ V -CAT/C ,

whose limit we denote by
UM : M-Alg → C .

An object of M-Alg will be called an M-algebra and is a pair (A, a) with A ∈ obC and
a = (ak : MkA → A)k∈K a family of C -morphisms with (A, ak) ∈ Mk-Alg for each k ∈ K ,
satisfying the compatibility condition ak′ ◦ (Mf )A = ak : MkA → A for each f : k → k′ in
K .

In [14, §26], Kelly defined the concept of algebraic colimit in terms of cones and
their induced morphisms, but we now reformulate its enriched generalization in terms of
(co)limits preserved by the semantics functor:

9.2.1. Definition. Let C be a V -category and M : K → Mnd(C ) a small diagram. An
algebraic colimit of M is a colimit T = colimM in Mnd(C ) that is sent to a limit by the
semantics functor Alg : Mnd(C )op → V -CAT/C . An algebraic colimit of M is therefore
unique up to isomorphism if it exists, in which case we denote it by TM.
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The semantics functor Alg is fully faithful (5.3) and therefore reflects limits, so in view
of the definition of M-Alg above we obtain the following equivalent characterization of
algebraic colimits (but see 9.2.5 for a stronger result on when they exist):

9.2.2. Proposition. Let C be a V -category and M : K → Mnd(C ) a small diagram.
Then a V -monad TM on C is an algebraic colimit of M iff TM-Alg ∼= M-Alg in V -CAT/C .
Hence, M has an algebraic colimit iff M-Alg is a strictly monadic V -category over C .

9.2.3. Writing Monadic! ↪→ V -CAT/C for the full subcategory consisting of the strictly
monadic V -categories over C , the semantics functor Alg of 5.3 corestricts to an equivalence

Alg : Mnd(C )op
∼−→ Monadic! . (9.2.i)

Hence a small diagram M : K → Mnd(C ) has an algebraic colimit if and only if the
composite Alg ◦Mop : Mnd(C )op → Monadic! has a limit that is preserved by the inclusion
Monadic! ↪→ V -CAT/C , in which case the algebraic colimit of M is then the V -monad
corresponding to this limit under the equivalence (9.2.i).

The following entails that M-Alg is strictly monadic over C as soon as UM has a left
adjoint:

9.2.4. Proposition. Let C be a V -category, let A : K → V -CAT/C be a small
diagram, and write U : limA → C for the limit of A in V -CAT/C . If Uk : Ak → C is
strictly monadic for each k ∈ obK and U has a left adjoint, then U is strictly monadic.

Proof. It suffices by [10, II.2.1] to show that U creates conical coequalizers of U -split
pairs. But this follows from 9.1.6 since each Uk is strictly monadic and so creates conical
coequalizers of Uk-split pairs by [10, II.2.1].

The following enrichment of [16, 26.4] now follows:

9.2.5. Proposition. Let C be a V -category and M : K → Mnd(C ) a small diagram.
Then M has an algebraic colimit TM iff the V -functor UM : M-Alg → C has a left
adjoint FM; and then the algebraic colimit TM is the V -monad arising from the adjunction
FM ⊣ UM.

Proof. By 9.2.4, UM is strictly monadic iff UM has a left adjoint, so the result now follows
from 9.2.2.

9.3. Existence of algebraic colimits of J -ary V -monads.

Having studied algebraic colimits of general V -monads, we now wish to investigate alge-
braic colimits of J -ary V -monads for a subcategory of arities j : J ↪→ C .

9.3.1. Definition. Let C be a V -category with a subcategory of arities j : J ↪→ C ,
and let M : K → MndJ (C ) be a small diagram. A J -ary V -monad T on C is a
(J -ary) algebraic colimit of M if T is a colimit of M that is sent to a limit by the
restricted semantics functor Alg : MndJ (C )op → V -CAT/C . As special cases, we obtain
the notions of (J -ary) algebraic coequalizer, algebraic coproduct, etcetera.
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9.3.2. Let M : K → MndJ (C ) be a small diagram. If T is a J -ary algebraic colimit

of M, then T is also an algebraic colimit of the composite diagram K
M−→ MndJ (C ) ↪→

Mnd(C ), because the fully faithful Alg : Mnd(C )op → V -CAT/C reflects limits. Hence,
by 9.2.2, M has a J -ary algebraic colimit iff M-Alg is a strictly J -monadic V -category
over C , where we also write M : K → Mnd(C ) to denote the composite diagram.

We shall make use of the following important result proved by Kelly in [14, 27.1].

9.3.3. Theorem. (Kelly [14]) Let C be a cocomplete factegory, and suppose either that
C is proper or that C is E -cowellpowered. If M : K → Mnd(C ) is a small diagram for
which each Mk (k ∈ obK ) is bounded, then the functor UM : M-Alg → C has a left
adjoint.

We now enrich 9.3.3 as follows:

9.3.4. Theorem. Let C be a cocomplete V -factegory that is cotensored, and suppose
either that C is proper or that C is E -cowellpowered. If M : K → Mnd(C ) is a small
diagram for which each Mk (k ∈ obK ) is bounded, then the V -functor UM : M-Alg → C
has a left adjoint.

Proof. By composing M with the forgetful functor Mnd(C ) → Mnd(C0) we obtain a
functor that we shall write as M0 : K → Mnd(C0). The hypotheses on C and M
entail that C0 and M0 satisfy the hypotheses of 9.3.3, whence UM0 : M0-Alg → C0 has
a left adjoint. But M-Alg0

∼= M0-Alg in CAT/C0, so UM
0 has a left adjoint. Since each

UMk : Mk-Alg → C creates cotensors by [10, II.4.7], we deduce by 9.1.5 that UM creates
cotensors, so since C is cotensored, we find that M-Alg is cotensored and UM preserves
cotensors. Hence UM has a left adjoint by [16, 4.85].

9.3.5. Assumption. For the remainder of §9.3, we assume that j : J ↪→ C is a small
subcategory of arities in a cocomplete V -factegory C that is cotensored, and we also
suppose either that C is proper or that C is E -cowellpowered.

9.3.6. Proposition. Let A : K → V -CAT/C be a small diagram with limit U :
limA → C . Suppose that each Uk : Ak → C (k ∈ obK ) is strictly J -monadic and that
U has a left adjoint. Then U is strictly J -monadic.

Proof. Since each Uk (k ∈ obK ) is strictly monadic, it follows by 9.2.4 that U is strictly
monadic. Also, each Uk is strictly J -monadic and hence creates ΦJ -colimits by 4.11,
so by 9.1.6 we find that the strictly monadic V -functor U creates ΦJ -colimits and so is
strictly J -monadic by 4.11.

9.3.7. Proposition. Let M : K → MndJ (C ) be a small diagram. Then a J -ary
algebraic colimit TM exists iff UM : M-Alg → C has a left adjoint.

Proof. By 9.3.2, a J -ary algebraic colimit TM exists iff UM is strictly J -monadic, so
since M-Alg is a small limit in V -CAT/C of strictly J -monadic V -categories over C , the
result follows from 9.3.6.
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We now prove our main result of this section:

9.3.8. Theorem. Suppose that the subcategory of arities j : J ↪→ C is bounded. Then
every small diagram M : K → MndJ (C ) has a J -ary algebraic colimit TM. Hence
MndJ (C ) has small colimits, which are algebraic.

Proof. Each Mk (k ∈ obK ) is J -ary and hence bounded by 6.2.3, so the result follows
from 9.3.4 and 9.3.7.

We conclude this section with the following result, which is an immediate corollary of 9.3.8
and the fact that the equivalence Alg : Mnd(C )op

∼−→ Monadic! restricts to an equivalence
AlgJ : MndJ (C )op

∼−→ Monadic!J , where Monadic!J is the full and replete subcategory of

Monadic! consisting of the strictly J -monadic V -categories over C .

9.3.9. Corollary. Suppose that the subcategory of arities j : J ↪→ C is bounded.
Then the full subcategory Monadic!J ↪→ V -CAT/C is closed under small limits.

9.3.10. Remark. In [14, 27.2], Kelly showed that if C is a cocomplete factegory that
is E -cowellpowered, and M : K → Mnd(C ) is a small diagram for which there is some
regular cardinal α such that each Mk (k ∈ obK ) preserves the E -tightness of all small
α-filtered cocones (not just M -cocones), then the algebraic colimit T ∈ Mnd(C ) also
preserves the E -tightness of all small α-filtered cocones. Just before the statement of
[14, 27.2], Kelly remarked that he did not see how to show that this result holds when
replacing all small α-filtered cocones by just α-filtered M -cocones in the hypothesis and
conclusion. Our 9.3.8 provides an alternative to this proposition that Kelly was not able
to prove (while our result is also enriched and does not require the E -cowellpoweredness
of C ): namely, if each of the V -monads Mk (k ∈ obK ) is J -ary for an α-bounded
subcategory of arities J ↪→ C , then each Mk (k ∈ obK ) preserves the E -tightness of
small α-filtered M -cocones by 6.2.3, and the resulting algebraic colimit T ∈ Mnd(C ) is
also J -ary (by 9.3.8) and hence preserves the E -tightness of small α-filtered M -cocones
by 6.2.3.

10. Presentations of J -ary V -monads

In this section, we use our results on algebraically free J -ary V -monads and algebraic
colimits of J -ary V -monads to show that every J -presentation, consisting of a J -
signature Σ and a system of J -ary equations over TΣ, presents a J -ary V -monad
whose algebras are the Σ-algebras that satisfy the given equations, and that, conversely,
every J -ary V -monad has a canonical J -presentation.

10.1. J -presentations.

If T is a J -ary V -monad on C , then we refer to U(T) ∈ SigJ (C ) as the underlying J -
signature of T. If Γ is a J -signature, then by an abuse of notation we write a morphism
of J -signatures Γ → U(T) as Γ → T.
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10.1.1. Assumption. For the remainder of §10, we assume that j : J ↪→ C is a bounded
and eleutheric subcategory of arities in a cocomplete V -factegory C that is cotensored.
We also suppose either that C is proper or that C is E -cowellpowered.

Under these assumptions, we know by Theorem 8.2 that U : MndJ (C ) → SigJ (C ) is
monadic, and by Theorem 9.3.8 that MndJ (C ) has small algebraic colimits.

10.1.2. Definition.Given a J -ary V -monad T on C , a system of J -ary equations
over T is a parallel pair of J -signature morphisms E = (t, u : Γ ⇒ T) for some J -
signature Γ (called the signature of equations). A system of J -ary equations is a pair
(T, E) consisting of a J -ary V -monad T and a system of J -ary equations E over T.
10.1.3. Definition. A J -ary V -monad presentation (or J -presentation) is a
pair P = (Σ, E) consisting of a J -signature Σ and a system of J -ary equations E over
TΣ. We then also call P a J -presentation over Σ.

We shall sometimes abuse notation and just write P = (t, u : Γ ⇒ TΣ) for a J -
presentation.

10.1.4. Example. In the classical setting of universal algebra, with C = V = Set and
J = FinCard, Definition 10.1.3 describes the usual data by which a variety of algebras is
presented, as we now explain. Given a (FinCard-)signature Σ, a formal equation t

.
= u over

Σ with variables in a finite cardinal n ∈ N is, by definition, a pair of terms t, u ∈ TΣ(n).
A FinCard-presentation P = (Σ, E) consists of a signature Σ ∈ SetN and a parallel pair
E = (t, u : Γ ⇒ TΣ), which we call a system of finitary equations since it is a family of
formal equations tnγ

.
= unγ over Σ with variables in n, indexed by the finite cardinals

n ∈ N and the elements γ ∈ Γ(n) of an N-graded set Γ ∈ SetN.

10.1.5. If t : Γ → T is a morphism of J -signatures valued in (the J -signature un-
derlying) a J -ary V -monad T, then we write t : TΓ → T for the morphism of J -ary
V -monads induced by t, where TΓ is the free J -ary V -monad on Γ (7.9).

10.1.6. Definition. Let (T, E) be a system of J -ary equations, where E = (t, u : Γ ⇒
T). A quotient of T by E is, by definition, a J -ary algebraic coequalizer (9.3.1) of the
parallel pair t, u : TΓ ⇒ T in MndJ (C ). A quotient of T by E is unique up to isomorphism
if it exists, in which case it is a J -ary V -monad that we denote by T/E. We say that
a J -ary V -monad S is presented by (T, E) if S is a quotient T/E, in which case we
also say that (T, E) presents S.
10.1.7. Definition. Let P = (Σ, E) be a J -presentation. A J -ary V -monad TP is
presented by P if TP is presented by the system of J -ary equations (TΣ, E), i.e., if TP

is a quotient TΣ/E.

By Theorem 9.3.8, we obtain the following important result:

10.1.8. Theorem. Every J -presentation P = (Σ, E) presents a J -ary V -monad
TP = TΣ/E. More generally, every system of J -ary equations (T, E) presents a J -ary
V -monad T/E.

Next we show that every J -ary V -monad is presented by at least one J -presentation.
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10.1.9. The canonical presentation of a J -ary V -monad. Since U : MndJ (C ) →
SigJ (C ) is monadic by Theorem 8.2, we know that every J -ary V -monad T on C is
canonically a coequalizer, as in

FUFUT FUT T,
FUεT

εTεFUT
(10.1.i)

where F is the left adjoint of U and ε is the counit of this adjunction. Using the triangular
equations and the naturality of the unit η of the adjunction F ⊣ U , the transposes of εFUT
and FUεT under the adjunction F ⊣ U may be expressed as the following J -signature
morphisms

UFUT UFUT,
ηUT ◦UεT

1UFUT
(10.1.ii)

which may be regarded as a system of J -ary equations, as follows. Letting ΣT = UT
and ΓT = UFUT, note that FUT = TΣT with the notation of 7.9. Hence the morphisms
(10.1.ii) constitute a system of J -ary equations ET = (tT, uT : ΓT ⇒ TΣT). Thus we
obtain a J -presentation PT = (ΣT, ET), and since the coequalizer (10.1.i) is algebraic by
9.3.8, we deduce that PT presents T. We call PT the canonical J -presentation of T.
In particular, this proves the following corollary of 8.2 and 9.3.8:

10.1.10. Corollary. Every J -ary V -monad T on C has a J -presentation.

10.2. Algebras for J -presentations.

Given a J -presentation P = (Σ, E), which presents a J -ary V -monad TP by 10.1.8,
we now show that the V -category of TP -algebras is isomorphic to a full sub-V -category
of Σ-Alg consisting of those Σ-algebras that satisfy the system of J -ary equations E
(10.2.3). More generally, we show that if (T, E) is any system of J -ary equations over
a J -ary V -monad T, then (T/E)-Alg is isomorphic to the full sub-V -category of T-Alg
consisting of the T-algebras that satisfy E in the sense of 10.2.2 below.

10.2.1. Definition. Let (A, a) be a T-algebra for a J -ary V -monad T = (T, η, µ) on
C . For each J ∈ obJ , we write

J−KAJ : TJ −→ [C (J,A), A]

to denote the transpose of the composite C (J,A)
TJA−−→ C (TJ, TA)

C (TJ,a)−−−−→ C (TJ,A), and
we call J−KAJ the interpretation morphism for the T-algebra (A, a) and the arity J .
Given a morphism t : C → TJ in C , we call

JtKAJ := J−KAJ ◦ t : C → [C (J,A), A]

the interpretation1 of t in A.

1Similar terminology and notation are used in [12] in a different setting.
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10.2.2. Definition. Let (T, E) be a system of J -ary equations, where E = (t, u : Γ ⇒
T), and let (A, a) be a T-algebra. Then (A, a) satisfies E, or is a (T, E)-algebra, if

JtJKAJ = JuJKAJ : ΓJ → [C (J,A), A]

for all J ∈ obJ . We let (T, E)-Alg be the full sub-V -category of T-Alg consisting of the
(T, E)-algebras.

Given a J -signature Σ, we know that Σ-Alg ∼= TΣ-Alg in V -CAT/C (7.9). Thus, in for-
mulating the following definition, we may regard Σ-algebras equivalently as TΣ-algebras.

10.2.3. Definition. Let P = (Σ, E) be a J -presentation, so that E is a system of J -
ary equations over TΣ. We say that a Σ-algebra (A, a) satisfies E, or is a P -algebra, if its
corresponding TΣ-algebra satisfies E. We write P -Alg to denote the full sub-V -category
of Σ-Alg consisting of the P -algebras.

10.2.4. Given a J -presentation P = (Σ, E), P -Alg ∼= (TΣ, E)-Alg in V -CAT/C by 7.9.

10.2.5. Example. Let us see how 10.2.3 generalizes the standard notion from universal
algebra, where C = V = Set and J = FinCard. If Σ is a FinCard-signature and (A, a) is
a Σ-algebra, so that A is a set equipped with operations ωA : An → A (n ∈ N, ω ∈ Σn),
then for each n ∈ N the interpretation morphism J−KAn : TΣ(n) → Set (An, A) sends each
term t in n variables to its interpretation JtKAn : An → A. Given a FinCard-presentation
P = (Σ, E), recall from 10.1.4 that E is a family of formal equations tnγ

.
= unγ indexed

by the elements γ ∈ Γn (n ∈ N) of an N-graded set Γ. A P -algebra is a Σ-algebra (A, a)
that satisfies each of these formal equations tnγ

.
= unγ (n ∈ N, γ ∈ Γn), in the sense that

JtnγKAn = JunγKAn : An → A.

Our objective is now to show that if (T, E) is a system of J -ary equations presenting the
J -ary V -monad T/E by 10.1.8, then (T/E)-Alg ∼= (T, E)-Alg in V -CAT/C . To facilitate
this, we employ the following notation, generalizing ideas from [18, §4]:

10.2.6. We may regard objects C,D ∈ obC also as V -functors C,D : I → C from the
unit V -category I. The right Kan extension of D along C is then the V -functor RanCD =
[C (−, C), D] : C → C , whose restriction along j is therefore RanCD ◦ j = [C (j−, C), D].
We denote the left Kan extension of RanCD ◦ j along j by

⟨C,D⟩ = Lanj (RanCD ◦ j) : C −→ C ,

so that ⟨C,D⟩ is J -ary by 4.2. Since j is fully faithful, the restriction of ⟨C,D⟩ to J
is [C (j−, C), D]. For each C ∈ obC we obtain a functor ⟨C,−⟩ : C0 → EndJ (C ). Let us
also write evj : EndJ (C )×C0 → C0 to denote the functor obtained as a restriction of the
evaluation functor ev : End(C )×C0 → C0, so that for each C ∈ obC we obtain a functor
evj(−, C) : EndJ (C ) → C0.

10.2.7. Proposition. For each C ∈ obC , we have evj(−, C) ⊣ ⟨C,−⟩ : C0 →
EndJ (C ).
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Proof. By 4.5, the restriction V -functor j∗ : EndJ (C ) → V -CAT(J ,C ) is an equiva-
lence, with pseudo-inverse Lan′j given by left Kan extension along j. Identifying C0 with
V -CAT(I,C ), the functor ⟨C,−⟩ : C0 → EndJ (C ) is isomorphic to the composite functor

C0
RanC(−)−−−−−→ End(C )

(−)◦j−−−→ V -CAT(J ,C )
Lan′j−−→ EndJ (C )

and therefore has a left adjoint EndJ (C )
j∗−→ V -CAT(J ,C )

Lanj−−→ End(C )
ev(−,C)−−−−→ C0. But

this left adjoint is isomorphic to evj(−, C) because Lanj ◦ j∗ is isomorphic to the inclusion
EndJ (C ) ↪→ End(C ).

10.2.8. Given objects C,D ∈ obC , a J -ary V -endofunctor H on C , and a morphism
f : HC → D in C , let us write f ♯ : H → ⟨C,D⟩ to denote the transpose of f under the ad-
junction in 10.2.7. For each J ∈ obJ , the component f ♯

J : HJ → ⟨C,D⟩J = [C (J,C), D]

is the transpose of the composite C (J,C)
HJC−−→ C (HJ,HC)

C (HJ,f)−−−−−→ C (HJ,D).

10.2.9. Proposition. The functor evj : EndJ (C ) × C0 → C0 is a right-closed strict
action [7, 2.2] of the strict monoidal category EndJ (C ) on the category C0. For each A ∈
obC , the J -ary V -endofunctor ⟨A,A⟩ underlies a V -monad, and morphisms T → ⟨A,A⟩
in MndJ (C ) are in bijective correspondence with T-algebra structures on A, naturally in
T ∈ MndJ (C ).

Proof. It is clear that evj is a strict action, which is right-closed by 10.2.7. We then
deduce from [7, 2.2] that for every A ∈ obC , the object ⟨A,A⟩ of EndJ (C ) under-
lies a monoid in EndJ (C ), and that MndJ (C )(T, ⟨A,A⟩) ∼= Act(T, A) naturally in T ∈
MndJ (C ), where Act(T, A) is the set of T-algebra structures on A.

10.2.10. Let (A, a) be a T-algebra for a J -ary V -monad T = (T, η, µ). Then, by 10.2.9,
the T-algebra structure a : TA → A corresponds to a morphism of V -monads

a♯ : T −→ ⟨A,A⟩

obtained as the transpose of a under the adjunction of 10.2.7. Hence, in view of 10.2.1
and 10.2.8, the component of a♯ at each object J of J is the interpretation morphism

a♯J = J−KAJ : TJ → ⟨A,A⟩J = [C (J,A), A] of 10.2.1. For this reason, we denote both a♯

and its underlying J -signature morphism as

J−KA : T −→ ⟨A,A⟩ J−KA = U(a♯) : UT −→ U⟨A,A⟩

and refer to these both as the J -ary interpretation morphisms for (A, a).
Given also a morphism of J -ary V -monads τ : S → T, we write

JτKA := J−KA ◦ τ : S −→ ⟨A,A⟩. (10.2.i)

Similarly, given a morphism of J -signatures t : Γ → T, with the abuse of notation of
§10.1, we write

JtKA := J−KA ◦ t : Γ −→ ⟨A,A⟩. (10.2.ii)
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10.2.11. Proposition. Let E = (t, u : Γ ⇒ T) be a system of J -ary equations over a
J -ary V -monad T, and let (A, a) be a T-algebra. The following are equivalent: (1) (A, a)
satisfies E; (2) JtKA = JuKA : Γ → ⟨A,A⟩ with the notation of (10.2.ii); (3)

q
t
yA

=
q
u
yA

:
TΓ → ⟨A,A⟩ with the notations of 10.1.5 and (10.2.i); (4) a ◦ tA = a ◦ uA : TΓA → A.

Proof. The equivalence of (1)-(3) is immediate from 10.2.10 (in view of 7.10), while the
equivalence of (3) and (4) follows from the adjointness in 10.2.7.

In order to use 10.2.11 to obtain an isomorphism (T, E)-Alg ∼= (T/E)-Alg, we shall require
the following:

10.2.12. Lemma. Let (X , Q) (Y , R) (Z , S)M F

G
be an equalizer in V -CAT/C

(with the notation of §2). If S is faithful, then M is fully faithful (in addition to being
injective on objects).

Proof. Letting X,X ′ ∈ obX , we shall show that MXX′ : X (X,X ′) → Y (Y, Y ′) is
an isomorphism, where Y = MX and Y ′ = MX ′. Letting Z = FY = GY and Z ′ =
FY ′ = GY ′, we have SZZ′ ◦ FY Y ′ = (SF )Y Y ′ = RY Y ′ = (SG)Y Y ′ = SZZ′ ◦ GY Y ′ , so that
FY Y ′ = GY Y ′ since SZZ′ is a monomorphism (as S is faithful). But since equalizers in
V -CAT/C are formed as in V -CAT, MXX′ is an equalizer of FY Y ′ , GY Y ′ in V , so MXX′ is
an isomorphism.

10.2.13. Theorem. Let T/E be the J -ary V -monad presented by a system of J -ary
equations (T, E), where E = (t, u : Γ ⇒ T). Then (T/E)-Alg ∼= (T, E)-Alg in V -CAT/C .

Proof. Since T/E is an algebraic coequalizer TΓ

t,u

⇒ T
q
↠ T/E, we have an equalizer

diagram

(T/E)-Alg T-Alg TΓ-Alg
q∗ t

∗

u∗

in V -CAT/C . Since UTΓ : TΓ-Alg → C is faithful, it follows by 10.2.12 that q∗ is fully
faithful, in addition to being injective on objects. Hence, (T/E)-Alg is isomorphic to the
full sub-V -category of T-Alg consisting of those T-algebras (A, a) with t

∗
(A, a) = u∗(A, a),

i.e. with a ◦ tA = a ◦ uA. But by 10.2.11, the latter are precisely the (T, E)-algebras.

10.2.14. Theorem. Let P = (Σ, E) be a J -presentation, and let TP be the J -ary
V -monad presented by P . Then TP -Alg ∼= P -Alg in V -CAT/C .

Proof. TP -Alg = (TΣ/E)-Alg ∼= (TΣ, E)-Alg ∼= P -Alg in V -CAT/C by 10.2.13 and 10.2.4.
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11. Some examples of J -presentations

We now discuss some examples of J -presentations and their algebras, beyond the familiar
finitary presentations of classical universal algebra (10.1.4) and the examples in the finitely
presentable setting discussed in [34]. As mentioned in the introduction, in a forthcoming
paper [30] we shall give many more examples of J -presentations after first providing
therein a versatile and ‘user-friendly’ method for constructing them.

11.1. Presentations of V -categories by generators and relations.

We now consider what signatures, presentations, and their algebras amount to in the
context of the bounded and eleutheric subcategory of arities yX : X → [X,V ] = V X

of 4.9, given by yX(x) = X(x,−), where X is a set, regarded also as a discrete V -
category. By definition, a yX-signature is a V -functor Σ : X → V X , or equivalently, a
V -functor Σ : X ⊗X → V , where we write Σ(x, y) = (Σx)y, noting that X ⊗X is the
discrete V -category on X ×X. Hence yX-signatures may be identified with V -matrices
from X to X (4.9) or V -graphs with object set X (see [35]), i.e. families of objects
Σ = (Σ(x, y))(x,y)∈X×X of V .

The category SigyX (V
X) of yX-signatures may thus be identified with the category

V -Graph(X) = V -Mat(X,X) of V -graphs with object set X and identity-on-objects V -
graph morphisms. If Σ : X ⊗ X → V is a yX-signature, i.e. a V -graph with object set
X, then a Σ-algebra is (by definition) a V -functor A : X → V equipped with structural
morphisms αx : V X(yX(x), A) ⊗ Σ(x,−) → A in V X (x ∈ X). By the Yoneda lemma,
a Σ-algebra is therefore given by a family of objects A(x) (x ∈ X) of V and a family of
morphisms αxy : Σ(x, y) → V (A(x), A(y)) (x, y ∈ X). Hence a Σ-algebra is equivalently
a morphism of V -graphs A : Σ → V from Σ to the underlying V -graph of the V -category
V .

Recall from 4.9 that the categoryMndyX (V
X) of yX-ary V -monads on V X is equivalent

to the category V -Cat(X) of V -categories with object set X. The free yX-ary V -monad
TΣ on a yX-signature Σ, which exists by 7.9, may therefore be identified with the free
V -category TΣ on the V -graph Σ, which was first proved to exist in [35, 2.2]. The
monadic adjunction between MndyX (V

X) and SigyX (V
X) (see 8.2) can now be identified

with a monadic adjunction between V -Cat(X) and V -Graph(X), which is a restriction
of the monadic adjunction between V -Cat and V -Graph that was first established in [35,
2.13]. By 4.9 and 7.9, we have isomorphisms [TΣ,V ] ∼= TΣ-Alg ∼= Σ-Alg that enable us to
identify V -functors from TΣ to V , TΣ-algebras, and V -graph morphisms from Σ to V .

By the foregoing, a yX-presentation may now be identified with a parallel pair P =
(t, u : Γ ⇒ TΣ) of identity-on-objects V -graph morphisms, for a V -graph Σ with object
set X, while a system of yX-ary equations may be identified with a parallel pair E = (t, u :
Γ ⇒ T ) of identity-on-objects V -graph morphisms valued in the underlying V -graph of
a V -category T with object set X; these systems of yX-ary equations were considered
by Wolff in [35, 2.5] under the name pre-V -congruences. In a yX-presentation, one has
for each pair x, y ∈ X a parallel pair of V -morphisms txy, uxy : Γ(x, y) ⇒ TΣ(x, y), where
TΣ(x, y) has an explicit (combinatorial) description given in [35, 2.2]. In the V = Set case,
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yX-presentations are the usual presentations of categories by generators and relations,
where the generators σ : x → y are the edges in the given graph Σ (x, y ∈ X, σ ∈ Σ(x, y))
and the relations txy(γ)

.
= uxy(γ) (x, y ∈ X, γ ∈ Γ(x, y)) are pairs of arrows txy(γ), uxy(γ) :

x ⇒ y in the free category on Σ, i.e. paths in Σ, which will become equal in the quotient
category TP . The general V -based case may now be understood as an abstraction of the
Set-based case, so that a yX-presentation is a presentation of a V -category with object
set X by generators and relations, the generators being provided by the V -graph Σ, and
the relations by the parallel pair t, u. Given a yX-presentation P = (t, u : Γ ⇒ TΣ), a
P -algebra can now be identified with a V -graph morphism A : Σ → V with the property
that the unique V -functor A♯ : TΣ → V extending A coequalizes t and u.

As a special case, if X is a singleton set {∗}, then yX-ary presentations may be
described as presentations of monoids in the monoidal category (V0,⊗, I) by generators
and relations.

11.2. Strongly finitary V -monads on cartesian closed topological cate-
gories.

In this section, we suppose that V is a cartesian closed topological category over Set
as in 7.13 and, using the notations and results from that section, we discuss SF(V )-
presentations, i.e. presentations of strongly finitary V -monads, providing some specific
examples in 11.2.6 and 11.2.7. Given an object X of V , we also write X to denote the
underlying set |X| of X. In particular, given objects X, Y of V , the elements of (the
underlying set of) the internal hom V (X, Y ) are the morphisms f : X → Y in V0, which
are certain functions f : X → Y . The objects of SF(V ) are the finite cardinals n ∈ N,
each of which we regard also as the discrete object of V0 on n [3, 21.12], or equally the
nth copower of 1 in V0.

11.2.1. Definition. Let P = (t, u : Γ ⇒ TΣ) be an SF(V )-presentation. By 7.13.3, the
underlying set of TΣ(n) for each finite cardinal n is the set T|Σ|(n) of all terms with
variables in n over the underlying FinCard-signature |Σ|. Hence, the functions underlying
tn, un : Γ(n) ⇒ TΣ(n) are morphisms |tn|, |un| : |Γ(n)| ⇒ T|Σ|(n) in Set (n ∈ N) and so
constitute a FinCard-presentation |P | =

(
|t|, |u| : |Γ| ⇒ T|Σ|

)
that we call the underlying

FinCard-presentation of P .

11.2.2. Let (A, a) be a Σ-algebra for an SF(V )-signature Σ. Recalling that TΣA is the
free Σ-algebra on the object A of V , and writing ηΣA : A → TΣA for the unit morphism,
let us write α : TΣA → A for the TΣ-algebra structure carried by A, i.e. the unique Σ-
homomorphism α such that α ◦ ηΣA = 1A. By 7.13.3, |ηΣA| = η

|Σ|
|A| : |A| → |TΣA| = T|Σ||A|,

so |α| is precisely the T|Σ|-algebra structure carried by the |Σ|-algebra (|A|, |a|) underlying
(A, a) (§7.13).

For each finite cardinal n, the interpretation map J−KAn : TΣ(n) → V (An, A) sends
each t ∈ TΣ(n) to the map JtKAn : An → A given by JtKAn (x) = α((TΣx)(t)) for all
x ∈ An = V (n,A). Also, since the T|Σ|-algebra structure carried by the |Σ|-algebra
(|A|, |a|) is precisely |α|, its interpretation map J−K|A|

n : T|Σ|(n) → Set(|A|n, |A|) is given



PRESENTATIONS AND ALGEBRAIC COLIMITS OF ENRICHED MONADS 1477

by a similar formula, so in view of 7.13.3 we find that JtK|A|
n : |A|n → |A| is the function

underlying JtKAn : An → A, for all t ∈ T|Σ|(n) = |TΣ(n)|.

11.2.3. Lemma. Let P = (Σ, E) be an SF(V )-presentation. Then there is a pullback
square

P -Alg0

V P

��

� � // Σ-Alg0

V Σ

��
|P |-Alg � � // |Σ|-Alg

(11.2.i)

in CAT. In particular, a P -algebra is precisely a Σ-algebra whose underlying |Σ|-algebra is
a |P |-algebra. Also, the hom-object P -Alg(A,B) = Σ-Alg(A,B) between P -algebras A and
B is the subspace |P |-Alg(|A|, |B|) ∩ V0(A,B) ↪→ V (A,B) (with the V -initial structure).

Proof. Since the top and bottom sides are full subcategory inclusions, the first claim
follows from the second, which follows straightforwardly from 11.2.2. The third claim
follows from 7.4, since limits in V0 are formed by equipping the limit in Set with the
V -initial structure [3, 21.15].

11.2.4. Remark. Lemma 11.2.3 entails that P -Alg depends only on Σ and |P |, in an
evident sense. Hence, in this setting, it suffices to consider SF(V )-presentations P =
(t, u : Γ ⇒ TΣ) that are equation-discrete in the sense that Γ is discrete, i.e., each
Γ(n) is discrete (n ∈ N) [3, 8.1]. Indeed, in view of [3, 21.12], we can associate to each
SF(V )-presentation P = (Σ, E) an equation-discrete SF(V )-presentation P ′ over Σ with
P ′-Alg = P -Alg as objects of V -CAT/C , so that TP ′ ∼= TP as well.

In [1, 5.1], Adámek, Dostál, and Velebil show that every strongly finitary enriched monad
on the category of posets is a lifting of a finitary monad on Set. The following provides
an analogous result for cartesian closed topological categories over Set:

11.2.5. Theorem. Every strongly finitary V -monad T on V is a strict lifting of a
finitary monad on Set. In particular, given any SF(V )-presentation P = (Σ, E), the
strongly finitary V -monad TP presented by P is a non-strict lifting of the finitary monad
T|P | presented by |P |, while we may construct TP in such a way that it is a strict lifting
of T|P |.

Proof. Regarding the second claim, V Σ : Σ-Alg0 → |Σ|-Alg is topological by 7.13.1, so
since (11.2.i) is a pullback whose lower edge is fully faithful, it follows that V P is topolog-
ical and that the upper edge sends V P -initial sources to V Σ-initial sources. Consequently,
by 7.13.1, the rectangle obtained by pasting (11.2.i) onto the square (7.13.i) satisfies the
hypotheses of Wyler’s taut lift theorem [3, 21.28], and the second claim follows. Now
given instead an arbitrary SF(V )-ary V -monad T = (T, η, µ) on V , there is an SF(V )-
presentation P with T ∼= TP by 10.1.10, and without loss of generality TP = (TP , η

P , µP )
is a strict lifting of the finitary monad T|P |. Hence T|P | = (V TPD, V ηPD, V µPD) by
7.13.2, where D is the left adjoint section of V and we do not distinguish notationally
between TP and its underlying ordinary monad. Hence, since T ∼= TP , it follows that T
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is a strict lifting of the monad (V TD, V ηD, V µD), which is isomorphic to T|P | and so is
finitary.

We now use 7.13.3 and 11.2.3 to provide some examples of SF(V )-presentations.

11.2.6. Example: Modules for internal rigs. Let
(
R,+R, ·R, 0R, 1R

)
be an inter-

nal rig in V (see e.g. [26, 2.7]), so that |R| is a rig (i.e. a unital semiring) in Set. We
now construct an SF(V )-presentation whose algebras are internal left R-modules in V (in
the sense of, e.g., [26, 2.7]). Note that, in the present case, where V is a cartesian closed
topological category over Set, an internal left R-module is equivalently an object M of V
equipped with V -morphisms +M : M2 → M , 0M : 1 = M0 → M , and •M : R×M → M
making |M | a left |R|-module (meaning that +M and 0M make |M | a commutative monoid
and •M is an associative and unital action of |R| on |M | that preserves + and 0 in each
variable separately). For our SF(V )-signature Σ, we thus take Σ(0) := 1, Σ(1) := R, and
Σ(2) := 1, and we take Σ(n) := 0 for all n ≥ 3. Hence the underlying finitary signature
|Σ| has one constant symbol 0, one binary operation symbol +, and a unary operation
symbol r for each r ∈ |R|.

We now define an equation-discrete SF(V )-presentation P over Σ (11.2.4) by first
defining a discrete SF(V )-signature Γ, as follows. We shall define Γ(0), Γ(1), Γ(2),Γ(3) to
be discrete objects of V whose elements are certain formal equations over |Σ| (i.e. pairs
of terms, 10.1.4) with variables in the finite cardinals 0, 1, 2, 3, respectively, and for this
purpose it will be convenient to write the elements of these finite cardinals as follows:
0 = ∅, 1 = {x}, 2 = {x, y}, 3 = {x, y, z}. We let the elements of Γ(0) be the formal
equations r0

.
= 0 with r ∈ R, with the notation of 10.1.4. We let Γ(1) consist of the

formal equations 0 + x
.
= x, x + 0

.
= x, 1Rx

.
= x, and 0Rx

.
= 0, together with the formal

equations r(sx)
.
= (r ·R s)x and (r +R s)x

.
= rx + sx associated to the various r, s ∈ R.

We let Γ(2) consist of the formal equations x + y
.
= y + x and r(x + y)

.
= rx + ry with

r ∈ R. We let the unique element of Γ(3) be the formal equation x+(y+z)
.
= (x+y)+z.

Lastly, we let Γ(n) = 0 for all n ≥ 4.
The resulting discrete SF(V )-signature Γ has the property that, for each n ∈ N, the

underlying set of Γ(n) is a subset of (that of) TΣ(n)×TΣ(n), so that since Γ(n) is discrete
there are morphisms tn, un : Γ(n) ⇒ TΣ(n) in V given as the projections. Thus we obtain
an equation-discrete SF(V )-presentation P = (t, u : Γ ⇒ TΣ) over Σ for which |P |-Alg is
precisely the category |R|-Mod of left |R|-modules (in Set), so that by 11.2.3 it follows
that P -Alg is precisely the V -category R-Mod of internal left R-modules [26, 6.4.2].

11.2.7. Example: Internal R-affine spaces and convex spaces. Given an in-
ternal rig R in V (11.2.6), we now define an SF(V )-presentation whose algebras are
internal (left) R-affine spaces in V . To define these, recall from [26, 6.4.5] that there
is a V -category MatR whose objects are the natural numbers and whose hom-objects
are MatR(n,m) := Rm×n (n,m ∈ N), with composition given by internal matrix mul-
tiplication (see [26, 6.4.4]) and identity morphisms given by internal identity matrices.
Specializing [26, 8.4] to the present context where V is topological over Set, we write
MataffR to denote the (non-full) sub-V -category of MatR with the same objects but with
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hom-objects obtained as subspaces MataffR (n,m) ↪→ Rm×n (with the V -initial structure)
consisting of all m×n-matrices r ∈ Rm×n such that

∑n
j=1 rij = 1 for each i ∈ {1, . . . ,m}.

These V -categories MatR and MataffR are V -enriched algebraic theories for the subcategory
of arities SF(V ) ([25, 4.2], [26, 6.4.6, 8.4]), and MataffR is the affine core of MatR [26, 8.3].
In particular, each object n of MataffR is an nth power of the object 1 in MataffR , where the
projections πi : n → 1 (1 ≤ i ≤ n) are the standard basis vectors πi = bi ∈ R1×n = Rn.

By definition [26, 8.5], an internal (left) R-affine space in V is a normalMataffR -algebra,
i.e. an object A of V equipped with a V -functor MataffR → V that, for each n ∈ N, sends
the nth power cone πi : n → 1 (1 ≤ i ≤ n) to the usual nth power cone An → A in
V . Therefore, writing ∆(n,m) := MataffR (n,m) for all n,m ∈ N, an internal R-affine
space is equivalently given by an object A of V equipped with structural morphisms
∆(n,m) × An → Am (n,m ∈ N), whose value at (r, a) ∈ ∆(n,m) × An we write as ra,
satisfying the following equations:

1. r(sa) = (rs)a for all n,m ∈ N, s ∈ ∆(n,m), r ∈ ∆(m, 1), and a ∈ An;

2. Ina = a for all n ∈ N and a ∈ An, where In ∈ ∆(n, n) ⊆ Rn×n is the identity matrix;

3. (ra)i = ria for all n ∈ N, r ∈ ∆(n,m), a ∈ An, and 1 ≤ i ≤ m, where ri ∈ ∆(n, 1) ⊆
R1×n = Rn is the ith row of r.

We now define an SF(V )-signature ∆ consisting of the subspaces ∆(n) := ∆(n, 1) of
R1×n = Rn with n ∈ N, so that an internal R-affine space in V is equivalently a ∆-algebra
(A,α) that satisfies the following equations, where we write the action of the morphisms
αn : An ×∆(n) → A (n ∈ N) as (a, r) 7→ ra:

1. r(s1a, . . . , sma) = (rs)a for all n,m ∈ N, s ∈ ∆(n,m), r ∈ ∆(m, 1) = ∆m, and
a ∈ An;

2. bia = ai for all n ∈ N, a ∈ An, and 1 ≤ i ≤ n, where bi ∈ ∆(n) ⊆ Rn is the ith
standard basis vector.

The reason for the use of the term R-affine space here is that we normally write ra as∑n
i=1 riai, so that an internal (left) R-affine space is an object of V in which we can take

(left) affine combinations (i.e. left R-linear combinations whose coefficients add up to
1). Note that in the special case where R = [0,∞) and V is the category of sets (resp.
the category of convergence spaces) we recover the notion of convex space [31, 28] (resp.
convergence convex space [26, 8.10]).

It therefore follows that internal R-affine spaces are the P -algebras for an equation-
discrete SF(V )-presentation P = (t, u : Γ ⇒ T∆) over ∆ defined as follows, noting that
we shall of course regard each r ∈ ∆(n) ⊆ Rn as an n-ary operation symbol in |∆|. For
each finite cardinal n, let us write the elements of n as x1, ..., xn, and define Γ(n) as the
discrete object of V whose elements are the following formal equations over |∆| with
variables in n:

r(s1(x1, . . . , xn), . . . , sm(x1, . . . , xn))
.
= (rs)(x1, . . . , xn) (m ∈ N, s ∈ ∆(n,m), r ∈ ∆(m, 1))
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bi(x1, . . . , xn)
.
= xi (1 ≤ i ≤ n). (11.2.ii)

So the underlying set of Γ(n) is a subset of (that of) T∆(n) × T∆(n), and since Γ(n) is
discrete there are morphisms tn, un : Γ(n) ⇒ T∆(n) in V given as the projections. We
thus obtain an equation-discrete SF(V )-presentation P = (t, u : Γ ⇒ T∆) over ∆ for
which |P |-Alg is isomorphic to the category of |R|-affine spaces (in Set), so by 11.2.3 we
find that P -Alg is isomorphic to the V -category R-Aff of internal R-affine spaces [26, 8.5].

Given r ∈ ∆(n) ⊆ Rn and terms t1, . . . , tn ∈ T∆(m), where n,m ∈ N, let us now write∑n
i=1 riti as a notation for the term r(t1, . . . , tn) ∈ T∆(m). Then for each n ∈ N, the

formal equations in (11.2.ii) may be written as follows, where I ∈ Rn×n is the identity
matrix:

m∑
i=1

ri

(
n∑

j=1

sijxj

)
.
=

n∑
j=1

(
m∑
i=1

risij

)
xj ,

n∑
j=1

Iijxj
.
= xi .

12. Summary of main results

For convenience, we summarize the main results of the paper as follows:

12.1. Theorem. Let V be a closed factegory with small limits and colimits. Let C be a
cocomplete V -factegory that is cotensored, suppose either that C is proper or that C is
E -cowellpowered, and let j : J ↪→ C be a subcategory of arities.

1. If J is bounded, then:

(a) The forgetful functor W : MndJ (C ) → EndJ (C ) is monadic, and UH : H-Alg →
C is strictly J -monadic for every J -ary V -endofunctor H on C (see 6.2.5 and
6.2.6).

(b) The forgetful functor U ′ : Mnd(C ) → SigJ (C ) has a left adjoint, and UΣ :
Σ-Alg → C is strictly monadic for every J -signature Σ (see 7.10).

(c) MndJ (C ) has small colimits, which are algebraic (see 9.3.8).

2. If J is bounded and eleutheric, then:

(a) The forgetful functor U : MndJ (C ) → SigJ (C ) is monadic, and UΣ : Σ-Alg → C
is strictly J -monadic for every J -signature Σ (see 7.9 and 8.2).

(b) Every J -ary V -monad on C has a (canonical) J -presentation (see 10.1.10).

(c) Every J -presentation P presents a J -ary V -monad TP with TP -Alg ∼= P -Alg in
V -CAT/C (see 10.2.14). More generally, every system of J -ary equations (T, E)
presents a J -ary V -monad T/E with (T/E)-Alg ∼= (T, E)-Alg in V -CAT/C (see
10.1.8 and 10.2.13).

In a locally bounded V -category C over a locally bounded closed category V (6.1.13),
every small subcategory of arities in C is bounded (6.1.14), so Theorem 12.1 entails the
following corollary, which we can apply in particular to C = V itself by [29, 5.8].
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12.2. Corollary. Let C be a locally bounded V -category over a locally bounded closed
category V , and let j : J ↪→ C be a subcategory of arities. If J is small, then statements
1(a)-(c) in 12.1 hold, while if J is small and eleutheric then 2(a)-(c) in 12.1 also hold.

12.3. Example. By 3.9 and 6.1.12, each of the following classes of examples satisfies
the assumptions of 12.1(2), so that we can apply the main results of this paper to these
examples:

(1) If V is locally α-presentable as a closed category and C is a locally α-presentable V -
category, then we may take (E ,M ) = (Iso,All), (EC ,MC ) = (Iso,All), and J = Cα ↪→ C .

(2) If V is a π-category [8] (e.g. if V is cartesian closed), then we may take (E ,M ) =
(Iso,All), C = V , and J = SF(V ) ↪→ V .

(3) Equip V with (E ,M ) = (Iso,All), let C = V , and take J = {I} ↪→ V .

(4) Given a small V -category A , equip V with (E ,M ) = (Iso,All), let C = [A ,V ] with
(EC ,MC ) = (Iso,All), and consider the subcategory of arities yA : A op ↪→ [A ,V ].

(5) Let V be a locally bounded and E -cowellpowered closed category, let Φ be a locally
small class of small weights satisfying Axiom A of [21], let C = Φ-Mod(T ) for a Φ-theory
T , with the associated proper factorization system on C , and consider the subcategory
of arities yΦ : T op ↪→ C .

(6) Let D be a sound doctrine, suppose that V is locally D-presentable as a ⊗-category,
equip V with (E ,M ) = (Iso,All), let T be a ΦD-theory, let C = ΦD-Mod(T ) with
(EC ,MC ) = (Iso,All), and consider the subcategory of arities yΦ : T op ↪→ ΦD-Mod(T ).

(7) As noted in 12.2, any small and eleutheric subcategory of arities in a locally bounded
V -category C over a locally bounded closed category V satisfies the hypotheses of 12.1,
with respect to the proper factorization systems carried by V and C , so the main results
of this paper are applicable quite generally in such V -categories C .

Note that (5) is a special case of (7), while (5) and (7) entail that, for locally bounded V ,
the results in this paper specialize to provide a full theory of presentations and algebraic
colimits of (i) Φ-accessible V -monads in the general setting of Lack and Rosický [21] and
(ii) J -ary V -monads on C = V for small eleutheric systems of arities J ↪→ V [25]. In
both these classes of examples, and moreover in (2)-(5) and (7), V0 and C0 need not be
locally presentable.
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