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INDETERMINACIES AND MODELS OF HOMOTOPY LIMITS

ALISA GOVZMANN, DAMJAN PIŠTALO, AND NORBERT PONCIN

Abstract. In a previous paper, we studied the indeterminacy of the value of a derived
functor at an object using different definitions of a derived functor and different types of
fibrant replacement. In the present work we focus on derived or homotopy limits, which
of course depend on the model structure of the diagram category under consideration.
The latter is not necessarily unique, which is an additional source of indeterminacy. In
the case of homotopy pullbacks, we introduce the concept of full homotopy pullback by
identifying the homotopy pullbacks associated with three different model structures of
the category of cospan diagrams, thus increasing the number of canonical representatives.
Finally, we define generalized representatives or models of homotopy limits and full
homotopy pullbacks. The concept of model is a unifying approach that includes the
homotopy pullback used by J. Lurie and the homotopy fiber square defined by P.
Hirschorn in right proper model categories. Properties of the latter are generalized to
models in any model category.

1. Introduction

Derived functors first appeared in homological algebra. Such right derived functors
lead to a natural extension of the left exact sequence induced by applying an additive
covariant left exact functor between abelian categories to a left exact sequence in its
source category that is assumed to contain enough injectives. These classical derived
functors, acting between the same abelian categories as the functor from which they are
derived, are special cases of the derived functors between derived categories, constructed
as the localization of an induced triangulated functor with respect to an induced null
system.

On the topological side, topologists recognized that the category of interest is not
the category Top of topological spaces and continuous maps, but the category in which
topological spaces are considered isomorphic if they have approximately the same shape,
although they are not necessarily homeomorphic. Hence the need arose to consider weak
homotopy equivalences W as isomorphisms, i.e. to introduce the localized category
Top[W−1] in which weak equivalences of the standard model structure on Top become
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invertible. More generally, each model category M can be localized with respect to the
class W of its weak equivalences, leading to its homotopy category Ho(M) = M[W−1] which
is presented by the original category M. In this case, functors between model categories
should induce derived functors between the more fundamental homotopy categories or
localized categories, provided they send, roughly speaking, weak equivalences to weak
equivalences.

As a matter of fact, model categories were introduced by D. Quillen, in particular
to unify the homotopy theory of topological spaces and the homology theory of chain
complexes of modules. And indeed, for chain complexes of modules, the derived category
of the first paragraph agrees with the homotopy category of the second and the ‘abelian’
derived functor is the same as the ‘model-theoretical’ one.

Against this background, it is not really surprising that in the literature one can find
a number of different definitions of the localization of a category, of a model category, the
homotopy category and a derived functor. Furthermore, a chosen definition of the homo-
topy category and the corresponding localization functor can have different descriptions,
and if we also consider the computation of the different types of derived functors, at least
four different replacement types are used. Although a certain equivalence of all resulting
constructions can be expected and their nature is probably well known to experts, the
jungle of these different notions is quite confusing for a beginner and it is not easy to
navigate through it. In [13] we unravel this tangle. In fact, to the best of our knowledge,
there is no single reference that has carefully examined all of these indeterminacies and
compared the resulting concepts.

More precisely, there are four definitions of localization of a category C at a class of mor-
phisms W . They differ in the strength of the universal property of the pair (C[W−1], L) ,
where the first element is the localized category and the second is the localization functor
L : C→ C[W−1] sending morphisms in W to isomorphism. The so-called strong universal
property requires that for every pair (D, F ) with the same property as (C[W−1], L) there is
a unique functor Ho(F ) : C[W−1]→ D which makes the resulting triangle commutative on
the nose. If in addition the pullback functor L? = −◦L by the localization functor is fully
faithful, we call the universal property strict. The faint universal property requires that
there is a functor F̄ : C[W−1] → D that makes the triangle commutative up to a natural
isomorphism η and that the pair (F̄ , η) is unique up to a unique natural isomorphism. If
the pullback functor L? is fully faithful, uniqueness up to a unique natural isomorphism
follows, and we refer to the universal property as weak. For instance, the classical Kan
homotopy category HoK(M) of a model category M (see [21, Definition 7.5.8]) and its local-
ization functor LM is a weak (hence a faint) localization. The Quillen homotopy category
HoQ(M) or just Ho(M) (see [21, Definition 8.3.2]) and its localization functor γM is a strict
(hence a strong) localization (see also [22, Section 1.2, Paragraph 1]). The concept of
faint (resp., strong) localization is used in [23, Definition 7.1.1], [29, Section 2, General
Definition] and [27, Definition 2.1] (resp., [11, Definition 6.1], [21, Definition 9.6.1], [22,
Lemma 1.2.2], and [36, Chapter 1, Definition 5]).

On the other hand, ‘all concepts are Kan extensions’ [25]. A right Kan extension
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operation L? along a functor L : C → C′ exists if and only if for every functor F : C → D

there is an ‘extension’ L?F : C′ → D which makes the resulting triangle commutative up
to a natural transformation η : L?F ◦L⇒ F such that the pair (L?F, η) is unique up to a
unique natural transformation. Note that this definition is similar to the faint localization
definition above, except that above we are dealing with natural isomorphisms.

Let now M, N be two model categories which admit a functorial factorization system, let
F : M→ N be a left Quillen functor or any functor which sends weak equivalences between
cofibrant objects to weak equivalences, let i : Mc → M be the canonical inclusion functor
of the full subcategory of cofibrant objects and let W be the class of weak equivalences
of M or the one of Mc (the meaning will always be clear from the context).

The authors that use the presentation (HoK(M),LM) of the localization (M[W−1], L) (see
[27], [24]), define the total left derived functor of F either as the right Kan extension of
LN ◦ F ◦ i along LM ◦ i (see [26]) or as the faint factorization of LN ◦ F ◦ i (see [24]). It is
not too hard to check that the Kan extension derived functor is given by the faint derived
functor [13].

Most authors use the presentation (Ho(M), γM) of the localization (M[W−1], L). They
define the total left derived functor of F either as the right Kan extension of γN ◦F along
γM (see [21]) or as the composite of the strong factorization of γN ◦F ◦ i and a quasi-inverse
of the strong factorization of γM ◦ i (see [22]). For further details we refer the reader to
Section 2. It can be shown that the Kan extension derived functor and the strong derived
functor coincide up to a natural isomorphism [13].

In the present work we focus on derived or homotopy limits. Since a derived functor
depends on the model structures of the source and target of the original functor, the
derived limit functor or homotopy limit functor depends on the model structures of the
small diagram category D := Fun(S, M) and of the underlying category M considered (we
use the terminology of [31]). The model structure σ of D is not necessarily unique, even
if the model structure of the ambient category M remains unchanged and we take into
account that the limit functor must be a right Quillen functor with respect to σ . The
resulting freedom in choosing σ is an additional source of indeterminacy (see Theorem
4.3).

In the case S = {c → d ← b} the diagrams Fun(S, M) are the cospan diagrams C →
D ← B of M and the homotopy limit is the homotopy pullback. The category of cospan
diagrams can be equipped with three Reedy model structures σi (i ∈ {1, 2, 3}) with respect
to which the pullback functor is a right Quillen functor. The homotopy pullbacks of a
cospan C → D ← B with respect to the different σi-s admit as canonical representatives
the standard pullbacks of the corresponding σi-fibrant replacements of C → D ← B .
We define the full homotopy pullback of C → D ← B by identifying its homotopy
pullbacks with respect to the σi , thus increasing the number of canonical representatives
(see Theorem 5.6).

We further enhance the flexibility of homotopy limits by defining generalized represen-
tatives, also referred to as models. The concept of model is valid in every model category
but the model condition simplifies in right proper model categories (see Theorem 6.4 and
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Theorem 6.7). Models are a unifying approach that captures the notion of homotopy
pullback that is used in [24] and the notion of homotopy fiber square that is defined in
right proper model categories equipped with a fixed functorial factorization system in [21]
(see Corollary 6.11 and Corollary 6.14). Most results of homotopy fiber squares in right
proper model categories remain valid for models or model squares in all model categories
(see for example Proposition 6.16 and Proposition 6.17).

Although not all of the results of this paper are completely new, a structured rigorous
presentation in an appropriate unifying context does not seem to exist. The proven
theorems offer guidance in an environment with many indeterminacies and show that the
standard concepts concerned have a pretty good stability with regard to all the necessary
choices.

Applications can be expected in homotopical algebraic geometry [37, 38, 2, 3, 6] and
higher supergeometry [7, 8, 9, 35], as these areas make extensive use of the functor of
points and are the contexts from which the need arose to examine the subjects of this
paper. We refer the reader to Section 7 for further details.

2. Conventions and notations

We assume that the reader is familiar with model categories. Although we use many
results of [13], we paid attention to independent readability when writing this work. We
adopt the definition of a model category that is used in [21]. More precisely, a model
category is a category M that is equipped with three classes of morphisms called weak
equivalences, fibrations and cofibrations. The category M has all small limits and colimits
and the 2-out-of-3 axiom, the retract axiom and the lifting axiom are satisfied. Moreover
M admits a functorial cofibration - trivial fibration factorization system (Cof - TrivFib
factorization) and a functorial trivial cofibration - fibration factorization system (TrivCof
- Fib factorization). Furthermore, we work with the Quillen homotopy category Ho(M) of
M , which is a strong localization M[W−1] and even a strict localization M[[W−1]] of M at its
weak equivalences W with localization functor denoted γM , and we use the Kan extension
derived functor operations LK,RK and the strong derived functor operations LS,RS in
the sense of [13], which we already mentioned above.

More specifically, if we use the same data and notation as above, and in particular
consider a functor F : M→ N which sends weak equivalences between cofibrant objects to
weak equivalences, the total left derived functor of F is defined either as the right Kan
extension (see [21])

LKF := (γM)?(γN ◦ F ) ∈ Fun(Ho(M), Ho(N)) , (1)

which comes with a natural transformation

η : LKF ◦ γM ⇒ γN ◦ F , (2)

or as the composite

LS
IF := Ho(γN ◦ F ◦ i) ◦ I ∈ Fun(Ho(M), Ho(N)) (3)
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of the strong factorization Ho(γN ◦F ◦ i) =: Ho(F ) and a quasi-inverse I of the strong fac-
torization Ho(γM◦ i) =: Ho(i) (here i is the same as i : Mc → M defined in the introduction).
Whatever quasi-inverse we choose, we get a representative of the same isomorphism class
of functors, so that LSF is defined up to a natural isomorphism. It can be checked that ev-
ery cofibrant replacement functor Q : M→ Mc induces a quasi-inverse Ho(L◦Q) =: Ho(Q)
of Ho(i) , which implies that

LSF
∼=⇒ LS

QF = Ho(F ) ◦Ho(Q) = Ho(F ◦Q) .

Moreover, we have the equality (see [22])

LS
QF ◦ γM = γN ◦ F ◦Q . (4)

Despite the difference between the definitions (1) and (3) and between the properties (2)
and (4), it can be shown – as mentioned previously – that the Kan extension derived
functor and the strong derived functor coincide up to a natural isomorphism [13]. Sim-
ilar results hold for total right derived functors of functors that send weak equivalences
between fibrant objects to weak equivalences (see Theorem 3.1). For more details on the
preceding derived functor operations, we refer the reader to Definition 8 and Propositions
5, 11, 12 and 13 in [13].

3. Indeterminacy of a derived functor

Let (α, β) be any functorial TrivCof - Fib factorization system. For every object
X ∈ M , it factors the map tX : X → ∗ to the terminal object of M into a trivial cofibration
rX := α(tX) followed by a fibration β(tX) :

tX : X
∼
� RX � ∗ .

Regardless of the factorization

tX : X
∼→ FX � ∗

of tX : X → ∗ into a weak equivalence fX followed by a fibration considered, we refer to
FX as a fibrant replacement of X . The object RX we call a fibrant C-replacement of X
(or just a fibrant replacement if we do not want to stress that rX is a cofibration). From
the fact that the factorization (α, β) is functorial it follows that R is an endofunctor of M .
Moreover rX : X → RX is functorial in X : r is a natural transformation r : idM ⇒ R from
the identity functor idM to the fibrant replacement functor R [22]. Instead of the fibrant
C-replacement functor R that is globally defined by the functorial factorization (α, β) , we
will also use local / object-wise fibrant replacements FX or local fibrant C-replacements
F̃X such that the map fX in the factorization

tX : X
∼
� F̃X�∗
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is idX if X is already fibrant [28]. If for every X we choose such a local fibrant C-
replacement and if f : X → Y , there is a lifting F̃ f : F̃X → F̃ Y, which will play an
important role:

X Y F̃Y

F̃X ∗

f fY˜
fX ˜ F̃ f

(5)

From [13] we also know:

3.1. Theorem. If G ∈ Fun(M, N) is a functor between model categories that sends weak
equivalences between fibrant objects to weak equivalences, its Kan extension right derived
functor

RKG ∈ Fun(Ho(M), Ho(N))

and its strongly universal right derived functor

RSG ∈ Fun(Ho(M), Ho(N))

exist and we have

RKG
.
= Ho(γN ◦G ◦ F̃ )

.
= RS

RG := Ho(γN ◦G ◦R)
∼=⇒ RSG , (6)

where F̃ is a local fibrant C-replacement, R is a fibrant C-replacement functor and Ho the
unique on the nose factorization through Ho(M) . This implies that

RKG ◦ γM
.
= γN ◦G ◦ F̃

.
= RS

RG ◦ γM = γN ◦G ◦R
∼=⇒ RSG ◦ γM , (7)

where
.
= denotes a canonical natural isomorphism and

∼=⇒ a not necessarily canonical
natural isomorphism.

Hence, for every X ∈ M , the value of the derived functor at γMX = X ∈ Ho(M) is

RKG(X)
.
= G(F̃X)

.
= RS

RG(X) = G(RX) ∼= RSG(X) . (8)

3.2. Remark. Since RKG (resp., RSG) is defined up to a canonical natural isomorphism
(resp., up to a natural isomorphism) [13], the results of (6) are the best possible ones.

The next diagram shows that if FX is any fibrant replacement of X , there is a lifting
` : F̃X → FX :

X FX

F̃X ∗

∼
fX

∼ f̃X
`

(9)
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Since ` is a weak M-equivalence between fibrant objects, its image G(`) is a weak N-
equivalence

G(F̃X)
∼→ G(FX) (10)

and the image γN(G(`)) is a Ho(N)-isomorphism

G(F̃X) ∼= G(FX) . (11)

3.3. Proposition. The isomorphism (11) is canonical:

G(F̃X)
.
= G(FX) . (12)

Proof. Take two different M-morphisms `i : F̃X → FX (i ∈ {1, 2}) that render the
upper triangle in Diagram 9 commutative, so that `1 ◦ f̃X = `2 ◦ f̃X . Since Y := FX is

fibrant and f̃X : X
∼
� F̃X is a trivial cofibration, right composition by f̃X induces a 1:1

correspondence between right homotopy classes of morphisms (the result is well known; we
gave the proof of its dual in [13]), we get `1 'r `2 . This means that `1× `2 : F̃X → Y ×Y
factors through a path object Path(Y ) of Y , i.e., that there is a factorization

p1 ◦ w := ψ1 ◦ p ◦ w = idY and p2 ◦ w := ψ2 ◦ p ◦ w = idY , (13)

where ψ1, ψ2 : Y × Y → Y , w : Y
∼→ Path(Y ) and p : Path(Y ) � Y × Y, and a

factorization
p1 ◦K = `1 and p2 ◦K = `2 , (14)

where K : F̃X → Path(Y ) . From (13) it follows that pi : Path(Y ) → Y is a weak
equivalence between fibrant objects (indeed, since fibrations are closed under pullbacks
and compositions, the product of fibrant objects and the path object of a fibrant object
are fibrant). If we apply γN ◦G to (13) and remember that γN(G(pi)) is an isomorphism in
view of the assumption on G , we see that γN(G(w)) is the inverse isomorphism and that
γN(G(p1)) = γN(G(p2)) . It now follows from (14) that

γN(G(`1)) = γN(G(`2)) , (15)

so that the Ho(N)-isomorphism γN(G(`)) is canonically implemented by the replacements
F̃X and FX .

Notice now that if X, Y ∈ M are related by a zigzag of weak M-equivalences it suffices
to apply the localization functor γM to see that X and Y are isomorphic in Ho(M) . It is
well known that the converse is also true:

3.4. Proposition. Two objects of a model category M are isomorphic as objects of Ho(M)
if and only if they are related by a zigzag of weak equivalences of M .

The previous observations clarify the indeterminacy of a value of a derived functor:
Conclusion. In view of (8) and (12) the value of a derived functor at an object is well
defined only up to isomorphism of the target homotopy category. The isomorphism class



INDETERMINACIES AND MODELS OF HOMOTOPY LIMITS 1615

is independent of the type of derived functor considered, Kan extension or strongly uni-
versal, as well as independent of the type of fibrant C-replacement considered, local or
global. Also the choice of another local or another global replacement does not change
the isomorphism class. If we compute the value of the derived functor using a local fi-
brant replacement that is not necessarily a C-replacement, we get again the same class.
Finally, the three representatives considered of the value of the derived functor are re-
lated by canonical isomorphisms when viewed as objects of Ho(N) and by zigzags of weak
equivalences when viewed as objects of N . This zigzag is the first source of ambiguity or
indeterminacy in the values of a derived functor.

3.5. Remark. In the following we write X ≈ Y if X and Y are related by a zigzag of

weak equivalences and we write X
∼
� Y if there is a weak equivalence from X to Y and

a weak equivalence from Y to X.

If we use the notation of Remark 3.5, Equation (8) and Equation (10) imply that
if G ∈ Fun(M, N) is a functor between model categories that sends weak M-equivalences
between fibrant objects to weak N-equivalences, then, for every X ∈ M , we have

RKG(X) ≈ RSG(X) ≈ G(RX)
∼
� G(F̃X)

∼→ G(FX) . (16)

We get the weak equivalences between G(RX) and G(F̃X) just as we got the one
from G(F̃X) to G(FX) .

The dual versions of the results in this section for left derived functors are also true.

4. Indeterminacy of a homotopy limit

If S is a small category and M a model category, the functor category Fun(S, M) admits
under mild conditions on the target category M an injective (resp., projective) model struc-
ture. The injective weak equivalences and cofibrations are defined as object-wise weak
M-equivalences and M-cofibrations. The resulting classes of weak equivalences, cofibrations
and fibrations satisfy the model category axioms, if M is a combinatorial model category.
In this case, we refer to the model structure defined in this way as the injective model
structure. The projective model structure is defined dually. A sufficient condition of
existence is that the target category M is cofibrantly generated. Details can be found for
instance in [10, Chapter III], [21, Section 11.6] and [22, Chapter 2].

4.1. Remark. Note that besides the injective and projective model structures - if M is
combinatorial, the functor category considered also admits a Reedy model structure - if
S is a Reedy category (see Equation 24).

The constant functor −∗ : M→ Fun(S, M) is the left adjoint to the limit functor:

−∗ : M� Fun(S, M) : Lim (17)
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If the injective model structure of Fun(S, M) exists, the constant functor respects cofibra-
tions and trivial cofibrations and the adjunction is therefore a Quillen adjunction. More
generally, let σ be any model structure on Fun(S, M) such that (17) is a Quillen adjunc-
tion −∗ a Lim . It follows from Brown’s lemma [22, Lemma 1.1.12] that a right (resp.,
left) Quillen functor sends weak equivalences between fibrant (resp., cofibrant) objects to
weak equivalences, so that its right (resp., left) derived functor exists (see Theorem 3.1).
The left and right derived functors induced between the homotopy categories by adjoint
Quillen functors are themselves adjoint functors. The Quillen adjunction (17) induces
therefore the adjunction

Lσ(−∗) : Ho(M)� Ho(Funσ(S, M)) : RσLim .

This holds in both the case of K and S derived functors [13].

4.2. Definition. The derived functor RσLim is referred to as the homotopy limit
functor with respect to the model structure σ on diagrams.

From Equation (16) follows the

4.3. Theorem. Let S be a small category, let M be a model category and let σ be a model
structure on the category Fun(S, M) of S-shaped diagrams in M such that the adjunction
(17) is a Quillen adjunction −∗ a Lim . If X ∈ Fun(S, M) its homotopy limit with respect
to σ is given as an object of M by

RσLim(X) ≈ Lim(RσX)
∼
� Lim(F̃σX)

∼→ Lim(FσX) , (18)

where Rσ, F̃σ, Fσ are a fibrant C-replacement functor, a local fibrant C-replacement and
a local fibrant replacement, respectively, in the model structure σ on Fun(S, M) . The weak
equivalence

∼→ is the universal morphism

Lim(`σ) : Lim(F̃σX)
∼→ Lim(FσX) (19)

that is induced by a lifting `σ : F̃σX ⇒ FσX and its image γM(Lim(`σ)) in homotopy
is independent of the lifting considered (see (15)). A similar remark holds for the weak

equivalences
∼
� .

In particular, if the injective model structure exists, then for the homotopy limit
functor we have:

R injLim(X) ≈ Lim(R injX)
∼
� Lim(F̃ injX)

∼→ Lim(F injX) . (20)

If the projective model structure exists, then the dual result holds for the homotopy
colimit functor:

LprojColim(X) ≈ Colim(QprojX)
∼
� Colim(C̃projX)

∼← Colim(CprojX) , (21)

where Qproj, C̃proj and Cproj are cofibrant replacements.
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4.4. Remark. The above equation (20) clarifies the indeterminacy of a small homotopy
limit R injLim(X) viewed as an object of the underlying model category in relation to the
chosen definition of derived functors and the chosen replacement of the diagram under
consideration. However, if the index category S is an appropriate Reedy category R , the
limit functor is also a right Quillen functor if the diagram category is equipped with its
Reedy model structure. This leads to a homotopy limit RReeLim(X) with respect to the
Reedy structure and thus to another possible indeterminacy.

In the remainder of this section, we recall the results on Reedy categories and Reedy
model structures (see [10, Chapter III], [21, Chapter 15] or [22, Chapter 5]) that we need in
the next section to explore the indeterminacy just mentioned. The exact understanding
of all the indeterminacies is a prerequisite for the new approach to model categorical
homotopy fiber sequences that we detail in [14].

If R is a Reedy category and M any model category, the functor category Fun(R, M) can
be equipped with a Reedy model structure.

Reedy categories are defined using direct and inverse categories which are particularly
simple examples of Reedy categories [10]. A direct category (resp., an inverse cate-
gory) is a small category that comes with a map deg from objects to ordinals such that
every non-identity morphism r → s raises (resp., lowers) the degree: deg r < deg s (resp.,
deg r > deg s). A Reedy category is a small category R together with two subcategories
R+ and R− which contain all the objects, and a map deg from objects to ordinals such
that:

1. every R-morphism factors uniquely into an R−-morphism and an R+-morphism,
2. every non-identity R−-morphism lowers the degree,
3. every non-identity R+-morphism raises the degree.

4.5. Example. The category I := {c → d ← b} is a direct category when equipped with
degree map deg1 defined by {0 → 2 ← 1}, it is an inverse category for the degree map
deg2 defined by {1 → 0 ← 2} and it is a non-trivial Reedy category for deg3 and deg4

given by {0→ 1← 2} and {2→ 1← 0}, respectively.

For every X ∈ Fun(R, M) and every r ∈ R one defines the matching object MrX of
X at r as the limit

MrX := Lim(Rr−
For→ R

X→ M) = Lim(For∗X) ∈ M ,

where Rr− is the full subcategory of the under-category r ↓ R− that contains all the objects
except the identity of r and where For is the forgetful functor.

For instance, let r → r′ and r → r′′ be two non-identity morphisms of R− and let
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r′ → r′′ be a morphism of R− that makes the resulting triangle (4.5.1) commutative:

r Xr Xr MrX

MrX

r′ r′′ Xr′ Xr′′ Yr MrY

(4.5.1) (4.5.2) (4.5.3)

mr(X)

mr(Y )

fr Mrf

The functor For sends this morphism of Rr− to r′ → r′′ and the functor X sends the
latter to Xr′ → Xr′′ : see Diagram (4.5.2). One can prove that the matching objects
MrX (X ∈ Fun(R, M)) can be extended into a matching functor Mr and that the
universal matching morphisms mr(X) : Xr 99K MrX define a matching natural
transformation mr:

Mr = Lim ◦For∗ ∈ Fun(Fun(R, M), M) and mr : −r ⇒Mr , (22)

where −r : Fun(R, M) → M is the evaluation functor. Hence, if X, Y ∈ Fun(R, M) and
f : X ⇒ Y, the square (4.5.3) commutes.

The Reedy weak equivalences are defined object-wise and are therefore the same as
for the projective and injective model structures. The Reedy fibrations are the natural
transformations f : X ⇒ Y such that the induced universal M-morphism

Xr → Yr ×MrY MrX (23)

is a fibration for every r ∈ R. The Reedy cofibrations are defined dually. For more
details we refer the reader to [10].

If the Reedy category R is a direct category, its subcategory R+ is the full category
R and its subcategory R− is the discrete category that contains all the objects r ∈ R .
In this case the full subcategory Rr− is the empty category, the functor For∗X is the
empty diagram and MrX is the terminal object ∗ of M for all X . It follows from (23) that
the Reedy fibrations are exactly the object-wise fibrations. Therefore the Reedy model
structure of Fun(R, M) is the projective model structure. The dual result is also true:

4.6. Remark. If the Reedy category R is a direct (resp., an inverse) category, the Reedy
model structure of Fun(R, M) is the projective (resp., the injective) model structure.

If R is any Reedy category and M is a combinatorial model category, so that all
three model structures exist, the identity functor id of Fun(R, M) is a left Quillen equivalence
from the projective model structure to the Reedy model structure and from the Reedy
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structure to the injective one and a right Quillen equivalence in the other direction [24,
A.2.9, paragraph 1 and A.2.9.23]:

id : Funproj(R, M)� FunReedy(R, M)� Fun inj(R, M) : id . (24)

5. Indeterminacy of a homotopy pullback

In this section we examine the additional indeterminacy of a homotopy pullback, which
we already addressed in Remark 4.4, namely the ambiguity caused by the choice of the
model structure on the functor, diagram or here the cospan category. As stated in Remark
4.1, the model structures to be considered are the injective, the projective and the various
Reedy structures, where the projective model structure is used to compute homotopy
colimits (see Equation 21) and in particular homotopy pushouts and is therefore not of
interest in our case of homopoty pullbacks.

Let M now be any model category and let R be the inverse Reedy category I2 whose
underlying category is I := {c → d ← b} and whose degree map is the above-mentioned
map deg2 defined by {1 → 0 ← 2} (see Example 4.5). The objects X of the functor
category

MI := Fun(I, M)

are the M-cospans C → D ← B and its morphisms f : X ⇒ Y are the corresponding
adjacent commutative squares

C D B

C ′ D′ B′

fc fd fb

(25)

In view of Remark 4.6 the Reedy model structure on MI2 is the injective model structure
of MI . Further, a natural transformation f : X ⇒ Y is an injective fibration if and only
if Condition (23) is satisfied. It follows from the definition of matching objects of objects
X ∈ MI2 that MbX = D, McX = D and MdX = ∗ , so that f is an injective fibration if
and only if the induced universal M-morphisms are fibrations:

B � B′ ×D′ D , C � C ′ ×D′ D , D � D′ .

In particular:

5.1. Proposition. For any model category M , the injective model structure on the cate-
gory of M-cospans exists. Moreover, an M-cospan C → D ← B is injectively fibrant if and
only if D is a fibrant object of M and both arrows are fibrations of M :

C � D f � B . (26)
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If I3 is the Reedy category I = {c → d ← b} with degree map deg3 defined by
{0 → 1 ← 2} (see Example 4.5), the computation of the Reedy fibrations is the same
as in the case of I2 , except that McX = ∗ , so that f is a fibration of the Reedy model
structure Ree I defined by the increasing labelling {0→ 1← 2} if and only if

B � B′ ×D′ D , C � C ′ , D � D′ .

Dually, a natural transformation f is a cofibration of the Reedy model structure Ree I if
and only if

B� B′ , C � C ′ , D qC C ′� D′ . (27)

In particular:

5.2. Proposition. For any model category M , an M-cospan C → D ← B is fibrant for
the Reedy model structure Ree I defined by the increasing labelling {0 → 1 ← 2} if and
only if C and D are fibrant objects of M and the second arrow is a fibration of M :

C f → D f � B . (28)

If MI is equipped with its Reedy structure Ree I , the constant functor

−∗ : M� FunRee I
(I, M) : Lim (29)

preserves cofibrations. Indeed, the image by −∗ of an M-morphism m : E → E ′ is the
commutative diagram

E E E

E ′ E ′ E ′

idE idE

idE′ idE′

m m m

(30)

and if m : E � E ′ , this diagram is a cofibration of Ree I if and only if the conditions (27)
are satisfied, i.e., if and only if the universal morphism u : E qE E ′ → E ′ induced by m
is a cofibration in M . One easily sees that u = idE′ , so the previous diagram is indeed a
cofibration of Ree I . As weak equivalences are defined object-wise in any Reedy structure,
the constant functor preserves also trivial cofibrations and therefore the adjunction (29)
is a Quillen adjunction. The right adjoint functor of the resulting adjunction in homotopy

LRee I
(−∗) : Ho(M)� Ho(FunRee I

(I, M)) : RRee I
Lim

is the K or the S homotopy limit functor with respect to the Reedy model structure Ree I

(see Definition 4.2).
Similarly, if I4 is the Reedy category I = {c→ d← b} with degree map deg4 defined

by the decreasing labelling {2→ 1← 0} (see Example 4.5), we get the
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5.3. Proposition. For any model category M , an M-cospan C → D ← B is fibrant for
the Reedy model structure ReeD defined by the decreasing labelling {2 → 1 ← 0} if and
only if D and B are fibrant objects of M and the first arrow is a fibration of M :

C � D f ← B f . (31)

Moreover, just as in the case of Ree I , there is a K and an S homotopy limit functor
RReeD

Lim with respect to ReeD .

5.4. Remark. With regard to Remark 4.6, the Reedy model structure that is induced
on cospans by the direct categorical structure, which in turn is defined by the degree
map deg1 of example 4.5 given by 0 → 2 ← 1, is the projective model structure and is
therefore not relevant for our purpose here - see first paragraph of Section 5. The same
applies to the degree map 1 → 2 ← 0. The degree map 2 → 0 ← 1 defines an inverse
categorical structure so that the induced Reedy structure on cospans is the injective model
structure and the situation is the same as for deg2 defined by 1 → 0 ← 2. Therefore,
the only relevant model structures of the category of cospans are the model structures
σ ∈ {inj,ReeI,ReeD}, which are implemented by the degree maps 1→ 0← 2, 0→ 1← 2
and 2→ 1← 0 and which we explored in detail above.

5.5. Definition. Let I be the category {c→ d← b} , let M be a model category and let σ
be a model structure on the category Fun(I, M) of cospans of M such that the adjunction (17)
is a Quillen adjunction −∗ a Lim . From what we said earlier, these model structures are
precisely the structures σ ∈ {inj,Ree I,ReeD} . For every M-cospan X = {C → D ← B} ,
its homotopy limit with respect to σ

RσLim(X) ≈ Lim(RσX)
∼
� Lim(F̃σX)

∼→ Lim(FσX) (32)

(Theorem 4.3) is referred to as the homotopy pullback of X with respect to σ and it is
denoted

B ×hσD C := RσLim(C → D ← B) .

If Fσ1X and Fσ2X are two fibrant replacements of X in σ , it follows from (32) that
there is a span of weak equivalences

Lim(Fσ1X)
∼← · ∼→ Lim(Fσ2X) .

If σ = Ree I , we get in particular

B ×hRee I
D C ≈ Lim(G� H f � E)

∼← · ∼→ Lim(L f →M f � K) , (33)

for every cospans to which X is weakly equivalent. Similarly, if σ = ReeD , we obtain

B ×hReeD
D C ≈ Lim(G� H f � E)

∼← · ∼→ Lim(P � S f ← N f) , (34)
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whenever the cospans considered are replacements of X . Since the first replacement in
the last two equations is also fibrant if σ = inj , we have

B ×h inj

D C ≈ Lim(G� H f � E) . (35)

Of course, the standard limit of a cospan is its standard pullback.
Conclusion 5.1. In every model category M the homotopy pullback of a cospan with
respect to σ ∈ {inj,Ree I,ReeD} is well defined as an isomorphism class of objects of
Ho(M) , but is only defined up to a zigzag of weak equivalences if it is viewed as an object
of M . All types of fibrant replacement (fibrant C-replacement functor, local fibrant C-
replacement, or just any fibrant replacement) provide representatives of the σ-homotopy
pullback considered, and this for both interpretations of the homotopy pullback (Kan ex-
tension derived functor or strongly homotopy derived functor). In addition, we can regard
the representatives of a homotopy pullback for the three model structures on cospans
(injective model structure, Reedy model structure defined by the increasing labelling, or
Reedy model structure defined by the decreasing labelling) as being the same. In this
sense the homotopy pullback is independent of the model structure on cospans.

What we said above leads to the next theorem which deals with all of the possible
indeterminacies in homotopy pullbacks (see (33), (34), (35)).

5.6. Theorem. The homotopy pullback of a cospan in a model category is independent
of the type of derived functor and of the model structure

σ ∈ {inj,Ree I,ReeD}

on cospan diagrams considered. We get canonical representatives of the homotopy pullback
from the standard pullback of weakly equivalent cospans with three fibrant objects and at
least one morphism that is a fibration: more precisely, if in the adjacent commutative
squares

C D B

C ′ D′ B′

∼ ∼ ∼

(36)

all vertical arrows are weak equivalences, all bottom nods are fibrant objects and at least
one of the bottom arrows is a fibration, we have

B ×hD C ≈ B′ ×D′ C ′ . (37)

In other words, we consider the full homotopy pullback (or simply the homotopy pull-
back) B ×hD C , whose canonical representatives are the standard pullbacks of weakly
equivalent cospans whose three nods are fibrant and at least one of whose arrows is a
fibration.
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6. Models of a homotopy pullback

In this section we generalize the concept of representative of a homotopy limit under
the name of homotopy limit model and apply the model notion in particular to homotopy
pullbacks. More precisely, the canonical representatives of a full homotopy pullback are
the standard pullback of an appropriate weakly equivalent cospan, so that they complete
this equivalent cospan into a commutative square. Generalized representatives or models
of a full homotopy pullback will be defined as specific objects that complete the original
cospan into a commutative diagram.

Let S be a small category, let M be a model category and let σ be a model structure
on the category Fun(S, M) such that the adjunction

−∗ : M� Funσ(S, M) : Lim

is a Quillen adjunction −∗ a Lim . If X ∈ Fun(S, M) and FσX is a fibrant replacement

tFσX ◦ fX : X
∼→ FσX � ∗

of X , the universal morphism

Lim(fX) : LimX → Lim(FσX)

from LimX of X to the representative Lim(FσX) of the homotopy limit RσLim(X) of X
is usually not a weak equivalence.

6.1. Definition. Let S , M and σ be as above, and let A ∈ M , X ∈ Fun(S, M) and

α ∈ HomFun(S,M)(A
∗, X) ∼= HomM(A,LimX) 3 Limα .

We say that A is a generalized representative of the σ-homotopy limit of X or is a
σ-homotopy limit model of X, if there exists a fibrant replacement FσX of X such that
the composite of universal morphisms

Lim(fX) ◦ Limα : A→ LimX → Lim(FσX)

is a weak equivalence.

6.2. Proposition. If the condition in Definition 6.1 is satisfied for one fibrant replace-
ment, it holds also for every other fibrant replacement.

Proof. Let F ′σX be another fibrant replacement of X and let F̃σX be a fibrant C-
replacement:
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A∗

X

FσX F̃σX F ′σX

α

fX
f̃X

f ′X

`σ `′σ (38)

Recall that the liftings `σ and `′σ in the previous commutative triangles are weak equiva-
lences since fX , f̃X and f ′X are (see (9)). As

Lim(fX) ◦ Limα = Lim(fX ◦ α) = Lim(`σ ◦ f̃X ◦ α) = Lim(`σ) ◦ Lim(f̃X ◦ α) , (39)

it follows from (19) that Lim(f̃X ◦α) is a weak equivalence, and it follows from (39) written
for f ′X and `′σ and from (19) that Lim(f ′X) ◦ Limα is a weak equivalence.

In the special case of the homotopy pullback the category S is I = {c → d ← b}
and X is a cospan {C → D ← B} . The natural transformation α is made of adjacent
commutative squares whose top row A → A ← A contains two copies of idA , or, better,
is made of a single commutative square

A B

C D
(40)

and Limα is the universal morphism A → B ×D C . The replacement FσX is a fibrant
cospan C ′ → D′ ← B′ to which C → D ← B is weakly equivalent; its pullback B′×D′ C ′

is a representative of B ×hσD C . The composite Lim(fX) ◦ Limα of universal morphisms
is the universal morphism A → B ×D C → B′ ×D′ C ′ from A to the representative of
B ×hσD C considered. Hence, the definition (6.1) becomes:

6.3. Definition. Let M be a model category and let σ be a model structure on the category
of cospans of M such that −∗ a Lim is a Quillen adjunction. The vertex A of a commu-
tative square (40) is a model or generalized representative of the σ-homotopy
pullback B ×hσD C if there exists a fibrant replacement C ′ → D′ ← B′ of C → D ← B
in σ such that the universal morphism A → B′ ×D′ C ′ from A to the representative of
B ×hσD C considered, is a weak equivalence.

The condition in Definition 6.3 is satisfied for every fibrant replacement in σ if it is
satisfied for one of them. As mentioned in the proof of Proposition 6.2, this indepen-
dence of the replacement is due to (19), therefore it is a consequence of the fact that the
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limit functor preserves weak equivalences between fibrant objects; so it is ultimately a
consequence of the assumption that −∗ a Lim is a Quillen adjunction.

Given the remark 5.4, we can restrict to the model structures σ ∈ {inj,Ree I,ReeD} ,
so that the definition is not only independent of the replacement, but also of the model
structure in which this replacement is chosen:

6.4. Theorem. The vertex A of a commutative square (40) in a model category is a
model of the full homotopy pullback B ×hD C if the universal morphism from A to
a canonical representative of B ×hD C is a weak equivalence. In other words, there must
exist a cospan C ′ → D′ ← B′ to which C → D ← B is weakly equivalent, whose three
nodes are fibrant objects and at least one of whose morphisms is a fibration, such that the
universal morphism A→ B′ ×D′ C ′ is a weak equivalence.

Proof. If the condition is satisfied for a fibrant replacement in one of the three model
structures, it is satisfied for all the fibrant replacements in this model structure and in
particular for the replacements of the type G� H f � E . Hence, it is also satisfied for all
the fibrant replacements in any of the other two model structures (see (33),(34),(35)).

6.5. Remark. We just showed that if the condition in Theorem 6.4 is satisfied for one
replacement with three fibrant nodes and at least one fibration, it is satisfied for all
replacements of this type. In other words, the concept of model is compatible with our
identification of the homotopy pullbacks with respect to σ ∈ {inj,Ree I,ReeD} .

6.6. Remark. The definition of homotopy pullbacks varies from author to author. For
example, in [11], the authors define a homotopy pullback as the value of the right derived
limit functor for the injective model structure on the category of cospan diagrams. In
[22] the author fixes functorial TrivCof-Fib and Cof-TrivFib factorization systems (α, β)
and (α′, β′), respectively, and uses framings in dealing with homotopy limits. In [21] the
author works in a right proper model category, fixes a factorization system (α, β) and
defines the homotopy pullback of a cospan C → D ← B with mappings g and f as the
standard pullback of the cospan β(g) and β(f). Note that the latter cospan is not a fibrant
replacement of the original cospan, neither in the injective model structure on cospans,
nor for ReeI or ReeD . For this specific definition, the standard pullback of C → D ← B is
also its homotopy pullback if either arrow g or f is a fibration. Note that none of the three
objects need be fibrant. In [24] the homotopy pullback is computed using a replacement
of the considered cospan whose central object is fibrant and whose two morphisms are
fibrations. A generalization of homotopy pullbacks is defined under the name of homotopy
pullback square. The claim is made that a standard pullback square is also a homotopy
pullback square if one of the morphisms of the cospan is a fibration and either all three
of its objects are fibrant or the underlying model category is right proper. No proof is
provided and no mention is made of the model structure on cospans considered. In [30]
the ‘global’ definition of [11] is juxtaposed with a ‘local’ definition which is equivalent
only if all three objects of the cospan are fibrant. The same two sufficient conditions
for a standard pullback to be a homotopy pullback are stated as in [24] and the one
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valid in a right proper model category is proved independently in a rather involved way.
This sufficient condition is intuitively justified by referring to the possibility of using the
Reedy model structure on cospans to compute the homotopy pullback. However, if the
limit functor’s source category model structure is changed, we change its right derived
functor, i.e. in our case we change the homotopy pullback functor.

In the present paper, we consider the full homotopy pullback and its generalized rep-
resentatives or models - thus including the injective and the two relevant Reedy model
structures on cospans - and prove that the known results are valid. In particular, the
one that holds in right proper model categories does not require an independent complex
proof, but is merely a consequence of the general result valid in each model category.
Hence, in what follows, the reader will not find anything really new – what he does find
is a new, structured, linear presentation that rigorously embeds all the different possible
choices and all the known, sometimes somewhat handswavingly accepted outcomes into
a homogeneous, compact and (hopefully) clear explanatory text.

Note that we have worked in any model category so far. If the model category is right
proper, the model condition of Definition 6.1 simplifies and we recover the well-known

6.7. Theorem. The vertex A of a commutative square (40) in a right proper model
category is a model (in the sense of Definition 6.1) of the full homotopy pullback B ×hD C
if there exists a cospan C ′ → D′ ← B′ to which C → D ← B is weakly equivalent
and at least one of whose morphisms is a fibration, such that the universal morphism
A→ B′ ×D′ C ′ is a weak equivalence.

6.8. Lemma. Let M be a right proper model category and let f : A→ D , g : B → C and
h : C → D be morphisms in M . The pullbacks A ×D B and A ×D C exist and there is
a universal morphism u : A ×D B → A ×D C . If f : A � D and g : B

∼→ C , we have

u : A×D B
∼
99K A×D C :

A×D B A×D C A

B C D

∼ u

∼ g h

k f

(41)

Proof. This lemma is well known and will not be proved again here.

Proof Proof of Theorem 6.7. Assume that C ′
g→ D′

f← B′ is a replacement of
C → D ← B and that one of its morphisms is a fibration, for instance the second one. If

we apply a fibrant C-replacement functor R to C ′
g→ D′

f
� B′ and decompose the first
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arrow RC ′
Rg→ RD′ into RC ′

∼→ F (Rg)� RD′ , we get the commutative diagram

A

C D B

C ′ D′ B′

RC ′ RD′ RB′

F (Rg) RD′ RB′

∼ ∼ ∼
g f

∼ ∼ ∼
Rg Rf

∼ id id
Rf

(42)

From the 2-out-of-3 axiom it follows that there is a universal weak equivalence

C ′
∼
99K D′ ×RD′ F (Rg) ,

as the model category is right proper. In view of Lemma 6.8, we have now universal weak
equivalences

B′ ×D′ C ′
∼
99K B′ ×D′ (D′ ×RD′ F (Rg)) ∼= B′ ×RD′ F (Rg)

∼
99K RB′ ×RD′ F (Rg) .

Hence, the universal morphism

A 99K B′ ×D′ C ′ (43)

is a weak equivalence if and only if the universal morphism

A 99K RB′ ×RD′ F (Rg) (44)

is a weak equivalence. Since the cospan F (Rg) � RD′ ← RB′ is weakly equivalent to
C → D ← B , has three fibrant nodes and at least one of its morphisms is a fibration, the
vertex A of the square (40) is a model of B ×hD C , if (43) is a weak equivalence.

6.9. Proposition. If the condition in Theorem 6.7 is satisfied for one replacement with
one fibration it is satisfied for all replacements of this type.

Proof. We see from Equations (43) and (44) that the condition is satisfied for a given
replacement with one fibration if and only if it is satisfied for an associated replacement
with three fibrant nodes and one fibration. However, from Remark 6.5 we know that
if the condition is satisfied for one replacement of the latter type it is satisfied for all
replacements of this type.
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6.10. Remark. Theorem 6.7 shows that our definition of a homotopy pullback model
generalizes the definition in a right proper model category.

The following corollary is stated without proof in [24]:

6.11. Corollary. In a model category the standard pullback B ×D C of a cospan C
g→

D
f← B is a homotopy pullback if at least one of the morphisms f or g is a fibration and

either all three objects B,C,D are fibrant or the model category is right proper.

Proof. Under the stated conditions B×D C is a model of B×hD C . Indeed, if the model
category is right proper (resp., B,C and D are fibrant), the cospan C → D ← B is
a replacement of itself, one of its morphisms is a fibration (resp., and all its nodes are
fibrant), and the universal morphism id : B×D C 99K B×D C is a weak equivalence. The
conclusion now follows from Theorem 6.7 (resp., Theorem 6.4).

6.12. Remark. The concept of model of a homotopy pullback is actually a unifying
approach that captures not only the notion of homotopy pullback that is used in [24]
(Corollary 6.11) but also the notion of homotopy fiber square that is defined in right
proper model categories equipped with a fixed functorial factorization system in [21]
(Corollary 6.14).

Let (α, β) be a fixed functorial trivial cofibration - fibration factorization system (FFF

for short) of a model category and let C
g→ D

f← B be a cospan. The system considered
provides decompositions

C
∼
� Ξ(g)� D � Ξ(f)

∼
� B

[21, Definition 13.3.12].

6.13. Definition. Let M be a right proper model category with an FFF. A commutative
square

A B

C D
g

f

(45)

is a homotopy fiber square if the universal morphism A 99K Ξ(f) ×D Ξ(g) is a weak
equivalence.

6.14. Corollary. In a right proper model category with an FFF, the vertex A of a
commutative square (45) is a model of the homotopy pullback B ×hD C if and only if it is
a homotopy fiber square.
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Proof. In view of Proposition 6.9, since the second row in the commutative diagram

A

C D B

Ξ(g) D Ξ(f)

g f

∼ id ∼

(46)

is a replacement of the first row with at least one fibration, the vertexA of the commutative
triangle or square is a model of the homotopy pullback B×hDC if and only if the universal
morphism A 99K Ξ(f) ×D Ξ(g) is a weak equivalence, i.e., if and only if the square is a
homotopy fiber square.

6.15. Remark. Our philosophy has been to refer to the upper left vertex of a com-
mutative square as a model for the homotopy pullback of the square’s cospan when the
universal morphism from it to a canonical representative of the homotopy pullback is a
weak equivalence. In view of Corollary 6.14 and Definition 6.13 it makes therefore sense
to regard the standard pullback Ξ(f) ×D Ξ(g) as a representative of B ×hD C , provided
the underlying model category is right proper and equipped with an FFF. Actually the
homotopy pullback B ×hD C is defined in [21] as being this representative. If the lower
right vertex of the square is fibrant, the homotopy pullback of [21], which is well defined
as an object of the model category, is a canonical representative of our full homotopy
pullback, which is only defined up to a zigzag of weak equivalences.

Next we prove that there is a pasting law for model squares in any model category.
This result generalizes Proposition 13.3.15 of [21].

6.16. Proposition. Let

A B C

D E F
(47)

be a commutative diagram in a model category. If the right square is a model square, i.e.,
if B is a model of the homotopy pullback C ×hF E , then the left square is a model square
if and only if the total square is a model square.

Proof. We apply a fibrant C-replacement functor R to the commutative diagram (47)
and factor the morphism

R(C
κ→ F ) = RC

Rκ−→ RF = RC
∼→ F (Rκ)�RF
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into a weak equivalence followed by a fibration. Moreover, we set P := F (Rκ) ×RF RE
and Q := P ×RE RD and thus get the following commutative diagram:

A B C

RA RB RC

Q P F (Rκ)

D E F

RD RE RF

RD RE RF

∼ ∼ ∼

∼

∼ ∼ ∼

(48)

As the universal arrow B 99K P (resp., A 99K Q) is the unique arrow B → P (resp.,
A → Q) that makes the corresponding triangles commutative, this arrow coincides with
the composite B

∼→ RB 99K P (resp., A
∼→ RA 99K Q). Since the right square of (47) is a

model square, the universal arrow B 99K P is a weak equivalence in view of Remark 6.5,
and therefore the universal arrow RB 99K P is a weak equivalence. In view of closeness
of fibrations under pullbacks the arrow P → RE is a fibration. From here it follows that
the left square in (47) is a model square if and only if

A 99K Q = P ×RE RD ∼= F (Rκ)×RF RD

is a weak equivalence, which is the case if and only if the total square of (47) is a model
square.

The next result is valid for homotopy fiber squares [21, Proposition 13.3.14] in a right
proper model category with an FFF. We prove that it holds also for model squares in an
arbitrary model category.

6.17. Proposition. Let ABCD and A′B′C ′D′ be two commutative squares in a model
category M . If there exist four M-morphisms from the vertices of the first square to the
corresponding vertex of the second such that the four resulting squares commute and if
these M-morphisms are weak equivalences, then the first square is a model square if and
only if the second is.
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A′ B′

RA′ RB′

P ′ F (Rκ′)

C ′ D′

RC ′ RD′

RC ′ RD′

A B

RA RB

P F (Rκ)

C D

RC RD

RC RD

∼ ∼

∼

∼ ∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼ ∼

∼ ∼

(49)

Proof. First we apply a fibrant C-replacement functor R to the commutative paral-
lelepiped, which is described in the statement of Proposition 6.17. Then we factor the
morphism

R(B
κ→ D) = RB

Rκ−→ RD = RB
∼→ F (Rκ)�RD

into a weak equivalence followed by a fibration and proceed analogously for R(B′
κ′→

D′) , using a functorial factorization system. We also set P := F (Rκ) ×RD RC and
P ′ := F (Rκ′) ×RD′ RC ′. Since the factorization system used is functorial, we get an
arrow F (Rκ)

∼
 F (Rκ′) , and thus a universal arrow P 99K P ′ . Finally, we have the

commutative diagram (49) (see above).
The two commutative parallelograms with four red vertices in (49) are a weak equiv-

alence from the Ree I-fibrant cospan RC → RD � F (Rκ) to the Ree I-fibrant cospan
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RC ′ → RD′ � F (Rκ′) . Since the limit or pullback functor transforms weak equivalences
between Ree I-fibrant cospans into weak equivalences, the universal arrow P 99K P ′ is a
weak equivalence. As the square ABCD (resp., A′B′C ′D′) is a model square if and only
if the universal arrow A 99K P (resp., A′ 99K P ′) is a weak equivalence, it follows that
ABCD is a model square if and only if A′B′C ′D′ is a model square.

6.18. Remark. Proposition 6.16, Proposition 6.17 and the concept of model square are
indispensable building blocks of our papers [14] and [15], which in turn are part of a larger
project on PDEs and their symmetries (for more details, see Section 7).

7. Concluding remarks

Building on ideas from works by Beilinson, Costello, Drinfeld, Gwilliam, Schreiber,
Paugam, Toën, Vezzosi, and Vinogradov [1, 4, 32, 33, 37, 38, 39], Di Brino and two of
the authors of the present paper have introduced derived algebraic geometry over the
ring D of differential operators of an underlying affine scheme, as a suitable framework
for investigating the solution space of a system of partial differential equations up to
symmetries [5, 6, 34]. The implementation of the associated research program requires in
particular that the tuple

(DGDM, DGDM, DGDA, τ,P)

be a homotopical algebraic geometric context (HAGC) in the sense of [38], where DGDM
is the symmetric monoidal model category of differential graded D-modules, the subcat-
egory DGDA is the model category of differential graded D-algebras, τ is an appropriate
model pre-topology on the opposite category of DGDA and P is a compatible class of
morphisms. The (really) challenging proof of this ‘HAGC theorem’ is based on a new
simplified perspective on the concept of homotopy fiber sequence [36] and a generaliza-
tion of the long exact sequence of Puppe. Using the notion of model, model square or
homotopy fiber square in any model category, which we have introduced and studied in
the present work so that it now stands on a solid mathematical basis, we were able to
develop a novel approach to model categorical homotopy fiber sequences and to generalize
Puppe’s sequence [14].

We now give some details on this application of models of homotopy pullbacks. In
[14] we work in a general pointed model category (M, 0) , we define a loop space functor Ω
from an arbitrary ‘dual cone functor’ and define homotopy fiber sequences as commutative
M–squares (A,B,C,D) such that A is a model of the homotopy pullback of C → D ← B
(in the sense of the present work) and the map C → 0 is a weak equivalence. Further,
for every morphism f : F → F between fibrant objects we define its homotopy fiber
Kf such that Kf → F → F is a homotopy fiber sequence (in the sense of [14]). We
get a universal connecting morphism ΩF → Kf such that ΩF → Kf → F is also a
homotopy fiber sequence. It turns out that Quillen’s loop space functor ΩQ (see [36]) is
a loop-space functor Ω in our sense. Furthermore, an objectwise fibrant homotopy fiber
sequence in our sense is a fibration sequence in the sense of Quillen (see [36]) and our
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universal connecting morphism is the same as Quillen’s connecting morphism (see again
[36]) induced by an action of the group object ΩQF on Kf . Although all of this shows
that the two theories are closely related, the new approach to homotopy fiber sequences
or fibration sequences does not rely on the additional structure of an action. The point
is that we use the homotopy theory of the category M→ of M–morphisms, which contains
all relevant information about homotopy fiber sequences of M .

It follows that it is much easier to apply the new concept of homotopy fiber sequence.
For example, the proof of the ‘HAGC theorem’ mentioned above involves proving that in
our homotopical D-geometric environment, flat (resp., étale) morphisms are the same as
strongly flat (resp., strongly étale) ones. This proof not only requires a handy concept of
homotopy fiber sequence, but in addition it requires that Quillen’s Tor spectral sequence
– which connects the graded Tor functor in homology with the homology of the derived
tensor product of two differential graded D-modules over a differential graded D-algebra
– is valid in the derived D-geometric world. These partly subtle results were proved in
[15] (the first part of which is already available online). We expect being able to com-
bine all the mentioned results to complete the proof of the ‘HAGC theorem’, to prove
that solid concepts of derived stack and geometric derived stack do exist in homotopical
D-Geometry, and thus to make an important step towards the full implementation of the
mentioned ‘PDEs and Symmetries program’. Furthermore, we are convinced that our ap-
proach to model squares and homotopy fiber sequences can explain the ‘(non-)functoriality
of the cone’ in triangulated categories resulting from model categories, without resorting
to the theory of derivators [17, 19, 20, 18].
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