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GYSIN FUNCTORS, CORRESPONDENCES, AND THE
GROTHENDIECK-WITT CATEGORY

DANIEL DUGGER

Abstract. We introduce some general categorical machinery for studying Gysin func-
tors (certain kinds of functors with transfers) and their associated categories of corre-
spondences. These correspondence categories are closed, symmetric monoidal categories
where all objects are self-dual. We also prove a limited reconstruction theorem: given
such a closed, symmetric monoidal category (and some extra information) it is isomor-
phic to the correspondence category associated to a Gysin functor. Finally, if k is a field
we use this technology to define and explore a new construction called the Grothendieck-
Witt category of k.

1. Introduction

Fix a ground field k. In this paper we describe a category GWC(k) whose objects are
the finite separable field extensions of k. The morphisms are a Grothendieck group of
certain kinds of “correspondences” built up from bilinear forms, and there is an intrinsic
notion of composition. We call this the Grothendieck-Witt category of k. In order to
study this category, we generalize to the theory of what we call Gysin functors and their
associated categories of correspondences . These notions simultaneously generalize the
classical theory of Green functors and Burnside categories for finite groups. The majority
of the paper is devoted to building up the requisite categorical machinery for studying
this structure.

The motivation for this paper comes from motivic homotopy theory. Consider the
motivic stable homotopy category over k, and restrict to the full subcategory whose
objects are the suspension spectra of separable field extensions of k. This should coincide
with the Grothendieck-Witt category GWC(k) defined here, and the results in this paper
are tools for producing a careful proof of this folklore result.

To further explain the ideas and motivation of this paper we take a brief detour into
equivariant homotopy theory. Let G be a finite group, and let GTop be the category
of G-spaces and equivariant maps. We regard GSet, the category of G-sets, as the full
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subcategory of GTop consisting of the discrete G-spaces. The orbit category Or(G) of
G is the full subcategory of GSet consisting of the G-sets on which G acts transitively.
Every object in Or(G) is isomorphic to a quotient G/H, for some subgroup H.

Next consider the stabilization functor Σ∞(−)+ : Ho(GTop) → Ho(GSpectra) from
the homotopy category of G-spaces to that of genuine G-spectra (the version of G-spectra
where representation spheres are invertible). When restricted to GSet this map is an
embedding, but it is not full. The full subcategory of Ho(GSpectra) whose objects are
Σ∞O+ for O a G-set is called the stable category of G-sets, and denoted GSetst. We will
actually focus on GSetstfin, where we restrict O to be a finite G-set. The full subcategory
of GSetstfin consisting of the objects Σ∞(G/H)+ is called the stable orbit category.

There are two common ways of describing GSetstfin:

(1) Given two finite G-sets O1 and O2, define a span from O1 to O2 to be a diagram

P

~~   
O2 O1

in the category of finite G-sets. A map between spans is a map of diagrams that is
the identity on O1 and O2. This category has a monoidal structure given by disjoint
union in the “P”-variable. Define Burn(O1,O2) to be the Grothendieck group of
isomorphisms classes of spans from O1 to O2, with respect to this disjoint union
operation.

Note that we will sometimes refer to spans as “correspondences”, as that terminology
is often used in geometric settings. Also note that the right-to-left convention we use
in drawing spans is explained further in Section 1.6 below.

If we have three finite G-sets O1, O2, and O3 then we can define a composition of
spans via the pullback operation shown in the following diagram:

Q×O2 P

$$zz
Q

�� $$

P

  zz
O3 O2 O1.

This operation induces a map

Burn(O2,O3)× Burn(O1,O2)→ Burn(O1,O3)

which is readily checked to be unital and associative. So we have defined a cate-
gory Burn whose objects are the finite G-sets. This is usually called the Burnside
category of G-sets.

Here are some things to take note of:
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(a) There is a functor R : GSetfin → Burn that is the identity on objects and sends a

map f : O1 → O2 to the span [O2
f←− O1

id−→ O1].

(b) The category Burn has a duality anti-automorphism (−)∗ which is the identity
on objects, and on morphisms sends a span [O2 ← P → O1] to the similar span
[O1 ← P → O2] obtained by reversing the order of the maps. The duality functor
is an isomorphism

(−)∗ : Burnop → Burn .

(c) In particular, setting I = (−)∗ ◦R gives a functor I : GSetopfin → Burn. If f : O1 →
O2 then I(f) is the span [O1

id←− O1
f−→ O2].

If A is an additive category then additive functors Burnop → A are the same as what
are usually called Mackey functors. (One could also identify Mackey functors with
additive functors Burn → A, since Burn is self-dual; however, our notation for the R
and I maps fits better with the contravariant option).

It is a classical theorem [LMS, Proposition V.9.6] that Burn is isomorphic to the stable
category of finite G-sets. See also [Li] for the initial introduction of this category and
its relationship to Mackey functors.

(2) The stable orbit category Or(G)st can also be described in terms of generators and
relations. This is the additive category whose objects are the transitive G-sets and
whose morphisms are freely generated by the maps Rf : O1 → O2 and If : O2 → O1

for every map of G-sets f : O1 → O2, subject to the morphisms satisfying the relations

(i) Rgf = Rg ◦Rf ;

(ii) Igf = If ◦ Ig;
(iii) Given a pullback diagram of G-sets

P

p

��

f // O3

q

��
O1

g // O2

where the actions on O1, O2, and O3 are transitive, write P =
∐

iXi where each
Xi is a transitive G-set. Then

Ig ◦Rq =
∑
i

Rpi ◦ Ifi

where fi and pi are the restrictions of f and p to Xi.

It is again a classical theorem that this category, defined in terms of generators and
relations, is isomorphic to the stable orbit category.
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Now let us return to our original setting, where k is a fixed ground field. Keeping the
above discussion in mind, we would like to examine the full subcategory of the motivic
stable homotopy category over k whose objects are the suspension spectra of fields. This is
vaguely analogous to the stable orbit category, although in the case of G-spectra the orbits
generate the category whereas field spectra do not generate the category in the motivic
setting. Our goal (though not fully realized in the present paper) is to give descriptions
of this category that are analogs of (1) and (2). To give a sense of this in the first case,
the Grothendieck-Witt category of k is defined to be the category GWC(k) whose objects
are SpecE for E a finite, separable field extension of k. The morphisms from SpecE to
SpecF are the Grothendieck group GW (F ⊗k E) of quadratic spaces over F ⊗k E (see
Section 2 for details). The definition of composition is a little too cumbersome to be
included in this introduction, but it mimics the composition we saw in (1) above.

Morel [Mo] proved that if k is perfect and F/k is a separable field extension then

[Σ∞(SpecF )+, S] ∼= GW(F )

where S is the motivic sphere spectrum and [−,−] denotes maps in the motivic stable
homotopy category of smooth k-schemes. If J/k is another separable extension one can
then argue that

[Σ∞(SpecF )+,Σ
∞(Spec J)+] ∼= [Σ∞(SpecF )+ ∧ Σ∞(Spec J)+, S]

∼= [Σ∞(Spec(F ⊗k J))+, S]
∼= GW(F ⊗k J)

where the first isomorphism uses a self-duality Σ∞(Spec J)+ ∼= F(Σ∞(Spec J)+, S) and
the last isomorphism is the aforementioned one of Morel (using that F ⊗k J decomposes
as a product of separable field extensions of k). The self-duality is dealt with in the
appendix to [H], and in the equivariant context it is in modern times usually couched in
the machinery of the Wirthmüller isomorphism (cf. [Ma2], for example).

Accepting the above computation, it remains to compute the composition in the mo-
tivic stable homotopy category and relate it to the appropriate pairing of Grothendieck-
Witt groups. The present paper exists partly because attempting to do this by ad hoc
methods proved unwieldy.

In the narrative we provide here, everything comes down to the existence of transfer
maps. Transfer maps coupled with diagonal maps give rise to duality structures, and
quite general categorical computations show that any reasonable category with this kind
of structure may be described by a “correspondence-like” description of composition.

Let us now explain the results in a bit more detail. Let C be a finitary lextensive
category (see Section 3.1, but understand that this is basically just a category where
coproducts behave nicely with respect to pullbacks). We define a Gysin functor on C to
be an assignment X 7→ E(X) from ob(C) to commutative rings, together with pullback
and pushforward maps f ∗ and f! satisfying certain compatibility properties. Given this
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situation, one can construct a category of correspondences CE where the object set is
ob(C), maps from X to Y are the abelian group E(Y ×X), and composition is obtained by
a familiar formula using the pullback and pushforward maps. The category CE is enriched
over abelian groups, is closed symmetric monoidal, and has the property that all objects
are self-dual.

Now suppose H is a closed tensor category (additive category with compatible sym-
metric monoidal structure) with tensor ⊗ and unit S. Suppose given functors R : C → H

and I : Cop → H satisfying some reasonable hypotheses (see Section 4). For f : X → Y in
C we think of Rf as the “regular” map associated to f in H, whereas If is an associated
transfer map. The prototype for this situation is where H is the genuine G-equivariant
stable homotopy category, C is the category of finite G-sets, R(X) = I(X) = Σ∞(X+),
Rf is the usual map induced by f : X → Y , and If is the corresponding transfer map.

Write π0 for the functor Cop → Ab given by π0(X) = H(RX,S). This inherits the
structure of a Gysin functor, and we prove the following:

1.1. Theorem.Under mild hypotheses, the category of correspondences C(π0) is equivalent
to the full subcategory of H whose objects lie in the image of R.

That is, we prove that one can reconstruct the appropriate subcategory of H as the
category of correspondences associated to the Gysin functor π0. See Theorem 4.16 for a
precise version of the above theorem.

The second result of this paper concerns the structure of the category of correspon-
dences CE for a general Gysin functor E. In the Burnside category of a finite group, there
are special collections of maps Rf and Ig and every map in the category may be written
as a composite Rf ◦ Ig. There are also rules for rewriting compositions If ◦ Rg in the
above form. In the case of a general Gysin functor, there are three collections of special
maps, elements of which are written Rf , Ig, and Da where f and g are maps in C and
a ∈ E(X) for some object X in C. We prove the following:

1.2. Theorem. Every map in CE can be written as a sum of maps Rf ◦Da ◦ Ig. Other
composites of the R-D-I maps can be rewritten in this form using the rules

(a) Da ◦Rf = Rf ◦D(f ∗a),

(b) If ◦Da = D(f ∗a) ◦ If ,

(c) If ◦Rg = Rp ◦ Iq where p and q are the maps in the pullback diagram

P
q //

p
��

A

g
��

B
f // C

inside the category C.

Moreover, for a map f : X → Y in C and a ∈ E(X) one has Rf ◦Da ◦ If = D(f!(a)).

The following corollary is really just a reformulation of the theorem:
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1.3. Corollary. Maps in CE(X, Y ) can be represented by a pair consisting of a span

[Y
f←− Z

g−→ X] and an element a ∈ E(Z): this pair represents Rf ◦ Da ◦ Ig. If a

map in CE(U,X) is represented by [X
f ′←− Z ′ g′−→ U, a′ ∈ E(Z ′)] then the composite is

represented by the pullback span

P
s
~~

t
  

Z
f

��
g
  

Z ′
f ′

~~
g′

  
Y X U

and the element (s∗a)(t∗a′) ∈ E(P ), where the product is the multiplication in E(P ). That
is to say,

(Rf ◦Da ◦ Ig) ◦ (Rf ′ ◦Da′ ◦ Ig′) = R(fs) ◦D((s∗a)(t∗a′)) ◦ I(g′t).

Moreover, we have the extra relation[
Y

f←− Z
f−→ Y, a ∈ E(Z)

]
=

[
Y

id←− Y
id−→ Y, f!(a) ∈ E(Y )

]
.

If one assumes the category C to have some basic Galois-type properties (which model
the behavior of the category of G-sets) then explicit computations become easier. For
example, one can prove the following:

1.4. Proposition. Assume C is a Galoisien category (see Section 5.13), and let X be
an object in C that is Galois. Then in CE one has

EndCE(X) = ˜[AutC(X)]E(X)

where on the right we have the twisted group ring whose elements are finite sums
∑

i[gi]ai
with gi ∈ AutC(X) and ai ∈ E(X), and the multiplication is determined by the formula

[g]a · [h]b = [gh](h∗a · b).

(Here [g]a corresponds to the element Rg ◦Da).

The above proposition describes the full subcategory of CE consisting of a single Galois
object. In a similar vein, one can explicitly describe the full subcategories generated by
multiple Galois objects. See Section 5.

Although the motivation for this paper comes from a concrete question concerning
motivic homotopy theory, here we only develop the categorical backdrop. In the future
we hope to explain how this backdrop applies to both the G-equivariant and motivic
settings.
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1.5. Organization of the paper. In Section 2 we write down a complete definition
of the Grothendieck-Witt category. In Section 3 we generalize this, by introducing the
notions of a Gysin functor and its associated category of correspondences (a Gysin functor
is the same thing as what is called a commutative Green functor in the group theory
literature). Section 4 continues the development of this machinery and proves the main
“reconstruction theorem”, which in this generality is a simple exercise in category theory.

Section 5 gives a deeper investigation into the structure of correspondence categories,
and serves as a prelude to Section 6 where we work out some basic computations inside
Grothendieck-Witt categories over a field.

1.6. Notation and terminology. The common notation “f(x)” establishes a right-
to-left trend in symbology: one starts with x and then applies f to it. The common
notation Hom(A,B) is based on the opposite left-to-right trend. The opposing nature of
these two notations is one of the most common annoyances in modern mathematics. Our
general philosophy in this paper is that we will always use the right-to-left convention,
except when we write Hom(A,B). This has already appeared in our treatment of the
Burnside category, where spans from O1 to O2 were drawn with the O1 term on the right.
That particular convention will have various incarnations throughout the paper.

The projection map X × Y × Z → X × Z will be written πXY ZXZ , and similarly for
other projection maps. If f : A → X and g : A → Y , then it is sometimes useful to
denote the induced map A→ X ×Y as f × g. Unfortunately, f × g also denotes the map
A×A→ X×Y . Usually it is clear from context which one is meant, but when necessary
we will write (f × g)AXY and (f × g)AAXY to distinguish them. In all these conventions, the
superscript is the domain and the subscript is the range.

2. Background on Grothendieck-Witt groups and composition

In this section we recall the definition and basic properties of the Grothendieck-Witt group
of a ring. Then we explain how these groups can be assembled to give the hom-sets in a
certain category GWC(R). This sets the stage for the rest of the paper, which develops
tools that help analyze generalizations of this construction.

2.1. Grothendieck-Witt groups. Let R be a commutative ring. A quadratic space
over R is a pair (P, b) consisting of a finitely-generated, projective R-module P together
with a map b : P ⊗R P → R that is symmetric in the sense that b(x, y) = b(y, x) for all
x, y ∈ P . One says that (P, b) is nondegenerate if the adjoint map P → HomR(P,R)
associated to b is an isomorphism of R-modules.

Given any maximal ideal m of R there is an induced map

P ⊗R P b //

��

R

��
(P/mP )⊗R/m (P/mP )

bm // R/m
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giving a symmetric bilinear form bm on the R/m-vector space P/mP . One readily checks
that (P, b) is nondegenerate if and only if (P/mP, bm) is nondegenerate for every maximal
ideal m of R. In many cases nondegeneracy is most easily checked using this criterion.

It will be useful for us to sometimes think geometrically. A quadratic space is an
algebraic vector bundle on SpecR equipped with a fibrewise symmetric bilinear form,
and it is nondegenerate if the bilinear forms on the closed fibers are all nondegenerate.

Note that there is an evident direct sum operation on quadratic spaces. There is also
a tensor product: if (P, b) and (Q, c) are quadratic spaces then (P ⊗R Q, b⊗R c) denotes
the projective module P ⊗R Q equipped with the bilinear form

(P ⊗R Q)⊗R (P ⊗R Q)
id⊗t⊗id// P ⊗R P ⊗R Q⊗R Q

b⊗c // R⊗R R
µ // R.

It is easy to check that the direct sum and tensor product of nondegenerate quadratic
spaces are again nondegenerate.

The Grothendieck-Witt group of R, denoted GW(R), is the Grothendieck group
of nondegenerate quadratic spaces with respect to direct sum. It has a ring structure
induced by tensor product. If f : R → S is a map of commutative rings then there is an
induced map of rings f∗ : GW(R)→ GW(S) given by (P, b) 7→ (P ⊗R S, b⊗R idS).

It turns out that GW(−) is also a contravariant functor, but only with respect to
certain kinds of maps. This will take a while to explain.

2.2. Definition. A map of commutative rings R → S is sheer if S is a finitely-
generated, projective R-module.

2.3. Remark. The following conditions on R→ S are equivalent:

(1) R→ S is sheer;

(2) S is finitely-presented and projective as an R-module;

(3) S is finitely-presented and flat as an R-module.

The equivalence (1)⇐⇒ (2) is elementary, and (2)⇐⇒ (3) can be found as [E, Corollary
6.6] or [R, Theorem 3.56].

When f : R → S is sheer there is a trace map trS/R : S → R defined in the evident
way: trS/R(s) is the trace of the multiplication-by-s map x 7→ xs on S. The map trS/R
is R-linear. We can then use this trace map to take quadratic spaces over S and induce
quadratic spaces over R: if (Q, c) is a quadratic space over S then we regard Q as an
R-module (via restriction of scalars along f) equipped with the bilinear pairing

Q⊗R Q // Q⊗S Q c // S
trS/R // R.

This does not quite give a map GW(S)→ GW(R) because the nondegeneracy condition
on the form need not be preserved. For example, if F = Fp(x) and E = F [u]/(up − x)
then F ↪→ E is sheer but the trace map trE/F is zero. In order to get around this issue,
we need to assume a little more about the map R→ S. This is our next subject.
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2.4. Separable algebras. The following material is classical, but perhaps not as read-
ily accessible in the literature as it could be. See [J], [DI], and [L], though.

2.5. Definition. Let A → B be a map of commutative rings. We say that B is a
separable A-algebra if any of the following equivalent conditions is satisfied:

(1) B is projective as a B ⊗A B-module,

(2) The multiplication map µ : B ⊗A B → B is split in the category of B ⊗A B-modules,

(3) There exists an element ω ∈ B ⊗A B such that µ(ω) = 1 and (b⊗ 1)ω = ω(1⊗ b) for
all b ∈ B.

(4) The ring map B ⊗A B → B is sheer.

The equivalence of the conditions in the above definition is straightforward: clearly
(1)⇔(2), and (2)⇔(3) by letting ω be the image of 1 under the splitting. Note that
B⊗AB → B is necessarily surjective, and so B is always cyclic as a B⊗AB-module (and
in particular, finitely-generated). This explains why (1) is equivalent to (4).

If ω is a class as in (3) of the above definition, then for any z ∈ B ⊗A B one has

z.ω = (µ(z)⊗ 1).ω = ω.(1⊗ µ(z)).

To see this, write z =
∑
ai ⊗ bi and then just compute that

z.ω =
∑

(ai ⊗ bi).ω =
∑

(ai ⊗ 1)(1⊗ bi).ω =
∑

(ai ⊗ 1)(bi ⊗ 1).ω

=
((∑

aibi
)
⊗ 1

)
.w = (µ(z)⊗ 1).ω.

In particular, notice that the class ω from (3) will be unique: if ω′ is another such class
then we would have

ω.ω′ = (µ(ω)⊗ 1).ω′ = (1⊗ 1).ω′ = ω′

and likewise ω.ω′ = ω. Also notice that ω is idempotent. Consequently, we have the
isomorphism of rings

B ⊗A B ∼= (B ⊗A B)/w × (B ⊗A B)/(1− w)

given in each component by projection. The second component can be identified with B.
Indeed, certainly 1−ω belongs to kerµ. Conversely, if s ∈ kerµ then s.ω = (µ(s)⊗1).ω =
0, and so s = s− s.ω = s(1− ω) ∈ (1− ω). It follows that µ induces an isomorphism of
rings (B ⊗A B)/(1− ω) ∼= B.

2.6. Remark. It helps to have some geometric intuition here. When E → B is a topo-
logical covering space, the diagonal ∆: E → E ×B E gives a homeomorphism from E
onto an open-and-closed subspace of E ×B E. Similarly, when A → B is separable then
SpecB ×SpecA SpecB splits off the diagonal copy of SpecB as an open-and-closed sum-
mand. The idempotent ω ∈ B ⊗A B is the algebraic culprit for this splitting.
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2.7. Remark. There is another description of ω that is sometimes useful. Since B is a
finitely-generated, projective B⊗AB-module there is a trace map trB/(B⊗AB) : End(B)→
B ⊗A B. The element ω is simply trB/(B⊗AB)(idB).

We will shortly restrict ourselves to studying maps R → S which are both sheer and
separable. Such maps are commonly referred to using different language:

2.8. Proposition. For a map of commutative rings R→ S the following are equivalent:

(1) R→ S is both sheer and separable (we will refer to such maps as “sheerly separable”);

(2) R→ S is sheer and S is flat as an S ⊗R S-module;

(3) R→ S is étale and S is finitely-presented as an R-module.

2.9. Remark. Algebraic geometers tend to use the phrase “finite étale” to describe the
maps R → S satisfying the condition of Proposition 2.8. But this terminology is a bit
confusing in the non-Noetherian case, since “finite étale” does not mean “both finite
and étale”. Because of this confusion (which seems entirely unnecessary) we avoid the
geometers’ phrasing in what follows.

Proof of Proposition 2.8. The implication (1)⇒(2) is trivial. For (2)⇒(1), consider
the exact sequence

0 −→ I −→ S ⊗R S
µ−→ S −→ 0. (2.10)

The map s 7→ s ⊗ 1 is a splitting for µ as a map of left S-modules, and so there is
an associated splitting S ⊗R S → I of left S-modules. If R → S is sheer then S is
finitely-presented as an R-module, and so S⊗R S is finitely-generated as a left S-module.
Consequently, I is finitely-generated as a left S-module. Thus I is also finitely-generated
as an S ⊗R S-module, and therefore S is finitely-presented as S ⊗R S-module. Flatness
of S as an S ⊗R S-module then implies S ⊗R S → S is sheer by Remark 2.3, and so we
have proven (2)⇒(1).

Now we turn to (1)⇒(3), so suppose R→ S is sheerly separable. Separability implies
that (2.10) is split as a sequence of S ⊗R S-modules. So there is an S ⊗R S-linear map
χ : S ⊗R S → I splitting the inclusion. Linearity implies that this map sends I into I2,
and so surjectivity gives us I = I2. So ΩS/R = I/I2 = 0. Since S is flat and finite-type
over R, and ΩS/R = 0, it follows that R→ S is étale by [Mi, Proposition I.3.5].

Now suppose that R → S is étale and S is finitely-presented as an R-module. Since
R→ S is flat it follows from Remark 2.3 that R→ S is sheer. The map f : S → S ⊗R S
given by f(s) = s⊗ 1 is also étale (geometrically, étale maps are closed under pullback).
If µ : S ⊗R S → S is the multiplication, then µ ◦ f = id. Since f and id are étale, so is µ
by [Mi, Corollary I.3.6]. Therefore S is flat over S⊗R S, and so we have shown (3)⇒(2).
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2.11. Corollary. Let k be a field. A map of commutative rings k → E is sheer and
separable if and only if there is an isomorphism of k-algebras E ∼= E1 × E2 × · · · × En
where each Ei is a separable (in the classical sense) field extension of k.

Proof. By Proposition 2.8 we can replace “sheerly separable” by “finite étale”, and then
the result is standard (for example, see [Mi, Proposition I.3.1]).

2.12. Remark. Suppose we are working in a category that has finite limits. Let P be
a property of morphisms that is closed under composition and pullback. Say that a
morphism X → Y has property PP if X → Y has P and ∆: X → X ×Y X also has P.
Then it follows by general category theory that property PP is closed under composition

and pullback, and has the feature that if composable morphisms X
f−→ Y

g−→ Z are given
such that both g and gf have PP then so does f . For the proof of the latter, the main
ideas can be found in any standard reference dealing with the case where P is “étale”
(e.g. [Mi, Corollary I.3.6]). In the present context, we can apply this principle to the
opposite category of commutative rings, where P is “sheer” and PP is therefore “sheerly
separable”. So the sheerly separable maps are closed under pullbacks and composition,
and have the indicated two-out-of-three property.

2.13. Example. Here are three examples to keep in mind when dealing with these con-
cepts:

(a) If R and S are commutative rings then the projection R×S → R is sheerly separable,
but not an injection.

(b) If R is a commutative ring then the map R[x] → R sending x 7→ 0 is separable but
not sheer.

(c) Given any non-separable, finite field extension k ↪→ E, this map is sheer but not
separable.

2.14. Remark. The maps we are calling “sheerly separable” are called “strongly sepa-
rable” in [J], and “projective separable” in [L]. The following two conditions on a map of
commutative rings R→ S are also equivalent to being sheerly separable:

(1) S is separable over R and S is projective as an R-module (but not required to be
finitely-generated);

(2) S is a finitely-generated projective module over R and the trace form S ⊗R S → R
(given by x⊗ y 7→ trS/R(xy)) is nondegenerate.

The proof of these equivalences, or at least a sketch of such, is available in [L, Proposition
6.11].

2.15. Corollary. Suppose that R → S is sheerly separable. Then for every finitely-
generated projective S-module Q, the map HomS(Q,S) → HomR(Q,R) given by g 7→
trS/R ◦g is an isomorphism of R-modules.
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Proof. Part (2) of Remark 2.14 shows that the given map is an isomorphism when
Q = S. It then follows immediately that it is an isomorphism for Q = Sn, and therefore
whenever Q is a retract of Sn.

2.16. Scharlau transfer maps for Grothendieck-Witt groups.
Suppose f : R→ S is sheer and separable. If (Q, c) is a nondegenerate quadratic space

over S, consider Q as an R-module via restriction of scalars and equip it with the bilinear
form b given as the composite

Q⊗R Q→ Q⊗S Q
c−→ S

trS/R−→ R.

Note that as an S-module Q is a direct summand of some Sn, and S is projective as an
R-module, so Q is also projective as an R-module. We claim that (Q, b) is nondegenerate.
To see this, consider the commutative diagram

Q

b̃ ''

c̃ // HomS(Q,S)

T
��

HomR(Q,R)

where the top map is the adjoint of c, the diagonal map is the adjoint of b, and the
vertical map T sends g : Q → S to the composition trS/R ◦g. Then c̃ is an isomorphism

by nondegeneracy of (Q, c), T is an isomorphism by Corollary 2.15, and so b̃ is also an
isomorphism.

It is now clear that we obtain a well-defined map of groups f ! : GW(S) → GW(R).
This is sometimes called the Scharlau transfer; one can find a version of it (not done
in full generality) in [S, Chapter 2.5]. Note that f ! is only additive, not a map of rings.

When B is a separable A-algebra there is a canonical quadratic space over the ring
B ⊗A B: it is B itself (with the usual structure of B ⊗A B-module), equipped with the
following bilinear form:

B ⊗(B⊗AB) B → B ⊗A B, x⊗ y → (xy ⊗ 1).ω.

A moment’s check shows that this is indeed B ⊗A B-bilinear, as required. It is also
nondegenerate: this is an easy exercise using the properties of ω. We will denote this
quadratic space as (B, µ · ω). We can also describe this construction in another way.
Observe that µ : B⊗AB → B is sheerly separable (it is sheer because A→ B is separable,
and it is separable because B ⊗B⊗AB B → B is actually an isomorphism). The quadratic
space (B, µ · ω) is simply the element µ!(1), where µ! : GW(B) → GW(B ⊗A B) is the
Scharlau transfer.

More generally, for any quadratic space (P, b) over B we obtain a quadratic space
(P, b ·ω) over B⊗AB. The underlying module is P (regarded as a B⊗AB-module, where
it is necessarily projective) equipped with the bilinear form

P ⊗(B⊗AB) P → B ⊗A B, x⊗ y 7→ (b(x, y)⊗ 1).ω.
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This construction induces a map of groups (not rings)

GW(B)→ GW(B ⊗A B), [P, b] 7→ [P, b · ω]

and this is precisely the map µ!.

2.17. Remark. The significance of the quadratic space (B, µ · ω) will become clear in
Section 2.18 below. It plays the role of the identity morphism in the Grothendieck-Witt
category.

2.18. The Grothendieck-Witt category of a commutative ring. We next re-
strict to a somewhat specialized setting. Assume that S, T , and U are R-algebras, but
also assume that R→ T is sheer and separable.

Now suppose given a quadratic space (Q, c) over U ⊗R T and another quadratic space
(P, b) over T ⊗R S. In the following diagram, it is readily checked that the “across-the-
top-then-down” composite satisfies the appropriate T -invariance condition to induce the
dotted map:

Q⊗R P ⊗R Q⊗R P
1⊗t⊗1 //

��

Q⊗R Q⊗R P ⊗R P
c⊗b // (U ⊗R T )⊗R (T ⊗R S)

1⊗µ⊗1
��

U ⊗R T ⊗R S
1⊗trT/R ⊗1

��
U ⊗R R⊗R S

∼=
��

(Q⊗T P )⊗R (Q⊗T P )
c⊗̂T b // U ⊗R S.

This produces a quadratic space (Q⊗T P, c⊗̂T b) over the ring U ⊗R S. It is easy to check
that this is nondegenerate if (P, b) and (Q, c) were, and the construction is evidently
compatible with direct sums. So we obtain a pairing

GW(U ⊗R T )⊗GW(T ⊗R S)
⊗̂T−→ GW(U ⊗R S). (2.19)

If we denote the evident maps as

j12 : U ⊗R T → U ⊗R T ⊗R S, j23 : T ⊗R S → U ⊗R T ⊗R S,

j13 : U ⊗R S → U ⊗R T ⊗R S
then the pairing of (2.19) can also be expressed as

α⊗̂Tβ = j!13
(
(j12∗α) · (j23∗β)

)
(and this observation avoids the need to check nondegeneracy). Note that j13 is a pushout
of the map R → T , and so is sheerly separable by Remark 2.12; this is why the transfer
map j!13 is defined.

It is easy to check that these pairings satisfy associativity. They are also unital, with
the unit being the canonical element (T, µ · ω) in GW(T ⊗R T ).
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2.20. Definition. Let R be a commutative ring. The Grothendieck-Witt category
of R is the category enriched over abelian groups defined as follows:

(1) The objects are SpecT for T a sheerly separable R-algebra,

(2) The set of morphisms from SpecT to SpecU is the additive group GW(U ⊗R T );

(3) Composition of morphisms is defined by (2.19).

This category will be denoted GWC(R).

3. The general theory of Gysin functors

When studying the Grothendieck-Witt categories GWC(R), it turns out to be advanta-
geous to investigate the story in greater generality. We do this in the present section.
The “Gysin functors” that we introduce here are simply functors with pullback and push-
forward maps which are compatible in familiar ways. Certainly such functors have been
encountered time and again in the literature, and so it is unlikely that anything in this
section is actually “new”. A very early reference is [G], whereas a more recent reference is
[B]. In the setting of finite group theory, our Gysin functors are precisely the commutative
Green functors.

Being unaware of a reference that serves as a perfect source for what we need, we take
some time here to develop the theory from first principles. In doing so, we have tried
to provide a unity of discussion that justifies this. We stress, though, that much of the
material from this section is in [B].

The main things we do here are:

� Give the definition of a Gysin functor and develop the basic properties;

� Observe the existence of a “universal” Gysin functor, called the Burnside functor;

� Observe that any Gysin functor E on a category C gives rise to an associated closed,
symmetric monoidal category, denoted CE, of “E-correspondences” between the
objects of C. These symmetric monoidal categories have the properties that all
objects are dualizable, and moreover every object is self-dual.

3.1. Gysin functors. Let C be a category with finite limits and finite coproducts, with
the property that pullbacks distribute over coproducts: that is, given any maps A→ X,
P1 → X, and P2 → X the natural map

(A×X P1)⨿ (A×X P2)→ A×X (P1 ⨿ P2)

is an isomorphism. We also assume that for any objects A and B in C the following
diagrams are pullbacks, where ∅ is the initial object:

A id //

id
��

A

i0
��

B

id
��

id // B

i1
��

∅

��

// B

i1
��

A
i0 // A⨿B B

i1 // A⨿B A
i0 // A⨿B.

(3.2)
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Such categories are called finitary lextensive [CLW, Corollary 4.9]. The strange term
“lextensive” comes from combining “extensive” with “Limits”. Standard examples to
keep in mind are the categories Set and GSet, and more generally any topos. Note that
the category of pointed sets Set∗ is not finitary lextensive, as the distributive axiom fails.
Here is another important example:

3.3. Proposition. Fix a commutative ring R. Let AffR be the category of affine schemes
over R (the opposite category of commutative R-algebras) and let AffR,ss be the full sub-
category consisting of all objects SpecT where R → T is sheerly separable. Then AffR,ss
is finitary lextensive.

Proof. The two-out-of-three property from Remark 2.12 shows that every map in AffR,ss
is sheerly separable. We claim that finite coproducts exist in AffR,ss and are the same
as those in AffR. To see this one needs to check that if R → T and R → U are sheerly
separable then so is R→ T × U . It is certainly sheer. For separability one uses that

(T × U)⊗R (T × U) ∼= (T ⊗R T )× (T ⊗R U)× (U ⊗R T )× (U ⊗R U).

The multiplication map on T ×U makes it a module over the four-fold Cartesian product
on the right by having the middle two factors act as 0, whereas the first and last factors
act via T ⊗R T → T and U ⊗R U → U . Since T (resp. U) is projective as T ⊗R T (resp.
U ⊗R U)-module, we get projectivity of T × U over the four-fold Cartesian product.

We next claim that pullbacks (and in particular, finite products) exist in AffR,ss and
are the same as those in AffR. This follows immediately from the properties of sheerly
separable maps given in Remark 2.12.

At this point we have shown that AffR,ss has finite coproducts and finite limits, and
that these agree with those in AffR. Verification of the distributivity axiom and the
necessary pullback squares are then trivial exercises.

3.4. Remark. The analog of Proposition 3.3 is not true for the subcategory AffR,sh
consisting of objects SpecT where R → T is sheer, and where the maps in the category
are also required to be sheer. The problem lies with finite limits. If R → T is sheer but
not separable and X = SpecT , Y = SpecR, then the diagonal map X → X ×Y X is not
a map in the category. So either the pullback of X → Y ← X does not exist in AffR,sh
or it is different from the pullback in AffR.

We record one useful lemma about finitary lextensive categories (note here again that
∅ always denotes the initial object of C):

3.5. Lemma. Let C be finitary lextensive. Then any map Z → ∅ is an isomorphism, and
the pullback of any diagram ∅ → Y ← X is ∅.

Proof. The first part is [CLW, Proposition 2.8], but we recount the proof here. If
f : Z → ∅ is a map then we can write

Z = Z ×∅ ∅ = Z ×∅ (∅ ⨿ ∅) = (Z ×∅ ∅)⨿ (Z ×∅ ∅) = Z ⨿ Z.
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So the fold map ∇ : Z ⨿ Z → Z is an isomorphism, and hence any two maps from Z to
another object must be identical. In particular, the composite Z → ∅ → Z must be the
identity, from which it follows that f is an isomorphism.

The second statement in the lemma is an immediate consequence of the first.

3.6. Definition.A Gysin functor on a finitary lextensive category C is a contravariant
functor E from C to CommRing together with a covariant functor Ẽ : C → Ab such that
E(X) = Ẽ(X) for every object X. If f : X → Y is a map we write f ∗ = E(f) and
f! = Ẽ(f). The maps f! will be called Gysin maps. For a ∈ E(X) and b ∈ E(Y ) we write

a⊗ b = (πXYX )∗(a) · (πXYY )∗(b) ∈ E(X × Y ).

We require the following axioms:

(1) [Zero axiom] E(∅) = 0.

(2) [Behavior on sums] For any objects X and Y , the natural map

i∗X × i∗Y : E(X ⨿ Y )→ E(X)× E(Y )

is an isomorphism of rings. Here iX : X → X ⨿ Y and iY : Y → X ⨿ Y are the
canonical maps.

(3) [Push-product axiom] For any maps f : X → X ′, g : Y → Y ′ and a ∈ E(X), b ∈ E(Y )
one has

(f × g)!(a⊗ b) = f!(a)⊗ g!(b).

(4) [Push-Pull axiom] For every pullback diagram

A

p
��

f // B

q
��

C
g // D

one has f!p
∗ = q∗g!.

A natural transformation between Gysin functors is a natural transformation of con-
travariant functors that is also a natural transformation of the covariant piece.

3.7. Remark.

(a) The above definition starts with the “internal” multiplications on the abelian groups
E(X) and derives the external pairings E(X) ⊗ E(Y ) → E(X × Y ). As usual, the
opposite approach can also be taken: we could have written the above definition
in terms of external pairings, and then constructed the internal pairings using the
diagonal maps. The two approaches are equivalent.

(b) When C is the category of finite G-sets, what we have called Gysin functors are more
commonly called commutative Green functors ; see [B, Chapter 2]. We adopted the
term “Gysin functor” due to its brevity.

The following lemmas are useful to record:
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3.8. Lemma. If f is an isomorphism in C then f! = (f ∗)−1 in any Gysin functor.

Proof. This follows immediately from the push-pull axiom, using the pullback diagram

A
id //

id
��

A

f
��

A
f // A.

3.9. Lemma. For any objects A and B, the composition

E(A)⊕ E(B)
(i0)!⊕(i1)! // E(A⨿B)

(i0)∗×(i1)∗ // E(A)× E(B)

sends a pair (x, y) to (x, y) (we refrain from calling this the identity only because the
domain and target are perhaps not “equal”). Consequently, the pushforward map (i0)! ⊕
(i1)! : E(A)⊕ E(B)→ E(A⨿B) is an isomorphism of abelian groups.

Proof. For the first statement use the push-pull axiom applied to the three pullback
squares listed in the original introduction of C, together with E(∅) = 0. The second
statement of the lemma then follows directly from Axiom (2) in Definition 3.6.

3.10. Lemma. Let f : A→ X and g : B → X. Then (f ×X g)!(1) = f!(1) · g!(1).

Proof. Use push-pull for the square

A×X B //

f×Xg
��

A×B
f×g
��

X ∆ // X ×X.

Start with 1 = 1⊗ 1 ∈ E(A×B), and use the push-product axiom.

3.11. Proposition. [Projection formula] Let E be a Gysin functor. Then given a map
f : X → Y , α ∈ E(X), and β ∈ E(Y ) one has

f!(α · f ∗(β)) = f!(α).β.

Proof. Using push-pull applied to α⊗ β ∈ E(X × Y ), the pullback diagram

X
id×f //

f
��

X × Y
f×id
��

Y ∆ // Y × Y

implies that f!(α ·f ∗β) = ∆∗(f×id)!(α⊗β). The push-product axiom finishes the proof.
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3.12. Example. We give various examples of Gysin functors.

(a) Let C be the category of sets but with morphisms the maps where all fibers are finite
(called quasi-finite maps from now on). Let E(S) = Hom(S,Z), with the ring
operations given by pointwise addition and multiplication. If f : S → T then f ∗ is
the evident map and f! : E(S) → E(T ) sends a map α : S → Z to the assignment
t 7→

∑
s∈f−1(t) α(s). This satisfies the axioms of Definition 3.6, except C is not finitary

lextensive (there is no terminal object). Taking C to instead be the category of finite
sets repairs this.

(b) Let G be a finite group, and let C be the category of finite G-sets. For S in C
define A(S) to be the Grothendieck group of maps X → S (where X is a finite
G-set) formed with respect to the direct sum operation ⨿, made into a ring via
[X → S]·[Y → S] = [X×SY → S]. Given f : S → T one gets maps f ∗ : A(T )→ A(S)
by pulling back along f , and f! : A(S)→ A(T ) by composing with f .

(c) Fix a commutative ring k and consider the category Affk,ss from Proposition 3.3.
For R a k-algebra let K0(SpecR) be the Grothendieck group of finitely-generated R-
projectives. For f : SpecR → SpecS we have f ∗ : K0(SpecS) → K0(SpecR) given
by [P ] 7→ [P ⊗S R], and f! : K0(SpecR)→ K0(SpecS) given by restriction of scalars
(so [P ]R 7→ [P ]S).

(d) Again considering Affk,ss as in the previous example, the assignment SpecS 7→
GW(S) has the structure of a Gysin functor, as detailed in Section 2.

(e) Let C be the category of topological spaces, with morphisms the quasi-finite fibrations.
Define E(X) = Hom(π0(X),Z) = H0(X). The pullback maps are as expected. For
f : X → Y and α ∈ E(X) define f!(α) to be the assignment [y] 7→

∑
x∈f−1(y) α([x])

where [x] and [y] denote the path-components containing x and y. This satisfies the
axioms of a Gysin functor (the fibration condition is needed only to show that f! is
well-defined), but the category C is not finitary lextensive (it does not have a terminal
object). This example has a strong relation to that in (a) above.

(f) The following is not an example of a Gysin functor, but is nevertheless instructive.
Let C be the category of finite sets, and let P(X) be the powerset of the set X; this is
not quite a ring, but it does have the intersection operation ∩ which we will regard as
a multiplication. Given f : X → Y one has the inverse-image map f ∗ : P(Y )→ P(X)
(which preserves the multiplication) and the image map f∗ : P(X) → P(Y ) (which
does not). The axioms of Definition 3.6 are all satisfied, when suitably interpreted.
The powerset functor is something like a “non-additive Gysin functor”.

3.13. Remark. Let C be the category of compact, oriented topological manifolds, and
let E(X) = H∗(X). With the usual pullbacks and Gysin morphisms, this is almost
(but not quite) a Gysin functor as we defined above. In addition to the category C not
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being finitary lextensive (finite limits do not always exist), the difficulty is that the push-
pull axiom only holds for pullback squares satisfying a suitable transversality condition.
This same problem arises if one uses smooth algebraic varieties and the Chow ring, or if
one uses oriented manifolds and complex cobordism. But all of these settings represent
appearances in the literature of structure similar to what we consider in the present paper.
Especially in the case of cobordism, see the axiomatic treatment in [Q, Section 1]. Prior to
[Q, Proposition 1.12] Quillen refers to, but does not give, an axiomatic treatment related
to the multiplicative structure; the axioms for a Gysin functor are essentially this.

3.14. The universal Gysin functor. Let C be finitary lextensive. Given an object
X in C, define AC(X) to be the Grothendieck group of (isomorphism classes of) maps
S → X where

[(S ⨿ T )→ X] = [S → X] + [T → X].

The multiplication [S → X] · [T → X] = [S×X T → X] is well-defined and makes AC(X)
into a commutative ring with identity [id : X → X]. We call AC(X) the Burnside
ring of X. Note that AC has the evident structure of a contravariant functor to rings,
as well as that of a covariant structure to abelian groups, generalizing the situation in
Example 3.12(b). When the category C is understood we abbreviate AC to just A.

3.15. Proposition. The Burnside functor AC is a Gysin functor.

Proof. Axioms (3) and (4) are immediate. Axiom (1) follows from Lemma 3.5, which
says that every map Z → ∅ is an isomorphism. For axiom (2) one checks directly that
the composition

E(X)⊕ E(Y )
(i0)!⊕(i1)! // E(X ⨿ Y )

(i0)∗×(i1)∗// E(X)× E(Y )

is the identity; this follows from the pullback squares in (3.2) together with the pullback
property from Lemma 3.5. The check that the composite [(i0)!⊕(i1)!]◦[(i0)∗×(i1)∗] equals
the identity is similar, since for S → X ⨿ Y one can write the distributivity formula

S = (X ⨿ Y )×X⨿Y S = (X ×X⨿Y S)⨿ (Y ×X⨿Y S).

3.16. Example. When C is the category of finite sets, note that there is a natural
isomorphism A(S) ∼= Hom(S,Z), sending the element [f : M → S] to the assignment
s 7→ #f−1(s). The Gysin functor given in Example 3.12(a) is the Burnside functor for C.

The Burnside functor has the following universal property:

3.17. Proposition. If E is a Gysin functor on the category C then there is a unique
map of Gysin functors AC → E. It sends [f : A→ X] in AC(X) to f!(1) ∈ E(X).
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Proof. For existence, use the given formula. The fact that AC(X) → E(X) is well-
defined follows using Lemma 3.9, which implies that (f ⨿ g)!(1) = f!(1) + g!(1). The
fact that it is a ring map follows from Lemma 3.10. Compatibility with pullbacks and
pushforwards is trivial. Uniqueness follows from the fact that [f : A→ X] ∈ A(X) equals
fA
! (1), the pushforward in the Gysin functor A.

3.18. Categories derived from Gysin functors. Given a Gysin functor E on C
we can define an additive category CE as follows. First, the objects of CE are the same as
the objects of C. Second, for any objects A and B define

CE(A,B) = E(B × A).

Really what we mean here is that CE(A,B) is the underlying abelian group of E(B×A).
Third, define the composition law

µC,B,A : CE(B,C)⊗ CE(A,B)→ CE(A,C)

by
µC,B,A(α⊗ β) = (π13)!

(
(π12)

∗(α) · π23∗(β)
)

where the πrs maps are the evident ones

π12 : A×B × C → A×B, π23 : A×B × C → B × C,

π13 : A×B × C → A× C.

We will use the notation
α ◦ β = µC,B,A(α⊗ β).

Finally, for any object A define iA to be ∆A
!(1); that is, consider the map

E(A)
∆A

!−→ E(A× A)

and take the image of the unit element of the ring E(A). Note that E(A × A) is a
commutative ring and so has a unit element 1, but this is not necessarily equal to iA. One
may check (see Proposition 3.21(a) below) that this structure makes CE into a category
with identity maps iA.

We refer to elements of E(B×A) as “E-correspondences” from A to B. The category
CE itself will be referred to as the category of E-correspondences.

3.19. Remark. The construction of the category CE is one that appears countless times
in the algebraic geometry literature, ultimately going back to Grothendieck. For the
category of algebraic varieties over some field k, forming the category of correspondences
with respect to the Chow ring functor is the first step in Grothendieck’s attempts to define
a category of motives. See for example [M, Section 2].
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3.20. Example.

(a) Let G be a finite group, let C be the category of finite G-sets, and let A be the
Burnside functor from Example 3.12(b). The category CA is precisely the category
Burn mentioned in Section 1.

(b) Fix a commutative ring R, and let AffR,ss be the category from Proposition 3.3. Then
CGW is the Grothendieck-Witt category over R, defined in Section 2.

(c) Let C be the category of finite sets, and let E be the Gysin functor from Exam-
ple 3.12(a). Then we obtain the category of correspondences CE. It turns out this
category has a familiar model: it is equivalent to the category of finitely-generated,
free abelian groups. Proving this is not hard, but it will also fall out of our general
“reconstruction theorem” (Theorem 4.16). See Example 4.17.

The following proposition details many (and perhaps too many) useful facts about
the category CE. Recall one piece of notation: maps into products can be unlabelled if
there is a self-evident candidate for how the map projects onto each of the factors. For
example, if f : A → B then A → A× B denotes the evident map that is the identity on
the first factor and f on the second.

3.21. Proposition. Let E be a Gysin functor on a finitary lextensive category C.

(a) The structure described above defines a category CE that is enriched over abelian
groups, where iA ∈ CE(A,A) is the identity map on A.

(b) A natural transformation of Gysin functors E → E ′ induces a functor CE → CE′.

(c) There is a functor R : C → CE that is the identity on objects and has the property that
for f : A→ B in C we have

Rf = (idB × f)∗(iB) = (B × A→ B ×B)∗(iB) ∈ E(B × A) = CE(A,B).

One also has Rf = (A→ B × A)!(1).

(d) The category CE has an anti-automorphism (−)∗ that is the identity on objects, and
for α ∈ CE(A,B) is given by

α∗ = t∗(α)

where t : A × B → B × A is the evident isomorphism. We define I : Cop → CE to be
the identity on objects, and to be given on maps by I(f) = (Rf )

∗. We often write
If = I(f). If f : A→ B then If = (f × idB)∗(iB) = (A→ A×B)!(1).

(e) Suppose given α ∈ CE(W,Z), f : Y → W , g : Z → U , f ′ : W → Y ,and g′ : U → Z.
Then

(i) α ◦Rf = (idZ × f)∗(α);
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(ii) Rg ◦ α = (g × idW )!(α);

(iii) α ◦ If ′ = (idZ × f ′)!(α);

(iv) Ig′ ◦ α = (g′ × idW )∗(α).

(f) Given A
f−→ B

q←− C in C one has If ◦Rq = (f × q)∗(iB) = (πA×BC
AC )!(1) in CE.

(g) Given A
p←− D

g−→ C in C one has Rp ◦ Ig = (p× g)!(iD) =
(
(p× g)DAC

)
!
(1) in CE.

(h) Given a pullback diagram in C
Z

g //

p
��

W

q
��

X
f // Y

one has Rp ◦ Ig = If ◦Rq in CE.

(i) If f is an isomorphism in C then Rf = I−1
f = If−1.

Proof. This proof is tedious, but completely formal. See Appendix B for details.

Our next goal is to observe that the Gysin functor E, which is both co- and contravari-
ant, extends to a single functor defined on all of CE. Before embarking on the explanation
of this, here is some useful notation. If B is an object of C, note that the abelian group
E(B) may be identified with both CE(∗, B) and CE(B, ∗), where ∗ is the terminal object
of C. If x ∈ E(B) we write x∗ for x regarded as an element of CE(∗, B) = E(B × ∗) and
∗x for x regarded as an element of CE(B, ∗). This notation makes sense if one remembers
our general “right-to-left” convention; e.g., x∗ is x regarded as a map from the object ∗.

Define a functor E ′ : CopE → Ab as follows. On objects it is the same as E: E ′(A) =
E(A). For g ∈ CE(A,B) define E ′(g) : E(B)→ E(A) by

E ′(g)(x) = ∗x ◦ g =
(
πBAA

)
!

[(
πBAB

)∗
(x) · g

]
.

The fact that this is a functor is immediate from the associativity and unital properties
of the circle product ◦ (the composition product in CE).

3.22. Proposition. The functor E ′ : CopE → Ab has the property that E ′(Rf ) = f ∗ and
E ′(If ) = f! for any map f in C.

Proof. Use Proposition 3.21(e), parts (i) and (iii) to write

E ′(Rf )(x) = ∗x◦Rf = (id∗×f)∗(x) = f ∗(x), E ′(If )(y) = ∗y ◦ If = (id∗×f)!(y) = f!(y).

(Note that id∗ denotes the identity map ∗ → ∗).
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3.23. Remark. Note that E ′ is not a functor from CopE into CommRing. This would of
course be too much to ask, since the transfer maps f! do not respect the multiplicative
products.

3.24. Further properties of CE. The category CE has some extra structure that we
have not yet accounted for. The categorical product in C induces a symmetric monoidal
product on CE: that is, for objects X and Y we define

X ⊗ Y = X ×C Y.

We must define f ⊗ g for f ∈ CE(X,X ′) and g ∈ CE(Y, Y ′). We do this by

f ⊗ g =
(
tX

′Y ′XY
X′XY ′Y

)∗
(f ⊗ g).

This formula appears self-referential, but the two tensor symbols mean something differ-
ent: in the second case, we have f ∈ E(X ′ × X) and g ∈ E(Y ′ × Y ) and f ⊗ g is the
element in E(X ′ ×X × Y ′ × Y ) that was introduced in Definition 3.6. Note that t is the
twist map that interchanges the middle two factors.

It takes a little work to verify bi-functoriality, but this is routine. The unit object
is S = ∗, the terminal object of C (note that this is not a terminal object of CE). The
symmetry isomorphism τXY ∈ CE(X ⊗ Y, Y ⊗X) is defined to be

τXY = R(tXY )

where tXY : X × Y → Y × X is the canonical isomorphism in C. One must verify that
the structure we have defined satisfies the basic commutative diagrams for a symmetric
monoidal structure, and we again leave this with simply the remark that it is tedious but
not challenging.

We can also define function objects in CE. For objects X and Y define

F (X, Y ) = X∗ ⊗ Y

where (−)∗ is the anti-automorphism from Proposition 3.21(d). Of course the object X∗

is exactly equal to X, but we wrote X∗ because this is more compatible with the way the
maps work: for g : Y → Y ′ define F (X, g) to be the map iX∗ ⊗ g, and for f : X → X ′

define F (f, Y ) to be the map If ⊗ iY .
At this point it is useful to recall the notion of dualizability in symmetric monoidal

categories. See Appendix A for this. We also need the notion of “tensor category”. The
meaning of this phrase varies somewhat in the literature, but in this paper we will adopt
the following:

3.25. Definition.A tensor category is an additive category equipped with a symmetric
monoidal product ⊗ (called the tensor) for which the tensor product of morphisms is
bilinear. It follows as a consequence that the tensor product preserves finite coproducts.
A tensor category is closed if it is equipped with function objects related to the tensor by
the usual adjunction formula, which is required to be linear. We will typically denote the
unit for ⊗ as S.

With the above notions in place, we leave the reader to check the following:
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3.26. Proposition. The above structure makes CE into a closed tensor category where
the unit is S = ∗, and in which every object is dualizable. Moreover, every object is
isomorphic to its own dual.

Proof. Tedious, but routine. Perhaps the only thing that needs remark is that the
evaluation and co-evaluation morphisms for an object X are

cevX = iX ∈ E(X ×X) = E(X ×X × ∗) = CE(∗, X ×X) = CE(S,X ⊗X)

and

evX = iX ∈ E(X ×X) = E(∗ ×X ×X) = CE(X ×X, ∗) = CE(X ⊗X,S).

The following proposition is easy but important. It will be used implicitly in several
later calculations.

3.27. Proposition. Let f : A → B and g : X → Y be maps in C. Then R(f × g) =
Rf ⊗Rg and I(f × g) = If ⊗ Ig.

Proof. Using Proposition 3.21(d) and the definition of tensor product, we have

If ⊗ Ig = (tAXBYABXY )
∗
[
(A→ AB)!(1)⊗ (X → XY )!(1)

]
= (tAXBYABXY )

∗
[
(A×X → A×B ×X × Y )!(1)

]
= (A×X → A×X ×B × Y )!(1)

= I(f × g).

The second equality uses the Push-Product Axiom, the third equality uses Push-Pull, and
the last equality is Proposition 3.21(d) again.

The proof of the other identity is entirely similar.

4. Gysin schema and the reconstruction theorem

We have seen that given a Gysin functor E on a finitary lextensive category C, there is
an associated symmetric monoidal category CE called the category of E-correspondences.
One could try to run this process in reverse: given a symmetric monoidal categoryD, what
do you need to know in order to guarantee that D is the category of E-correspondences
for an appropriately chosen E and C? We might term this the “reconstruction problem”:
can D be reconstructed as a category of correspondences? Of course for this to work one
must at least require that all objects in D be self-dual.

Unfortunately, in this form the reconstruction problem is a little awkward. The cat-
egory CE comes equipped with two distinguished subcategories, one consisting of the
forward maps Rf and one consisting of the backward maps If . If we are just given a
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symmetric monoidal category D, there is no clear way to separate out analogs of either
of these distinguished subcategories.

The way around this problem is to add these special subcategories into the initial
data. Then the reconstruction problem becomes solvable, albeit for almost tautological
reasons. See Theorem 4.16 below.

4.1. Gysin schema.

4.2. Definition. A Gysin schema consists of the following data:

• A finitary lextensive category C, together with an explicit choice ∗ for terminal object
and for each objects X and Y of C an explicit choice of product X × Y ;

• A tensor category (D,⊗, S) (see Definition 3.25);

• A map of sets Θ: ob C → obD and two functors R : C → D and I : Cop → D;

• Isomorphisms θ∗ : Θ(∗)→ S and θX,Y : Θ(X × Y )→ (ΘX)⊗ (ΘY ).

This data is required to satisfy the following axioms:

(1) R(X) = Θ(X) = I(X) for all objects X of C;

(2) R preserves finite coproducts (including the empty coproduct);

(3) The data (R, θ) makes R into a strong symmetric monoidal functor from (C,×, ∗) to
(D,⊗, S).

(4) For all maps f : A→ X and g : B → Y in C, the diagram

I(A×B)

θA,B ∼=
��

I(X × Y )
I(f×g)oo

θX,Y∼=
��

I(A)⊗ I(B) I(X)⊗ I(Y )
I(f)⊗I(g)oo

is commutative.

(5) For every pullback diagram

A

p
��

f // B

q
��

C
g // D

in C one has Rf ◦ Ip = Iq ◦Rg.

We will write the Gysin schema as Θ: C → D, suppressing R, I, and θ from the notation.
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4.3. Remark. There are a couple of odd features about the above definition. First, the
function Θ is clearly redundant as it can be recovered from either R or I. We include Θ
in the definition because it is often useful to have a notation that does not favor either R
or I. Secondly, conditions (3) and (4) could have been made more symmetric by replacing
(4) with the statement that (I, θ) is strong symmetric monoidal; we leave the equivalence
as an exericse. The phrasing from the definition makes applications a little easier, as there
is a bit less to verify: in practice one looks for a “nice enough” functor R that admits
transfer maps satisfying (4) and (5).

4.4. Example. One readily checks that the following are examples of Gysin schema:

(a) Fix a finite group G, and let D be the G-equivariant stable homotopy category of
genuine G-spectra. Let C be the category of finite G-sets, and let R(X) = Σ∞(X+).
The maps I(f) are the usual transfer maps constructed in stable homotopy theory.

(b) Let D be the category of finitely-generated free abelian groups, equipped with the
tensor product. Let C be the category of finite sets. LetR(X) be the free abelian group
on the setX, with its natural functoriality. If f : X → Y then let I(f) : R(Y )→ R(X)
send the basis element [y] to

∑
x∈f−1(y)[x].

When X is an object of C we let πX denote the unique map X → ∗, and ∆X denote
the diagonal X → X ×X. The subscripts will usually be suppressed when understood.
Note that Rπ is a map RX → R(∗), and we have a chosen isomorphism R(∗) = Θ(∗) ∼= S;
so composing these gives a canonical map RX → S, which we will usually also denote
Rπ by abuse. Similarly, R∆ may be regarded as a map RX → RX ⊗RX. We use these
conventions for Iπ and I∆ as well.

4.5. Transfers and duality.

4.6. Proposition. Suppose that Θ: C → D is a Gysin schema. Then for every object
X in C, ΘX is dualizable in D. In fact, ΘX is self-dual with structure maps ηX and ϵX
given by

S
Iπ // Θ(X) R∆ // Θ(X ×X)

∼= // ΘX ⊗ΘX

and

ΘX ⊗ΘX
∼= // Θ(X ×X) I∆ // ΘX Rπ // S.

Proof. The key is the pullback diagram

X ∆ //

∆
��

X ×X
∆×id
��

X ×X id×∆ // X ×X ×X,

from which we deduce that I(id×∆)◦R(∆× id) = R∆◦I∆. Combining this with axioms
(3) and (4) from Definition 4.2 gives the first equality below:

(id⊗ I∆) ◦ (R∆⊗ id) = R∆ ◦ I∆ = (I∆⊗ id) ◦ (id⊗R∆). (4.7)
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The second equality comes about in the same way, but starting with the reflection of the
above pullback square about its central diagonal.

To prove the proposition we must first check that the composition

ΘX = ΘX ⊗ S 1⊗Iπ // ΘX ⊗ΘX
1⊗R∆// ΘX ⊗ΘX ⊗ΘX

I∆⊗1 // ΘX ⊗ΘX

Rπ⊗1
��

S ⊗ΘX = ΘX

equals the identity. But using (4.7) this is equal to

(Rπ ⊗ 1) ◦R∆ ◦ I∆ ◦ I(1⊗ π) = R((π × 1) ◦∆) ◦ I((1× π) ◦∆) = R(id) ◦ I(id) = id.

Note that we have again used axioms (3) and (4) of Definition 4.2 to write Rπ ⊗ 1 =
R(π × 1), and so forth.

The proof that the composite

ΘX = S ⊗ΘX
Iπ⊗1 // ΘX ⊗ΘX

R∆⊗1// ΘX ⊗ΘX ⊗ΘX
1⊗I∆ // ΘX ⊗ΘX

1⊗Rπ
��

S ⊗ΘX = ΘX

equals the identity is entirely similar.

The following result is also worth recording:

4.8. Proposition. Let Θ: C → D be a Gysin schema. Then given any map f : X → Y
in C, the dual of Rf : ΘX → ΘY (computed using the duality structures provided by
Proposition 4.6) is precisely If : ΘY → ΘX.

Proof. The dual of Rf is the following composite:

ΘY = ΘY ⊗ S 1⊗ηX // ΘY ⊗ΘX ⊗ΘX
1⊗Rf⊗1 // ΘY ⊗ΘY ⊗ΘX

ϵY ⊗1
��

S ⊗ΘX ΘX.

One unpacks η and ϵ as ηX = R∆X ◦ IπX and ϵY = RπY ◦ I∆Y , and then argues precisely
as in the proof of Proposition 4.6 but instead using the pullback diagram

X
f×1 //

f×1
��

Y ×X
1×f×1
��

Y ×X ∆Y ×1 // Y × Y ×X.
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The details are encoded in the diagram

X

R(f×1)

))

1X

��
Y = Y · S 1·I(πX) //

If //

Y ·X
1·R(∆X)

��

I(f×1)

55

R(1·f ·1)

**

Y ·X R(πY )·1 // S ·X = X

Y ·X ·X
R(1·f ·1)

// Y · Y ·X

I(∆Y )·1
55

in which for brevity we have omitted the Θ symbols and shortened ⊗ to the · symbol. The
composite across the bottom edge is the dual of Rf , the middle quadrilateral commutes
by the push-pull formula, and all other portions of the diagram commute by simple
functoriality.

4.9. The canonical Gysin functor for a Gysin schema. Suppose Θ: C → D is
a Gysin schema. Define πΘ : Cop → Ab to be the functor given by

πΘ(X) = D(RX,S).

Note that the abelian groups πΘ(−) also inherit the structure of a covariant functor: given
f : X → Y in C define f! : πΘ(X)→ πΘ(Y ) by the diagram

πΘ(X)
f! // πΘ(Y )

D(ΘX,S)
D(If,S) // D(ΘY, S).

Moreover, the abelian groups πΘ(X) inherit a product: given a, b ∈ πΘ(X), define a · b to
be the composite

ΘX
R∆−→ ΘX ⊗ΘX

a⊗b−→ S ⊗ S ∼= S.

This gives πΘ(X) the structure of a commutative ring with identity RπX , and if f : X → Y
is a map in C then f ∗ : πΘ(Y )→ πΘ(X) is a ring homomorphism.

4.10. Remark. If a ∈ πΘ(X) and b ∈ πΘ(Y ) then we have the element a⊗b ∈ πΘ(X×Y )
defined analogously to as in Definition 3.6. It is easy to check that this is the map

Θ(X × Y )
∼= // ΘX ⊗ΘY

a⊗b // S ⊗ S = S.

4.11. Proposition. If Θ: C → D is a Gysin schema then πΘ : Cop → CommRing is a
Gysin functor.

Proof. Axioms (1) and (2) follow from the fact that R preserves finite coproducts (in
particular, R(∅) = 0). Axioms (3) and (4) are immediate consequences of axioms (4) and
(5) in Definition 4.2.
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4.12. Preliminaries on the reconstruction problem. Let (D,⊗, S, F (−,−)) be
a closed, symmetric monoidal category in which every object is dualizable. It turns out
all such categories have a description that is somewhat reminiscent of the construction of
CE.

For an object X write X∗ = F (X,S), and for a map f : X → Y write f ∗ = F (f, S).
Let evX : X∗ ⊗ X → S be the adjoint of the identity map X∗ → F (X,S), and let
cevX : S → X ⊗X∗ be the coevaluation map guaranteed by duality (see Appendix A).

Define a new category Dad as follows. The objects are the same as those in D, and
morphisms are given by

Dad(X, Y ) = D(Y ∗ ⊗X,S).
If α ∈ Dad(X, Y ) and β ∈ Dad(Y, Z) then β ◦ α is given as follows:

Z∗ ⊗X
∼= // Z∗ ⊗ S ⊗X 1⊗cevY ⊗1 // Z∗ ⊗ Y ⊗ Y ∗ ⊗X β⊗α // S ⊗ S S.

One readily checks that this composition is associative, and evX ∈ Dad(X,X) is a two-
sided identity. These are very easy categorical arguments, but one can also give proofs
using the graphical calculus for compact symmetric monoidal categories (see [BS] for an
expository account).

There is a functor Γ: D → Dad defined as follows. It is the identity on objects, and
given f : X → Y we let Γf ∈ Dad(X, Y ) = D(Y ∗ ⊗X,S) be the composite

Y ∗ ⊗X id⊗f // Y ∗ ⊗ Y evY // S.

The check that this is indeed a functor is best done using the graphical calculus (again,
see [BS]). If f : X → Y and g : Y → Z are maps in D, then Γ(gf) and (Γg)(Γf) are the
composite maps represented by the following diagrams:

f

g

f

g

Γ(g ◦D f) Γ(g) ◦Dad Γ(f)

The graphical calculus clearly shows these composites to be identical in D.

4.13. Proposition. The functor Γ: D→ Dad is an isomorphism of categories.

Proof. We only need check that the maps D(X, Y ) → Dad(X, Y ) = D(Y ∗ ⊗ X,S)
are bijections. There is an evident map in the opposite direction that sends a map
h : Y ∗ ⊗X → S to the composite

X S ⊗X cevY ⊗idX // Y ⊗ Y ∗ ⊗X idY ⊗h // Y ⊗ S Y.
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Proving that these assignments are inverses to each other is another exercise in graphical
calculus. For example, the composite in one direction sends the map f : X → Y to the
map represented by

f

and the graphical calculus shows that this is equal to f in D. The other direction is
similarly easy.

4.14. Remark. In the above discussion, we never really needed the closed structure on
D. We only needed that all objects are dualizable, together with fixed choices of a dual
as well as evaluation and coevaluation maps for every object. In fact, by Proposition A.8
below every symmetric monoidal category in which all objects are dualizable can be given a
closed structure via F (X, Y ) = X∗⊗Y . Thus, Proposition 4.13 applies to these categories
and we will use it in that generality.

4.15. The main reconstruction theorem. Recall from Section 3.18 that C(πΘ) de-
notes the category of correspondences associated to the Gysin functor πΘ.

4.16. Theorem. Assume given a Gysin schema Θ: C → D. Then there is a full and
faithful functor of categories C(πΘ) → D that is equal to Θ on objects and sends a map
f ∈ CπΘ(X, Y ) = D(ΘY ⊗ΘX,S) to the composite

ΘX S ⊗ΘX
ηΘY ⊗idΘX // ΘY ⊗ΘY ⊗ΘX

idΘY ⊗f // ΘY ⊗ S ΘY.

Proof. The proof is easier to understand if we first compare C(πΘ) to Dad. Note that for
any objects X and Y of C we have equalities of sets

C(πΘ)(X, Y ) = πΘ(Y ×X) = D(ΘY ⊗ΘX,S) = Dad(ΘX,ΘY ).

The identity element iX ∈ C(πΘ)(X,X) = πΘ(X ×X) is ∆!(1), which by unravelling the
definitions equals the composite

ΘX ⊗ΘX I∆ // ΘX Rπ // S,

also known as ϵX . This is equal to the identity in Dad.
Finally, we must compare the composition rules in C(πΘ) and Dad. Suppose given

f ∈ D(ΘY ⊗ΘX,S) and g ∈ D(ΘZ ⊗ΘY, S). The composition g ◦ f in C(πΘ) is given by
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the composite

ΘZ ⊗ΘX
θ

∼= // Θ(Z ×X)
Ip // Θ(Z × Y ×X)

R∆
��

Θ(Z × Y ×X)⊗Θ(Z × Y ×X)

∼= θ
��

ΘZ ⊗ΘY ⊗ΘX ⊗ΘZ ⊗ΘY ⊗ΘX

1⊗1⊗RπX⊗RπZ⊗1⊗1
��

ΘZ ⊗ΘY ⊗ S ⊗ S ⊗ΘY ⊗ΘX

g⊗1⊗1⊗f
��

S ⊗ S ⊗ S ⊗ S S

where p : Z × Y ×X → Z ×X is the evident projection. The composition g ◦ f in Dad is
given by the composite

ΘZ ⊗ΘX
∼= // ΘZ ⊗ S ⊗ΘX

1⊗ηY ⊗1 // ΘZ ⊗ΘY ⊗ΘY ⊗ΘX
g⊗f // S ⊗ S S.

A diagram chase shows these two composites to be equal. This is best left to the reader,
but the main idea is to take the first composite and decompose the diagonal on Z×Y ×X
into the three diagonals on the individual components followed by a permutation of the
factors. The diagonals on Z and X cancel the πX and πZ appearing later, leaving only
the diagonal on Y . The map Ip is equal to 1⊗ IπY ⊗ 1, and the IπY assembles with the
R∆Y to make ηY . An outline of the relevant diagram is

ZX
Ip // ZY X

∆∆∆ ))

1∆1 22

∆ // ZY XZY X
11ππ11 // ZY SSY X

g11f // SSSS

ZZY Y XX
1π11π1 //

σ

OO

ZSY Y SX

σ

OO

ZY Y X

gf

<<

where as usual we have omitted Θ and ⊗ symbols, and where the two maps labelled σ
are the permutations (composites of twist maps) sending the word abcdef to acebdf .

At this point we have constructed a functor C(πΘ) → Dad which by inspection is a
bijection on Hom-sets. Finally, compose this with the isomorphism from Proposition 4.13
(see also Remark 4.14) to get the desired result.

4.17. Example. Let D be the category of finitely-generated free abelian groups, and
let C be the category of finite sets. Let Θ: C → D be the free abelian group functor,
given the structure of a Gysin schema as in Example 4.4. The associated Gysin functor
πΘ is precisely the one of Example 3.12(a). By Theorem 4.16 we conclude that C(πΘ) is
isomorphic to the category of finitely-generated free abelian groups.
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5. The structure of correspondence categories

Suppose E : C → CommRing is a Gysin functor. Our goal is to better understand how
the category of correspondences CE relates to the original category C. Given objects X
and Y in C, every element f ∈ C(X, Y ) gives rise to maps Rf and If in CE. In addition,
we will see that every element a ∈ E(X) gives an endomorphism Da of X in CE. We will
prove that every map in CE may be written in the form Rf ◦Da ◦ Ig, and we will explain
rules for rewriting the composition of two such expressions into the same form.

These results do not give a simple picture for the structure of CE, but they do give
a reasonable prescription for working with these categories in specific examples. In Sec-
tion 5.13 we explore this in a general “Galoisien” setting, meaning a setting where the
category C has properties formally similar to the category of G-sets, with G is a finite
group.

5.1. The diagonal structure. We will need an extra piece of structure in CE coming
from the diagonal maps in C. For an object X in C let ∆: X → X ×X be the diagonal.
This induces a map of abelian groups

D = ∆! : E(X)→ E(X ×X) = CE(X,X).

The target has two ring structures: it has the generic ring structure that any E(Z) has,
and it has the circle product coming from composition in CE. It is the latter that we
consider in the next proposition. This result also uses the ∗-involution on CE(X,X) from
Proposition 3.21(d).

5.2. Proposition. D : E(X)→ CE(X,X) is a ring map, and for any a ∈ E(X) one has
(Da)∗ = Da.

Proof. Let a, b ∈ E(X). We calculate

Db ◦Da = (π13)!
[
π∗
12(∆!b) · π∗

23(∆!a)
]

= (π13)!
[
(∆× id)!(π∗

1b) · π∗
23(∆!a)

]
(push-pull)

= (π13)!(∆× id)!
[
(π∗

1b) · (∆× id)∗π∗
23(∆!a)

]
(proj. formula)

= π∗
1b ·∆!(a)

= ∆!

(
(∆∗π∗

1b) · a
)

= ∆!(b · a)
= D(ba).

The second statement in the proposition is proven by

(Da)∗ = t∗(Da) = (t!)
−1(Da) = t!(Da) = t!(∆!a) = ∆!a = Da,

where t is the twist X ×X → X ×X. The second equality is from Proposition 3.21(i),
and the third equality is because t = t−1.
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5.3. Notation. We will usually write Da, or if really necessary D(a), but sometimes we
will write Da for the same thing.

5.4. Proposition. Suppose given f : X → Y and a ∈ E(Y ). Then Da◦Rf = Rf◦D(f ∗a)
and If ◦Da = D(f ∗a) ◦ If .

Proof. We compute

Da ◦Rf = ∆!a ◦Rf = (idY × f)∗(∆!a) =
(
(f × id)XY×X

)
!
(f ∗a)

= (f × id)!∆!(f
∗a)

= Rf ◦D(f ∗a).

The second and fifth equalities are by Proposition 3.21(e), and the third equality is by
push-pull.

To conclude, the second statement in the proposition follows by applying (−)∗ to the
first and using Proposition 5.2.

5.5. Remark. Let G = AutC(X), with the group structure coming from composition.

Note that there is a map Gop → Aut(E(X)) given by f 7→ f ∗. Let E(X)[G̃] be the twisted
group ring defined as follows: it is spanned by elements a[f ] for a ∈ E(X) and f ∈ G,
and the multiplication is induced by

a[f ] · b[g] = a
(
(f−1)∗b

)
[fg].

Then Proposition 5.4 shows that there is a map of rings

E(X)[G̃] −→ CE(X,X), a[f ] 7→ Da ◦Rf .

In good cases this is an isomorphism: see Proposition 5.16 below.

5.6. Initial results on the structure of CE. If we have maps Y
f←− Z

g−→ X
and a ∈ E(Z) then Rf ◦Da ◦ Ig is a morphism from X to Y in CE. We will refer to such
an expression as an RDI formula for the composite morphism. Here are some useful facts
that relate these RDI formulas in CE to pushforwards in E:

5.7. Proposition. Suppose given maps Y
f←− Z

g−→ X and a ∈ E(Z). Then:

(a) Rf ◦Da ◦ Ig =
(
(f × g)ZY X

)
!
(a).

(b) Rf ◦Da ◦ If = D(f!a).

(c) Rf ◦ If = D(f!1).

Proof. For (a) we use Proposition 3.21(e) to write

Rf ◦Da ◦ Ig = (f × id)!(id× g)!(∆!a) =
(
(f × g)ZY X

)
!
(a).

Part (b) follows from (a) together with (f ×f)ZY Y = ∆Y ◦f . Finally, (c) is just the special
case of (b) where we take a = 1 (so Da = iX).
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In fact every morphism in CE can be expressed as an RDI composition. This is
actually a triviality, but it is nevertheless important:

5.8. Lemma. Every element of CE(X, Y ) may be written as Rf ◦Da ◦ Ig for some object
Z, some maps f : Z → Y , g : Z → X, and some a ∈ E(Z).

Proof. Let a ∈ CE(X, Y ) = E(Y ×X). Set Z = Y ×X. We claim that a = Rπ1 ◦Da ◦Iπ2
in CE. This is immediate from Proposition 5.7(a).

Now suppose that we have two maps in RDI form, and that we wish to compose them;
that is, consider a composition of the form

[Rf ◦Da ◦ Ig] ◦ [Rf ′ ◦Da′ ◦ Ig′ ].

There are three rules that allow us to rewrite this in RDI form once again. We indicate
these schematically as:

D ◦R⇝ R ◦D [Proposition 5.4] (5.9)

I ◦D ⇝ D ◦ I [Proposition 5.4]

I ◦R⇝ R ◦ I [Proposition 3.21(h)].

To use these in our problem, we start by forming the pullback in the following diagram:

P
s

��

t

  
A

f

��

g

��

A′

f ′

~~

g′

!!
Y B X.

Then

Rf ◦Da ◦ Ig ◦Rf ′ ◦Da′ ◦ Ig′ = Rf ◦Da ◦Rs ◦ It ◦Da′ ◦ Ig′ (5.10)

= Rf ◦Rs ◦Ds∗a ◦Dt∗a′ ◦ It ◦ Ig′
= Rfs ◦D(s∗a)·(t∗a′) ◦ Ig′t.

The above discussion has proven Corollary 1.3 from the introduction. We also note
that we have proven Theorem 1.2 along the way:

Proof of Theorem 1.2. Parts (a) and (b) are Proposition 5.4, whereas (c) is Propo-
sition 3.21(h). The last assertion in the statement of the theorem is Proposition 5.7(b).
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5.11. A detailed example of the Burnside functor. Consider the category CA,
where A is the Burnside functor for C from Section 3.14. Given the role of A as the
universal Gysin functor, it is useful to have a particularly good handle on how to work
with CA. Recall that a map in CA from X to Y is an element of A(Y × X), and so is
represented by a map h : T → Y ×X in C. It is often useful to represent this data as a
span, by writing

T
π2h
!!

π1h
��

Y X.

The following list gives a “dictionary” for how certain structures are represented in
CA.

(1) X
f

��
id

��
= Rf,

A X

X
id

��
g

�� = Ig

X B

(2) X
f

��
g

��
= Rf ◦ Ig

A B

(3) X
id

��
id

�� = iX
X X

X ×X
π1

}}
π2

!!
= 1X

X X

(4) X
f

��
g

��

X ′

f ′

��
g′

��

X ×X ′
f×f ′

yy
g×g′

%%⊗ =

A B A′ B′ A× A′ B ×B′

(5) unit of ⊗ is S = ∗

(6) The adjunction Hom(X,F (Y, Z))→ Hom(X ⊗ Y, Z) is

W
f×g
{{

h
��

W
g
��

h×f
##←→

Y × Z X Z X × Y
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(8) The identity 1X : S → F (X,X) is

X
∆
{{ ""

X ×X ∗

(9) The evaluation and coevaluation morphisms are

X

~~
∆

""

X
∆

||   = evX , = cevX
∗ X ×X X ×X ∗

(10) The transposition tX,Y : X ⊗ Y → Y ⊗X is

X × Y
t
xx

id
&&

Y ×X X × Y

(11) Given a : T → X, one has T
a
��

a
�� = Da.

X X

5.12. Example. Note that in this example of the Burnside functor we have Da = Ra◦Ia,
which means that we can also write

Rf ◦Da ◦ Ig = Rf ◦Ra ◦ Ia ◦ Ig = Rfa ◦ Iga.

So the “D” factors in an RDI-decomposition can always be eliminated, and every map
can be written in the form Rx ◦ Iy. This is, of course, very particular to the Burnside
functor.

5.13. Gysin categories in the Galois setting.We now add some extra hypotheses
to the category C, all of which are satisfied in the cases of interest. First, say that an
object X in C is atomic if X ̸= ∅ and X is not isomorphic to a coproduct A ⨿ B where
both A and B are different from the initial object. We will assume that

� If X is atomic and Y and Z are any objects, then the natural map C(X, Y ) ⨿
C(X,Z)→ C(X, Y ⨿ Z) is a bijection.

� For every atomic object X in C, the set Aut(X) is finite.

� If X ̸= ∅ then C(X, ∅) = ∅.

If C is finitary lextensive and satisfies the above properties, we will say that C is a Ga-
loisien category.
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5.14. Example. Let G be a finite group, and let C be the category of finite G-sets. Then
C is Galoisien, and the atomic objects are the transitive G-sets.

Let Y be an object of a Galoisien category C, and let G(Y ) = Aut(Y ). There is an
evident map ∐

σ∈G(Y )

Yσ → Y × Y

(where Yσ denotes a copy of Y labelled by σ), where the map Yσ → Y ×Y is id×σ. We say
that Y is Galois if the displayed map is an isomorphism. To generalize this somewhat,
if p : X → Y is a map then let G(X/Y ) = {α ∈ Aut(X) | pα = p}. Say that X → Y is
Galois if the evident map ∐

σ∈G(X/Y )

Xσ → X ×Y X

is an isomorphism.
The results in the following lemma can be proven by elementary category theory:

5.15. Lemma. Suppose that X and Y are atomic.

(a) If Y is Galois then C(X, Y ) is either empty or else it is a G(Y )-torsor.

(b) If Y is Galois then every endomorphism of Y is an isomorphism.

(c) If X and Y are Galois and f, g : X → Y , then the evident map∐
{σ∈G(X) | f=gσ}

Xσ −→ pullback[X
f−→ Y

g←− X]

is an isomorphism.

(d) If X and Y are Galois then so is every map X → Y .

(e) Suppose that Y and Z are both Galois, and assume given f : X → Y and g : Z → Y .
If there exists a map u : X → Z such that gu = f , then the evident map∐

σ∈G(Z/Y )

Xσ → X ×Y Z

is an isomorphism.

(f) If f : X → Z is a map and Z is Galois, then the map
∐

σ∈G(Z)Xσ → X ×Z given by
id× σf : Xσ → X × Z is an isomorphism.

(g) If X and Y are both Galois and f : X → Y , then for every α ∈ G(X) there is a
unique αf ∈ G(Y ) such that fα = αff . Moreover, the map G(X) → G(Y ) given by
α→ αf is a group homomorphism.
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Proof. For (a), suppose that C(X, Y ) ̸= ∅ and let f : X → Y be a map. We need to show
that the map G(Y ) → C(X, Y ) given by σ 7→ σf is a bijection. Let g : X → Y be any
map, and consider f × g : X → Y × Y . Composing with the inverse of the isomorphism∐

G(Y ) Y → Y ×Y , the fact that X is atomic shows that the resulting map factors through
a map u : X → Yσ, for some σ. One then obtains the commutative diagram

X

u
��

f×g

&&
Yσ

id×σ // Y × Y

which shows that u = f and g = σu = σf . So the action of G(Y ) on C(X, Y ) is transitive.
Now suppose that α, β ∈ G(Y ) and αf = βf . Then f × αf : X → Y × Y factors

through both Yα and Yβ (under the isomorphism
∐

G(Y ) Y
∼= Y ×Y ). Therefore it factors

through the pullback Yα →
∐

G(Y ) Y ← Yβ. But if α ̸= β then this pullback is ∅, by our
standing hypotheses that C is finitary lextensive. Since the map f × αf cannot factor
through ∅, this is a contradiction; so we must have α = β.

Part (b) is an immediate consequence of (a) applied to the case X = Y . For (c), the
pullback in question is isomorphic to the pullback of

Y
∆−→ Y × Y f×g←− X ×X.

Use the decomposition X ×X ∼=
∐

σ∈G(X)Xσ and the fact that pullbacks distribute over
finite coproducts to see that our pullback is isomorphic to∐

σ∈G(X)

pullback[Y
∆−→ Y × Y f×gσ←− X].

Next use the decomposition Y × Y ∼=
∐

α∈G(Y ) Yα, together with the fact that ∆: Y →
Y ×Y factors through the summand Yid. Since X is atomic, we deduce that the pullback
inside the above coproduct is either ∅ (when f ̸= gσ) or X (when f = gσ). This finishes
off part (c).

Part (d) is a direct consequence of (c), applied in the case f = g.
For (e), the existence of u implies that X ×Y Z is isomorphic to the pullback of

X
u−→ Z

π1←− Z ×Y Z.

Next use that Z×Y Z ∼=
∐

σ∈G(Z/Y ) Zσ and the fact that pullbacks distribute over coprod-
ucts.

Part (f) is the special case of (e) where Y = ∗. Finally, the proof of (g) uses the
same techniques that have been demonstrated in the preceding parts: consider the map
f × fα : X → Y × Y and factor this through some Yσ, which must be unique. The fact
that α 7→ αf is a homomorphism follows from

(αβ)ff = f(αβ) = (fα)β = αffβ = αfβff.
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Before proceeding, let us establish some notation. If R is a ring and S is a set, then
R⟨S⟩ denotes the set of all formal finite sums

∑
risi where ri ∈ R and si ∈ S. This is the

free left R-module with basis S. Similarly, let ⟨S⟩R be the set of all formal finite sums∑
siri with si ∈ S and ri ∈ R. When R is commutative these are of course isomorphic

R-modules, but the difference in notation will be useful to us below.
When X is Galois we can now determine the ring CE(X,X) precisely:

5.16. Proposition. If X is Galois then the map E(X)[Ãut(X)]→ CE(X,X) from Re-
mark 5.5 is an isomorphism of rings.

Proof. Since X is Galois, the usual map
∐

σ∈Aut(X)X → X ×X is an isomorphism. So

B :
⊕

σ∈Aut(X)

E(X)→ E(X ×X)

is an isomorphism of groups by Lemma 3.9, where on component σ the map B equals
(id×σ)!∆!. If a ∈ E(X) then we have a copy of a in the component of the domain indexed
by σ. The image of this class in E(X ×X) is precisely

(id× σ)!∆!(a) = Da ◦ Iσ = Da ◦Rσ−1

by Proposition 3.21(e),(iii). Replacing σ−1 by β, this says that every element of E(X×X)
can be written uniquely as a sum of terms Da ◦ Rβ for a ∈ E(X) and β ∈ Aut(X). So
the map E(X)⟨Aut(X)⟩ → CE(X,X) given by a.β 7→ DaRβ is an isomorphism of abelian
groups. We already saw in Remark 5.5 that it is a ring homomorphism, where we give
the domain the appropriate structure of twisted group ring.

5.17. Remark. In concrete terms, Proposition 5.16 says that every map in CE(X,X) may
be uniquely written as a finite sum of terms DaRα where a ∈ E(X) and α ∈ AutC(X).
Composition is done according to the rule

DaRα ◦DbRβ = DaD(α−1)∗bRαRβ = Da·(α−1)∗bRαβ

where in the first equality we have used Proposition 5.4 (together with the fact that α
is an isomorphism). The awkwardness of this formula stems from our representation of
elements of CE(X,X) in the form DaRα. As we have remarked before, it is better to
use the RDI system and represent the elements as Rα ◦ Da. If we do this, then the
composition law is

RαDa ◦RβDb = RαβD(β∗a·b),

which is a little simpler. We will always use this formulation from now on.

We next turn to the case of two objects. Assume that f : X → Y is a map in C,
where both X and Y are assumed to be atomic and Galois. Our goal is to describe the
full subcategory of CE containing X and Y . If f is an isomorphism then this problem
reduces to the case of one object, which we handled above. So let us further assume that
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f is not an isomorphism. Note that this implies that there cannot exist a map in C from
Y to X: if there were such a map, then the post- and pre-composites with f would be
isomorphisms by Lemma 5.15(b), and so f would itself be an isomorphism.

Write Aut(X) = {α1, . . . , αr} and Aut(Y ) = {β1, . . . , βs}. Note that C(X, Y ) =
{β1f, . . . , βsf} by Lemma 5.15(a), and X × Y ∼=

∐
σ∈Aut(Y )X by Lemma 5.15(f). Then

CE(X, Y ) = E(Y × X) ∼= ⊕Aut(Y )E(X), and one can check that the isomorphism is the
one that represents each map in CE(X, Y ) as a sum of maps RβifDa where a ∈ E(X). A
similar analysis works for CE(Y,X), and so the full subcategory of CE containing X and
Y may be depicted as follows:

X

⟨Rβ1f
,...,Rβsf ⟩E(X)

""
⟨Rα1 ,...,Rαr ⟩E(X) 77 Y ⟨Rβ1

,...,Rβs ⟩E(Y )gg

E(X)⟨Iβ1f ,...,Iβsf ⟩

bb

The labels on the arrows depict the abelian group of maps in CE; e.g., the label on the
arrow from X to Y depicts CE(X, Y ). The diagram indicates that every map from X to
Y may be uniquely written as a sum of terms RβifDai where ai ∈ E(X) (and similarly
for other choices of domain and range). The endomorphism monoids of X and Y are as
described in Remark 5.17.

Compositions of maps are determined via the RDI rules outlined in (5.9) and (5.10).
Here are some examples:

(1) [X → X → Y compositions.] Here one uses

RβifDa ◦Rαj
Db = RβifRαj

Dα∗
j (a)

Db = Rβifαj
D(α∗

ja)b
.

(2) [Y → Y → X compositions.] Here one uses that βi is invertible and so we have
Rβi = I−1

βi
by Proposition 3.21(i). Then

DaIβjf ◦RβiDu = DaIβjf ◦ I−1
βi
Du = DaIβjfIβ−1

i
Du = DaIβ−1

i βjf
Du

= D(a·(β−1
i βjf)∗(u))

Iβ−1
i βjf

.

(3) [Y → X → Y compositions.] In this case we consider

RβjfDa ◦DbIβif = Rβj ◦Rf ◦Dab ◦ If ◦ Iβi = Rβj ◦Df!(ab) ◦ Iβi
= Rβj ◦ Iβi ◦D(β−1

i )∗(f!(ab))

= Rβj ◦Rβ−1
i
◦D(β−1

i )∗(f!(ab))

= Rβjβ
−1
i
D(β−1

i )∗(f!(ab))
.

In the second equality we have used Proposition 5.7(b) and in the third equality we
have used Proposition 5.4 (which applies because βi is invertible).
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(4) [X → Y → X compositions.] Fix i and j and let T = {σ ∈ G(X) | βjf = βifσ}.
Observe that by Lemma 5.15(c) since X and Y are Galois we have a pullback diagram∐

σ∈T Xσ
//

��

X

βif
��

X
βjf // Y

where the vertical map Xσ → X is the identity and the horizontal map Xσ → X is
σ. We then write

Da′Iβjf ◦RβifDa =
∑
σ

Da′IσDa =
∑
σ

IσD(σ−1)∗(a′)Da

=
∑
σ

Rσ−1D((σ−1)∗(a′)·a).

The second equality is by Proposition 5.4, using that σ is an isomorphism.

(5) [Remaining cases.] The cases that have not been treated so far are all very similar to
(1) or (2).

As the reader can see from the above analysis, a complete description of the maps
between Galois objects is relatively simple. But the description of compositions becomes
unwieldy, although in practice it is a purely mechanical process to work out any given
composition.

6. Grothendieck-Witt categories over a field

Let k be a field of characteristic not equal to 2, and recall the Grothendieck-Witt category
GWC(k) over k defined in Section 2.

Let fEt /k be the full subcategory of Aff / Spec k consisting of the objects SpecE
where k → E is finite étale (in our terminology, sheerly separable—see Remark 2.9 and
Corollary 2.11). Let AfEt be the Burnside Gysin functor, and let χ : AfEt → GW be the
natural transformation from Proposition 3.17.

The following result is essentially [Dr, Appendix B, Theorem 3.1]. We include the
proof for completeness. For the proof, recall that if a ∈ E then ⟨a⟩ denotes the quadratic
space (E, ba) where ba(x, y) = axy, and ⟨a, b⟩ = ⟨a⟩ ⊕ ⟨b⟩.

6.1. Proposition. The map χ : AfEt(E)→ GW(E) is surjective, for any finite separable
field extension k → E.

Proof. Recall that GW(E) is generated as an abelian group by the classes ⟨a⟩ for a ∈ E∗.
We will show that each of these classes is in the image of χ.

If a is not a square in E then consider the field extension Ea = E[x]/(x2 − a). Then
Ea is a separable field extension of E, and χ(Ea) is simply Ea (regarded as an E-vector
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space) equipped with the trace form. An easy computation shows this form is isomorphic
to ⟨2, 2a⟩ = ⟨2⟩+ ⟨2a⟩. So we have ⟨2⟩+ ⟨2a⟩ = χ(Ea).

We claim that ⟨2⟩ ∈ imχ. If 2 is a square in E then this is clear, since ⟨2⟩ = ⟨1⟩. If 2
is not a square in E then we may apply the above analysis with a replaced by 2 to find
that ⟨2⟩+ ⟨4⟩ ∈ imχ. Since ⟨4⟩ = ⟨1⟩ ∈ imχ, we again have ⟨2⟩ ∈ imχ.

At this point we know that ⟨2⟩+ ⟨2a⟩ ∈ imχ and ⟨2⟩ ∈ imχ, and so ⟨2a⟩ ∈ imχ. But
then ⟨4a⟩ = ⟨2⟩ · ⟨2a⟩ ∈ imχ. Since ⟨4a⟩ = ⟨a⟩, we are done.

6.2. Example. The map χ is usually not an isomorphism. To see this in one example,
let k = Fp where p is odd. Then AfEt(k) is a free abelian group on a countably-infinite set
of generators, whereas GW(k) ∼= Z⊕Z/2. In general, it might be interesting to have a set
of generators for the kernel of AfEt(k) → GW(k) together with some kind of geometric
source for them. See Example 6.7 below.

6.3. Remark. If f : R → S is a sheerly separable map of rings, we have the induced
maps f∗ : GW(R) → GW(S) and f ! : GW(S) → GW(R) from Section 2. However, for
most purposes it is more convenient to use the geometric setting of affine schemes: there
we would write f ∗ : GW(SpecR) → GW(SpecS) and f! : GW(SpecS) → GW(SpecR).
The disadvantage here is that it becomes tedious to write Spec repeatedly. We will tend to
mix the two notations and write f ∗ : GW(R) → GW(S) and f! : GW(S) → GW(R). In
effect, this is basically just dropping the “Spec” and letting it be understood. In practice
there is never any confusion here.

Our goal is to be able to analyze pieces of the categories GWC(k) for some explicit
choices of k. Galois theory gives an equivalence of categories between sheerly separable
extensions of k and continuous Gal(ksep/k)-sets, and this is a useful tool to exploit.

Fix a finite-dimensional Galois extension L/k, and set G = Gal(L/k). Say that a
separable k-algebra A is L-constructible if it is isomorphic to a product

∏
iAi where

each Ai is an algebraic field extension of k that admits an embedding into L. For each
finite G-set S, let F(S, L) be the set of G-maps from S to L, with ring structure given
by pointwise addition and multiplication. Clearly F(G/H,L) ∼= LH and F(S ⨿ T, L) ∼=
F(S, L)×F(T, L), hence each F(S, L) is L-constructible. In the opposite direction, given
a sheerly separable k-algebra A the set of k-algebra maps k -alg(A,L) inherits an action
of G. Galois theory says that we have an equivalence of categories

finGSet⇄ fEtL−conk

where the upper arrow is S 7→ F(S, L) and the lower arrow is SpecA 7→ k -alg(A,L).
The Grothendieck-Witt functor on fEtk restricts, via the above Galois equivalence, to

a Gysin functor on finite G-sets. Let us write

GWL(S) = GW(F(S, L))

for this restricted Gysin functor. Clearly the correspondence category finGSet(GWL) is the
full subcategory of (fEtk)GW whose objects are the L-constructible k-algebras.
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The universality of the Burnside functor gives a natural transformation AG → GWL,
and therefore a functor between correspondence categories finGSet(AG) → finGSet(GWL).
Composing with the inclusion into (fEtk)GW, we have constructed a functor from the
Burnside category of G to the Grothendieck-Witt category of k:

finGSet(AG) → finGSet(GWL) → (fEtk)GW = GWC(k).

We now look at some examples:

6.4. Example. The category GWC(R) has two objects: SpecR and SpecC. Let π
denote the unique map SpecC → SpecR, and let σ : SpecC → SpecC be the nontrivial
automorphism over SpecR. Since GW(C) = Z and GW(R) = Z⟨⟨1⟩, ⟨−1⟩⟩, the category
GWC(R) is readily computed to be as shown in the right-hand diagram below. One only
needs check that Iπ ◦Rπ = 1 + σ and Rπ ◦ Iπ = ⟨1⟩+ ⟨−1⟩.

Similarly, the Burnside category for Z/2 has two objects: ∗ and Z/2. We write
π : Z/2→ ∗ and σ : Z/2→ Z/2 for the evident maps. Then AZ/2(Z/2) = Z and AZ/2(∗) =
Z⟨[∗], [Z/2]⟩. Here one computes that Iπ ◦Rπ = 1 + σ and Rπ ◦ Iπ = [Z/2].

Z/2

Z⟨1,σ⟩

		

Z⟨Rπ⟩

||

SpecC
Z⟨Rπ⟩
��

Z⟨1,σ⟩

��

∗

Z⟨Iπ⟩
AA

Z⟨[∗],[Z/2]⟩

YY SpecR.

Z⟨Iπ⟩

AA

Z⟨ ⟨1⟩,⟨−1⟩ ⟩

WW

The map from the Burnside category to the Grothendieck-Witt category has the evident
behavior (in particular, it sends [Z/2] to ⟨1⟩+⟨−1⟩), and by inspection is an isomorphism.

Before considering our next example we need to recall some facts about finite fields. If
F is a finite field of odd characteristic then F× is cyclic of even order and so (F×)/(F×)2 =
Z/2. Thus when we partition F× into the squares and the non-squares, any two non-
squares are equivalent: if a and b are non-squares then a = λ2b for some λ. A little work
shows when char(F ) ̸= 2 that GW(F ) is generated by ⟨1⟩ and ⟨g⟩, where g ∈ F× is any
choice of non-square. Moreover, 2⟨g⟩ = 2⟨1⟩ and GW(F ) ∼= Z⊕ Z/2 with corresponding
generators ⟨1⟩ and ⟨g⟩ − ⟨1⟩. See [S] or [D, Appendix A] for details. It is useful to write
α = ⟨g⟩ − ⟨1⟩. Note that

α2 = ⟨g2⟩ − 2⟨g⟩+ 1 = 2− 2⟨g⟩ = −2α = 0.

Note that the calculation of GW(F ) gives a classification of non-degenerate quadratic
spaces over F : in each dimension there are exactly two, namely n⟨1⟩ and (n−1)⟨1⟩+⟨g⟩ =
n⟨1⟩+α. The discriminant of the form, regarded as an element of F×/(F×)2, distinguishes
the two isomorphism types.

The following lemma calculates the behavior of the Grothendieck-Witt group under a
quadratic extension.
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6.5. Lemma. Let q = pe where p is an odd prime. Fix a non-square g ∈ Fq, and fix a
non-square h ∈ Fq2. If j : Fq ↪→ Fq2 is a fixed embedding then the pullback and pushforward
maps for GW(−) are given by the formulas

j∗(⟨1⟩) = j∗(⟨g⟩) = ⟨1⟩, j!(⟨1⟩) = ⟨1⟩+ ⟨g⟩, j!(⟨h⟩) = 2⟨1⟩.

Every automorphism of Fq induces the identity on GW(Fq) (both via pullback and push-
forward).

Proof. First note that if λ is an automorphism of Fq then λ preserves the property of
being a square or non-square; consequently, λ∗ is the identity since λ∗(⟨g⟩) = ⟨g⟩. Since
λ! is the inverse of λ∗ (Lemma 3.8), this is also the identity. So we have verified the last
sentence of the lemma.

Observe that Fq2 may be identified with the extension Fq[x]/(x2 − g), and we may
assume that j is the evident inclusion of Fq (using the previous paragraph). Since g = x2

in Fq2 we have j∗(⟨g⟩) = ⟨1⟩.
To compute j!(⟨1⟩) we must analyze the trace form on Fq2 . This is represented by the

2× 2 matrix [
tr(1) tr(x)
tr(x) tr(x2)

]
=

[
2 0
0 2g

]
.

The discriminant is 4g, which is equivalent to g modulo squares. So j!(⟨1⟩) = ⟨1⟩ + ⟨g⟩,
as the forms have the same discriminant class.

The above work readily generalizes to compute j!(⟨a+ bx⟩) for any a, b ∈ Fq. This
form is represented by the matrix[

tr(a+ bx) tr(ax+ bx2)
tr(ax+ bx2) tr(ax2 + bx3)

]
=

[
2a 2bg
2bg 2ag

]
.

The discriminant is 4a2g−4b2g2 = 4g(a2− b2g), and so j!(⟨a+ bx⟩) = ⟨1⟩+ ⟨g(a2 − b2g)⟩.
In a finite field every element can be written as a sum of two squares [S, Lemma 2.3.7],

so we can write g−1 = b2 + r2 for some b, r ∈ Fq. Neither b nor r is zero, since g is not a
square. Then

j!(⟨1 + bx⟩) = ⟨1⟩+ ⟨g(1− b2g)⟩ = ⟨1⟩+ ⟨g(r2g)⟩ = ⟨1⟩+ ⟨1⟩ = 2⟨1⟩.

Hence ⟨1 + bx⟩ ̸= ⟨1⟩ (since their images under j! are different), and so 1 + bx is a non-
square class; i.e. ⟨1 + bx⟩ = ⟨h⟩ in GW(Fq2). So we have in fact proven that j!(⟨h⟩) = 2⟨1⟩.

6.6. Proposition. Let q be a power of an odd prime, and consider a field extension
j : Fq ↪→ Fqe. Let g and g′ be non-squares in Fq and Fqe, respectively. Then the induced
maps j∗ and j! are given by

j∗(⟨1⟩) = ⟨1⟩, j∗(⟨g⟩) =

{
⟨g′⟩ if e is odd,

⟨1⟩ if e is even,
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j!(⟨1⟩) =

{
e⟨1⟩ e odd,

(e− 1)⟨1⟩+ ⟨g⟩ e even,
j!(⟨g′⟩) =

{
(e− 1)⟨1⟩+ ⟨g⟩ e odd,

e⟨1⟩ e even.

These formulas can also be written as:

j∗(⟨1⟩) = ⟨1⟩, j∗(α) =

{
α e odd,

0 e even,

j!(⟨1⟩) =

{
e⟨1⟩ e odd

e⟨1⟩+ α e even
, j!(α) = α.

Proof. The statement about j∗ is immediate: the extension Fqe contains a square root
of g if and only if it contains Fq2 , which happens precisely when e is even.

The form j!(⟨1⟩) is either e⟨1⟩ or (e− 1)⟨1⟩ + ⟨g⟩, and these are distinguished by the
discriminant. So it suffices to analyze the discriminant of the trace form on Fqe : the
discriminant is a square if and only if the form is e⟨1⟩. A classical computation says this
coincides with the discriminant of the minimal polynomial of any primitive element for
the extension Fqe/Fq. If r1, . . . , re are the roots of this minimal polynomial, then this
discriminant is ∆ = Q2 where

Q =
∏
i<j

(ri − rj).

If the roots are indexed appropriately then the Galois group of Fqe/Fq acts by cyclic
permutation. It follows that Q is invariant under the Galois action if and only if e is odd.
So we see that ∆ is a square in Fq (and equivalently, j!(⟨1⟩) = e⟨1⟩) if and only if e is odd.

Finally, we analyze j!(⟨g′⟩). When e is odd this is easy, as we can write

j!(⟨g′⟩) = j!(j
∗(⟨g⟩) · 1) = ⟨g⟩ · j!(⟨1⟩) = ⟨g⟩ · e⟨1⟩ = e⟨g⟩ = (e− 1)⟨1⟩+ ⟨g⟩

where in the last equality we have used that ⟨g, g⟩ = ⟨1, 1⟩. When e is even the pushfor-
ward GW(Fqe)→ GW(Fqe/2) sends ⟨g′⟩ to 2⟨1⟩ by Lemma 6.5. It follows that j!(⟨g′⟩) is a
multiple of 2, and of course it also has rank e. The only such element of GW(Fq) is e⟨1⟩.

6.7. Example. [The Euler characteristic of a finite field extension] Our goal is to explic-
itly compute the map χ : AfEt(Fq) → GW(Fq) ∼= Z ⊕ Z/2. Given a finite field extension
j : Fq ↪→ Fqe , the Euler characteristic is another name for j!(1). Using Proposition 6.6,
this is equal to χ(Fqe) = e⟨1⟩+ ϵeα ∈ GW(Fq) where

ϵe =

{
0 if e is odd,

1 if e is even.

It is an amusing exercise to use the above computation to check the multiplicativity
formula

χ(Fqe ⊗Fq Fqf ) = χ(Fqe) · χ(Fqf ),
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which is the analog of the topological formula χ(X × Y ) = χ(X)× χ(Y ).
We can use the above computation to give generators for the kernel of the canonical

map χ : AfEt(Fq) → GW(Fq). If we set En = [Fqn ] then by inspection a complete set of
generators is

En+3 − En+2 − En+1 + En (n ≥ 1), 2E2 − E1 − E3, E3 − 3E1.

It could be interesting to find an explicit geometric explanation for these relations. For
example, one might try to produce a degree 4 étale map f : X → Y of Fq-schemes where
Y is A1-connected and where one fiber of f is SpecFq2 ⨿ SpecFq2 and another fiber is
SpecFq ⨿ SpecFq3 .

6.8. Example. We next explore a small piece of GWC(Fp), where p is odd. Specifically,

consider the full subcategory whose objects are SpecFq for q = p2
i
and 0 ≤ i ≤ 3. Set

G = Gal(Fp8/Fp) = Z/8. Let g2i denote some specific choice of non-square element in
Fp2i , and write α2i = ⟨g2i⟩−⟨1⟩. Also write J2i = GW(Fp2i ); this is isomorphic to Z⊕Z/2
with corresponding generators 1 and α2i , subject to the multiplicative relation α2

2i =
−2α2i = 0. Finally, let σ always denote the Frobenius x 7→ xp and fix specific embeddings
j2i : Fq2i ↪→ Fq2i+1 . Let their induced maps be denoted π2i : SpecFq2i+1 → SpecFqi .

The following diagrams show the Burnside category for Z/8 as well as the relevant
piece of GWC(Fp). Recall that if R is a ring and S is a set then we write R⟨S⟩ and ⟨S⟩R for
the sets of finite sums

∑
risi and

∑
siri where ri ∈ R, si ∈ S. We let A2i = AZ/8(Z/2i),

the Grothendieck ring of Z/8-sets over Z/2i. So A2i = Z⟨[Z/2i], [Z/2i+1], . . . , [Z/8]⟩. Here
when we write [Z/2j] we are suppressing the structure map π : Z/2j → Z/2i, which we
always take to be the map of Z/8-sets sending 0 to 0. In the Z/8-set context we let σ
always denote the map x 7→ x+ 1.

Z/8 Fp8

Z/4 Fp4

Z/2 Fp2

∗ Fp

⟨1,σ,...,σ7⟩A8

⟨Rπ4,...,Rπ4σ3⟩A8

⟨1,σ,...,σ7⟩J8

⟨Rπ4,...,R(σ3π4)⟩J8

⟨1,σ,σ2,σ3⟩A4

⟨Rπ2,Rπ2σ⟩A4

A8⟨Iπ4,...,I(σ3π4)⟩

⟨1,σ,σ2,σ3⟩J4

⟨Rπ2,R(σπ2)⟩J4

J8⟨Iπ4,...,I(σ3π4)⟩

⟨1,σ⟩A2

⟨Rπ1⟩A2

A4⟨Iπ2,I(σπ2)⟩

⟨1,σ⟩J2

⟨Rπ1⟩J2

J4⟨Iπ2,I(σπ2)⟩

A1

A2⟨Iπ1⟩

J1

J2⟨Iπ1⟩

Notice that we have written σi instead of Rσi. Also, note that σ acts trivially on
each Jn by Lemma 6.5 and so the endomorphism ring of Fpn is the group ring Jn[Z/n].
The analogous remark holds in the Burnside category. Finally, note that while the two
categories clearly have very similar forms, the map between them is not an isomorphism
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because An ̸∼= Jn. The map An → Jn sends [Z/n] to 1; for k > n it sends [Z/k] to
j!(1) =

k
n
+ α, where j : Fpn ↪→ Fpk is the inclusion (here we have used Proposition 6.6).

Below we list the main relations in GWC(Fp). Recall that αn ∈ Jn is the unique
element of order 2. We simplify Da to just a, for a ∈ Jn.

Rπn ◦ Iπn = ⟨2⟩+ αn ∈ Jn Iπn ◦Rπn = 1 + σn

αn ◦Rπn = 0 Iπn ◦ αn = 0

Rπn ◦ αn+1 ◦ Iπn = αn

We leave the reader to derive these, as they are simple consequences of using the RDI
rules from Theorem 1.2 together with the computations in Proposition 6.6. Coupled with
the obvious relations that come from the category of fields, e.g. Rπn ◦ σn = Rπn, the
above relations allow one to work out all compositions in GWC(Fp).

6.9. Example. We describe one last example, this time concerning non-Galois exten-
sions. Most of the details will be left to the reader. Write E2 = Q( 3

√
2), Eµ = Q(µ3)

(the cyclotomic field), and E2,µ = Q( 3
√
2, µ3). Note that [E2 : Q] = 3, [E3 : Q] = 2, and

[E2,µ : Q] = 6. The extensions Eµ/Q and E2,µ/Eµ are Galois, but E2/Q is not. Let πi,
i ∈ {0, 1, 2, 3}, be the maps of schemes induced by the evident inclusions of fields:

SpecE2

π0
��

SpecE2,µ
π1oo

π3
��

SpecQ SpecEµ.
π2oo

Finally, write GWµ = GW(Eµ), and so forth.
Computing in the Grothendieck-Witt category GWC(Q), maps between Eµ and Q,

or between E2,µ and Eµ, are handled exactly as the general case discussed at the end of
Section 5. For maps from E2 to Eµ, as an abelian group this is GW2,µ since E2 ⊗Q Eµ =
E2,µ. A little thought shows that the maps are all of the form Rπ3 ◦Da2,µ ◦ Iπ1, where
a2,µ ∈ GW2,µ.

To compute maps from E2 to itself, we start with E2⊗QE2
∼= E2×E2,µ. As an abelian

group we then have GWC(Q)(E2, E2) = GW2⊕GW2,µ. The two summands correpond
to elements Da2 for a2 ∈ GW2 and Rπ1 ◦ Da2,µ ◦ Iπ1 where a2,µ ∈ GW2,µ. The ring
structure is determined by the formulas

Da2 ◦Db2 = D(a2b2),

Da2 ◦ (Rπ1 ◦Da2,µ ◦ Iπ1) = Rπ1 ◦D(π∗
1(a2) · a2,µ) ◦ Iπ1

(Rπ1 ◦Da2,µ ◦ Iπ1) ◦Da2 = Rπ1 ◦D(a2,µ · π∗
1(a2)) ◦ Iπ1

(Rπ1 ◦Da2,µ ◦ Iπ1) ◦ (Rπ1 ◦Db2,µ ◦ Iπ1) = [Rπ1 ◦D(a2,µb2,µ) ◦ Iπ1]+
[Rπ1 ◦D(σ∗(a2,µ)b2,µ) ◦ Iπ1].
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These equations all follow from the rules in Theorem 1.2.
To get a sense of the above computation, let us generalize things just a bit. Let f : R→

S be a homomorphism of commutative rings, and let σ : S → S be an automorphism such
that σ2 = id and σf = f . Define a product on R× S by

(r, s) · (r′, s′) = (rr′, (fr)s′ + s(fr′) + ss′ + σ(s)s′).

Check by brute force that this makes the abelian group R × S into a ring. Let α be the
unique E2-linear automorphism of E2,µ that has order 2. Applying the above construction
to π∗

1 : GW(E2) → GW(E2,µ), where σ = α∗, yields the endomorphism ring of E2 in the
Grothendieck-Witt category GWC(Q).

A. Symmetric monoidal categories and duality

In this section we review some elements from the theory of closed, symmetric monoidal
categories. Then we recall the notion of a dualizable object, as well as some standard
properties.

A.1. Basic conventions. Let (C,⊗, S, F (−,−)) be a closed symmetric monoidal cat-
egory. This means ⊗ is the monoidal structure, S is the unit, and X, Y 7→ F (X, Y ) is the
cotensor.

In this setting there are evident evaluation maps

F (A,B)⊗ A→ B

defined as the adjoint to the identity on F (A,B). Likewise, there are certain canonical
maps

F (X,S)⊗ Y → F (X, Y ) and F (A,B)⊗ F (X, Y )→ F (A⊗X,B ⊗ Y )

defined to be the adjoints of evident compositions involving symmetry isomorphisms and
evaluations. In general, we will use ψ to denote any such canonical map that arises in
a general closed symmetric monoidal category. It should always be clear from context
exactly what map we mean.

There is one special case where it is useful to have a distinguished name, rather than
just the generic “ψ”. For any object X in a closed symmetric monoidal category, set
X∗ = F (X,S). Then we let evX : X∗ ⊗ X → S be the adjoint of the identity map
X∗ → F (X,S).

A.2. Dualizable objects. The theory of dualizable objects goes back to Dold and
Puppe [DP], but in modern times has been used extensively by May and his collaborators
(see [LMS] and [Ma1], for example).
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A.3. Definition. An object X in a symmetric monoidal category is called dualizable
if there is another object Y together with maps

η : S → X ⊗ Y, ϵ : Y ⊗X → S

such that the composite

X S ⊗X η⊗idX // X ⊗ Y ⊗X id⊗ϵ // X ⊗ S X

is idX and the composite

Y Y ⊗ S idY ⊗η // Y ⊗X ⊗ Y ϵ⊗idY // S ⊗ Y Y

is idY . We say that Y is a dual for X, although it is more precise to say that the dual is
(Y, ϵ, η) since all three pieces of structure are needed.

A.4. Remark. If Y is a dual forX, then there can be several choices for ϵ and η that serve
as structure maps. If one fixes Y and ϵ, however, then there is only one corresponding
choice for η; similarly, if one fixes Y and η then there is only one choice for ϵ. This follows
by the same argument that shows that a functor can have at most one left (or right)
adjoint.

The following result can be pulled out of the proof of [LMS, Theorem III.1.6]:

A.5. Proposition. In a closed symmetric monoidal category suppose that X is dual-
izable with dual (Y, ϵ, η). Then the map ϵ̃ : Y → X∗, adjoint to ϵ, is an isomorphism.
Consequently, X∗ is also a dual for X, with structure maps evX : X∗ ⊗ X → S and the
composite

S
η−→ X ⊗ Y id⊗ϵ̃−→ X ⊗X∗.

Proof. The duality axioms imply that the composite λW given by

C(W,Y )→ C(W ⊗X, Y ⊗X)→ C(W ⊗X,S) = C(W,X∗)

is a bijection, for all objects W . This composite is natural in W , and for W = Y it sends
idY to ϵ̃; it follows that λW is post-composition with ϵ̃ for all W . The Yoneda Lemma
then yields that ϵ̃ is an isomorphism. Finally, one uses that

Y ⊗X ϵ̃⊗id−→ X∗ ⊗X evX−→ S

equals ϵ.
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If X is dualizable, evX : X∗⊗X → S is the evaluation map from the closed structure,
and cevX : S → X⊗X∗ is any map satisfying the conditions of Definition A.3 then we call
cevX the coevaluation map for X (it is uniquely determined, of course). The following
two results are standard:

A.6. Proposition. In a closed symmetric monoidal category, an object X is dualizable
if and only if there exists a map c that makes the following diagram commute:

S

idX
��

c // X ⊗X∗

t
��

F (X,X) X∗ ⊗X
ψ
oo

Here ψ is an instance of the canonical map A∗ ⊗ B → F (A,B). If c exists, it is unique;
and moreover, it is precisely the coevaluation map for X.

Proof. See [LMS, Theorem III.1.6]. The uniqueness of c follows from [LMS, Proposition
III.1.3], which shows that the horizontal map ψ is an isomorphism.

A.7. Proposition. If X and Y are dualizable objects in a closed symmetric monoidal
category then the following are true:

(a) X ⊗ Y and X∗ are dualizable;

(b) ψ : X → X∗∗ is an isomorphism;

(c) ψ : X∗ ⊗ Y ∗ → (X ⊗ Y )∗ is an isomorphism.

(d) cevX : S → X ⊗X∗ is the composite

S S∗ ev∗X // (X∗ ⊗X)∗ X∗∗ ⊗X∗
ψ

∼=oo X ⊗X∗ψ⊗id
∼=
oo

Proof. Part (a) is elementary, while parts (b) and (c) are from [LMS, Proposition III.1.3].
For part (d), perhaps the easiest method is to check that evX and the given composite
satisfy the properties of Definition A.3. To this end, consider the following diagram:

S∗ ⊗X
ev∗X⊗1X //

ψ
((

(X∗ ⊗X)∗ ⊗X
ψ
��

(X∗∗ ⊗X∗)⊗Xψ⊗1

∼=
oo (X ⊗X∗)⊗Xψ⊗1⊗1

∼=
oo

1⊗evX
��

X∗∗ X ⊗ S.
ψ

oo

The vertical map labelled ψ is the adjoint to the composite

(X∗ ⊗X)∗ ⊗X ⊗X∗ 1⊗t // (X∗ ⊗X)∗ ⊗X∗ ⊗X
evX∗⊗X // S.
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We aim to show that the “across-the-top, then down” composition from S∗⊗X toX⊗S
is the identity (after canonical identifications of the domain and codomain with X). But
the triangle and the rectangle commute in any closed symmetric monoidal category, by an
easy verification (it suffices to check commutativity in the category of finite-dimensional
vector spaces over a field, cf. [HHP]). Since ψ : X → X∗∗ is an isomorphism by (b), this
completes the verification.

The second condition from Definition A.3 is checked in a similar manner. The relevant
diagram is a little easier:

X∗ ⊗ S∗ 1⊗ev∗ //

id 00

X∗ ⊗ (X∗ ⊗X)∗

ψ
,,

X∗ ⊗ (X∗∗ ⊗X∗)
1X∗⊗ψoo X∗ ⊗ (X ⊗X∗)

1⊗ψ⊗1oo

evX⊗1X∗
��

S ⊗X∗

The diagonal map labelled ψ is the adjoint of the composite

X∗ ⊗ (X∗ ⊗X)∗ ⊗X t⊗1 // (X∗ ⊗X)∗ ⊗X∗ ⊗X
evX∗⊗X // S.

The “quadrilateral” and “triangle” in the diagram again commute in any closed symmetric
monoidal category, and this completes the verification.

Let C be a symmetric monoidal category in which every object is dualizable. For each
object X, choose a specific dual X∗ together with associated maps ηX : S → X ⊗X∗ and
ϵX : X∗ ⊗X → S. We will show that this data determines a closed structure on C, with

F (X, Y ) = X∗ ⊗ Y.

This definition has a clear functoriality in Y , but functoriality inX requires a few remarks.
For f : U → X, define D(f) : X∗ → U∗ to be the composite

X∗ 1⊗ηU // X∗ ⊗ U ⊗ U∗ 1⊗f⊗1 // X∗ ⊗X ⊗ U∗ ϵX⊗1 // U∗.

It is easy to see that D(id) = id, and we will check below that D(fg) = D(g)D(f). These
dual maps then make F (−, Y ) into a contravariant functor, via F (f, Y ) = D(f)⊗ idY .

We next describe maps

α : C(A,X∗ ⊗ Y )⇄ C(A⊗X, Y ) : β

which will turn out to be an adjunction. Given h : A→ X∗⊗Y , let α(h) be the composite

A⊗X h⊗1 // X∗ ⊗ Y ⊗X 1⊗t // X∗ ⊗X ⊗ Y ϵX⊗1 // Y.

And given f : A⊗X → Y , let β(f) be the composite

A
1⊗ηX // A⊗X ⊗X∗ 1⊗t // A⊗X∗ ⊗X t⊗1 // X∗ ⊗ A⊗X 1⊗f // X∗ ⊗ Y.

The following proposition seems to be a well-known piece of folklore. For example, see
[BS, Discussion after Definition 17].



GYSIN FUNCTORS AND CORRESPONDENCES 207

A.8. Proposition. Let C be a symmetric monoidal category in which all objects are
dualizable, and where for each object X a triple (X∗, ηX , ϵX) has been chosen. Then the
above definitions for F (X, Y ) and the adjunction make C into a closed symmetric monoidal
category.

Proof. This just involves checking a bunch of commutative diagrams. We first verify
that if f : X → Y and g : Y → Z then D(gf) = D(f)D(g). In the following commutative
diagram, these are the two ways of going around the boundary:

Y ∗ 1ηX // Y ∗XX∗ 1f1 // Y ∗Y X∗ ϵY 1 // X∗

Z∗ZY ∗

ϵZ1

OO

111ηX // Z∗ZY ∗XX∗

ϵZ111

OO

111f1 // Z∗ZY ∗Y X∗

ϵZ111

OO

11ϵY 1 // Z∗ZX∗

ϵZ1

OO

Z∗Y Y ∗ 111ηX //

1g1

OO

Z∗Y Y ∗XX∗ 111f1 //

1g111

OO

Z∗Y Y ∗Y X∗ 11ϵY 1 //

1g111

OO

Z∗Y X∗

1g1

OO

Z∗
1ηX

//

1ηY

OO

Z∗XX∗
1f1

//

1ηY 11

OO

Z∗Y X∗

1ηY 11

OO

Note that we have left out the tensor symbols, to enhance readability.
We next need a special property of the dual maps D(f). Namely, for f : X → Y the

following diagram is commutative:

Y ∗ ⊗X 1⊗f //

D(f)⊗1
��

Y ∗ ⊗ Y
ϵY
��

X∗ ⊗X ϵX
// S.

(A.9)

The proof is immediate upon inspection of the larger commutative diagram below:

Y ∗X

1ηX1
%%

Y ∗X
1f // Y ∗Y

ϵY // S

Y ∗XX∗X

11ϵX

OO

1f11
// Y ∗Y X∗X

ϵY 11
//

11ϵX

OO

X∗X.

ϵX

OO

Now we can check that the adjunction map α is functorial. In the variables A and Y
this is obvious, but in the variable X it takes some work. For f : U → V we must check
that

C(A,U∗ ⊗ Y ) α // C(A⊗ U, Y )

C(A, V ∗ ⊗ Y )

OO

α // C(A⊗ V, Y )

OO
(A.10)
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is commutative. To this end, consider a map h : A→ V ∗ ⊗ Y and the following diagram:

AV h1 // V ∗Y V 1t // V ∗V Y
ϵV 1 // Y

V ∗UY
(Df)11 //

1f1

OO

U∗UY

ϵU1

OO

AU

1f

OO

h1
// V ∗Y U

11f

OO

(Df)11
//

1t
77

U∗Y U
1t

77

The diagram is readily checked to be commutative—the upper left corner by (A.9)—and
the two ways of pushing h around (A.10) are the two outer composites.

Finally, we prove that α and β are inverses. Suppose given f : A ⊗ X → Y and
h : A→ X∗ ⊗ Y . The proof that α(β(f)) = f is

AX
1ηX1 // AXX∗X

11ϵX

��

f11 // Y X∗X t1 //

1ϵX

��

tY,X∗X

&&

X∗Y X

1t

��
AX

f
// Y X∗XY

ϵX1
oo

and the proof that β(α(h)) = h is

X∗XYX∗ ϵX11 // Y X∗ t // X∗Y

AXX∗ h11 // X∗Y XX∗ t11 //

1t1

77

Y X∗XX∗

1ϵX1

88

A

1ηX

OO

h // X∗Y
t //

11ηX

OO

Y X∗.

11ηX

OO

B. A leftover proof

Here we give details for the proof of Proposition 3.21. This is mostly routine, but we
include details because several steps are a bit hard to remember, and this is the kind of
thing one wants to be able to just look up when needed.

Note that in this proof we mostly split with our previous conventions and denote
objects by lowercase rather than uppercase letters. This is for typographical reasons,
both to save space in subscripts and to reduce the extent to which the long formulas feel
like they are shouting at the reader.
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Proof of Proposition 3.21. For part (a), here is the check that ia is a right identity.
If x ∈ CE(a, b) = E(b× a) then

x ◦ ia = (π13)!

(
π∗
12x · π∗

23(∆
a
! (1))

)
= (π13)!

(
π∗
12x · (idb ×∆a)!(1))

)
(push-pull)

= (π13)!

(
(idb ×∆a)!

(
(idb ×∆a)∗π∗

12x · 1
))

(projection formula)

= x.

The last step used that π13 ◦ (idb × ∆a) = idb×a and π12 ◦ (idb × ∆a) = idb×a. The
verification that ia is a left identity is similar.

Write πcbaca for the evident projection map c × b × a → c × a. Let x ∈ CE(a, b),
y ∈ CE(b, c), and z ∈ CE(c, d). The proof of associativity proceeds by analyzing the
element

Ω =
(
πdcbada

)
!

(
(πdcbadc )∗(z) · (πdcbacb )∗(y) · (πdcbaba )∗(x)

)
in two different ways. The first proceeds as follows:

Ω =
(
πdcada

)
!

(
πdcbadca

)
!

[
(πdcbadca )∗(πdcadc )∗(z) · (πdcbacb )∗(y) · (πdcbaba )∗(x)

]
=

(
πdcada

)
!

[
(πdcadc )∗(z) · (πdcbadca )!

[
(πdcbacb )∗(y) · (πdcbaba )∗(x)

]]
(proj. form.)

=
(
πdcada

)
!

[
(πdcadc )∗(z) · (πdcbadca )!(π

dcba
cba )∗

[
(πcbacb )∗(y) · (πcbaba )∗(x)

]]
=

(
πdcada

)
!

[
(πdcadc )∗(z) · (πdcaca )∗(πcbaca )!

[
(πcbacb )∗(y) · (πcbaba )∗(x)

]]
(push-pull)

= z · (y · x).

The first and third equalities just use functoriality. For example, in the third equality we
use that πdbcacb = πcbacb ◦ πdcbacba and so forth. We leave the reader to perform a similar series
of steps to show that Ω = (z · y) · x. This proves associativity, and so finishes the proof
of (a).

Part (b) is obvious.
For (c) we must show that if f : a → b and g : b → c then Rg ◦ Rf = R(gf). That is,

we must check the formula

(πcbaca )!

[
(πcbacb )∗(idc × g)∗(ic) · (πcbaba )∗(idb × f)∗(ib)

]
= (idc × gf)∗(ic).

Note that the left side is (idc × g)∗(ic) ◦ (idb × f)∗(ib).
The first step is to use the two pullback squares

c× a
π1×f×π2

��

π2 // a

f×ida
��

f // b

∆
��

c× b× a
πcba
ba // b× a idb×f // b× b
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to see that (πcbaba )∗(idb × f)∗(ib) = (π1 × f × π2)!(1) (here we use that π∗
2 and f ∗ are ring

maps and so send 1 to 1). Next we compute that

Rg ◦Rf = (πcbaca )!

[
(πcbacb )∗(idc × g)∗(ic) · (πcbaba )∗(idb × f)∗(ib)

]
= (πcbaca )!

[
(πcbacb )∗(idc × g)∗(ic) · (π1 × f × π2)!(1)

]
= (πcbaca )!(π1 × f × π2)!

[
(π1 × f × π2)∗(πcbacb )∗(idc × g)∗(ic) · 1

]
= (idc × gf)∗(ic)
= R(gf).

In the second-to-last equality we have used that πcbaca ◦ (π1 × f × π2) = idc×a and that
(idc × g)πcbacb (π1 × f × π2) = idc × gf .

To prove (d) we must verify that i∗a = ia (for every object a) and (g ◦ f)∗ = f ∗ ◦ g∗
for every f ∈ CE(a, b) and g ∈ CE(b, c). For the first of these, consider the twist map
t : a× a→ a× a. Since t2 = ida×a we have by Lemma 3.8 that t! = (t∗)−1 = t∗. So

i∗a = t∗(ia) = t!(ia) = t!(∆
a
! (1)) = (t ◦∆a)!(1) = ∆a

! (1) = ia.

Write tabba for the map t : a× b→ b× a, and similarly for other situations. Then

(g ◦ f)∗ = (tacca)
∗
[
(πcbaca )![(π

cba
cb )∗(g) · (πcbaba )∗(f)]

]
= (tcaac)!

[
(πcbaca )![(π

cba
cb )∗(g) · (πcbaba )∗(f)]

]
= (πcbaac )!

[
(πcbacb )∗(g) · (πcbaba )∗(f)

]
= (πcbaac )!(t

abc
cba)!(t

abc
cba)

∗[(πcbacb )∗(g) · (πcbaba )∗(f)
]

= (πabcac )!
[
(πabccb )∗(g) · (πabcba )∗(f)

]
= (πabcac )!

[
(πabcbc )∗(tbccb)

∗g · (πabcab )
∗(tabba)

∗f
]

= (πabcac )!
[
(πabcab )

∗(tabba)
∗f · (πabcbc )∗(tbccb)

∗g
]

= f ∗ ◦ g∗.

In the second and fourth equalities we have used Lemma 3.8, but all of the other equalities
use only simple functoriality.

Continuing with (d), for f : A→ B we have

If = t∗(Rf ) = t∗(id× f)∗(iB) = (f × id)∗(iB)

(using part (c) for the second equality) and likewise

If = t∗(Rf ) = t∗(A→ B × A)!(1) = t!(A→ B × A)!(1) = (A→ A×B)!(1),

using (c) for the second equality and Lemma 3.8 to identity t∗ and t!.
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To prove the first part of (e) we argue as follows:

α ◦Rf = (πZWY
ZY )!

[
(πZWY

ZW )∗(α) · (πZWY
WY )∗(idW × f)∗(iW )

]
= (πZWY

ZY )!

[
(πZWY

ZW )∗(α) · (idZ × f × idY )!(1)
]

= (πZWY
ZY )!(idZ × f × idY )!

[
(idZ × f × idY )∗(πZWY

ZW )∗(α) · 1
]

= id!

[
(idZ × f)∗α · 1

]
= (idZ × f)∗(α).

In the second equality we have used the push-pull axiom applied to the pullback diagram

Z ×W × Y
πZWY
WY //W × Y idW×f //W ×W

Z × Y
idZ×f×idY

OO

π2 // Y
f //

f×idY

OO

W,

∆

OO

together with iW = ∆!(1). In the third equality we have used the projection formula
(Proposition 3.11), and in the fourth equality we have used that πZWY

ZY ◦ (idZ×f × idY ) =
idZY and πZWY

WY ◦ (idZ × f × idY ) = idZ × f .
The other parts of (e) are proven by similar arguments. Part (f) follows from (e) using

If ◦Rq = If ◦ iB ◦Rq = (id× q)∗(If ◦ iB) = (id× q)∗(f × id)∗(iB) = (f × q)∗(iB).

The second part of (f) then follows using push-pull applied to the square

A×B C //

��

B

∆
��

A× C f×q // B ×B.

Part (g) is similar to (f).
For (h), use that Rp ◦Ig =

(
(p×g)ZXW

)
!
(1) = If ◦Rq, by applying (f) and (g) together.

Part (i) follows directly from (h) using the pullback diagram

A id //

id
��

A

f
��

A
f // B.
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