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MOMENT CATEGORIES AND OPERADS

CLEMENS BERGER

To Bob Rosebrugh, in gratitude and friendship

Abstract. A moment category is endowed with a distinguished set of split idem-
potents, called moments, which can be transported along morphisms. Equivalently, a
moment category is a category with an active/inert factorisation system fulfilling two
simple axioms. These axioms imply that the moments of a fixed object form a monoid,
actually a left regular band.

Each locally finite unital moment category defines a specific type of operad which records
the combinatorics of partitioning moments into elementary ones. In this way the notions
of symmetric, non-symmetric and n-operad correspond to unital moment structures on
Γ, ∆ and Θn respectively.

There is an analog of the plus construction of Baez-Dolan taking a unital moment
category C to a unital hypermoment category C+. Under this construction, C-operads
get identified with C+-monoids, i.e. presheaves on C+ satisfying strict Segal conditions.
We show that the plus construction of Segal’s category Γ embeds into the dendroidal
category Ω of Moerdijk-Weiss.
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Introduction

What is an operad? Although the pioneering work of May [41] and Boardman-Vogt [14]
is half a century old, the question is more intricate than it might seem at first sight. A
multitude of types of operads have appeared (symmetric, non-symmetric, cyclic, modular,
coloured, ...) and are used in different areas of mathematics and even outside. A common
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feature is the existence of a process of substitution. Here we follow an unconventional
route, not based on the concept of substitution, and not intended to enlarge further the
panorama of operadic structures, but rather to look at them from a different perspective.

Starting point is the existence of an active/inert factorisation system with suitable
properties. The basic example is Segal’s category Γ, the dual of the category of finite
sets and partial maps. Our terminology has been motivated by Lurie [38] who uses
extensively the inert/active factorisation system of Γop. Active morphisms in Γ can be
viewed as partitions of the target, indexed by the elements of the source. Inert morphisms
are simply inclusions. Segal’s motivation [44] to choose Γ comes from the existence of a
canonical covariant functor γ∆ : ∆ → Γ linking simplicial combinatorics to Γ. There is an
active/inert factorisation system for ∆ compatible with this functor: active morphisms are
endpoint-preserving, inert morphisms distance-preserving. By means of a wreath product
[11] this active/inert factorisation system carries over to Joyal’s categories Θn [31].

In all three examples, inert morphisms have unique active retractions. This produces
split idempotent endomorphisms, called moments, in bijective correspondence with inert
subobjects. We call the whole structure a moment category. Moreover, in all three cases,
there is a well-defined object with a single centric moment, called unit. Inert subobjects
are called elementary if they have a unit as domain. It turns out that the scheme according
to which moments decompose into elementary moments, defines an operad-like structure,
and this is so for any unital moment category of finite type. ∆-operads are non-symmetric
operads, Γ-operads are symmetric operads, and Θn-operads are Batanin’s n-operads [3].

There is an essentially unique augmentation γC : C → Γ for each unital moment
category C of finite type. This functor can be considered as a notion of cardinality. It
also suggests that active morphisms in C are generalised partitions, and inert morphisms
generalised inclusions. Taking the existence of such an augmentation as basic leads to the
more flexible notion of hypermoment category where the notion of moment is superseded
by the notion of inert subobject.

There are three interesting examples of hypermoment categories in literature. The
dendroidal category Ω of Moerdijk-Weiss [42], the graphoidal category Γ↕ of Hackney-
Robertson-Yau [26] as well as the undirected analog U recently introduced by the same
authors [28, 25]. In all three cases, the inert morphisms are inclusions, often referred to
as outer face operators. The active morphisms are either degeneracy operators or inner
face operators. The latter can be understood geometrically as insertion of dendrices (resp.
graphices, resp. graphs) into vertices of dendrices (resp. graphices, resp. graphs). The
augmentation takes an object to its vertex set. Ω-operads (resp. Γ↕-operads, resp. U-
operads) are tree-hyperoperads (resp. directed hyperoperads, resp. hyperoperads) in a
sense close to the original notion of Getzler-Kapranov [23] bearing the same name. This
motivated our terminology.

The terminal C-operad plays a special role, and we call algebras over the terminal
C-operad C-monoids. The structure of C-monoid is interesting in its own because C-
monoids are “special” presheaves on the active part of C and are easier to describe than
operads. Thanks to the inert part of C, the notion of C-monoid can be reformulated by
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means of strict Segal conditions. It is then natural to define C∞-monoids as simplicial
presheaves on C subject to homotopical Segal conditions. The table below (copied from
2.16) summarises the notions we get in this way.

C C-operad C-monoid C∞-monoid group-like C∞-monoid
Γ sym. operad comm. monoid E∞-space infinite loop space
∆ non-sym. operad assoc. monoid A∞-space loop space
Θn n-operad n-monoid En-space n-fold loop space
Ω tree-hyperoperad sym. operad ∞-operad (stable ∞-operad)
Γ↕ directed hyperoperad properad ∞-properad (stable ∞-properad)
U hyperoperad modular operad ∞-modular op. (stable ∞-modular op.)

Most notably, symmetric operads appear twice, as Γ-operads and as Ω-monoids. This
reveals a tight relationship between Γ and Ω implicitly present at several places in lit-
erature [30, 3, 19]. We deduce this relationship from an analog of the plus construction
of Baez-Dolan [1]. For hypermoment categories C, the plus construction C+ is defined
as a category of abstract C-trees, which are composable chains of active morphisms of C
starting with a unit of C. The inert part of C contributes to the inert part of C+. For
C = Γ it turns out that the plus construction Γ+ embeds as a non-full hypermoment
subcategory into Ω. While Γ has a single unit, Γ+ and Ω have a unit for each natural
number, namely the corolla with n leaves. It is a pleasant feature that the units of a
hypermoment category are always determined intrinsically by the active/inert factorisa-
tion system, so that there is no choice here. The nilobjects (i.e. objects of cardinality 0)
as well are intrinsically given. The plus construction converts units of C into nilobjects
of C+ and general objects of C into units of C+. This reproduces the general scheme
suggested by Baez-Dolan [1]. Under the plus construction, C-operads get identified with
C+-monoids. Therefore, homotopy C-operads can be modeled as (C+)∞-monoids, i.e. as
simplicial presheaves on C+ satisfying homotopical Segal conditions. An incarnation of
this idea is the Cisinski-Moerdijk model structure [16] on Ω-spaces. Indeed, the combina-
torial difference between Γ+ and Ω disappears at a homotopical level as follows from [19,
Theorem 5.1] of Chu-Haugseng-Heuts.

Active and inert parts of a hypermoment category C interact via the factorisation
system: the active part underlies the substitutional aspect of C-operads while the inert
part is responsible for the homotopical aspects of C-operads. We discuss two structural
properties of a hypermoment category: strong unitality and extensionality. Strong uni-
tality means that the unit- and nilobjects of the hypermoment category are dense in the
inert part. This defines density colimit cocones, and a simplicial presheaf on C defines
a C∞-monoid (i.e. a Segal presheaf on C) if and only if it takes these density colimit
cocones to homotopy limit cones.

This abstract condition amounts precisely to Segal’s notion [44] of “special” ∆-, resp.
Γ-space. The same condition is the key in Rezk’s model structure [43] for Θn-spaces,
and also in Cisinski-Moerdijk’s model structure [16] for Ω-spaces. This common thread
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suggests that for any strongly unital hypermoment category C an analogous model struc-
ture exists whose fibrant objects are C∞-monoids. Chu-Haugseng [18] develop a closely
related concept in the ∞-categorical framework: extendable algebraic patterns. Although
their axiomatics are somewhat different, it is striking that their examples are identical to
ours.

A unital hypermoment category is called extensional if elementary inert morphisms
admit pushouts along active morphisms in a compatible way with the active/inert fac-
torisation system. Again, this is a property shared by all examples so far mentionned.
Extensionality implies that there is a well-defined process of inserting C-trees into ver-
tices of C-trees. This is one of the essential ingredients needed for the forgetful functor
from C-operads to C-collections to be monadic, despite of the complicated structure the
symmetries of a C-collection may have. On the other hand, if the amount of “allowed”
symmetries is restricted (in which case the hypermoment category is said to be rigid) in
such a way that the active/inert factorisation becomes unique when the domain is a unit,
then the dual of the active part carries the structure of an operadic category in the sense
of Batanin-Markl [6]. We get valuable examples of operadic categories in this way. Note
that the moment categories ∆,Γ and Θn are rigid, while the hypermoment categories
Ω,Γ↕ and U are not.

We have limited ourselves to the combinatorial aspects of moment categories and hope
to pursue homotopical applications elsewhere. In Barwick’s article [3] much abstract
homotopy theory is developed in the setting of his operator categories. The algebraic
patterns of Chu-Haugseng [18] are even closer to our approach.

Let us now describe the contents of the individual sections:

Section 1 defines moment categories. Centric moment categories are studied in some
detail because they relate to restriction categories in the sense of Cockett-Lack [20]. We
present an alternative characterisation of moment categories in terms of the existence of
pushforward operations transporting moments across morphisms. Our axioms are less
restrictive than those of Cockett-Lack insofar as moments are not required to commute
with each other. It is remarkable that the axioms entail nevertheless that moments of a
fixed object form a so called left regular band.

Section 2 deals with unital moment categories and defines their operads and monoids.
Moments splitting over a unit are called elementary, and pushforward takes “disjoint”
moments to “disjoint” moments. This implies that each active morphism induces a par-
tition of the identity moment of the target into submoments indexed by the elementary
moments of the source. Composition of active morphisms induces then an operad-like
structure. Every unital moment category of finite type is shown to be augmented over
Segal’s category Γ.

Section 3 studies hypermoment categories with special emphasis on the dendroidal
category Ω and the graphoidal category Γ↕. The plus construction is introduced showing
that it transforms C-operads into C+-monoids. We then discuss strongly unital and exten-
sional hypermoment categories. For extensional hypermoment categories C, the objects
of the plus construction C+, the so-called C-trees, can be inserted into vertices of C-
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trees. This ultimately implies that the forgetful functor from C-operads (or, equivalently,
C+-monoids) to C-collections is monadic.

Appendix A shows that the dual of the active part of a rigid hypermoment category
is an operadic category in a canonical way.

Appendix B contains a combinatorial description of the embedding of Γ+ into Ω,
identifying the category of Γ-trees with the category of reduced dendrices.

Acknowledgements. This text would not exist without the many instructive and en-
lightening discussions I had over the years with Clark Barwick, Michael Batanin, Richard
Garner, Ralph Kaufmann, Steve Lack, Ieke Moerdijk and Mark Weber.

I’m also grateful to the referee for his careful reading of the manuscript which allowed
me to eliminate several inaccuracies and to improve considerably the presentation of the
section on hypermoment categories. This research benefitted from financial support by
the ERC-project DuaLL of Mai Gehrke.

1. Moment categories

This introductory section contains slightly more than absolutely necessary for the ap-
plication to operads in the following sections. From a purely abstract point of view,
moment categories can be considered as categorification of left regular bands, well known
in semigroup literature, cf. [40]. It is remarkable that the construction of the universal
commutative quotient of a left regular band extends to moment categories. Because the
underlying notion of commutativity is quite subtle we introduce the term centric for it.
Centric moment categories are dual to split restriction categories in the sense Cockett-
Lack [20].

1.1. Active/inert factorisation systems. A class of morphisms in a category C is
said to be closed if it is closed under composition and contains all isomorphisms of C.
A subcategory of C is said to be wide if it contains all objects and all isomorphisms of
C. Any closed class of morphisms in C defines a wide subcategory of C, and conversely.
For ease of exposition we will tacitly identify closed classes with the corresponding wide
subcategories.

A (Cact,Cin)-factorisation system on a category C consists of two closed classes Cact

and Cin such that every morphism in C factors in an essentially unique way as f = finfact
where fact belongs to Cact and fin belongs to Cin, i.e. each morphism may be written
essentially uniquely as a morphism in Cact followed by a morphism in Cin. Essential
uniqueness means that for any two factorisations finfact = f ′

inf
′
act there is a unique iso-

morphism h such that fin = f ′
inh and hfact = f ′

act. Uniqueness of h is automatic if either
Cact consists of epimorphisms or Cin consists of monomorphisms. It is equivalent to the
condition that the morphisms in Cact are left orthogonal to the morphisms in Cin.

Throughout this text, the morphisms in Cact will be called active, the morphisms in
Cin inert, and the factorisation system itself will be called an active/inert factorisation
system. The wide subcategory associated to Cact (resp. Cin) is the active (resp. inert)
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part of C. The axioms of a moment category will imply that inert morphisms are split
monomorphisms, that epimorphisms are active, but that in general active morphisms do
not need to be epimorphic. In Section 3 we will introduce hypermoment categories. These
are equipped with an active/inert factorisation where inert morphisms are not necessarily
split monomorphisms.

1.2. Definition. A moment category is a category equipped with an active/inert fac-
torisation system such that

(M1) every inert morphism has a unique active retraction;

(M2) if fi = g for an inert morphism i and active morphisms f, g then f = gr where r is
the unique active retraction of i provided by (M1).

A moment category is called centric if

(MC) every active morphism has at most one inert section.

A moment of an object A is an endomorphism ϕ of A such that if ϕ = ϕinϕact then
ϕactϕin = 1B for an object B. We shall say that the moment ϕ splits over B.

A morphism is called retractive if it is active and admits an inert section.

A moment functor is a functor preserving active and inert morphisms.

It follows from (M1) and the essential uniqueness of active/inert factorisations that any
morphism which is active and inert must be an isomorphism, hence the intersection
Cact ∩ Cin is the closed class Ciso of isomorphisms of C.

We shall in general denote active morphisms by arrows of the form + // and inert
morphisms by arrows of the form // // . Axiom (M2) is equivalent to the following
axiom (M2)′ which is mnemotechnically easier to retain:

(M2)′ If the left square below commutes then the right square as well

A
f
+ // B A

r+
��

f
+ // B

r′+
��

A′
OOi

OO

g
+ // B′

OO i
′

OO

A′
g
+ // B′

where r, r′ are the unique active retractions of i, i′ provided by (M1).

Each moment of A satisfies ϕϕ = ϕinϕactϕinϕact = ϕinϕact = ϕ and is thus a split
idempotent endomorphism of A. We shall call an isomorphism class of inert morphisms
with fixed target A an inert subobject of A.

1.3. Lemma. For each object of a moment category there is a canonical bijection between
its moments and its inert subobjects.
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Proof. Two splittings of an idempotent endomorphism take place over canonically iso-
morphic objects so that each moment of A defines an inert subobject of A. Conversely,
by (M1), each inert morphism i : B → A generates a moment ir : A → A from which it
derives, and isomorphic inert morphisms generate the same moment.

1.4. Pushing forward moments. Moments have the advantage over inert subobjects
that there is no need to quotient by any equivalence relation. The moments of an object
form a subset of its endomorphism set.

It is important to observe that while moments are in bijection with inert subobjects it
is in general not true that moments are also in bijection with retractive quotients, since
a retractive morphism may have several distinct inert sections. Such a bijection holds if
the moment category is centric, i.e. fulfills axiom (MC).

It turns out that centric moment categories have already been studied in literature
since they correspond bijectively to split corestriction categories in the sense of Cockett-
Lack [20]. We shall make this correspondence explicit, since it helps us to introduce useful
terminology and notation, and gives us an alternative definition of a moment category in
terms of ... its moments !

Let f : A → B be a morphism in a moment category and ϕ a moment of A. Choose
a splitting ϕ = ϕinϕact and denote the object over which ϕ splits by A′. Then factor
the composite morphism fϕin : A′ → B into an active morphism f ′ : A′ → B′ followed
by an inert morphism ψin : B′ → B. We denote the unique active retraction of ψin by
ψact : B → B′ and the associated moment by ψ = ψinψact.

The pushforward of the moment ϕ along f is then defined by f∗(ϕ) = ψ. The following
diagram summarises the construction:

A
f

- B

with f∗(ϕinϕact) = ψinψact.

A′

ϕact +
?
ϕin

∧

6

+
f ′

- B′

ψin
∧

6
+ ψact
?

(1)

Observe that the isomorphism type of the morphism ψin : B′ → B (with fixed B) only
depends on the isomorphism type of the morphism ϕin : A′ → A (with fixed A), i.e. ψ is
uniquely determined by the morphism f and the moment ϕ.

By construction, the inner square is commutative. In order to show that the outer
square is commutative as well, we decompose (1) as follows:

A
fact
+ - B′′ >

fin - B

A′

ϕact +
?
ϕin

∧

6

+
f ′

- B′

ξin
∧

6
+ ξact
?

========= B′

ψin
∧

6
+ ψact
?

(2)



1492 CLEMENS BERGER

Observe that the active/inert factorisation of fϕin can be obtained by composing the
active/inert factorisation of factϕin with fin, hence we can assume finξin = ψin. Therefore,
the unique active retraction ξact of ξin is the composite of the unique active retractions
of fin and ξin. In particular, ψactfin = ξact and the right hand square is commutative. It
suffices now to show that ξactfact = f ′ϕact. This follows from axiom (M2)′ since the left
inner square of (2) commutes by construction.

As corollary we obtain for each moment ϕ of A and each morphism f : A → B
the important relation fϕ = f∗(ϕ)f . Moreover, the essential uniqueness of active/inert
factorisations implies that pushforward is functorial in the following sense: for f : A→ B
and g : B → C we have (gf)∗(ϕ) = g∗(f∗(ϕ)). Finally, it follows from the definition of
the pushforward that ϕ∗(ψ) = ϕψ for any two moments of the same object. This leads to
the following definition:

1.5. Definition. A moment structure on a category consists in specifying for each object
A, a set mA of special endomorphisms of A, called moments, and for each morphism
f : A → B, a pushforward operation f∗ : mA → mB such that the following four axioms
hold (for any A, any ϕ, ψ ∈ mA and f : A→ B, g : B → C):

(m1) 1A ∈ mA

(m2) ϕ∗(ψ) = ϕψ

(m3) (gf)∗ = g∗f∗

(m4) fϕ = f∗(ϕ)f

A morphism f : A→ B is called active (resp. inert) if f∗(1A) = 1B (resp. if f admits
a retraction r : B → A such that f∗(ϕ) = fϕr for all ϕ ∈ mA).

A moment of A is said to split over B if there exists i : B ⇆ A : r such that ir = ϕ
and ri = 1B.

1.6. Lemma. A category with moment structure enjoys the following properties:

(i) The moment set mA is a monoid under composition such that ϕψ = ϕψϕ for all
ϕ, ψ ∈ mA. In particular, each moment is idempotent.

(ii) For any ϕ, ψ ∈ mA the relations ψϕ = ϕ and ϕψ = ψ jointly imply ϕ = ψ.

(iii) An endomorphism ϕ of A belongs to mA if and only if ϕ∗(1A) = ϕ.
For any morphism f : A→ B and any ϕ ∈ mA one has f∗(ϕ) = (fϕ)∗(1A).

(iv) Epimorphisms are active.

(v) For any splitting i : B ⇆ A : r of a moment ϕ ∈ mA, the retraction r is active and
the section i is inert. In particular, r∗(ϕ) = 1B and i∗(1B) = ϕ.

(vi) The class of active (resp. inert) morphisms is closed.

(vii) f has an active/inert factorisation if and only if the moment f∗(1A) splits.
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Proof. –
(i) By (m1) and (m2), the moment set mA is a monoid. (m2) and (m4) imply the

relation ϕψϕ = ϕψ. Putting ψ = 1A yields ϕ = ϕ2.
(ii) By (i), ϕ = ψϕ = ψϕψ = ϕψ = ψ.
(iii) By (m2), any moment satisfies ϕ = ϕ1A = ϕ∗(1A). It follows then from (m3) that

f∗(ϕ) = f∗(ϕ∗(1A)) = (fϕ)∗(1A).
(iv) By (m4), one has 1Bf = f1A = f∗(1A)f . Thus if f is epic then f∗(1A) = 1B.
(v) Since r is active by (iv), we get by (iii)

r∗(ϕ) = (rϕ)∗(1A) = (rir)∗(1A) = r∗(1A) = 1B.

For each ψ ∈ mB, (m4) implies i∗(ψ)ir = iψr. Since mA is a monoid by (i), and ir = ϕ
it follows that iψr ∈ mA. Therefore, by (iii) and (m2), iψr = (iψr)∗(1A) = i∗(ψ) so that
i is inert. In particular, i∗(1B) = ir = ϕ.

(vi) Both classes are closed under composition. Isomorphisms are active by (iv) and
inert by (m4) since their pushforward action is the conjugation action.

(vii) Assume first that f = ig with g active and i inert and denote by r a retraction of
i such that ir is a moment of A. Then we get by (m3) and the definition of active (resp.
inert) morphisms that f∗(1A) = i∗(g∗(1A)) = ir. Conversely, if the moment f∗(1A) splits
as f∗(1A) = ir, put g = rf . Since by (m4) f = f1A = f∗(1A)f we get f = ig where i is
inert by (v). Moreover, by (m3) and (v), we get g∗(1A) = r∗(f∗(1A)) = r∗(ir) = 1 hence
g is active.

1.7. Proposition. A moment category is the same as a category with moment structure
in which all moments split.

Proof. We have seen that each moment category induces a moment structure by spec-
ifying as moments those endomorphisms for which the active part is a retraction of the
inert part. Indeed, the factorisation system defines a pushforward operation by diagram
(1) above, which satisfies the axioms (m1), (m2), (m3), (m4). Note that active (resp.
inert) morphisms of the factorisation system are indeed active (resp. inert) in the sense
of Definition 1.5, and that by definition all moments split.

Conversely, given a category with moment structure in which all moments split, the
active/inert factorisation system derives from Lemma 1.6vi and vii. The active/inert
factorisation is essentially unique because inert morphisms have retractions.

It remains to be shown that the axioms (M1) and (M2) of a moment category hold.
Assume that an inert morphism i : B → A has active retractions r, s : A → B with
moments ϕ = ir and ψ = is. These moments of A are mutually “right-absorbing”, i.e.
ϕψ = ψ and ψϕ = ϕ. Therefore, by Lemma 1.6ii, ϕ = ψ and hence r = s. Assume
finally that fi = g for an inert morphism i and active morphisms f, g. Then for the
(unique) active retraction r of i we get gr = fir = f∗(ir)f = f where the last equality
follows from the hypothesis that g and hence gr = fir are active so that by Lemma 1.6iv,
f∗(ir) = (fir)∗(1) = 1.
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1.8. Definition. Let ϕ, ψ be moments of the same object. The moment ϕ is said to be
a submoment of ψ if ψϕ = ϕ in which case we write ϕ ≤ ψ.

Two moments ϕ, ψ are said to be congruent if ϕ = ϕψϕ and ψ = ψϕψ, in which case
we write ϕ ≃ ψ.

A moment is called centric if its congruence class is singleton. A moment structure
is called centric if all its moments are centric.

The relation ≤ on mA is reflexive and transitive. By Lemma 1.6ii it is also antisym-
metric and defines thus a partial order relation on the local monoid mA.

1.9. Lemma. Let A be an object of a category with moment structure.

(i) If all moments of A are split, the poset (mA,≤) is isomorphic to the poset of inert
subobjects of A ordered by inclusion;

(ii) For any f : A → B and ϕ, ψ ∈ mA we have f∗(ϕψ) = f∗(ϕ)f∗(ψ). In particular,
pushforward f∗ : mA → mB is order-preserving;

(iii) Moments ϕ, ψ of A are congruent if and only if their active parts ϕact, ψact are
isomorphic under A.

Proof. (i) Consider split moments ϕ = ir and ψ = js. If i = jj′ then ϕ = ir = jj′r
and hence ψϕ = ϕ. Conversely, if ψϕ = ϕ then by (m2) and (m3) j∗s∗(ϕ) = ϕ and hence,
by Lemma 1.6(v), js∗(ϕ)s = ϕ. Splitting the moment s∗(ϕ) as j′s′ we get jj′s′s = ir
and, since the last identity represents two splittings of the same moment, we can assume
without loss of generality that r = s′s and i = jj′.

(ii) The second assertion follows from the first and the definition of the partial orders.
For the first observe that

f∗(ϕψ)
(1.6iii)
= (fϕ)∗(ψ)

(m4)
= (f∗(ϕ)f)∗(ψ)

(m3)
= f∗(ϕ)∗(f∗(ψ))

(m2)
= f∗(ϕ)f∗(ψ).

(iii) If ϕ = ϕψϕ = ϕψ and ψ = ψϕψ = ψϕ then ϕactψinψact = ϕact and ψactϕinϕact =
ψact. This implies that ϕactψin and ψactϕin induce inverse isomorphisms between ψact and
ϕact.

Conversely, if ρψact = ϕact then ϕψ = ϕinϕactψinψact = ϕinρψactψinψact = ϕ; dually, if
σϕact = ψact then ψϕ = ψ.

1.10. Remark. According to Lemma 1.6i the moments of any object of a moment cate-
gory form a submonoid of the endomorphism monoid and fulfill the Schützenberger rela-
tion ϕψϕ = ϕψ. Such monoids are known in semigroup literature as left regular bands,
cf. [40]. More precisely, a band is a semigroup consisting of idempotent elements, and a
band is said to be left regular if the Schützenberger relation holds. In contrast to the semi-
group literature, we shall always assume that a left regular band has a neutral element,
i.e. is a monoid. In the presence of a neutral element, the idempotency of the elements
follows from the Schützenberger relation. A morphism of left regular bands is required
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to preserve the multiplicative structure, but not necessarily the neutral element. This is
important for us because pushforward is a morphism of left regular bands by Lemma 1.9ii,
but not in general a morphism of monoids. Pushforward f∗ : mA → mB preserves the
neutral element if and only if f : A→ B is active, cf. Definition 1.5 and Proposition 1.7.

In a category with moment structure each object has thus a local monoid mA of mo-
ments which is a left regular band. The partial order relation on mA (defined in Definition
1.8) is known in literature as Green’s L-relation. The congruence relation is known as
Green’s D-relation, and it is well-known that for any left regular band the quotient by the
D-relation defines its universal commutative quotient. In particular, the local monoid mA

is commutative if and only if its congruence relation is discrete, i.e. all moments of A
are centric, cf. Definition 1.8.

As we will see in Propositions 1.16 and 1.20 below, this generalises to moment cate-
gories: a moment category satisfies centricity axiom (MC) if and only if all its moments
are centric if and only if moments of the same object commute. Moreover, every moment
category admits a universal centric quotient.

In general, the quotient mA/≃ by the congruence relation is thus a commutative band.
Commutative bands are also known as meet-semilattices if multiplication is viewed as meet
operation. The congruence class of 1A serves as top element for the partial order. If the
local monoid mA is finite (which will always be the case for us) we get a finite meet-
semilattice mA/≃ with top element 1, and again it is well-known that one can define a
join operation x∨ y by taking the meet of all z such that x ≤ z and y ≤ z. We get in this
way a lattice with bottom element 0. Since the congruence class of 1A is singleton, we get
a lattice with 0 ̸= 1 as soon as A has non-identity moments.

We are grateful to Steve Lack for having pointed out to us the following result which
is an important tool for constructing moment categories.

1.11. Proposition. Every category C with moment structure admits an idempotent com-
pletion into a moment category C whose objects are the moments of C. Congruent mo-
ments in C give rise to isomorphic objects in C.

Proof. By definition, the objects of C are the moments of C, and for any pair of moments
(ϕ, ψ) ∈ mA ×mB, the morphism set is defined by

C(ϕ, ψ) = {f ∈ C(A,B) | f∗(ϕ) ≤ ψ}.

The identity of C(ϕ, ϕ) is ϕ, where composition in C is defined like in C. If f∗(ϕ) ≤ ψ
and g∗(ψ) ≤ ζ then (gf)∗(ϕ) ≤ ζ so that we get indeed a category in this way.

We now apply Proposition 1.7 in order to show that C is a moment category where
we define the moment set mϕ of an object ϕ ∈ mA by

mϕ = {ψ ∈ mA |ψ ≤ ϕ}

so that C fully embeds into C under preservation of the moment structures.
The pushforward operation f∗ : mϕ → mψ for any f : ϕ → ψ in C is defined by

restricting the pushforward operation f∗ : mA → mB of C because it follows from f∗(ϕ) ≤
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ψ that f∗ takes a moment in mϕ to a moment in mψ. These restricted pushforward
operations fulfill the axioms (m1)-(m4) of a moment structure on C.

It remains to be shown that the moments of C are split. Given ψ ∈ mϕ, the moment ψ
splits over the object ψϕ in C. Indeed, ψ : ϕ→ ψϕ is a retraction with section ψ : ψϕ→ ϕ
in C whose associated moment is ψ : ϕ→ ϕ.

For the second assertion observe that ψϕ : ϕ → ψ and ϕψ : ψ → ϕ are mutually
inverse morphisms in C if and only if ϕ and ψ are congruent moments in C.

1.12. Examples. The following examples of moment categories are all locally finite with
a countable or finite set of objects. These categories play important roles in algebraic
topology or algebraic combinatorics. It is somehow surprising that they share the feature
of carrying a moment structure.

(a) The category Γ of Segal

Segal’s category Γ [44] is the category of finite sets n = {1, . . . , n} (where 0 denotes the
empty set) with operators m → n given by ordered m-tuples of pairwise disjoint subsets
of n. Composition is defined by

(k
(M1, . . . ,Mk)- m

(N1, . . . , Nm)- n) = (k
(
⋃
j1∈M1

Nj1 , . . . ,
⋃
jk∈Mk

Njk)- n).

We now define the following active/inert factorisation system on Γ:

an operator f = (N1, . . . , Nm) : m→ n is active if n =
m⊔
i=1

Ni.

an operator f = (N1, . . . , Nm) : m→ n is inert if each Ni is singleton.

In particular, inert morphisms correspond to injections m → n and active morphisms
can be considered as partitions of the target indexed by the elements of the source. It
is now straightforward to check that this defines a factorisation system on Γ fulfilling the
axioms (M1), (M2), (MC) of a centric moment category. For instance, axiom (MC) holds
since active morphisms have sections if and only if the associated partition only contains
singletons and empty subsets of the target.

It is well-known that the dual category Γop may be identified with a skeleton of the
category of finite based sets and base-point preserving maps. Dualising the active/inert
factorisation system on Γ induces an inert/active factorisation system on Γop which has
extensively been used by Lurie [38] in his theory of ∞-operads. We borrowed our termi-
nology from him, adding just the extra-term “moment”.

The dual Γop can also be identified with a skeleton of the category of finite sets and
partial maps between them. In this setting, the inert/active factorisation of a partial map
is its factoriation into a partial identity followed by a total map. The inclusion of the
active part Γop

act into Γop can be interpreted as the inclusion of the category of finite sets
and total maps into the category of finite sets and partial maps. This interpretation
illustrates well the dual of Proposition 1.17.

We will see that the moment category Γ plays an important universal role insofar as
every locally finite, unital moment category C comes equipped with an essentially unique
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augmentation γC : C → Γ. This augmentation takes an object of C to the set of its
elementary moments and views the morphisms of C as “partial partitions” of their target,
cf. Proposition 2.7.

(b) The simplex category ∆

The simplex category ∆ is the category of finite non-empty ordinals [m] = {0, . . . ,m}, m ≥
0, and order-preserving maps. A simplicial operator f : [m] → [n] is active if it is
endpoint-preserving, i.e. f(0) = 0 and f(m) = n, and inert if it is distance-preserving,
i.e. f(i+ 1) = f(i) + 1 for i = 0, . . . ,m− 1.

It is straightforward to check that the axioms (M1), (M2) of a moment category are
satisfied. Axiom (MC) does not hold: any map [n] → [0] is active but has several inert
sections whenever n > 0. In general, an active map f : [n] +- [m] has an inert
section g : [m] > - [n] if and only if there is a subinterval [s, s +m] ⊂ [0, n] such that
f(0) = f(s) and f(s+m) = f(n) while f restricted to [s, s+m] is injective. If m > 0, then
the section g is uniquely determined by f . Therefore, by Lemma 1.15 below, a moment
of [n] ̸= [0] is centric if and only if it splits over [m] ̸= [0]. The monoid structure of
the moments of [n] can be interpreted geometrically in terms of the corresponding inert
subobjects, i.e. subintervals of [n]. The product of two moments is commutative if the
two corresponding inert subobjects have an intersection in ∆ in which case the product
represents this intersection. Otherwise, the product is non-commutative. For instance,
for the moments ϕ = (0, 1, 1, 1) and ψ = (2, 2, 2, 3) of [3] we get ϕψ = (1, 1, 1, 1) ̸=
(2, 2, 2, 2) = ψϕ.

Note that ∆ also admits the familiar epi/mono factorisation system where the epimor-
phisms are called degeneracy operators and the monomorphisms face operators. Every de-
generacy operator is retractive (cf. Lemma 1.6iv) while active (resp. inert) face operators
are usually called inner (resp. outer) face operators.

(c) The categories Θn of Joyal

The categories Θn of Joyal [31] have several equivalent definitions. For n = 1 we
recover example (b) since Θ1 = ∆. For general n > 0, the objects of Θn are n-level trees.
The maps can be described by first taking an n-level tree T to an n-graph T∗, and then
applying the free (strict) n-category functor Fn from n-graphs to n-categories. This leads
to the following definition (cf. [10])

Θn(S, T ) = nCat(Fn(S∗), Fn(T∗)).

An alternative way of defining Θn is as an iterated wreath product of ∆ (cf. [11]). We
will see below (cf. Proposition 2.9) that for any two unital moment categories C, D there
is a well-defined wreath product C ≀ D which is again a unital moment category. Since ∆
is a unital moment category, this permits to define iterated wreath products of ∆, and it
turns out that Θn is an n-fold wreath product ∆ ≀ · · · ≀∆ yielding the moment structure of
Θn for free.

The active (resp. inert) morphisms of Θn(S, T ) have a geometric interpretation in
terms of the n-level tree structures of S and T . The active morphisms correspond to tree-
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partitions of T labelled by S. The inert morphisms correspond to immersions of S as a
plain subtree of T . The inert morphisms are those belonging to the image of the globular
maps S∗ → T∗ under the free functor Fn. The existence of this active/inert factorisation
system of Θn has been established in [10, Lemma 1.11].

Note that Θn also admits the familiar epi/mono factorisation system where the epi-
morphisms are called degeneracy operators and the monomorphisms face operators. Every
degeneracy operator is retractive while the moment structure induces a natural notion of
inner (i.e. active) and outer (i.e. inert) face operator in Θn.

(d) Idempotent completion of a left regular band

We refer the reader to Margolis-Saliola-Steinberg [40, Section 2] for more details con-
cerning the theory of left regular bands. Each left regular band L (cf. Remark 1.10) can be
considered as a one-object category CL with endomorphism monoid the given left regular
band L. If we define the unique moment set also to be equal to L, and the pushforward
operation to be left translation, then all axioms of a moment structure are satisfied, axiom
(m4) being the Schützenberger relation. Proposition 1.11 applies and CL fully embeds into
a moment category CL, whose objects are the elements of L. Moreover, elements in L are
congruent if and only if they are isomorphic as objects of CL. Therefore, a skeleton of
CL is itself a moment category ĈL whose objects are the elements of the quotient L/≃.

These moment categories CL constructed out of left regular bands L have very special
properties: each active morphism is retractive, and the (retr)active part of CL is opposite
to the poset underlying L. The inert subobjects of an object of CL are in bijection with
the subobjects of the corresponding element of L.

The most prominent example of a left regular band is the face monoid LA of a hy-
perplane arrangement A in Euclidean space, cf. [40]. In this case, the quotient LA/≃
by the congruence relation is the so-called intersection lattice IA of A. The elements
of the face monoid (the “facets”) can be identified with non-empty intersections of the
half-spaces delimited by the hyperplanes of A. The product z = xy in LA of two facets is
the first facet z crossed by a segment joining an interior point of x to an interior point of
y. Two facets are congruent if and only if they generate the same linear support in the
intersection lattice IA.

As illustration, let us consider the Coxeter arrangement AΣ3 of the symmetric group
Σ3 on three letters. This is the so-called braid arrangement on three strands. The facets
of the face monoid LAΣ3

are in bijection with left cosets of the standard Coxeter subgroups
of Σ3 (namely Σ1 × Σ1 × Σ1,Σ1 × Σ2,Σ2 × Σ1 and Σ3) where the underlying poset of the
left regular band LAΣ3

is reverse inclusion of left cosets. The objects of the intersection
lattice IAΣ3

are conjugacy classes of these standard Coxeter subgroups in Σ3. This yields

the following inert part of ĈLAΣ3
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Σ3

$$ $$
$$

���� ��
⟨(2 3)⟩
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⟨(1 3)⟩

�� ��

⟨(1 2)⟩

⟨( )⟩$$ $$ zzzz

where the inert arrows correspond to left cosets (of the target inside the source) with

obvious composition law. This inert part of ĈLAΣ3
contains three subcategories whose

topological realisations are classifying spaces for the braid group B3 on three strands, cf.
[9, Remark 2.7].

The following proposition was suggested to us by Richard Garner. It shows that the
category LRB of left regular bands (with neutral element) and morphisms of left regular
bands is an example of a large moment category.

1.13. Proposition. The category LRB is a moment category with active (resp. inert)
morphisms the monoid morphisms (resp. the order-ideal inclusions).

Each moment category C is endowed with a moment functor mC : C → LRB tak-
ing objects to their local moment monoids, and morphisms to the induced pushforward
operation.

Proof. Each morphism of left regular bands f :M → N factors as a monoid morphism
fact : M → f(1)N followed by an order-ideal inclusion fin : f(1)N → N . This factori-
sation is essentially unique, because any order-ideal inclusion xN → N admits a monoid
retraction N → xN given by left translation by x; observe that the Schützenberger rela-
tion implies x(yz) = (xy)(xz), i.e. left translation preserves the multiplicative structure.
The uniqueness of this retraction yields axiom (M1) of a moment category. For (M2) ob-
serve that if a monoid morphism f :M → N remains a monoid morphism when restricted
to the order-ideal i : xM → M then f(x) = 1, therefore fir = f where r : M → xM is
left translation by x.

The second assertion follows from Lemmas 1.6i and 1.9ii and (m1), (m3).

1.14. Centricity. We now discuss in more detail centricity axiom (MC) and its rela-
tionship with corestriction structures of Cockett-Lack [20].

1.15. Lemma. A moment is centric if and only if its inert part is the only inert section
of its active part.

Proof. For inert sections i, i′ of an active morphism r, the moments ir and i′r are
congruent. Therefore, if ϕ = ϕactϕin is centric then ϕin is the only inert section of ϕact.
Conversely, if the latter holds then for any congruence ϕ ≃ ψ, Lemma 1.9iii yields ρ such
that ρϕact = ψact so that ϕin = ψinρ whence ϕ = ψinρϕact = ψ.
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1.16. Proposition. For a moment category the following conditions are equivalent:

(i) the moment structure is centric;

(ii) moments of the same object commute;

(iii) centricity axiom (MC) holds.

Proof. We have seen in Remark 1.10 that (i) implies (ii). Assume now (ii) and consider
an active morphism f : A → B with inert sections i, j : B → A. Then jfif = ifjf
implies jf = if and hence i = j, whence (iii). By Lemma 1.15, (iii) implies (i).

1.17. Proposition. Corestriction structures in the sense of Cockett-Lack [20] corre-
spond one-to-one to centric moment structures. In particular, split corestriction categories
are the same as centric moment categories.

Proof. A corestriction structure is the dual of a restriction structure (cf. [20, 2.1.1]). It
is defined in terms of so-called cocombinators C(A,B) → C(B,B) : f 7→ f∗(1A). These
cocombinators extend to pushforward operations f∗ : mA → mB by the rule f∗(ϕ) =
(fϕ)∗(1A) where mA = {ϕ ∈ C(A,A) |ϕ∗(1A) = ϕ}. Calling the elements of mA moments,
the axioms of Cockett-Lack can be stated as follows:

(C1) f∗(1)f = f for any morphism f ;

(C2) ϕψ = ψϕ for any moments ϕ, ψ of the same object;

(C3) (ψf)∗(1) = ψ f∗(1) for any morphism f and moment ψ of the target of f ;

(C4) g f∗(1) = (gf)∗(1) g for any composable morphisms f and g.

In [20, Lemma 2.1iii] Cockett and Lack deduce from (C1),(C2),(C3),(C4) that g∗(ϕ) =
(gϕ)∗(1) for any moment ϕ of the source of g. This implies axiom (m3). Axiom (C4)
then yields gϕ = g∗(ϕ)g which is (m4). It follows from (C3) that the composite of two
moments is a moment, which is equivalent to (m2), as soon as (m3) holds. Finally, (C1)
implies (m1). By (C2), moments of the same object commute. Conversely, in a centric
moment structure axiom (C2) holds, (C4) follows from (m4), (C1) follows from (C4) and
(m1), while (C3) follows from (m2), (m3) and Lemma 1.6iii. A corestriction category is
split [20, 2.3.3] if and only if all moments split. Propositions 1.7 and 1.16 thus establish
the second statement.
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1.18. Remark. This close relationship between corestriction and moment structures was
a surprise for us. However, in most examples relevant to operads, the moment categories
are not centric, but the splittings are needed for the definition of the operad-type associated
to a unital moment category. Therefore, starting from centric moment categories (i.e.
split corectriction categories) our main concern consisted in dropping centricity (while
keeping the splittings), whereas the main concern of Cockett-Lack was to drop the existence
of splittings (while keeping centricity). There are nevertheless similarities between both
approaches.

We have seen that every category with moment structure admits an idempotent com-
pletion turning it into a moment category. The existence of this idempotent completion
relies (just as in the case of corestriction categories) on the completely equational character
of the axioms (m1)-(m4) of a moment structure.

Our terminology differs from that of Cockett-Lack, partly in order to avoid the use of
too many co-s. The dictionnary is as follows:

moment=corestriction idempotent, active=cototal, retractive=split corestriction.

We end this introductory section by showing that each moment category has a uni-
versal centric quotient.

1.19. Lemma. For any moment category, the pushout of a retractive morphism along an
active morphism exists in the active part and is again retractive.

Proof. Consider the following diagram

A
f
+ //

r+
��

B

r′+
��

g

��

A′
OOi

OO

f ′
+ //

g′
((

B′
OOi

′

OO

h
  
C

in which i is any inert section of the retractive morphism r, and i′r′ = f∗(ir). We claim
that the retractive morphism r′ : B +- B′ is the pushout in Cact of r along the active
morphism f : A +- B. For this, we check the universal property and choose two active
morphisms g, g′ such that g′r = gf . If h : B′ +- C with hr′ = g exists then necessarily
h = gi′. So there is no choice for h, and it remains to be shown that hf ′ = g′, that h is
active, and that hr′ = g.

Indeed, hf ′ = gi′f ′ = gfi = g′ri = g′. Since g′ and f ′ are active and hf ′ = g′, it
follows from general properties of factorisation systems that h is active as well. Therefore,
g and gi′ = h are active, so that by axiom (M2), g = hr′ as required.
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For a moment category C we define BC to be the category with same objects as C
but with morphism-set (BC)(A,B) the set of isomorphism classes of cospans

(f, r) = (A
f

+- B′ �
r

+ B)

where f is active and r is retractive. Thanks to Lemma 1.19, these isomorphism classes
compose in the following way: (g, s)(f, r) = (gf ′, s′r) where f ′ (resp. s′) is the pushout
of f (resp. s) along s (resp. f) in the active part of C.

We thus get an identity on objects functor C → BC taking the morphism f : A→ B
to the cospan (fact, rf ) where rf is the unique active retraction of fin.

Two parallel morphisms f, g : A ⇒ B are said to be congruent (denoted f ≃ g) if
they are identified under C → BC. By Lemma 1.9iii, this is the case if and only if the
moments f∗(1A) and g∗(1A) are congruent in mB.

Observe that BC comes equipped with an active/inert factorisation system for which
isomorphism classes of cospans of the form (fact, 1) are active, and isomorphism classes of
cospans of the form (1, rf ) are inert. It is straightforward to verify that BC satisfies the
axioms (M1), (M2), (MC) of a centric moment category.

1.20. Proposition. A moment category C is centric if and only if the functor C → BC
is invertible. In general, the functor C → BC is initial among moment functors out of C
taking values in centric moment categories.

Proof. The first statement is a consequence of the fact that each moment ϕ of an object
A equals ϕ∗(1A). For the second statement, let F : C → D be a functor with centric
target D and consider the following commutative diagram of functors

C
F
- D

C/≃
?

- D/≃

∼=
?

in which the right vertical functor is an isomorphism because D is centric. We therefore
get the required factorisation F : C → C/≃→ D which is unique because the functor
C → C/≃ is identity on objects and full.

1.21. Remark. It follows from Lemma 1.9iii that the categorical congruence restricts to
Green’s D-relation on mA for each object A. For congruent parallel morphisms f, g : A⇒
B, the pushforwards f∗(ϕ) and g∗(ϕ) are congruent in mB for any ϕ ∈ mA. The first part
of Proposition 1.20 is a Representation Theorem for centric moment categories. Indeed,
any centric moment category C is isomorphic to BC, and is thus entirely determined by
its active part.

The dual representation theorem for split restriction categories (cf. Remark 1.18) has
been obtained by Cockett-Lack using different methods, cf. [20, Theorem 3.4].
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2. Unital moment categories

The purpose of this section is to single out a class of moment categories, called unital,
in which moments decompose in a canonical way into elementary moments. A moment
category is unital if there is a sufficient supply of so-called unit objects. The elementary
moments are then those which split over a unit object.

Each active morphism f : A → B induces a partition of the identity moment of B
into moments f∗(α) where α runs through the elementary moments of A. This will allow
us to associate, with every unital moment category of finite type, a specific operad type
incorporating these partitions as its substitutional structure. We shall call operads of type
C simply C-operads.

The unital moment category Γ enjoys a universal property. Each unital moment cat-
egory of finite type comes equipped with an essentially unique augmentation γC : C → Γ,
and Γ-operads turn out to be precisely symmetric operads in the sense of Boardman-Vogt
[14] and May [41]. The augmentation γC induces an adjunction between the categories of
C-operads and of Γ-operads so that C-operads can be symmetrised.

The wreath product of Γ-augmented categories as defined in [11] takes a pair (C,D) of
unital moment categories to a unital moment category C ≀ D. We give here an intrinsic
description of this wreath product not depending on a chosen augmentation over Γ and
valid without finite type hypothesis.

It follows from [11] that the operator categories Θn of Joyal [31] are iterated wreath
products of the simplex category ∆. The unital moment structure on ∆ induces thus a
unital moment structure on Θn. It turns out that the resulting Θn-operads are precisely
the (n − 1)-terminal n-operads of Batanin [3, 4] and that our symmetrisation functor
coincides with Batanin’s [4] in this special case.

2.1. Units. We shall say that an object U of a moment category is primitive provided
U has non-identity moments, but they are all congruent.

It amounts to the same to require that the universal semilattice quotient mU/≃ is the
two-element lattice {0, 1}. Indeed, the congruence class of 1 is singleton and contains the
identity-moment 1U while the congruence class of 0 contains all the other moments, cf.
Remark 1.10.

2.2. Definition. An object U of a moment category is called a unit if

(U1) the object U is primitive;

(U2) each active morphism with target U has one and only one inert section.

A moment category is called unital if for each object A there exists an essentially
unique pair (U, ϕ) consisting of a unit U and an active map ϕ : U +- A.

A moment is called elementary if it splits over a unit.

Two moments of the same object are called disjoint if they do not share common
elementary submoments.
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The cardinality of an object is the cardinality the set of its elementary moments. A
nilobject is an object of cardinality 0.

A unital moment category is of finite type if the underlying category is small and every
object has finite cardinality.

2.3. Lemma. –

(i) Any inert (resp. active) morphism between units is invertible;

(ii) Elementary moments of the same object are either equal or disjoint.

Proof. (i) Both assertions are equivalent. Let i : U > - U ′ be an inert morphism
between units. Then by (U2) i is the unique inert section of the active retraction r :
U ′ +- U . By Lemma 1.15 this implies that the moment ir of U ′ is centric so that by
(U1) we get ir = 1U ′ .

(ii) It suffices to show that comparable elementary moments are equal. By Lemma 1.9i,
moments are comparable if and only if the associated inert subobjects are comparable.
For elementary moments these subobjects are units so that (i) allows us to conclude.

2.4. Remark. All examples of Section 1.12 are unital moment categories:

(a) Segal’s category Γ has a single unit, the one-element set 1. The elementary mo-
ments of n correspond to inert subsets 1 > - n, i.e. to elements of the set n. The
cardinality of n is thus n and the only nilobject of Γ is 0. For every objet n there is a
unique active morphism 1 +- n.

(b) The simplex category ∆ has a single unit, the segment [1]. The elementary moments
of [n] correspond to inert subobjects [1] > - [n], i.e. to subsegments. The cardinality
of [n] is thus n and [0] is the only nilobject of ∆. For every object [n] there is a unique
active morphism [1] +- [n].

(c) Joyal’s category Θn has a single unit, the linear n-level tree Un of height n. The
elementary moments of an n-level tree T correspond to the vertices of T of height n. The
nilobjects of Θn are thus the n-level trees of height < n. Again, each n-level tree T receives
a unique active morphism Un +- T , cf. Proposition 2.9.

(d) The idempotent completion CM of a left regular band M has a single unit, repre-

sented by the neutral element 1 ∈M . Every morphism in ĈM is either inert or retractive
or a moment, cf. Remark 1.10. All objects different from 1 are nilobjects.

From now on we fix a unital moment category C. The following lemma is the main
reason for having introduced the notion of elementary moment. The argument is roughly
speaking dual to the one establishing that for any set-mapping f : X → Y and x ∈ X
there is a unique y ∈ Y such that x ∈ f−1(y).

2.5. Lemma. For any elementary moment ψ of B and active morphism f : A +- B
there is a unique elementary moment ϕ of A such that ψ ≤ f∗(ϕ).
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Proof. The elementary moment ψ factors through ψact : B +- U where U is a unit. By
(U2) the composite active morphism ψactf : A +- U has an inert section, thus defining
an elementary moment ϕ of A. By Lemma 1.19, the moment f∗(ϕ) is associated with the
pushout along f of ψactf in Cact, whence ψ ≤ f∗(ϕ).

Assume we are given two elementary moments ϕ, ϕ′ of A such that ψ ≤ f∗(ϕ) and
ψ ≤ f∗(ϕ

′). In virtue of Lemma 1.19, ψ is then an elementary moment of the pushout Q
of f∗(ϕ)act and f∗(ϕ

′)act in the active part of C:

A
ϕact

~~

ϕ′act

  

f // B
f∗(ϕ)act

~~

f∗(ϕ′)act

  

ψact

��

U1

  

po U2

~~

B1

  

po B2

~~
P

f // Q // U

By a diagram chase, Q can be identified with the pushout along f of the pushout P of ϕact
and ϕ′

act. We thus get an active morphism f : P +- Q whose target has an elementary
moment. It follows then that P has as well an elementary moment so that ϕ and ϕ′ are
not disjoint. According to Lemma 2.3ii this implies ϕ = ϕ′.

2.6. Proposition. Pushforward along any morphism f : A→ B takes disjoint moments
of A to disjoint moments of B. If f is active, then f∗ induces a partition of the set of
elementary moments of B, indexed by the elementary moments of A.

Proof. For the first assertion, we can assume that f is either inert or active. Two
moments are disjoint precisely when their associated inert subobjects do not share an inert
subobject with unital domain U . If f is inert, the pushforward operation f∗ associates
to an inert subobject ϕin : A′ > - A the inert subobject ϕinf : A′ > - A > - B, and
hence pushforward along inert morphisms preserves disjointness. If f is active, Lemma
2.5 shows that distinct elementary moments of A are taken to disjoint moments of B.
This suffices by Lemma 2.3ii.

For the second assertion we associate with each elementary moment eα of A the set
of elementary moments eβ of B such that eβ ≤ f∗(eα). According to Lemmas 2.3 and 2.5
this defines a partition of the set of elementary moments of B.

Let us illustrate Proposition 2.6 by means of the examples 1.12a-b. In Γ, an active
morphism f : m +- n can be analysed by considering the pushforwards of the elementary
moments of m. The latter correspond to singleton subsets of m while their pushforwards
along f correspond to subsets of n. Two subsets are then “disjoint” in the sense of
Definition 2.2 precisely when they meet in the nilobject 0 which recovers the usual meaning
of disjointness. According to Lemma 2.5, the subsets of n obtained as pushforwads along
f : m +- n of the singleton subsets of m are mutually disjoint, and cover the singleton
subsets of n.
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In the same manner, an active morphism f : [m] +- [n] in ∆ can be analysed by
considering the pushforwards of the elementary moments of [m]. The latter correspond
to subsegments of [m] while their pushforwards along f correspond to subintervals of
[n]. Two subintervals are then “disjoint” in the sense of Definition 2.2 precisely when
they meet in the nilobject [0] (i.e. when they share just an extremity) or when they
do not intersect. Again, according to Lemma 2.5, the subintervals of [n] obtained as
pushforwards along f : [m] +- [n] of the subsegments of [m] are mutually disjoint, and
cover the subsegments of [n].

In [44] Segal constructed a cardinality-preserving functor γ∆ : ∆ → Γ and based his
infinite delooping machine on the existence of this functor. The following proposition
shows that Segal’s functor is actually a cardinality- and unit-preserving moment functor
and up to isomorphism uniquely determined by this property.

2.7. Proposition. For each unital moment category of finite type C there is an essen-
tially unique cardinality- and unit- preserving moment functor γC : C → Γ.

Proof. Each object of C has only finitely many elementary moments. This determines
γC on objects since the category Γ has precisely one object for each finite cardinal. In
particular, γC is unit-preserving since units have cardinality 1 by (U1).

In order to define the functor γC on morphisms, we fix its image for each inert morphism
U > - A with unital domain in such a way that distinct elementary subobjects have
distinct images in Γ. This amounts to fixing a bijection between the elementary moments
of A and the elementary moments of γC(A), i.e. to a total ordering of the elementary
moments of A. Each moment ϕ of A determines then a subset of γC(A), namely the one
which corresponds to the elementary submoments of ϕ. By Proposition 2.6, pushforward
along f : A → B takes distinct elementary moments of A to disjoint moments of B. We
therefore get a well-defined map γC(f) : γC(A) → γC(B) in Γ, and this assignment is
easily seen to be functorial. Lemma 2.5 shows that γC takes active morphisms to active
morphisms. Since pushforward along inert morphisms faithfully preserves elementary
moments, γC takes inert morphisms to inert morphisms so that γC is indeed a moment
functor.

Conversely, any functor of moment categories γC : C → Γ takes moments of A to
moments of γC(A), and pushforward operation f∗ : mA → mB to pushforward operation
γC(f)∗ : mγC(A) → mγC(B). Therefore, once a bijection between the elementary moments
of A and γC(A) is fixed, there is no choice in defining γC. Different choices of bijections
lead to canonically isomorphic augmentations.

2.8. Definition. Let C,D be unital moment categories. The wreath product C ≀ D is
defined to be the category for which

• objects are tuples (A,Bα) given by an object A of C and a family (Bα)α∈elA of objects
of D indexed by the set elA of elementary moments of A;

• morphisms are tuples (f, fα
′

α ) : (A,Bα) → (A′, B′
α′) given by a morphism f : A→ A′

and morphisms fα
′

α : Bα → Bα′ whenever α′ ≤ f∗(α) in mA′.
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2.9. Proposition. For unital moment categories C,D the wreath product C≀D is a unital
moment category. In particular, Joyal’s Θn are unital moment categories.

Proof. We first define an active/inert factorisation system in C ≀ D where a morphism
(f, fα

′
α ) is active (resp. inert) if f is active (resp. inert) in C and all fα

′
α are active (resp.

inert) in D. For a given (f, fα
′

α ) : (A,Bα) → (A′, B′
α′) we factor f as

A
fact
+- Ã

fin
> - A′

and observe that for each fα
′

α : Bα → Bα′ with α′ ≤ f∗(α) there is a unique α̃ ∈ elÃ such
that (fin)∗(α̃) = α′. Indeed, by Proposition 2.6 (fact)∗ induces a partition of elÃ indexed
by elA so that each α′ ≤ (fin)∗(fact)∗(α) is the pushforward of a uniquely determined
elementary submoment α̃ ≤ (fact)∗(α). Factor now fα

′
α as

Bα

(fα
′

α )act
+- B̃

(fα
′

α )in
> - B′

α′

and index the middle object by α̃ ∈ elÃ. This defines an active/inert factorisation of
(f, fα

′
α ) which is essentially unique by the essential uniqueness of the active/inert factori-

sation systems in C and D. Axioms (M1) and (M2) for the wreath product C ≀ D follow
from their validity in C and D.

By axiom (U1) units have a single elementary moment, the identity. Therefore, units
of C ≀D are of the form (U, V ) where U (resp. V ) is a unit of C (resp. D). Axiom (U2) for
(U, V ) is a consequence of its validity in C (for U) and in D (for V ). Finally, each object
(A,Bα) of C ≀ D receives an essentially unique active morphism (U, V ) +- (A,Bα).

Joyal’s categories Θn are iterated wreath products ∆ ≀ · · · ≀∆ according to [11, Theorem
3.7]. The wreath product ∆ ≀ − of [11, Definition 3.1] coincides with Definition 2.8 using
the unital moment structure of ∆, cf. Remark 2.4b.

2.10. Remark. The augmentation γΘn : Θn → Γ of Proposition 2.7 coincides up to
isomorphism with the functor γn : Θn → Γ of [11, Definition 3.3].

The inductive definition of γn involves a so-called assembly functor α : Γ ≀ Γ → Γ
which takes (n;m1, . . . ,mn) to m1 + · · ·+mn, cf. [11, Lemma 3.2] and Remark 2.4a.
This assembly functor induces wreath products of automorphisms in Γ entering into the
formulation of the equivariance properties of a symmetric operad.

To be more precise, for (σ; τ1, . . . , τn) ∈ Aut(n)×Aut(m1)× · · ·×Aut(mn) we denote
the image under α : Γ ≀ Γ → Γ by σ ≀ τi ∈ Aut(m1 + · · ·+mn). Explicitly, this internal
wreath product σ ≀ τi is obtained by postcomposing the direct sum τ1 ⊕ · · · ⊕ τn with the
obvious “block permutation” induced by σ.

Thanks to Proposition 2.7, internal wreath products can be defined for any unital
moment category C. Let f : A +- B be an active map in C and choose splittings
Bα > - B for the moments f∗(α) ∈ mB obtained by pushing forward the elementary
moments α ∈ elA. For (σ; τα) ∈ Aut(A) ×

∏
α∈elA Aut(Bα) we shall denote σ ≀ τα any

automorphism of B taken under γC : C → Γ to the wreath product γC(σ) ≀γC(τα) in Γ. We
shall not assume that these internal wreath products in C exist nor that they are unique
if they exist, but this will often be the case.
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2.11. Operads. In this section we shall introduce, for each unital moment category of
finite type C, a notion of C-operad in an arbitrary symmetric monoidal category E. The
unit of E will be denoted IE, and as usual, for a family (Ei)i∈I of objects in E indexed
by a finite set I, we shall denote

⊗
i∈I Ei the tensor product of the Ei where we do not

choose any order on the tensor factors. This does not cause any harm because of Mac
Lane’s Coherence Theorem for symmetric monoidal categories.

2.12. Definition. Let C be a unital moment category of finite type.
We choose for each elementary moment α ∈ elA, a splitting Uα > - A, i.e. an

elementary inert monomorphism. The active/inert factorisation system induces then for
each active morphism f : A +- B inert morphisms Bα > - B splitting the moments
f∗(α) ∈ mB for α ∈ elA. These splittings are normalised in the following sense: if
f∗(α) = 1B then Bα = B and Bα > - B is the identity of B.

A C-collection in E consists of a functor O : Iso(C) → E. This yields for each object
A of C an Aut(A)-object O(A) of E, and for each active morphism f : A +- B in C,
an object O(f) =

⊗
α∈elA O(Bα) of E endowed with a canonical

∏
α∈elA Aut(Bα)-action.

A C-operad in E is a C-collection in E equipped with structure maps

• ηU : IE → O(U) (one for each unit U of C)

• µf : O(A)⊗O(f) → O(B) (one for each f : A +- B in Cact)

such that the following unit, associativity and equivariance axioms hold:

(i) for each f : U +- A with unital domain, the composite morphism

IE ⊗O(A)
ηU⊗1−→ O(U)⊗O(f)

µf−→ O(A)

is a left unit constraint in E;
for each identity 1 : A +- A, the composite morphism

O(A)⊗
⊗
α∈elA

IE
1⊗

⊗
ηUα−→ O(A)⊗

⊗
α∈elA

O(Uα)
µ1−→ O(A)

is a right unit constraint in E;

(ii) for each pair A
f
+- B

g
+- C, the following diagram commutes:

O(A)⊗O(f)⊗O(g)
1⊗ µf,g- O(A)⊗O(gf)

O(B)⊗O(g)

µf ⊗ 1
?

µg
- O(C)

µgf
?
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where µf,g : O(f) ⊗ O(g) → O(gf) is obtained (after permuting factors) as tensor
product of the maps µgα : O(Bα)⊗O(gα) → O(Cα), α ∈ elA, induced by the following
commutative diagram (cf. Proposition 2.6):

A
f
+- B

g
+- C

Uα
∧

6

+
fα

- Bα

∧

6

+
gα

- Cα
∧

6

(iii) for each f : A +- B and (σ, τα) ∈ Aut(A) ×
∏

α∈elA Aut(Bα) admitting a wreath
product σ ≀ τα ∈ Aut(B), cf. Remark 2.10, the following diagram

O(A)⊗O(f)
µf - O(B)

O(A)⊗O(f)

O(σ)⊗
⊗

αO(τα)
?

µfσ−1

- O(B)

O(σ ≀ τα)
?

commutes.

The C-operads in E form a category OperC(E) whose morphisms are maps of C-
collections commuting with the structure maps ηU and µf . There is a restriction functor
γ∗C : OperΓ(E) → OperC(E). Its left adjoint (γC)! : OperC(E) → OperΓ(E) is called
symmetrisation, cf. Remark 2.13c below.

2.13. Remark. Let us review the Examples 1.12, see also Remark 2.4:

(a) A Γ-collection O is a collection of objects On endowed with Aut(n) = Σn-actions.
These are often called symmetric collections or symmetric sequences. A Γ-operad is then
precisely a symmetric operad in the sense of May [41] where the multiplicative structure
µf : On ⊗ Om1 ⊗ · · · ⊗ Omn → Om is associated to the active map f : n +- m with
partition m =

∐
α∈el(n) f∗(α), cf. Proposition 2.6.

Note that for C = Γ, our axioms (i), (ii) and (iii) correspond precisely to May’s axioms
(b), (a) and (c) in [41, Definition 1.1], except that we drop O(0) = IE.

(b) A ∆-operad is a non-symmetric operad. Our symmetrisation functor is the usual
functor assigning a symmetric operad to a non-symmetric operad.

(c) A Θn-collection is a collection of objects indexed by n-level trees. Note that there are
no non-trivial automorphisms in Θn. It turns out that a Θn-operad is precisely a (n− 1)-
terminal n-operad in the sense of Batanin [3, 4]. This follows from the observation that
Batanin’s category of n-level trees Ωn is the dual of Θact

n and that for S +- T in Θact
n ,

the induced partition of T is indexed by the fibres of the dual map in Ωn, cf. [4, Definition
4.3]. Our symmetrisation functor coincides with Batanin’s [4, Section 8]. Its existence
follows from Corollary 3.23 below.
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2.14. Monoids. For each C-operad O in E there is a natural notion of O-algebra. In this
article, we will only be concerned with IC-algebras where IC is the unit C-operad defined
by IC(A) = IE for each object A of C with structure maps induced by the unit-constraints
of E. Because of their importance IC-algebras will simply be called C-monoids. We now
make explicit what C-monoids are without referring to the definition of O-algebras for a
general C-operad O.

A C-monoid X assigns to each unit U of C an object X(U) of E, and to each object A
the tensor product X(A) =

⊗
α∈elA X(Uα) where the Uα are determined by the splittings

Uα > - A. The empty tensor product denotes the unit IE of E.
To each active morphism f : A +- B, the C-monoid assigns the tensor prod-

uct X(f) =
⊗

α∈el(A)X(fα) where X(fα) : X(Bα) → X(Uα) is the value of X at
fα : Uα +- Bα, the latter being defined by the commutative square

A
f
+- B

Uα
∧

6

+
fα

- Bα

∧

6

These data must define a contravariant functor X : Cop
act → E, i.e. for each composable

pair of active morphisms A +- B +- C we must have X(gf) = X(f)X(g) in E.
In a similar manner as in Definition 2.12ii, we identify X(B) with the tensor product⊗

α∈elA X(Bα) which allows us to identify the target of X(g) with X(B). In other words,
C-monoids are “special” presheaves on Cact, determined in a precise way by their values
at units and at active morphisms with unital domain.

In particular ∆-monoids (resp. Γ-monoids) in E are precisely associative (resp. com-
mutative) monoids in E because ∆op

act (resp. Γ
op
act) is the PRO (resp. PROP) for associative

(resp. commutative) monoids, cf. Joyal [31] and Mac Lane [39].
A Θ2-monoid has two multiplicative structures (induced by the two 2-level trees of

cardinality 2) sharing the same unit and distributing over each other. By the Eckmann-
Hilton argument Θ2-monoids are equivalent to commutative monoids, as are Θn-monoids
for any n ≥ 2. Below, Θn-monoids will simply be called n-monoids.

There is a weakening of the notion of C-monoid in E when E is the category Sets∆
op

of simplicial sets. This weakening is based on the good behaviour of weak equivalences
(i.e. those simplicial maps whose topological realisation is a weak homotopy equivalence),
including their stability under product and 2-out-of-3, as well as the existence of a product
preserving functor π0 : Sets

∆op → Sets taking weak equivalences to bijections. Moreover,
it is crucial that the category of simplicial sets is cartesian closed. Cartesian closedness
implies that simplicial C-monoids arise from simplicial presheaves Cop → Sets∆

op

provided
the latter satisfy strict Segal conditions. This leads to the following definition, see also
Section 3.12 below.
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2.15. Definition. A C∞-monoid for a unital (hyper)moment category C is a simplicial
presheaf X : Cop → Sets∆

op

such that

(i) for nilobjects A, the value X(A) is terminal;

(ii) for non-nilobjects A with representative set of elementary inert morphisms Aα > - A,
the map sA : X(A) →

∏
α∈elA X(Aα) is a weak equivalence.

A simplicial presheaf on C satisfying just (i) will be called reduced.
If C = ∆ or C = Γ these structure maps sA are known as Segal maps since they

were introduced by Segal in [44]. We shall use the same terminology for any unital
(hyper)moment category C.

A C∞-monoid yields a simplicial C-monoid provided all Segal maps are invertible
because in this case the naturality of the Segal maps induces for each active map f :
A +- B the components X(f) =

∏
α∈el(A)X(fα) of a C-monoid. In particular, the set

of path components of a C∞-monoid has the structure of C-monoid. For C = ∆,Γ,Θn a
C∞-monoid X is called group-like if π0(X) is a group.

2.16. Examples. The following table illustrates the definitions of this section. To the
special cases studied so far are added the dendroidal category Ω of Moerdijk-Weiss [42]
and the graphoidal category Γ↕ of Hackney-Robertson-Yau [26], cf. Section 3.4 below,
as well as the graphical category U for higher modular operads, introduced by the same
authors [28]. These are unital hypermoment categories (introduced in Section 3 below) to
which all definitions of this section apply (with a convenient adaptation of the group-like
condition).

C C-operad C-monoid C∞-monoid group-like C∞-monoid
Γ sym. operad comm. monoid E∞-space infinite loop space
∆ non-sym. operad assoc. monoid A∞-space loop space
Θn n-operad n-monoid En-space n-fold loop space
Ω tree-hyperoperad sym. operad ∞-operad (stable ∞-operad)
Γ↕ directed hyperoperad properad ∞-properad (stable ∞-properad)
U hyperoperad modular operad ∞-modular op. (stable ∞-modular op.)

The last two columns should be interpreted as follows: there are two Quillen model
structures on the category of reduced simplicial presheaves on C such that the fibrant ob-
jects are respectively C∞-monoids and grouplike C∞-monoids, and the homotopy category
is equivalent to the homotopy category of the claimed objects.

For ∆,Γ these results go back to Segal [44] and Bousfield-Friedlander [15].For Θn

the En-model structure may be obtained by restricting Rezk’s model structure for weak n-
categories [43] to reduced simplicial presheaves, while the model structure for n-fold loop
spaces is described in [11].

The last three rows are more involved because C-monoids have a more complicated
structure here. The Segal model structure for ∞-operads has been described by Cisinski-
Moerdijk [16] (restricting it to reduced simplicial presheaves). Related model categories
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have been investigated by Barwick [3] and Chu-Haugseng-Heuts [19]. The model structure
for ∞-properads can be obtained by restricting the model structure of Hackney-Robertson-
Yau [27]. The last row follows from recent work of the same authors [28], see also [25,
Example 6.2]. The resulting notion of U-operad is close to what Getzler and Kapranov
call a hyperoperad in [23, Section 4] disregarding any genus labeling. The role played
in [28] by the nilobjects (free-living edge and nodeless loop) in U differs slightly from our
reducedness condition.

It would of course be desirable to have a uniform proof of existence for these model
structures. The key idea is to homotopically invert the Segal maps starting from a projec-
tive (or injective) model structure on the category of reduced simplicial presheaves on C.
We hope to come back to this topic in a future paper.

3. Hypermoment categories

This section introduces hypermoment categories, which are more general than moment
categories. A hypermoment category comes equipped with an active/inert factorisation
system where there is no correspondence between inert subobjects and moments, but just
an augmentation γC : C → Γ compatible with the active/inert factorisation systems. This
induces a well-behaved notion of cardinality for the objects of C and is enough to define
C-operads and C-monoids like in Section 2.11. We then define a plus construction C+

for unital hypermoment categories C with the characteristic property that C-operads get
identified with C+-monoids.

Like in the original plus construction of Baez-Dolan [1] this is achieved by taking
“basic operators” (i.e. active morphisms with unital domain) in C to “types” (i.e. units)
in C+, and “reduction laws” in C to “operators” in C+.

It turns out that C+ can be constructed as a category of special elements of the
simplicial nerve of C. A closely related construction for operator categories has been
considered by Barwick [3] and further studied by Chu-Haugseng-Heuts [19]. Our plus
construction C+ is in general different from theirs because it also depends on the inert
part of C inexistant in an operator category.

The dendroidal category of Moerdijk-Weiss [42] and the graphoidal category of Hackney-
Robertson-Yau [26] are examples of hypermoment categories which are not moment cate-
gories because both categories have inert morphisms without active retraction. Nonethe-
less both are augmented over Γ by assigning to a dendrix (resp. graphix) its vertex set.
We will show that Ω contains the plus construction Γ+ of Segal’s category Γ as a sub-
category. This is the reason for which in Table 2.16 symmetric operads appear twice: as
Γ-operads and as Ω-monoids.

We finally deduce from the existence of the plus construction C+ a general monadicity
result for C-operads, viewed as structures on C-collections. A crucial intermediate step
is the construction of the free C+-monoid generated by a C-collection. Here we need that
C is strongly extensional and thus admits coherent pushouts of inert morphisms along
active morphisms. These pushouts are used to define an abstract insertion of C-trees into



MOMENT CATEGORIES AND OPERADS 1513

vertices of C-trees.

3.1. Definition. A hypermoment category is a category C equipped with an active/inert
factorisation system and an augmentation γC : C → Γ such that

(i) γC preserves active (resp. inert) morphisms;

(ii) γC preserves cardinality in the following sense: for each object A of C and each
element 1 > - γC(A), there is an essentially unique inert lift U > - A in C such
that U satisfies unit-axiom (U2) of Definition 2.2.

A hypermoment category is called unital if every object A of C receives an essentially
unique active morphism U +- A whose domain U is a unit of C, i.e. belongs to γ−1

C (1)
and satisfies unit-axiom (U2) of Definition 2.2.

According to Proposition 2.7 each unital moment category C of finite type admits
an essentially unique augmentation γC : C → Γ turning it into a unital hypermoment
category. The essential difference between the two notions is that in a hypermoment
category there might exist inert morphisms without active retraction. This implies that
for a given object A of a unital hypermoment category C the domain of the (essentially
unique) active morphism U +- Amight be different from the domains of inert morphisms
Uα > - A. This possibility is excluded in a unital moment category because composing
U +- A with the active retraction A +- Uα yields an active morphism U +- Uα
between units which is necessarily invertible by Lemma 2.3i. For instance, we will see
below that for a dendrix A, the active map U +- A encodes the leaves of the dendrix
while an inert map Uα > - A encodes the edges incoming into vertex α so that U ̸∼= Uα
in general.

Despite of this extra-freedom available in a unital hypermoment category, the defini-
tions of C-operad and C-monoid (cf. Sections 2.11 and 2.14) can be copied almost verba-
tim, provided we use instead of elementary moments elementary inert subobjects. Indeed,
the crucial pushforward operations of Section 1.4 apply to inert subobjects without any
modification. In particular, from now on, we shall denote by elA the set of elementary
inert subobjects of A, i.e. the set of isomorphism classes of inert morphisms with unital
domain and fixed codomain A.

Before turning to examples we establish an important relationship between rigid hy-
permoment categories and operadic categories in the sense of Batanin-Markl [6].

A unital hypermoment category C is said to be rigid if every isomorphism is an
automorphism, and every automorphism acts trivially (on the left) on active morphisms
with unital domain. In particular, units are “rigid objects” insofar as they do not have
any non-trivial automorphisms. For instance, the moment categories Γ,∆ and Θn of
Examples 1.12 are rigid, but the hypermoment categories Ω and Γ↕ treated in Section 3.4
below are not. Nonetheless, we shall see in Appendix A.5 that there is a combinatorial
way of rigidifying Ω and Γ↕ so that the following proposition can be applied to their
rigidifications.
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3.2. Proposition. The dual of the active part of a rigid hypermoment category has a
canonical structure of operadic category in the sense of Batanin-Markl [6].

Proof. See Appendix A.4.

Roughly speaking, the pushforward operations of a rigid hypermoment category C
give rise to cofibre functors on Cact which are dual to fibre functors on Cop

act as defined
by Batanin-Markl [6]. This restriction/dualisation process tends to render the categories
Cop
act closer to set-theoretical intuition because they are augmented over Γop

act, a skeleton
of the category of finite sets and maps between them. It is an interesting yet difficult
problem to determine which operadic categories arise through this restriction/dualisation
process from rigid hypermoment categories.

3.3. Remark. Our notion of C-operad for a rigid hypermoment category C is almost the
same as Batanin-Markl’s notion of operad over the corresponding operadic category Cop

act.
The difference concerns equivariance which is missing in [6]. Nonetheless, an operad
over an operadic category may have symmetries induced by the operad multiplication.
Our equivariance axiom amounts to requiring that these “external” symmetries coming
from the operad multiplication coincide with the “internal” symmetries coming from the
automorphisms of C. So, the principal difference is that in our approach C-operads are
viewed as structures on collections with symmetries while in the approach of Batanin-
Markl they are viewed as structures on collections without symmetries. Batanin shows in
[4, Proposition 3.1] that for symmetric operads both view points are equivalent.

3.4. Dendrices and graphices. The dendroidal category Ω has been introduced by
Moerdijk-Weiss [42], see also [29] for a recent presentation.

The objects of Ω (the dendrices) are finite rooted trees, the morphisms of Ω are
defined by viewing such trees as coloured symmetric operads, where the colours are the
edges of the tree, and the operations are freely generated by the vertices of the tree. The
morphisms of Ω are thus maps of coloured symmetric operads. The dendrices may have
vertices with a single incident edge (i.e. stumps) representing constant operations of the
induced coloured symmetric operad. We refer to Appendix B (especially Sections B.2 and
B.4) for a more rigorous definition.

The simplex category ∆ may be identified with the full subcategory of Ω spanned by
the linear trees without stumps. The moment structure of ∆ extends to a hypermoment
structure of Ω where γΩ : Ω → Γ takes a dendrix to its vertex set.

Mixing the active/inert factorisation system with the epi/mono factorisation system
(cf. Kock [34], [36, Section 2.15]) induces a triple factorisation system for Ω: each mor-
phism can be written in an essentially unique way as a degeneracy operator followed by
an inner face operator followed by an outer face operator.

Degeneracy operators (i.e. retractive morphisms) correspond to dropping vertices with
exactly two incident edges. Outer face operators (i.e. inert morphisms) S > - T can be
viewed as embeddings. Inner face operators (i.e. active monomorphisms) S +- T are
dual to inner edge contractions of T and can be viewed as partitions of T into subdendrices
Tα > - T indexed by the vertex set of S. Alternatively, an inner face operator S +- T
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can also be viewed as an insertion of dendrices Tα into the vertices α of S such that T
is the result of this insertion process. The active part of Ω is generated by degeneracies
and inner face operators.

In contrast to ∆, the dendroidal category Ω has non-trivial symmetries, the dendrix
automorphisms. Also, in contrast to ∆, there are inert morphisms without active retrac-
tion, namely those S > - T for which the complement of S in T does not decompose
into a coproduct of linear trees.

The dendroidal category has a single nilobject: the edge | without vertices. The units
of Ω are precisely the corollas Cn where n is the number of leaves. Unit-axiom (U2) is
satisfied because the source of a degeneracy S +- Cn has a unique vertex mapping to
the vertex of Cn so that there is a uniquely determined inert section Cn > - S. Moreover,
this property characterises corollas. Axiom (ii) of Definition 3.1 says then that for each
vertex α of a dendrix T there is an essentially unique pair consisting of a corolla Cn(α)
and an outer face operator Cn(α) > - T , where n(α) is the valency of α. The dendroidal
category is unital because for each dendrix T there is also an essentially unique pair
consisting of a corolla Cn(T ) and an inner face operator Cn(T ) +- T where n(T ) is the
number of leaves of T .

It can now be checked that Ω-operads in the sense of Definition 2.12 are tree hyperop-
erads in the spirit of Getzler-Kapranov’s hyperoperads [23]. This analogy motivated our
terminology of hypermoment category. It can also be checked by hand that Ω-monoids
are (single-coloured) symmetric operads. An early account of this last equivalence can be
found in Ginzburg-Kapranov [24, Section 1.2].

Hackney, Robertson and Yau [26] further embed the dendroidal category Ω into a
graphoidal category Γ↕. Its objects (the graphices) are finite connected graphs with directed
edges and directed leaves so that there are no oriented edge-cycles in the graph. Each
dendrix defines a graphix by directing all edges towards the root.

The morphisms of Γ↕ are definable like the morphisms of Ω, cf. Chu-Hackney [17,
Section 2.2] and [26]. It is best to describe directly the triple factorisation system for Γ↕.
Degeneracies correspond to dropping vertices with exactly one incoming and one outgoing
edge. Outer face operators (i.e. inert morphisms) are graphix embeddings, while inner
face operators (i.e. active monomorphisms) correspond to insertion of graphices into
vertices of graphices. The augmentation Γ↕ → Γ takes a graphix to its vertex set.

There is a single nilobject, the directed edge ↕ without vertices. The units are directed
corollas Cm,n with m incoming leaves and n outgoing leaves. The graphoidal category is
a unital hypermoment category because for each graphix G there are essentially unique
inert morphisms Cm(α),n(α) >

- G, resp. active morphism Cm(G),n(G) +- G determined
by the vertices α, resp. the leaves of G.

Γ↕-operads are directed graph hyperoperads in the spirit of Getzler-Kapranov [23]
while Γ↕-monoids are (set-based) properads in the sense of Vallette [45]. Indeed, the
underlying object of a Γ↕-monoid is a presheaf on (Γ↕)unit, i.e. a collection of Σm × Σn-
objects where Σm × Σn is the automorphism group of a corolla Cm,n with m incoming
and n outgoing leaves (m ≥ 0, n ≥ 0). A properad structure [45] on such a bisymmetric
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collection amounts precisely to a Γ↕-monoid structure in the sense of Section 2.14. The
reader should note that the morphism-set Γ↕(G,H) is contained in, but in general not
equal to, the set of properad morphisms between the free properads on the graphices G
and H, cf. [26, Sections 5-6]. This phenomenon is well explained by Kock [35, Section
2.4.14], cf. also Chu-Hackney [17, Theorem 2.2.19]: the set of all such properad maps
only admits a weak active/inert factorisation system for which the inert part also contains
certain free maps which are not monomorphic. The subset Γ↕(G,H) only retains those
properad maps whose inert part is monomorphic, thereby producing a genuin (orthogonal)
active/inert factorisation system on Γ↕.

3.5. Plus construction. We introduce an analog of the plus construction of Baez-
Dolan [1, Definition 15] for unital hypermoment categories C. Its characteristic property
is that C-operads get identified with C+-monoids.

The original Baez-Dolan construction was conceived for coloured symmetric operads
with a similar universal property in mind. In literature, plus constructions have been
proposed for polynomial monads (cf. [5, Section 11], [36, Section 2.2]), for Feynman
categories (cf. [33, Section 3.6]), for operadic categories (cf. [7, Section 5]), and for
symmetric monoidal categories (cf. [32, Section 3]). Each context has its own specificities
and it is not obvious how to switch from one context to the other, let alone the switch
from one plus construction to the other.

Our plus construction takes care of symmetries and has an elementary categorical
definition. We obtain a non-full embedding of the plus construction Γ+ of Segal’s category
Γ into the dendroidal category Ω of Moerdijk-Weiss [42]. This witnesses the importance
of tree combinatorics involved in the passage from C-operads to C+-monoids. Closely
related constructions may be found in [30, 2, 19, 7].

3.6. Definition. Let C be a unital hypermoment category.

• A C-tree is a pair ([m], A0 +- · · · +- Am) consisting of an object [m] of ∆ and
a functor A• : [m] → Cact such that A0 is a unit of C and no object among the Ai
is a nilobject of C except possibly Am;

• A C-tree morphism is pair (ϕ, f) consisting of a morphism ϕ : [m] → [n] in ∆ and
a natural transformation f : A → Bϕ which is pointwise inert, i.e. fi : Ai → Bϕ(i)

is inert in C for all i ∈ [m];

A C-tree morphism (ϕ, f) is called active (resp. inert) if ϕ is active and f invertible
(resp. if ϕ is inert).

A vertex of ([m], A•) is an elementary inert subobject U > - Ai for some i < m.
Vertices will be represented by inert morphims ([1], U +- A) > - ([m], A•) where
U +- A > - Ai+1 is the active/inert factorisation of U > - Ai +- Ai+1.

The plus construction C+ is the category of C-trees and C-tree morphisms.

3.7. Proposition. The plus construction takes unital hypermoment categories to unital
hypermoment categories. The augmentation γC+ : C+ → Γ takes a C-tree to its vertex
set. Units of C+ are C-trees ([1], U +- A) where U is a unit of C.
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Proof. For each C-tree ([m], A•) and active map ϕ : [m] +- [m′] such that Ai ∼= Aj
whenever ϕ(i) = ϕ(j), let us construct an active C-tree morphism (ϕ, f) : ([m], A•) +- ([m′], A′

•).
Indeed, we put A′

i = Aj where j ∈ [m] is the least integer such that i ∈ [ϕ(j), ϕ(j + 1)].
The morphisms A′

0 +- · · · +- A′
m′ are then defined by composing the obvious mor-

phisms in A•, and we get in this way an active C-tree morphism (ϕ, f) because of the
compatibility between A• and ϕ.

For a C-tree morphism (ϕ, h) : ([m], A•) → ([n], B•) write ϕ = ϕinϕact. The definition
of C-tree morphism implies that Ai ∼= Aj whenever ϕact(i) = ϕact(j). We can thus con-
struct an active C-tree morphism (ϕact, f) : ([m], A•) +- ([m′], A′

•) followed by an inert
C-tree morphism (ϕin, g) : ([m′], A′

•) > - ([n], B•) such that (ϕ, h) = (ϕin, g)(ϕact, f).
This factorisation is essentially unique because it is unique on the first factor and essen-
tially unique on the second factor.

The augmentation γC+ : C+ → Γ is defined on objects by sending a C-tree to the set
of its vertices. We shall turn this assignment into a functor by defining it as a composite
of three moment functors C+ → ∆ ≀C → Γ ≀Γ → Γ where the last functor is the assembly
functor (cf. Remark 2.10) and the middle functor is the wreath product γ∆ ≀γC of the two
augmentations. It thus remains to define the first functor. On objects it takes ([m], A•)
to ([m];A0, A2, . . . , Am−1), cf. Definition 2.8. For a C-tree morphism (ϕ, f) : ([m], A•) →
([n], B•) we have to define morphims Ai → Bj in C whenever [j, j + 1] ⊂ [ϕ(i), ϕ(i+ 1)].
By hypothesis we have a morphism Ai > - Bϕ(i) from which we obtain the required
morphism by composition with Bϕ(i) +- · · · +- Bj. The naturality of A → Bϕ
ensures that this defines indeed a functor C+ → ∆ ≀ C. If (ϕ, f) is an active (resp. inert)
C-tree morphism then its image in ∆ ≀ C is an active (resp. inert) morphism.

Let us determine the units of C+. By definition, these are the objects of C+ with a
unique vertex and subject to unit-axiom (U2). In particular, they must be of the form
([1], A•) because otherwise they would have more than one vertex (if m > 1) or none (if
m = 0). Unit axiom (U2) requires any active C-tree morphism with target a unit ([1], A•)
to admit a unique inert section. This holds actually for any C-tree ([1], A•) because it
holds on the first factor and, in general, an active C-tree morphism (ϕ, f) is retractive if
and only if ϕ is. The augmentation γC+ : C+ → Γ satisfies the lifting condition (ii) of
Definition 3.6 by construction.

For an arbitrary C-tree ([m], A•) the total composition A0 +- Am yields a unit
([1], A0 +- Am) of C+. If C is unital, the C-tree ([m], A•) receives an essentially unique
active C-tree map from ([1], A0 +- Am) so that C+ is unital as well.

3.8. Theorem. For each unital hypermoment category C, the categories of C-operads
and of C+-monoids are equivalent.

Proof. We first show that the data underlying a C-operad and a C+-monoid are equiv-
alent. It follows from Section 2.14 and Proposition 3.7 that a C+-monoid is a functor X :
(C+

act)
op → E such that for each C-tree we haveX([m], A) =

⊗
α∈γC∗ ([m],A•)

X([1], Uα +- Aα)

where ([1], Uα +- Aα) > - ([m], A•) is a vertex. Since C is unital, the functor which
associates to a unit ([1], Uα +- Aα) of C+ the object Aα of C induces an equivalence of
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categories (C+)unit
∼→ Ciso so that the underlying objects of a C+-monoid and a C-operad

are indeed equivalent. Let us denote OX : Ciso → E the corresponding underlying object
of a C-operad.

For each unit U of C, the object OX(U) of E has a distinguished “element” because
X([1], 1U) has a distinguished “element” IE = X([0], U) → X([1], 1U) induced by the
uniquely determined morphism ([1], 1U) +- ([0], U) in C+

act.
The multiplication µf : OX(A)⊗OX(f) → OX(B) for an active map f : A +- B in

C corresponds to the X-action of the morphism

([1], U +- B) +- ([2], U +- A
f
+- B)

in C+
act. Unit-, associativity- and equivariance axioms of an O-operad OX are then codified

by the X-action of certain commutative diagrams in C+
act. For instance, the associativity

constraint is induced by the commutativity of the following diagram

([3], U +- A
f
+- B

g
+- C) ([2], U +- A

gf
+- C)oo

([2], U +- B
g
+- C)

OO

([1], U +- C)

OO

oo

in C+
act. A consistent X-action with respect to these commutative diagrams is enough

to define a C+-monoid X : (C+
act)

op → E since simplicial nerves are determined by their
3-skeleton. Under this correspondence between C-operads and C+-monoids the respective
morphisms correspond as well.

There are variants of the dendroidal category Ω compatible with the active/inert
factorisation system. A dendrix is called open (resp. closed) if it has no stumps (resp.
no leaves). The active/inert factorisation restricts to the full subcategory Ωo (resp. Ωc)
of open (resp. closed) dendrices. Since the corolla without leaves is closed while all other
corollas are open, neither Ωo nor Ωc contain all units of Ω.

We call a dendrix reduced if it is either a closed dendrix or has the property that its
leaves are precisely the edges of maximal height. In particular, every corolla is a reduced
dendrix. A morphism of dendrices is said to be reduced if its active/inert factorisation
factors through a reduced dendrix and the morphism takes edges of same height to edges of
same height. Reduced morphisms compose and the subcategory Ωr consisting of reduced
dendrices and reduced dendrix morphisms is a hypermoment subcategory of Ω containing
all units of Ω.

A dendrix is planar if for each vertex the set of incoming edges is equipped with a linear
ordering. The category Ωpl of planar dendrices and planar morphisms is an example of a
rigid hypermoment category. The subcategory Ωpl

r consisting of reduced planar dendrices
and reduced planar morphisms is a hypermoment subcategory of Ωpl containing all units
of Ωpl.
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3.9. Proposition. The plus construction Γ+ (resp. ∆+) is equivalent to the hypermo-
ment category Ωr (resp. Ωpl

r ) of reduced (resp. reduced planar) dendrices.

Proof. See Appendix B.5.

3.10. Remark. Chu-Haugseng-Heuts [19] consider a subcategory ∆1
F of the category of

forests ∆F introduced by Barwick [2]. In the following discussion we consider an even
smaller category ∆̃1

F, namely the full subcategory of ∆1
F whose simplices of objects of F

contain at most once the emptyset, in accordance with our convention concerning Γ-trees
in Definition 3.6. With this convention, we get an isomorphism of categories Γ+ ∼= ∆̃1

F.
Indeed, the dual of Γact is isomorphic to a skeleton F of the category of finite sets, and
naturality squares in Γ (left)

// // +oo

��

� � //

��
+

OO

// //
+

OO
+

OO

+oo
+

OO

� � //

are equivalent by Lemma 1.19 and Axiom (MC) to pushout squares in Γact with retractive
horizontal maps (middle), which in turn are equivalent to pullback squares in F with
horizontal inclusions (right). This shows that the naturality squares used in defining
the morphisms of Γ+ and of ∆̃1

F correspond to each other and have the same horizontal
variance. The objects of Γ+ and ∆̃1

F are also in canonical one-to-one correspondence
(reversing the orientation of the vertical arrows).

In [19, Section 4] a functor ∆1
F → Ω is constructed which upon inspection (using our

convention above and Kock’s description [34] of Ω by means of tree-polynomials) induces
the equivalence of categories Γ+ ∼= ∆̃1

F ≃ Ωr of Proposition 3.9.
By [19, Theorem 5.1] the resulting hypermoment category inclusion Ωr ↪→ Ω induces

an equivalence of Segal type homotopy theories for simplicial presheaves on both sides.
This is related to work of Heuts-Hinich-Moerdijk [30] where another category of forests
than Barwick’s ∆F [2] is used to compare the Cisinski-Moerdijk model [16] with the Lurie
model [38] for ∞-operads, see also [19, Lemma 2.11].

The planar version of Proposition 3.9 is related to Baez-Dolan’s n-opetopes [1]. Start-
ing with the simplex category ∆ we can apply n times our plus construction: the units
of the resulting hypermoment category can then be viewed as a special kind of n-opetopes.
Indeed, for any hypermoment category over ∆, the plus construction comes equipped with
a functor C+ → ∆+. In particular, C-trees have an underlying ∆-tree which is a reduced
planar dendrix. This can be viewed as an interpretation of the slogan that opetopes are
“trees of trees of tress of ...”. An interesting feature of our approach is the presence of
inert morphisms and of degeneracies which might reveal so far hidden aspects of opetopes.

3.11. Segal cores, strong unitality and extensionality. We discuss here two
properties which are present in all hypermoment categories so far discussed. Strong uni-
tality permits a reformulation of the Segal conditions, cf. Definition 2.15. Extensionality
allows us to define insertion of C-trees into vertices of C-trees. We also introduce the



1520 CLEMENS BERGER

notion of Segal core of a unital hypermoment category which is closely related to the
definition of an “algebraic pattern” by Chu-Haugseng [18].

For the notion of dense subcategory, see e.g. [12], especially Lemma 1.7 therein.

3.12. Definition. The Segal core CSeg of a hypermoment category C is the full subcat-
egory of the inert part spanned by the units and the nilobjects.

A unital hypermoment category is called strongly unital if its Segal core CSeg is dense
in the inert part Cin.

This means that each object of C, when viewed as an object of the inert part, is a
canonical colimit of unit- and nilobjects. A simplicial presheaf X : Cop → Sets∆

op

is then
said to be a strict Segal presheaf (resp. Segal presheaf ) if its restriction to the inert part
takes the density colimit cocones to limit cones (resp. homotopy limit cones) in simplicial
sets. The advantage of this refined Segal condition is that it applies to general simplicial
presheaves on C. If the latter are reduced (cf. Definition 2.15i) then the (homotopy)
limit cones are actually (homotopy) product cones, and we recover the Segal condition
of Definition 2.15ii. We shall denote the category of set-valued Segal presheaves on C by
PSeg(C).

Let us indicate the Segal cores of our main examples. Let us also mention the con-
comitant notion of C-graph. A C-graph is a set-valued presheaf on the Segal core CSeg.
The category of C-graphs will be denoted P(CSeg).

C Γ ∆ Θn Ω Γ↕
CSeg 0 → 1 [0] ⇒ [1] cell-incl. of edge-incl. of edge-incl. of

glob. n-cell corollas dir. corollas
P(CSeg) graded object graph n-graph coloured coll. dir. col. coll.
PSeg(C) gr.com. monoid category n-category coloured operad col. properad

Strong unitality of Γ and ∆ have been used by Segal [44]. Strong unitality of Θn

has been used by Batanin [3] and the author [10] to decompose an n-level tree into a
canonical colimit of its linear subtrees. These colimit cocones induce the decomposition
of an n-dimensional globular pasting scheme into globular cells, cf. Leinster [37]. Strong
unitality of Ω (resp. Γ↕) translates into a canonical decomposition of dendrices into vertex-
corollas (resp. of graphices into directed vertex-corollas). In all five cases, these colimit
decompositions enter into the Segal model structure for simplical presheaves on C, cf.
[43, 16, 27]. In Proposition B.3 below we shall show that the plus construction Γ+ is
strongly unital as well.

3.13. Proposition. The plus construction C+ of a strongly unital hypermoment category
C is strongly unital.

Proof. By Proposition 3.7, the Segal core C+
Seg of the plus construction C+ is spanned

by C-vertices ([1], U +- A) and C-edges ([0], V ) where U, V are units of C and A is an
arbitrary object of C.
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The augmentation γC : C → Γ induces a functor (γC)
+ : C+ → Γ+ which in turn

induces functors C+
in → Γ+

in and C+
Seg → Γ+

Seg compatible with the respective notions of
vertex, edge and incidence relation. Strong unitality of C+ amounts to the property that
the nerve functor C+

in → P(C+
Seg) is fully faithful. Since it follows from Proposition B.3

that Γ+
in → P(Γ+

Seg) is fully faithful, and fully faithful functors are stable under pullback,
it suffices to show that the following diagram of functors

C+
in

//

��

Γ+
in

��
P(C+

Seg)
// P(Γ+

Seg)

induces a fully faithful comparison functor C+
in → P(C+

Seg)×P(Γ+
Seg)

Γ+
in.

For C-trees ([m], A•) and ([n], B•) a morphism in P(C+
Seg) ×P(Γ+

Seg)
Γ+
in consists of an

inert morphism between Γ-trees (resp. reduced dendrices by Proposition 3.9), together
with compatible mappings between the edge- and vertex-sets of ([m], A•) and ([n], B•).
It remains to be shown that such data stems from a uniquely determined inert C-tree
morphism (ϕ, f). The simplicial component ϕ : [m] > - [n] is identical to the simplicial
component in Γ+

in. The individual fi : Ai > - Bϕ(i) of the natural transformation f• :
A• → Bϕ(•) may be constructed as follows:

Recall that the edge-set of ([m], A•) is the set of inert morphisms of the form ([0], V ) > - ([m], A•),
and the vertex-set of ([m], A•) is the set of inert morphisms ([1], U +- A) > - ([m], A•).
They are taken (by the P(C+

Seg)-component) to edges, resp. vertices of ([n], B•). For i = 0,
since A0 is a unit object, the map A0 >

- Bϕ(0) represents the image of the root-edge of
([m], A•) in ([n], B•), and is thus uniquely determined. Assume inductively that we have
constructed Ai−1 >

- Bϕ(i−1). To complete the undotted diagram

Ai //
fi // Bϕ(i)

Ai−1

+

OO

//
fi−1

// Bϕ(i−1)

+

OO

observe that the edge-set (i.e. the set of elementary inert subobjects) of Ai admits a
partition into edge-subsets corresponding to the different vertices of height i − 1. This
partition is induced by the active map Ai−1 +- Ai, cf. Proposition 2.6 and Section
B.2. Therefore, each of these edge-subsets corresponds to an inert subobject of Ai taken
to Bϕ(i) by an inert map. This is done in a compatible way with vertices and incidence
relations. The individual edges of Ai are thus also taken compatibly to Bϕ(i). By strong
unitality of C these inert maps glue together and define a uniquely determined inert map
fi : Ai > - Bϕ(i) rendering the square commutative. By induction, we get the required
C-tree morphism (ϕ, f).
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3.14. Definition. A unital hypermoment category is called extensional if elementary
inert morphisms admit pushouts along active morphisms, and these pushouts are inert.

These pushouts exist in Γ (they are dual to pullbacks of partial identities). They exist
in ∆ as well, and using the wreath product, in Θn too. A direct inspection shows that
they exist in Ω and Γ↕, cf. Hackney [25]. In all these cases, the pushouts are preserved
under the augmentation. Moreover, inert morphisms are generated (under composition
and pushout) by inert morphisms having unital or nil-domain so that we get existence of
pushouts of general inert morphisms along active morphisms. This extensionality property
of an active/inert factorisation system is dual to what is known in computer science
literature as a modality.

Note that every extensionality pushout square

A // // B ◦α A

U

+

OO

//
α

// B

+

OO

has parallel inert and active morphisms as depicted. Indeed, the upper horizontal mor-
phism is inert by definition, while the right vertical morphism is active because the left
part of any orthogonal factorisation system is stable under pushout.

3.15. Remark. It is worthwhile noting that extensionality of ∆ is the key ingredient of
the theory of decomposition spaces of Gálvez-Kock-Tonks (cf. [21]). A decomposition
space is a simplicial presheaf on ∆ taking the extenionsality pushout squares of ∆ to
homotopy pullback squares in simplicial sets. In particular, if the decomposition space is
discrete, we get genuin pullback squares in sets.

Extensionality of a hypermoment category C can be reformulated as follows: since
Γop is the category FinSet∗ of finite based sets, cf. Examples 1.12a, the augmentation
γC : C → Γ induces a cardinality presheaf γopC : Cop → FinSet∗. The hypermoment
category C is then extensional if and only if this cardinality presheaf γopC is a discrete
decomposition space in the aforementionned sense. This condition is weaker than being a
discrete Segal presheaf as defined after Definition 3.12. Note that the cardinality presheaf
γop∆ is a simplicial model for the circle yielding Segal’s delooping machine (cf. [44]), while
the cardinality presheaf γopΘn

is a Θn-model for the n-sphere yielding the author’s n-fold
delooping machine (cf. [11]).

The following reinforcement of extensionality should be compared with the extendable
algebraic patterns of Chu-Haugseng [18, Definition 7.7].

3.16. Definition. An extensional hypermoment category is called strongly extensional
if for every family of active morphisms (fα : Uα +- Bα)α∈el(A) indexed by the elementary
subobjects α : Uα > - A of A, there is an essentially unique active morphism f : A +- B
such that the active part of f ◦ α is fα for all α ∈ el(A).

A unital hypermoment category C is strongly extensional provided C is extensional,
strongly unital, and pushing forward along any active morphism f : A +- B takes the
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density colimit cocone of A to a colimit cocone of B (in Cin). This property holds in
all examples we have considered so far, except for the hypermoment categories arising as
plus construction where a weaker condition holds.

Observe that the objects ([n], A•) of C+, the C-trees, are graded by their height
ht([n], A•) = n. The elementary subobjects α : ([1], U +- A) > - ([n], A•), i.e. the
vertices of ([n], A•), are also graded by their height ht(α), formally defined by the image
[ht(α), ht(α) + 1] of the interval [1] under the inert morphism α. Both gradings are the
natural one’s in the special case C+ = Γ+, cf. Appendix B.

We call C+ coherently extensional if the condition of Definition 3.16 is only required
for coherent families (fα : Uα +- Bα)α∈el(A), i.e. those families which satisfy that
ht(α) = ht(β) implies ht(Bα) = ht(Bβ). In the special case C+ = Γ+ this coherence
condition ensures the existence of A +- B inside Γ+ ≃ Ωr which otherwise would only
exist in Ω, cf. Appendix B.4 and Remark 3.18.

3.17. Proposition. Let C be a unital hypermoment category.

(a) If C is extensional then so is C+;

(b) If γC preserves the extensionality pushout squares then so does (γC)
+.

(c) If C is strongly extensional then C+ is coherently extensional.

Proof. (a) We have to construct a pushout of the span

([m], B•) �+ ([1], U +- A) > - ([n], A•)

in C+. The inert morphism on the right induces the right square below

Bm A // // Ai+1

B0

+

OO

U

+

OO

// // Ai

+

OO

while the total composition of the C-tree ([m], B•) on the left may be identified with the
left vertical morphism. By extensionality of C, we can thus push forward along U > - Ai
the m-simplex B0 +- · · · +- Bm. This defines a C-tree

([n+m− 1], A0 +- · · ·Ai +- A
(1)
i · · · +- A

(m−1)
i +- Ai+1 · · · +- An)

realising the required pushout of the span.
(b) Since extensionality pushout squares are constructed in the same way in C+ and

in Γ+, they are preserved under (γC)
+ whenever thay are so under γC.

(c) We carry out the construction for each level of A, i.e. for each active morphism
Ai +- Ai+1, separately. A coherent family of C-trees indexed by the vertices of A
restricts to a family of C-trees of same height mi for each elementary subobject of Ai, i.e.
vertex of A of height i. Using strong extensionality of C, we construct level by level an
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mi-simplex A
(0)
i +- A

(1)
i +- · · · · · · +- A

(mi)
i = Ai+1 which has the required property

with respect to the vertices of height i in A.
Concatenating these mi-simplices for i = 0, . . . , n − 1, yields the required C-tree B

which comes equipped with an obvious active C-tree morphism A +- B enjoying the
required property with respect to all vertices of A.

3.18. Remark. The extensionality pushout ([n], A•) ◦α ([m], B•) constructed in (a) may
be viewed as the result of inserting the C-tree ([m], B•) into the vertex represented by
α : ([1], U +- A) > - ([n], A•). Indeed, after application of (γC)

+ : C+ → Γ+, the
pushout realises the tree-insertion of the respective reduced dendrices in Γ+ ≃ Ωr, cf.
Appendix B. The reader should however keep in mind that tree-insertion in Ωr differs
from tree-insertion in Ω because inserting a reduced dendrix into the vertex of another
reduced dendrix may result in a non-reduced dendrix inside Ω. It is a pleasant feature of
the categorical pushout that it performs precisely the right thing to correct this failure.

The extensionality pushout constructed in (c) corresponds to a simultaneous insertion
of the given coherent family of C-trees into all vertices of A. The coherence condition
guarantees that the result of this insertion process corresponds after application of (γC)

+ :
C+ → Γ+ to a geometric insertion of the corresponding reduced dendrices (cf. [5, Chapter
IV]). In Section B.4 general active morphisms ϕ : S +- T of dendrices are described
as families (Tα)α∈V (S) of subdendrices of T , indexed by the vertices of S and fulfilling a
weaker coherence condition. If S and T are reduced dendrices then ϕ is a reduced dendrix
morphism precisely when the subdendrices Tα, Tβ of T have same height whenever the
vertices α, β have same height in S.

The categorical pushout S ◦α Tα in Ωr inserts Tα into the vertex α of S and simultane-
ously a stretched corolla Cβ of same height as Tα into each vertex β of S of same height
as α. This produces a reduced dendrix T representing the categorical pushout S ◦α Tα in
Ωr, and this is the way the categorical pushout (a) should be thought of. Note that the
stretched corolla Cβ is obtained from the original corolla Cβ in S by replacing its input
edges with linear trees of appropriate height.

3.19. Monadicity. Our final goal is to show that for strongly extensional hypermoment
categories C, the forgetful functor from C-operads to C-collections is monadic. Our proof
uses the equivalence between C-operads and C+-monoids as well as an explicit formula
for the free C+-monoid generated by a C-collection.

Similar monadicity results have been obtained by Getzler [22, Corollary 2.8], Kaufmann-
Ward [33, Theorems 1.5.3 and 1.5.6], Chu-Haugseng [18, Section 8] and Batanin-Markl
[8, Section 3].

A key ingredient is the existence of a simultaneous C-tree insertion even if the family
of C-trees to be inserted is not coherent. The trick is that any family can be replaced with
a coherent family in a canonical and optimal way. We need a notion of C-tree contraction
formally inverse to C-tree stretching.

3.20. Definition. An active C-tree morphism (ϕ, f) : ([m], A•) +- ([n], B•) is called a
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k-contraction ifm = n+k and ϕ(n) = ϕ(n+1) = · · · = ϕ(m) and An
=
+- An+1

=
+- · · ·

=
+- Am

and fi : Ai
=→ Bϕ(i) for i = 0, . . . , n− 1.

The simplicial operator ϕ is the composite of k elementary degeneracy operators of
last index. Each C-tree contraction B +- A has an inert section A > - B whose first
component is a composite of simplicial face operators of last index. The vertices of B
not contained in the image of A > - B are effaceable, i.e. they come equipped with a
contraction to a nil-C-tree ([0], U) for some unit U of C. Note that every object A of C
induces a unit-C-tree ([1], UA +- A), but only those unit-C-trees of the form ([1], 1U)
come equipped with a contraction to a nil-C-tree. They corepresent effaceable vertices.

3.21. Lemma. Let C be a strongly extensional hypermoment category and let A be a C-
tree. For any family (Uα +- Aα)α:Uα

> - A of C-trees indexed by the vertex set of A,
there is an active C-tree morphism f : A +- B such that

1. for each α : Uα
> - A, the given C-tree Uα +- Aα factors through a kα-

contraction rα : Bα +- Aα inducing a commutative diagram

A
f
+- B

Uα

α
∧

6

+
fα

- Bα

∧

6

+
rα

- Aα

2. the contraction degree kf =
∑

α:Uα
> - A kα of f : A +- B is minimal among the

contraction degrees kf̃ of all f̃ : A +- B̃ fulfilling (1);

3. the C-tree B is up to isomorphism uniquely determined by (1) and (2).

Proof. Recall that the vertices α : Uα
> - A are graded by height so that for a given

height h in A we get a positive integer mh = max{ht(Aα) | ht(α) = h}. We now define
for a fixed height h in A, C-trees Bα of height mh obtained from Aα by a kα-stretching
where kα = mh− ht(Aα). Note that we get corresponding kα-contractions Bα +- Aα in
the sense of Definition 3.20.

If we do this for all vertices of A we get a coherent family of C-trees Bα together
with kα-contractions rα : Bα +- Aα. Consequently, an application of Proposition 3.17c
yields an active C-tree morphism f : A +- B completing diagram (1) above. It is then
straighforward to check that properties (2) and (3) hold as well.

3.22. Theorem. For any strongly extensional hypermoment category C and any cocom-
plete closed symmetric monoidal category E, the forgetful functor from C-operads to C-
collections in E is monadic.
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Proof. Theorem 3.8 shows that the categories of C-operads and C+-monoids are equiva-
lent. Under this equivalence the forgetful functor corresponds to the functor which takes
a C+-monoid Y : (C+

act)
op → E to its restriction U+(Y) : (C+

unit)
op → E to the full sub-

category spanned by the unit C-trees, cf. the proof of Theorem 3.8. It is thus sufficient
to show that U+ is monadic.

For X : (C+
unit)

op → E we define a C+-monoid F+(X) : (C+
act)

op → E as follows. For
each unit C-tree U let F+(X)(U) denote the coend

F+(X)(U) = I⊗C+
act(U,−) ⊗AutU (−) S(X,−) where S(X, B) =

⊗
V β

> - B

X(V β)

and I denotes the monoidal unit of E. The coend exists by cocompleteneness.
Informally, F+(X)(U) is a coproduct indexed by C-trees whose total composition be-

longs to the active component of U , where the summands are tensor products of values of
X according to the vertices of the indexing C-tree. The coend identifies automorphisms
induced by C-tree symmetries with those induced by X.

In order to endow F+(X) with a C+-monoid structure, we set (cf. Section 2.14)

F+(X)(A) =
⊗

Uα
> - A

F+(X)(Uα).

The data of a C+-monoid consists of suitable maps F+(X)(A) → F+(X)(U) for all active
C-tree morphisms U +- A with unital domain.

Observe that the value F+(X)(([0], V )) at a nil-C-tree is the monoidal unit I of E
and that for a unit-C-tree ([1], 1V ) with effaceable vertex, the value F(X)(([1], 1V )) con-
tains a distinguished element represented by the identity 1V . There is thus a map
F+(X)(([0], V )) → F+(X)([1], 1V ) corresponding to this distinguished element. Con-
sequently, any C-tree contraction Bα +- Aα induces a canonical map S(X, Aα) →
S(X, Bα) obtained by tensoring S(X, Aα) with maps I → X(V ) for effaceable vertices
V > - Bα not contained in the image of Aα > - Bα.

We now construct the required maps F+(X)(A) → F+(X)(U) for active C-tree mor-
phisms U +- A. Since by closedness of E coproducts distribute over tensor products,
a typical element of F+(X)(A) is associated to a family of C-trees Uα +- Aα indexed
by vertices Uα

> - A. By Lemma 3.21 this family defines an essentially unique active
C-tree morphism A +- B inducing a canonical map⊗

Uα
> - A

S(X, Aα) −→
⊗

Uα
> - A

S(X, Bα)

whose right hand side may be identified with S(X, B) because the vertex set of B is the
disjoint union of the vertex sets of the Bα by Lemma 2.5. Together with U +- A +- B
this represents an element of F+(X)(U).

The functoriality of F+(X) with respect to active C-tree morphisms follows from the
fact that (via the above constructed map) F+(X)(A) may be identified with a direct
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summand of F+(X)(U), namely the one associated with those active C-tree morphisms
U +- B which factor through U +- A.

Any map of C+-monoids F+(X) → Y restricts to U+F+(X) → U+(Y). Precomposing
with the canonical unit map X → U+F+(X) yields an adjoint map of C-collections X →
U+(Y). Conversely, starting with the latter, we get a map of C+-monoids F+(X) →
F+U+(Y). Since Y is a C+-monoid, there is a canonical counit map of C+-monoids
F+U+(Y) → Y. The triangular identities follow readily from the definitions as well as
the fact that algebras over the monad U+F+ may be identified with C+-monoids in E.

3.23. Corollary. For any functor f : C → D of strongly extensional hypermoment cat-
egories the restriction functor f ∗ : OperD(E) → OperC(E) admits a left adjoint extension
functor f! : OperC(E) → OperD(E).

Proof. This is an immediate consequence of the adjoint lifting theorem because the
functor of presheaf categories f ∗ : CollD(E) → CollC(E) has a left adjoint.

3.24. Remark. Theorems 3.8 and 3.22 together with their proofs provide an explicit for-
mula for the C-operad freely generated by a C-collection. In the special case C = Γ we
recover the classical formula for the free symmetric operad generated by a symmetric collec-
tion with the difference that in our formula only reduced dendrices occur, while classically
general dendrices are used. This difference is handled by a stretching/contraction process
and reflects the fact that symmetric operads can be represented as well as Γ+-monoids as
well as Ω-monoids.

As an application of Corollary 3.23 we recover Batanin’s symmetrisation functor
(γΘn)! : OperΘn

(E) → OperΓ(E) turning an n-operad into a symmetric operad, cf. Re-
mark 2.13c and [4]. One of the main results of [4] states that simplicial algebras over a
cofibrant replacement of the terminal Θn-operad are models for n-fold loop spaces because
the symmetrisation of such a replacement is an En-operad. On the other hand, the au-
thor showed in [11] that (Θn)∞-monoids are also models for n-fold loop spaces. This is
certainly not a coincidence and suggests that an analogous result holds for any strongly
extensional hypermoment category.

A. Operadic categories from rigid hypermoment categories

In this appendix we make explicit the structure of operadic category carried by the dual
of the active part of a rigid hypermoment category. This produces valuable examples of
operadic categories. For our convenience we actually show that the active part of a rigid
hypermoment category is a cooperadic category. Let us review its definition, obtained by
dualising the definition of an operadic category.

A.1. Cooperadic categories. A category C is said to be cooperadic (cf. Batanin-
Markl [6, Part 1,Section 1]) if C comes equipped with

1. designated initial objects in each connected component,
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2. a cardinality functor γC : C → Γact,

3. for each pair (f, α) consisting of a morphism f : A→ B and an element α ∈ γC(A),
there is given an object Bα in C, called the cofibre of f over α, such that γC(Bα) =
γC(f)(α), and the following five axioms hold:

Axiom (i): the cardinality of initial objects is one.

Axiom (ii): the cofibres of identity morphisms are designated initial.

Axiom (iii): for each α ∈ γC(A) and each f : B → C under A there is a morphism
fα : Bα → Cα depending functorially on f (i.e. (gf)α = gαfα).

Axiom (iv): for each morphism f : B → C under A, and elements α ∈ γC(A),
β ∈ γC(A→ B)(α), the cofibre of f over β coincides with the cofibre of fα over β.

Axiom (v): consider the following commutative diagram

A k //

�� ��

A′

h

��

f

��
B g

// C

and assume given α ∈ γC(A) and α′ ∈ γC(k)(α). According to Axiom (iii) we get a
commutative triangle

(A′)α
fα

||

hα

""
Bα gα

// Cα

where by assumption α′ ∈ γC(A
′
α). It is then required that (gα)α′ = gα′ .

A.2. Rigid hypermoment categories. Recall that a unital hypermoment category is
said to be rigid if every isomorphism is an automorphism, and every automorphism acts
trivially on active morphisms with unital domain.

A.3. Lemma. In a rigid hypermoment category, every morphism with unital domain has a
uniquely determined active part. In particular, every object receives a uniquely determined
active morphism from a uniquely determined unit.

Proof. Since isomorphisms are automorphisms, two active/inert factorisations of the
same morphism can only differ by an automorphism of the middle object. If the domain is
unital such an automorphism acts trivially so that the active part is uniquely determined.
The second assertion follows then from the definition of a unital hypermoment category.
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Each connected component of the active part Cact has thus a uniquely determined
initial object Uα which will be the designated initial object. By restriction we get a
cardinality functor γC : Cact → Γact with values in Γact. For each f : A +- B and
each element α : 1 > - γC(A) there is a unique inert lift Uα > - A in C. We will
tacitely identify elements of γC(A) with their inert lifts. The active/inert factorisation of
Uα > - A +- B yields Uα +- Bα > - B. By Lemma A.3, the active part Uα +- Bα

is uniquely determined so that its target Bα can serve as the cofibre of f over α. We thus
get the underlying data of a cooperadic category.

A.4. Proof of Proposition 3.2. Let us now check that for each rigid hypermoment
category the active part satisfies the five axioms of a cooperadic category.

Axioms (i) and (ii) follow immediately from the definitions. For Axiom (iii) consider
the following diagram

Uα

α
��

~~   

A

~~   
Bα

fα

88
iBα // B

f // C Cα
iCαoo

in which the dotted (resp. undotted) arrows are inert (resp. active). It suffices to apply
the active/inert factorisation system to the composite morphism fiBα : Bα > - B +- C
to get iCαfα : Bα +- Cα > - C. The functoriality of the assignment f 7→ fα is a
consequence of the uniqueness of the active/inert factorisation system, due to rigidity.

For Axiom (iv) observe that for β : U > - Bα the active/inert factorisation of the
composite morphism fiBαβ can be achieved in two steps, first replacing iBα f with iCαfα, then
applying the factoriation system to fαβ. Finally, for Axiom (v), the argument just given
for Axiom (iv), shows that (gα)α′ and gα′ have same sources and targets. The argument
actually also shows that the two morphisms coincide.

This completes the proof of Proposition 3.2.

A.5. Rigidification. The moment categories Γ, ∆, and Θn of Examples 1.12 are rigid
hypermoment categories. We get as associated operadic categories respectively (a skeleton
of) the category of finite sets, the category of finite ordered sets, and the category of n-level
trees of Batanin [4]. The latter embeds canonically into Joyal’s category of combinatorial
n-disks [31] which is isomorphic to Θop

n , cf. [11].
The hypermoment categories Ω and Γ↕ of Section 3.4 are not rigid. However, there are

planar versions of Ω and Γ↕ which are rigid. There is also a different, purely combinatorial
way of rigidifying Ω (resp. Γ↕) by endowing a dendrix (resp. graphix) with linear orderings
of the incoming/outgoing leaves, and also with linear orderings of the incoming/outgoing
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edges of each vertex. If the active morphisms are required to preserve the linear orderings
of the leaves and also to convert the linear ordering of a vertex-corolla to the linear
ordering of the leaves of the expanded tree, then we get a rigid hypermoment category with
associated operadic category. It would be most useful to know which unital hypermoment
categories admit such combinatorial rigidifications and, if so, how to construct them in
an intrinsic way.

B. Embedding Γ+ into the dendroidal category Ω

In this appendix the plus construction Γ+ is identified with a hypermoment subcategory
Ωr of Ω. The latter consists of reduced dendrices and reduced dendrix morphisms, cf.
Section 3.4. This embedding Γ+ ↪→ Ω is interesting for two reasons.

First, although implicit in the comparison of two notions of∞-operad by Chu-Haugseng-
Heuts [19], the hypermoment subcategory Ωr has so far not attracted much attention
despite of the surprising fact that from a homotopical point of view Ωr does the same job
as Ω, cf. [19, Theorem 5.1] and Remark 3.10.

Second, each unital hypermoment category C induces a functor of plus constructions
(γC)

+ : C+ → Γ+. In particular, the objects of C+, the so-called C-trees, may be viewed
as reduced dendrices equipped with further structure: a colouring of the edges by units
of C. This yields a geometric perspective on our plus construction.

Via the isomorphism Γ+ ∼= ∆̃1
F of Remark 3.10, our embedding Γ+ ↪→ Ω is induced by

the functor τ : ∆1
F → Ω constructed in [19, Section 4]. Taking the image of τ eliminates

certain “degenerate” objects from the original ∆1
F. While Chu-Haugseng-Heuts rely on

Kock’s combinatorial description [34] of the dendroidal category Ω, we stick here as closely
as possible to the original definition of Moerdijk-Weiss [42].

B.1. Reduced dendrices and Γ-trees. –

Let ([m], A0 +- · · · +- Am) be a Γ-tree as in Definition 3.6. We now associate
to such a Γ-tree in an informal way a dendrix, see Figure 1. The objects of Γ are viewed
as finite sets. The elements of Ai are the edges of height i of the dendrix associated with
([m], A•). The active morphism Ai +- Ai+1 encodes which edges of Ai+1 are supported
by a given edge of Ai. If an element of Ai indexes the empty subset of Ai+1 then the
corresponding edge gets a stump. If Am ̸= 0 then the dendrix has as many leaves as there
are elements in Am.

We get in this way a dendrix which is closed if and only if Am = 0 and otherwise has
all its leaves at maximal height, and no edges with stump at maximal height. This is the
definition of a reduced dendrix. Conversely, every reduced dendrix determines a unique
Γ-tree to which it is associated. Notice that this correspondence is compatible with the
respective notions of vertex.

B.2. Combinatorial description of inert dendrix morphisms. In order to give
a rigorous definition of the previous correspondence we have to decribe first the inert part
of the dendroidal category in purely combinatorial terms.
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1 2 3 3

•
1

•
2 2

+(∅,{1,2,3}}

OO

•
1

•
2 2

+({1,2},∅)

OO

•

1 1

+({1,2})

OO

Figure 1: Reduced dendrix and corresponding Γ-tree

A dendrix S is given by a finite set E(S) of edges and a finite set V (S) of vertices,
equipped with an incidence relation such that each edge is incident to at most two vertices,
and each vertex has a distinguished incident edge. This distinguished edge is called
outgoing while the other incident edges of the same vertex are called incoming. Two
axioms must be satisfied: (1) all inner edges (i.e. those incident to two vertices) are
outgoing from one and incoming into the other incident vertex; (2) there is a unique
outer (i.e. non-inner) edge, the so-called root, such that each edge is linked to the root
through an oriented edge-path. The outer non-root edges are called leaves. We assume
that dendrices are non-empty, and that there is a dendrix | (the free-living edge) with a
single edge but no vertices. For each non-negative integer k ≥ 0 there is a dendrix Ck
with a single vertex having k incoming edges and one outgoing edge. This dendrix Ck is
called a corolla of arity k. More generally, a vertex of a dendrix is said to a have arity k
if it has precisely k incoming edges.

An inert morphism S > - T between dendrices S, T is given by a pair of maps
(V (S) → V (T ), E(S) → E(T )) respecting the incidence relations, the distinguished out-
going edges, and the vertex arities. The inert part Ωin of the dendroidal category of
Moerdijk-Weiss [42] consists precisely of dendrices and inert morphisms between them.
Recall from Definition 3.12 that the Segal core ΩSeg is the full subcategory of Ωin spanned
by the free-living edge | and the corollas Ck.

Set-valued presheaves on ΩSeg are called Ω-graphs. The functor taking a dendrix S
to its Ω-graph S∗ = Ωin(−, S) is a fully faithful functor Ωin → P(ΩSeg). This is just a
reformulation of strong unitality of Ω, cf. Section 3.11 and [12, Section 1.6].

We now define a comparison functor Γ+
in → Ωin. Each Γ-tree ([m], A•) defines a dendrix

S([m],A•) = (E([m],A•)), V([m],A•)) by letting the edge-set be the set of inert subobjects of
the form ([0], 1) > - ([m], A•) and the vertex-set be the set of inert subobjects of the
form ([1], 1 +- k) > - ([m], A•) for varying k ≥ 0. An edge is incident to a vertex
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when it factors through it. It is incoming (resp. outgoing) if the first component of
([0], 1) > - ([1], 1 +- k) takes 0 to 1 (resp. 0).

Inert morphisms of Γ-trees ([m], A•) > - ([n], B•) induce (by postcomposition) inert
morphisms S([m],A•)

> - S([n],B•) between the associated dendrices.

B.3. Proposition. The comparison functor Γ+
in → Ωin is fully faithful. Its essential

image is spanned by the reduced dendrices. In particular, the hypermoment category Γ+

is strongly unital (cf. Definition 3.12).

Proof. Notice first that the comparison functor identifies the Segal core of Γ+ with the
Segal core of Ω. Indeed, the units ([1], 1 +- k) of Γ+ are taken to the corollas Ck, and the
nilobject ([0], 1) of Γ+ is taken to the free-living edge |. Moreover, the unit ([1], 1 +- k)
has the same automorphism group in Γ+ as the corolla Ck in Ω, and there are precisely
k + 1 inert morphisms ([0], 1) > - ([1], 1 +- k) in Γ+ corresponding to the k + 1 edge-
inclusions | > - Ck in Ω. Between distinct units there are no inert morphisms neither
in Γ+ nor in Ω. We can thus identify the category P(ΓSeg) of Γ-graphs with the category
P(ΩSeg) of Ω-graphs getting the following commutative diagram of functors

Γ+
in

//

��

Ωin

��
P(ΓSeg) P(ΩSeg)

in which the right vertical functor is fully faithful. Therefore, the upper horizontal functor
is faithful (resp. full) if and only if the left vertical functor is so.

Now, an inert morphism between Γ-trees is completely determined by what it does to
the edges of the associated dendrices. This proves faithfulness. For Γ-trees ([m], A•), ([n], B•)
consider an inert morphism S([m],A•)

> - S([n],B•) between the associated dendrices. The
root of S([m],A•) is taken to an edge of S([n],B•) which has a well-defined height h inside
S([n],B•) (where the height of the root is 0). This defines a unique inert map ϕ : [m] → [n]
in ∆ taking 0 to h. Moreover, the induced edge-map E(S([m],A•)) → E(S([n],B•)) defines
inert maps fi : Ai > - Bϕ(i) in Γ for all i ∈ [m]. The pair (ϕ, f) defines an inert
map ([m], A•) > - ([n], B•) in Γ+ which by construction is taken to the given inert
map S([m],A•)

> - S([n],B•) in Ω. This proves fullness and hence strong unitality of the
hypermoment category Γ+.

The functor Γ+
in → Ωin induces on objects the one-to-one correspondence of Section

B.1 so that the essential image of Γ+
in → Ωin consists precisely of reduced dendrices and

inert morphisms between them.

B.4. Combinatorial description of general dendrix morphisms. In order to
relate Γ-tree and dendrix morphisms in total generality, we have to make explicit the free
coloured (symmetric) operad generated by a dendrix. This construction has been discussed
at several places in literature, see e.g. [13, 42, 46, 34, 29]. For sake of completeness let us
review it here.
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Each coloured operad O has an underlying Ω-graph UΩO for which (UΩO)(|) is the
colour-set of O, and (UΩO)(Ck) is the set of k-ary operations of O. The action of Aut(Ck)
accounts for the symmetries, while the remaining presheaf action of UCO determines
inputs and output of the individual operations. This forgetful functor UΩ has a left
adjoint FΩ. The associated monad TΩ = UΩFΩ on the category of Ω-graphs fixes the
colour-set and has for any Ω-graph X the following description

TΩ(X)(Ck) =
∐
[S]

Ωact(Ck, S)×Aut(S) HomP(ΩSeg)(S∗, X)

where the coproduct ranges over isomorphism classes of dendrices. The relevant case is
whenX = T∗ is the Ω-graph induced by a dendrix T . We get as set of free k-ary operations
TΩ(T∗)(Ck) the set of pairs (S, σ) consisting of a subdendrix (i.e. inert subobject) S of T
and a bijection σ between the leaves of Ck and the leaves of S. The same construction
based on the formalism of tree-polynomials is described by Kock in [34, Corollary 1.2.10].

It turns out that UΩ is monadic (cf. Weber [46, Example 2.14]) so that for any
dendrices S, T we get the following Kleisli-type description of the morphism-set

Ω(S, T ) = HomP(ΩSeg)(S∗, TΩ(T∗))

based only on the inert part of Ω and the free-forgetful monad TΩ on Ω-graphs. Notice
that the inclusion Ωin ⊂ Ω is induced by the unit η : idP(ΩSeg) → TΩ, and composition in
Ω is induced by the multiplication µ : T 2

Ω → TΩ of the monad.
In more geometrical terms, a dendrix morphism S → T is represented by a family

(Tα)α∈V (S) of subdendrices of T , indexed by the vertex-set of S, and subject to the fol-
lowing two conditions: (1) the leaves (resp. root) of Tα are in bijection with the incoming
(resp. outgoing) edges of α, (2) the subdendrices Tα are grafted inside T according to the
same pattern as the vertex-corollas α inside S.

We can now assign to each Γ-tree morphism ([m], A•) → ([n], B•) a dendrix morphism
S([m],A•) → S([n],B•) by means of a family (Tα)α∈V (S([m],A•))

in which Tα represents the
subdendrix of S([n],B•) obtained by factorising

([1], 1 +- k)
α

> - ([m], A•) → ([n], B•)

into an active followed by an inert morphism in Γ+ and using Section B.2.
Conditions (1)-(2) are then satisfied because of the essential uniqueness of the ac-

tive/inert factorisation system. This construction defines a functor Γ+ → Ω taking inert
(resp. active) morphisms to inert (resp. active) morphisms, and restricting to the com-
parison functor Γ+

in → Ωin of Section B.2.

B.5. Proof of Proposition 3.9. We treat only the moment category Γ because the
proof for ∆ is completely analogous. It remains to be shown that the comparison functor
Γ+ → Ω of Section B.4 induces an equivalence of categories Γ+ ≃ Ωr. This is clear with
regard to objects and inert morphisms using Sections B.1 and B.2. Since the comparison
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functor respects the active/inert factorisation, the image-morphism of any Γ-tree mor-
phism (ϕ, f) : ([m], A•) → ([n], B•) factors through a reduced dendrix. It follows from the
definition of a Γ-tree morphism that edges of same height (i.e. elements of Ai) are taken
to edges of same height (namely elements of Bϕ(i)). Therefore, the comparison functor
Γ+ → Ω factors through Ωr.

Assume conversely we are given a reduced dendrix morphism S([m],A•) → S([n],B•). The
condition on the edge-heights determines a functor ϕ : [m] → [n] in ∆. The dendrix
morphism itself is represented by a coherent family of reduced subdendrices of S([n],B•),
see Section B.4. Using Section B.2 this family lifts to a coherent family of inert sub-
objects of ([n], B•) indexed by the vertex-corollas of ([m], A•). In particular, each edge
([0], 1) > - ([m], A•) is taken to a well-defined edge ([0], 1) > - ([n], B•) in accordance
with ϕ. This defines maps fi : Ai → Bϕ(i) and hence a Γ-tree morphism (ϕ, f). This
Γ-tree morphism corresponds to the given dendrix morphism because any subdendrix of a
dendrix is completely determined by its leaves and its root, and the latter are consistently
specified by (ϕ, f).
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Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Susan Niefield, Union College: niefiels@union.edu
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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