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THE INTERPRETATION LIFTING THEOREM FOR C-SYSTEMS

ANTHONY BORDG

Abstract. In this article we present a solution to a conjecture of Vladimir Voevodsky
regarding C-systems. This conjecture provides, under some assumptions, a lift of a
functor M : CC → C, where CC is a C-system and C a category, to a morphism of C-
systems M ′ : CC → CC(Ĉ, pM ). We explain the motivation behind this conjecture and
introduce the required background material on C-systems. Finally, we give a proof of this
conjecture. As we shall see the corresponding theorem allows to lift weak interpretations
of type theory to strong ones.

1. Introduction

The late Vladimir Voevodsky devoted the last years of his work to the mathematical theory
of type theories. Voevodsky’s goal was to give existing type theories a sound mathematical
basis that could also apply to future extensions of these type theories. A type theory is a
collection of inference rules that can be used as the underlying logic of a proof assistant in
order to check mechanically the correctness of mathematical proofs. Occasionally one may
want to add a new axiom to this underlying logic. In 2006 Voevodsky proposed to add a
new axiom, the Univalence Axiom, to the so-called Martin-Löf type theory [1]. Voevodsky
named his new type theory the Univalent Foundations (UF) of mathematics [2]. These
new foundations are used for the development of many libraries including UniMath [3], a
library of mechanized mathematics in the univalent style using (a version of) the proof
assistant Coq based on the Calculus of Inductive Constructions [4], a type theory that
is already an extension of Martin-Löf type theory. With the addition of a new axiom
such as the Univalence Axiom, one has to prove the soundness of the resulting system.
One also wants to give some mathematical interpretations of this system by providing a
suitable notion of models for its inference rules. These models are categories equipped
with additional operations that correspond to the inference rules of the type theory.
Following this approach, one builds a suitable category whose objects are the said models
and whose morphisms are functors satisfying some additional properties. Among these
models, the model built from the “raw” syntax of the type theory is called the term
model. Central to this approach is the expected result that the term model is an initial
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object in the category of models. In the case of UF, this expected result is known as the
Initiality Conjecture. For a variant of the Calculus of Constructions [5] the corresponding
result of initiality was proved by Thomas Streicher in 1988 [6]. Since there are many
type theories and a given type theory can be extended to a variety of systems by the
addition of new rules, it would be extremely tedious to prove anew the corresponding
results of initiality. Instead, Voevodsky wanted to develop a mathematical theory of type
theories that would allow to obtain these foundational results “by specialization of general
theorems and constructions for abstract objects the instances of which combine together
to produce a given type system” [7]. This program is an instance of building a general
theory as a well-motivated problem-solving strategy instead of an ad hoc solution to a
given mathematical problem.

At the heart of Voevodsky’s program to achieve this mathematical theory of type
theories and prove the Initiality Conjecture lies the notion of a C-system, the notion of
model developed by Voevodsky. Before being slightly reformulated and developed further
by Voevodsky, C-systems were first devised by John Cartmell under the name contextual
categories [8, 9] and later studied by Streicher, hence the C in C-system standing for both
Cartmell and contextual. The construction of the canonical model of UF in the category
of simplicial sets still relies today on the initiality conjecture for contextual categories
which remains open [10, Conjecture 1.2.9]. In addition to the Initiality Conjecture for
C-systems, Voevodsky formulated another conjecture regarding C-systems in the third
article [11] in his series devoted to this topic [12, 13, 14, 15, 16, 17, 18]. Unfortunately,
this second conjecture was published at the very end of this long article without any
explanations [11, 6.15 Conjecture] and therefore our goal in the first part of this paper
consists in giving a more accessible account of this conjecture. For reasons that shall
become clear and in order to refer conveniently to this conjecture, we shall name it the
interpretation lifting conjecture.

In Section 2 we shall present the interpretation lifting conjecture and recall the relevant
definitions and results in order to put the conjecture in its proper context. This section
should make our paper reasonably self-contained. Moreover, no knowledge of the syntax
of type theory will be required for the understanding of the conjecture and we will work in
set-theoretic foundations as is common in mathematics. Section 3 will provide a solution
to the interpretation lifting conjecture. Finally, Section 4 gives some pointers to the
related literature.

2. The Interpretation Lifting Conjecture

In this section we shall present the interpretation lifting conjecture. We start by in-
troducing the relevant background material, proving in the process that one important
construction of Voevodsky is actually functorial and that some families of morphisms he
introduced are natural transformations.

2.1. Notation.
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1. In order to avoid confusing readers, we will use the standard order for the compo-
sition ◦ of morphisms, unlike Voevodsky who used the diagrammatic order in his
series of papers on C-systems.

2. The category [Cop,Set] of presheaves of sets on C will be denoted Ĉ.

2.2. Definition. [C0-system [15, Definition 2.1]] A C0-system is a category CC together
with the following structure

1. a function l : Ob(CC) → N named “length”

2. an object pt named “point”

3. a map ft : Ob(CC) → Ob(CC), with ft(X) called “the father of X”

4. for each X ∈ Ob(CC) a morphism pX : X → ft(X)

5. for each X ∈ Ob(CC) such that l(X) > 0 and each morphism f : Y → ft(X) an
object f ∗X and a morphism q(f,X) : f ∗X → X

satisfying the following conditions:

1. l−1(0) = {pt}

2. for X such that l(X) > 0 one has l(ft(X)) = l(X)− 1

3. ft(pt) = pt

4. pt is a final object of the category CC

5. for X ∈ Ob(CC) such that l(X) > 0 and f : Y → ft(X) one has l(f ∗X) > 0,
ft(f ∗X) = Y and the distinguished square

f ∗X X

Y ft(X)

q(f,X)

pf∗X pX

f

commutes

6. for X ∈ Ob(CC) such that l(X) > 0 one has (Idft(X))
∗X = X and q(Idft(X), X) =

IdX

7. for X ∈ Ob(CC) such that l(X) > 0, g : Z → Y and f : Y → ft(X) one has
(f ◦ g)∗X = g∗(f ∗X) and q(f ◦ g,X) = q(f,X) ◦ q(g, f ∗X)

For every morphism f : Y → X, the morphism ft(f) : Y → ft(X) will denote the
post-composition of f with pX .
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2.3. Definition. [C-system [15, Definition 2.3]] A C-system is a C0-system equipped
with an operation f 7→ sf defined for all f : Y → X such that l(X) > 0 and satisfying the
following properties.

1. sf : Y → (ft(f))∗X

2. p(ft(f))∗X ◦ sf = IdY

3. q(ft(f), X) ◦ sf = f

4. if X = g∗U , where g : ft(X) → ft(U), then sq(g,U)◦f = sf

The map sf is called the section associated with f .

The reader can check that every distinguished square in a C-system is a pullback
square. It is actually equivalent for a C0-system CC to be a C-system and for its distin-
guished squares to be pullback squares [15, Proposition 2.4].

2.4. Example. [19] Let Ntriv be the category with set of objects the set N of natural
numbers and with exactly one morphism between any two objects. There exists a C-
system structure on Ntriv given by the identity map as the length function. The other
operations are then completely determined.

2.5. Remark. The reader should note that C-system structures cannot be transported
along equivalences of categories. Indeed, consider the category 2triv with two objects and
one isomorphism between them. This category is equivalent to the category Ntriv, but the
reader can check that there does not exist a C-system structure on 2triv [19]. C-system
structures being algebraic structures, the right notion of sameness for C-systems is the
notion of an isomorphism.

2.6. Definition. [15, Remark 2.8] Let (CC, l, pt, ft, p, q, s) and (CC′, l′, pt′, ft′, p′, q′, s′)
be two C-systems, a morphism of C-systems is a functor F : CC → CC′ that respects
the length functions, the final objects, the p-operations, the s-operations and commutes
with the father functions and the q-operations whenever these functions and operations
are defined. In other words the following equalities

l′(F (X)) = l(X)

F (pX) = pF (X)

F (sf ) = sF (f)

ft′(F (X)) = F (ft(X))

q′(F (f), F (X)) = F (q(f,X))

are satisfied.
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2.7. Remark. Such a functor F automatically satisfies F (pt) = pt′.

The category of C-systems and their morphisms will be denoted CCat. We shall now
introduce the notion of a universe category that will play an important role in the next
section.

2.8. Definition. [universe category [11, 2.6 Definition]] A universe category is a triple
(C, p, pt), often denoted simply by (C, p), where C is a category, pt is a final object in

C and p : Ũ → U is a morphism in C together with, for every morphism f : X → U , a
chosen pullback square as follows.

(X; f) Ũ

X U

Q(f)

pX,f p

f

2.9. Example. Consider (Ntriv)
op the opposite category of Ntriv (cf. 2.4), p : 1 → 0 the

unique morphism from 1 to 0 and for every morphism f : n → 0 take (n; f) := n + 1,
then Q(f) (resp. pn,f ) is the unique morphism from n + 1 to 1 (resp. from n + 1 to n).
Note that every morphism in (Ntriv)

op is an isomorphism. The triple ((Ntriv)
op, p, 0) is a

universe category, since a commutative square where all four arrows are isomorphisms is
a pullback square.

Voevodsky proved that one can define a C-system from a universe category (C, p, pt) [11,
2.12 Construction]. This C-system will be denoted CC(C, p, pt) and following Voevodsky
it will often be abbreviated to CC(C, p). Moreover, the C-system CC(C, p) comes equipped
with a fully faithful functor int : CC(C, p) → C from the underlying category of CC(C, p)
to C [11, 2.9 Lemma]. For the convenience of the reader, we shall briefly recapitulate
these constructions.

2.10. Construction. We first define sets Obn(C, p), shortened Obn, and maps

intn : Obn → Ob(C)

by a mutual recursion. The set Ob0 := {tt} is a distinguished singleton with tt its unique
element, int0 maps the unique element of Ob0 to pt and the recursive cases are given as
follows

Obn+1 :=
∐

A∈Obn

HomC(intn(A), U)

and
intn+1(A, f) := (intn(A); f).

The set Ob(CC(C, p)) of objects of CC(C, p) is then simply∐
n

Obn



THE INTERPRETATION LIFTING THEOREM FOR C-SYSTEMS 219

with the length function being the obvious projection and int on objects being the sum
of the maps intn, while the set of morphisms Mor(CC(C, p)) of CC(C, p) is∐

Γ,Γ′∈Ob(CC(C,p))

HomC(int(Γ), int(Γ
′)),

the functor int mapping a morphism (Γ,Γ′, a) to a. The point of CC(C, p) is (0, tt). The
father function ft is the sum of the maps ftn, where ft0 := IdOb0 and ftn+1 maps an
object (A, f) of Obn+1 to A in Obn. Last, we have to define the distinguished pullback
squares of the C-system CC(C, p). First, we need a morphism pΓ : Γ → ft(Γ) for every
Γ ∈ Ob(CC(C, p)). For Γ ∈ Ob0, take pΓ := IdΓ and for Γ := (n + 1, A) in Obn+1 with
A := (B, f), take pΓ := (Γ, ft(Γ), pintn(B),f ). Second, for each Γ ∈ Ob(CC(C, p)) such
that l(Γ) > 0 and each morphism (Γ′, ft(Γ), f), we need an object f ∗Γ and a morphism
q(f,Γ): f ∗Γ → Γ. Assume Γ is (n + 1, A), with A := (B, g) in Obn+1, and assume Γ′ is
(m,C). In this case g is a morphism in C from intn(B) to U , while f is a morphism from
intm(C) to intn(B). Take f ∗Γ := (m + 1, (C, g ◦ f)) and q(f,Γ), seen as an arrow in C,
is the dashed arrow obtained from the universal property of the pullback square in the
following diagram.

(intm(C); g ◦ f) Ũ

(intn(B); g)

intm(C) intn(B) U

Q(g◦f)

pint(C),g◦f p

Q(g)

pint(B),g

f g

We are now in a position to state the Interpretation Lifting Conjecture.

2.11. Conjecture. [11, 6.15 Conjecture] Let C be a category, CC be a C-system and
M : CC → C a functor such thatM(pt) is a final object of C andM maps the distinguished

pullback squares of CC to pullback squares of C. Then there exists a universe pM in Ĉ
and a C-system morphism M ′ : CC → CC(Ĉ, pM) such that the square

CC C

CC(Ĉ, pM) Ĉ

M

M ′ YC

int

where YC is the Yoneda embedding, commutes up to a functor isomorphism.

At this point we shall offer a few words of motivation from Voevodsky:
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Suppose CC is the syntactic C-system of a type theory. Then a functor such
as M is a “weak interpretation” of the type theory, because by passing from a
C-system that is a rigid algebraic structure defined up to an isomorphism, to
a category C that is a much less rigid structure defined up to an equivalence,
we can “erase” a lot of structure that exists in CC. By constructing M ′ one
lifts a “weak” interpretation to a “strong” one, with values in a C-system [of
the form] CC(C, p). Such an interpretation is “strong” because it respects all
the structures of the C-system CC that are erased by the original functor M .1

The reader should note that the “syntactic C-system of a type theory” is just another
way to refer to what we called in the introduction the term model of a type theory
which is expected to be an initial object in CCat (cf. Section 1). Voevodsky’s comment
echoes the Remark 2.5 emphasizing that C-system structures cannot be transported along
equivalences of categories.

A couple of propositions are in order as well as a couple of lemmas that will be useful
later in Section 3. First, note that every C-system CC is actually the C-system defined
from some universe category.

2.12. Proposition. [11, 5.2 Construction] For every C-system CC, there exists a uni-

verse category (ĈC, ∂) such that CC and CC(ĈC, ∂) are isomorphic as C-systems.

We should recall here some details about the universe category (ĈC, ∂) for which there

exists an isomorphism ICC : CC → CC(ĈC, ∂).

2.13. Construction. Let U be the presheaf that maps an object Γ of CC to the set

{∆ | l(∆) > 0 and ft(∆) = Γ}

and maps a morphism f to the function U(f) defined by U(f)(∆) := f ∗∆. Let Ũ be the
presheaf that maps an object Γ of CC to the set

{s ∈ Mor(CC) | s : ft(∆) → ∆, l(∆) > 0, ft(∆) = Γ and p∆ ◦ s = IdΓ}

of sections of the canonical projections p∆ for ∆ such that l(∆) > 0 and ft(∆) = Γ and

such that Ũ maps a morphism f to the function Ũ(f) defined by Ũ(f)(s) := q(f,∆)∗s. The
natural transformation ∂ simply maps a section to its codomain. Let pt be the constant
presheaf given by a distinguished singleton {⋆} in Set. Then (ĈC, ∂, pt) together with

the canonical pullback squares in the presheaf category ĈC is a universe category. We
will construct the isomorphism ICC : CC → CC(ĈC, ∂) as follows. For every Γ in CC, the
canonical bijection

U(Γ) ∼= HomĈC(YΓ, U)

1private communication
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given by the Yoneda lemma will be denoted uΓ. Let us denote δ(∆) the section of p∆,p∆
given by the diagonal, its image under the canonical bijection Ũ(∆) ∼= Hom(Y∆, Ũ) will
be denoted ũ∆(δ(∆)). For every Γ in CC and every ∆ in U(Γ),

γ∆ : (YΓ;uΓ(∆)) → Y∆

will denote the isomorphism given by the universal property of the following pullback
square.

Y∆

(YΓ;uΓ(∆)) Ũ

YΓ U

ũ∆(δ(∆))

p∆◦− ∂

uΓ(∆)

Finally, let us denote Obn(CC) the set of objects in CC of length n. We define pairs

(In, ψn) by a mutual recursion, where In : Obn(CC) → Obn(ĈC, ∂) is a function and
ψn(Γ) : int(In(Γ)) → YΓ is an isomorphism for every Γ in Obn(CC). We take I0(pt) = pt

and ψ0(pt) is the unique isomorphism from our choice of final object pt in ĈC to Ypt. The
recursion step is then given for every ∆ ∈ U(Γ) with In(Γ) = B by the equalities

In+1(∆) = (B, uΓ(∆) ◦ ψn(Γ))
ψn+1(∆) = γ∆ ◦Q(ψn(Γ), uΓ(∆)),

where Q(ψn(Γ), uΓ(∆)) denotes the dashed arrow obtained from the universal property of
the pullback square in the following diagram.

(int(I(Γ));uΓ(∆) ◦ ψn(Γ)) (YΓ;uΓ(∆)) Ũ

int(I(Γ)) YΓ U

Q(uΓ(∆)◦ψn(Γ))

Q(uΓ(∆))

∂

ψn(Γ) uΓ(∆)

The isomorphism ICC maps an object Γ to (l(Γ), Il(Γ)(Γ)) and a morphism f : Γ′ → Γ

to (ICC(Γ
′), ICC(Γ), ψ(Γ)

−1 ◦ YCC(f) ◦ ψ(Γ′)), where YCC : CC → ĈC denotes the Yoneda
embedding.

2.14. Lemma. There exists a natural isomorphism ψ from int ◦ ICC to YCC.
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Proof. For each object Γ of CC, we define a morphism ψΓ : int(ICC(Γ)) → YΓ as ψΓ :=
ψl(Γ)(Γ) (see Construction 2.13). For every morphism f : Γ′ → Γ, we need to prove that
the following diagram commutes.

int(ICC(Γ
′)) YΓ′

int(ICC(Γ)) YΓ

ψΓ′

int(ICC(f)) YCC(f)

ψΓ

It is easily checked as follows.

ψΓ ◦ int(ICC(f)) = ψl(Γ)(Γ) ◦ int(ICC(f))

= ψl(Γ)(Γ) ◦ ψl(Γ)(Γ)−1 ◦ YCC(f) ◦ ψl(Γ′)(Γ
′)

= YCC(f) ◦ ψl(Γ′)(Γ
′)

= YCC(f) ◦ ψΓ′

We shall define the notion of a morphism of universe categories, which Voevodsky
called a functor of universe categories [11, 4.1 Definition].

2.15. Definition. [11, 4.1 Definition] A morphism between universe categories (C, p, pt)
and (C ′, p′, pt′) is a triple (F, ϕ, ϕ̃), where F : C → C ′ is a functor, ϕ : F (U) → U ′ and

ϕ̃ : F (Ũ) → Ũ ′ are morphisms in C ′, such that F maps the chosen pullback squares based
on p to pullback squares, F (pt) is a final object of C ′ and the following square

F (Ũ) Ũ ′

F (U) U ′

ϕ̃

F (p) p′

ϕ

is a pullback square.

Given two morphisms of universe categories

(F, ϕ, ϕ̃) : (C, p, pt) → (C ′, p′, pt′)

and
(G,ψ, ψ̃) : (C ′, p′, pt′) → (C ′′, p′′, pt′′),

we define their composition as (G ◦ F, ψ ◦ G(ϕ), ψ̃ ◦ G(ϕ̃)). Since two pullback squares
based on the same diagram are connected by an isomorphism and given that a functor
maps an isomorphism to an isomorphism, one readily checks that the triple

(G ◦ F, ψ ◦G(ϕ), ψ̃ ◦G(ϕ̃))
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is a morphism of universe categories from (C, p, pt) to (C ′′, p′′, pt′′). We define the identity
morphism of (C, p, pt) as (IdC, IdU , IdŨ). The associativity and unitality of this composi-
tion are straightforward. The category of universe categories will be denoted UCat. Also,
from a morphism of universe categories (F, ϕ, ϕ̃) : (C, p, pt) → (C ′, p′, pt′), it is possible to

define a C-system morphism CC(F, ϕ, ϕ̃) : CC(C, p) → CC(C ′, p′) between the correspond-
ing C-systems (see [11, 4.7 Construction], where this last morphism is denoted H). We
shall also recapitulate briefly this construction for the convenience of the reader.

2.16. Construction. Let us denote ψ the isomorphism from pt′ to F (pt). We first de-
fine by a mutual recursion mapsHn : Obn → Ob′

n and isomorphisms ψn(A) : int
′(Hn(A)) →

F (int(A)) for every A ∈ Obn. Take H0 to be the unique map from Ob0 to Ob′
0 and

ψ0(A) := ψ. The recursive cases are given as follows:

Hn+1 := (Hn(A), ϕ ◦ F (f) ◦ ψn(A))

and
ψn+1(A, f) : (int(Hn(A));ϕ ◦ F (f) ◦ ψn(A)) → F (int(A, f))

is the unique morphism in the following diagram

int′(Hn+1(A, f)) F (int(A, f)) F (Ũ) Ũ ′

int′(Hn(A)) F (int(A)) F (U) U ′

ψn+1(A,f)

pint′(Hn(A)),ϕ◦F (f)◦ψn(A)

Q(ϕ◦F (f)◦ψn(A))

F (Q(f))

F (pint(A),f )

ϕ̃

F (p) p

ψn(A) F (f) ϕ

such that the equalities

F (pint(A),f ) ◦ ψn+1(A, f) = ψn(A) ◦ pint′(Hn(A)),ϕ◦F (f)◦ψn(A)

ϕ̃ ◦ F (Q(f)) ◦ ψn+1(A, f) = Q(ϕ ◦ F (f) ◦ ψn(A))

hold. The functor CC(F, ϕ, ϕ̃) := H is then given on objects by the sum of the functions
Hn, while on morphism H maps (Γ,Γ′, f) to (H(Γ), H(Γ′), ψ(Γ′)−1 ◦ F (f) ◦ ψ(Γ)).

2.17. Lemma. There exists a natural isomorphism ψ from int′ ◦H to F ◦ int.

Proof. For each element A of Obn(C, p), define ψA the component of ψ at A as ψl(A)(A)
(see Construction 2.16). The argument to show that ψ is a natural transformation is
similar to the one in Lemma 2.14.
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2.18. Proposition. The maps (C, p, pt) 7→ CC(C, p, pt) and (F, ϕ, ϕ̃) 7→ CC(F, ϕ, ϕ̃)
define a functor CC(−,−,−) from UCat to CCat.

Proof. We have to prove the equality

CC(IdC, IdU , IdŨ) = IdCC(C,p),

for every universe category (C, p : Ũ → U, pt). We have also to prove the equality

CC(G ◦ F, ψ ◦G(ϕ), ψ̃ ◦G(ϕ̃)) = CC(G,ψ, ψ̃) ◦ CC(F, ϕ, ϕ̃),

namely that one obtains the same morphism of C-systems if one starts by lifting the
two morphisms of universe categories and then composes the resulting morphisms of C-
systems or if one starts by composing the two morphisms of universe categories and then
lifts the resulting morphism of universe categories. Both equalities follow from a proof by
induction on n in the formulas defining Hn and ψn above.

3. Solution

3.1. Universe categories and left Kan extensions. Let CC be a C-system, C
a category and M : CC → C a functor from the underlying category of CC to C such
that M(pt) is a final object of C and M maps the distinguished pullback squares of CC

to pullback squares of C. Let (ĈC, ∂, pt) be the universe category of Construction 2.13

together with its isomorphism ICC : CC → CC(ĈC, ∂).

3.2. Problem. To construct a universe category (Ĉ, ∂′, pt′) and a functor of universe

categories from (ĈC, ∂, pt) to (Ĉ, ∂′, pt′).

3.3. Construction. Consider the functor M! := LanYCC
(YC ◦M) from ĈC to Ĉ, where

LanYCC
(YC ◦M) denotes the left Kan extension of YC ◦M along the (covariant) Yoneda

embedding YCC : CC → ĈC. We define ∂′ as M!(∂). Let (Ĉ, ∂′) be the universe category
where the pullback squares based on ∂′ are the canonical pullback squares in the presheaf
category Ĉ.

3.4. Lemma. The object M!(pt) is final in Ĉ.
Proof. SinceM(pt) is a final object by assumption, then YC(M(pt)) is a final object and
the slice category YCC/pt is isomorphic to CC, hence the left Kan extension M! at pt is
given by the following colimit.

M!(pt) = lim−→
x∈CC

YC(M(x))

The object YC(M(pt)) being final, we have an isomorphism

lim−→
x∈CC

YC(M(x)) ∼= YC(M(pt))

so we conclude.
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Given y ∈ CC and u ∈ U(y), let δ(u) denote the section obtained from the universal
property of the following distinguished pullback square in CC.

u

pu
∗u u

u y

δ(u)

Id

Id

q(pu,u)

ppu∗u pu

pu

3.5. Lemma. We have the equality Ũ(q(f, u) ◦ s)δ(u) = s for every object x of CC,

f : x→ y and every s ∈ Ũ(x) such that ∂x(s) = f ∗u.

Proof. By definition of Ũ , the morphism Ũ(q(f, u) ◦ s)δ(u) is q(q(f, u) ◦ s, pu∗u)∗δ(u),
namely the pullback of δ(u) along the morphism q(q(f, u) ◦ s, pu∗u). Since ∂x(s) = f ∗u, s
is a section of pf∗u and we have the equalities (cf. point 7 of Definition 2.2)

(q(f, u) ◦ s)∗pu∗u = (pu ◦ q(f, u) ◦ s)∗u

= f ∗u.

It means that Ũ(q(f, u) ◦ s)δ(u) is the unique section α of pf∗u satisfying

q(q(f, u) ◦ s, pu∗u) ◦ α = δ(u) ◦ q(f, u) ◦ s,

hence by unicity it suffices to prove that the equality

q(q(f, u) ◦ s, pu∗u) ◦ s = δ(u) ◦ q(f, u) ◦ s

holds. Consider the following universal problem

f ∗u pu
∗u u

x f ∗u u y,

pf∗u

q(q(f,u)◦s,pu∗u) q(pu,u)

ppu∗u pus

s

β

q(f,u) pu

δ(u)

where β is the unique morphism satisfying the equations

ppu∗u ◦ β = q(f, u) ◦ s
q(pu, u) ◦ β = q(pu, u) ◦ q(q(f, u) ◦ s, pu∗u) ◦ s.
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Since we have the equalities

q(pu, u) ◦ q(q(f, u) ◦ s, pu∗u) = q(pu ◦ q(f, u) ◦ s, u)

= q(f, u),

it is easy to check that both q(q(f, u) ◦ s, pu∗u) ◦ s and δ(u) ◦ q(f, u) ◦ s are solutions of
this universal problem, hence they are equal.

Write U as a colimit of representables

lim−→
(y,u)∈el(U)op

y,

where y stands for the representable YCC(y) and let c(y,u) denote the edge from the copy
of y indexed by (y, u) to U given by the cocone of the latter.

3.6. Lemma. The square

u Ũ

y U,

δ(u)

Y (pu) ∂

c(y,u)

where δ(u) denotes the natural transformation that corresponds to δ(u) in Ũ(u), is a
pullback square.

Proof. Since limits are pointwise, it suffices to prove that the square

Hom(x, u) Ũ(x)

Hom(x, y) U(x)

pu◦−

δ(u)x

∂x

c(y,u)x

is a pullback square in Set for every object x of CC. Let

ϕ : Hom(x, y)×U(x) Ũ(x) → Hom(x, u)

be the map sending (f, s), such that ∂x(s) = f ∗u, to q(f, u) ◦ s. Let ψ be the map

that sends g to (pu ◦ g, Ũ(g)δ(u)), where, by definition of Ũ , Ũ(g)δ(u) is the pullback of
δ(u) along the morphism q(g, pu

∗u). Since g∗(pu
∗u) is equal to (pu ◦ g)∗u for every g in

Hom(x, u) (by point 7 in Definition 2.2), the map ψ has values in Hom(x, y)×U(x) Ũ(x).
Using q(pu ◦ g, u) = q(pu, u) ◦ q(g, pu∗u) (cf. ibid), we conclude ϕ ◦ ψ = Id. Since for

every object (f, s) of Hom(x, y) ×U(x) Ũ(x) we have the equality pu ◦ q(f, u) ◦ s = f and

by Lemma 3.5 the equality Ũ(q(f, u) ◦ s)δ(u) = s, we conclude ψ ◦ ϕ = Id. Thus, ϕ is
a bijection satisfying that (pu ◦ −) ◦ ϕ is the first projection and δ(u)x ◦ ϕ is the second
projection, showing that our square is a pullback square.
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3.7. Lemma. The functor M! maps the distinguished pullback squares based on ∂ to pull-
back squares in Ĉ.

Proof. We need to prove that the image under M! of a pullback square of the form

(P ; η) Ũ

P U

Q(η)

pP,η ∂

η

is a pullback square in Ĉ. We let the presheaves P(y,u)’s be given by the following pullback
squares.

P(y,u) y

P U

c(y,u)

η

Next, we know from Lemma 3.6 that the following square is a pullback square

u Ũ

y U,

δ(u)

Y (pu) ∂

c(y,u)

hence we have the following diagram composed of two pullback squares.

P(y,u) y u

P U Ũ

c(y,u)
∗η

η∗c(y,u) c(y,u) δ(u)

Y (pu)

η ∂

Now, we write each P(y,u) as a colimit of representables

lim−→
z

Pyz := lim−→
(z,v)∈el(P(y,u))

op

z

Since in ĈC pulling back commutes with colimits, we have

lim−→
y

lim−→
z

(Pyz ×y u) ∼= lim−→
y

(P(y,u) ×y u)

∼= P ×U Ũ

and by the same argument, since M! preserves colimits, we have

lim−→
y

lim−→
z

(M!(Pyz)×M!(y) M!(u)) ∼= M!(P )×M!(U) M!(Ũ).
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So, in order to conclude, M! being colimit-preserving, it suffices to prove that we have

M!(Pyz ×y u) ∼= M!(Pyz)×M!(y) M!(u).

But M!(Pyz ×y u) is the image under M! of the pullback of YCC(pu) along YCC(f), where
f : z → y is the unique morphism of CC such that YCC(f) is the composition

Pyz → P(y,u)

c(y,u)
∗η

−−−−→ y,

the Yoneda embedding being fully faithful. This last pullback is isomorphic to the image
under Ycc of the distinguished square

f ∗u u

z y

pf∗u

q(f,u)

pu

f

in CC. Since M! ◦YCC
∼= YC ◦M (cf. [20, Proposition 3.7.3]), we conclude M!(Pyz×y u) ∼=

M!(Pyz)×M!(y)M!(u) using the assumption thatM maps the distinguished pullback squares
of CC to pullback squares of C and the fact that YC preserves pullback squares.

3.8. Proposition. The triple (M!, Id, Id) is a morphism of universe categories from

(ĈC, ∂) to (Ĉ, ∂′).

Proof. It follows from Lemma 3.4 and Lemma 3.7.

3.9. Lifting functors to morphisms of C-systems.

3.10. Theorem. Let C be a category, CC be a C-system and M : CC → C a functor such
that M(pt) is a final object of C and M maps the distinguished pullback squares of CC to

pullback squares of C. Then there exists a universe pM in Ĉ and a C-system morphism
M ′ : CC → CC(Ĉ, pM) such that the square

CC C

CC(Ĉ, pM) Ĉ

M

M ′ YC

int

commutes up to a functor isomorphism, with YC denoting the Yoneda embedding.

Proof. Constructions 3.3 and 2.10 provide a C-system CC(Ĉ, ∂′) and Proposition 3.8 and

Construction 2.16 provide a morphism of C-systems H := CC(M!, Id, Id) from CC(ĈC, ∂)

to CC(Ĉ, ∂′). Define M ′ : CC → CC(Ĉ, ∂′) as H ◦ ICC. Lemma 2.17 applied to F := M!

provides a natural isomorphism ψ : int ◦ H → M! ◦ int, while Lemma 2.14 provides a
natural isomorphism ψ′ : int ◦ ICC → YCC and thus we define a natural isomorphism

ψ′′ : int ◦H ◦ ICC →M! ◦ YCC
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with component at x in Ob(CC) given by the following formula.

ψ′′
x :=M!(ψ

′
x) ◦ ψIcc(x)

Since M! ◦ YCC is isomorphic to YC ◦M , we finally obtain a natural isomorphism from
int ◦H ◦ ICC to YC ◦M , i.e a natural isomorphism from YC ◦M to int ◦M ′ as required.

4. Related Work

We should mention that Curien et al. in [21] consider a problem similar to the present
work but in a different context: rectifying weak morphisms into strict morphisms to
bridge a gap between the syntax of extensional type theory and its semantics in locally
cartesian closed categories. We should also mention the related coherence theorem of
Lumsdaine and Warren for comprehension categories [22]. For the comparison of some
algebraic structures used for modelling dependent type theories the reader can consult
[23]. Various approaches to the semantics of dependent type theories not mentioned in our
introduction include, among others, Dybjer’s categories with families [24, 25], Shulman’s
type-theoretic fibration categories [26, 27, 28], Awodey’s natural models [29], Gambino
and Larrea’s models from algebraic weak factorisation systems [30] as well as [31, 32, 33].
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Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Susan Niefield, Union College: niefiels@union.edu
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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