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ON KRULL–SCHMIDT BICATEGORIES

IVO DELL’AMBROGIO

Abstract. We study the existence and uniqueness of direct sum decompositions in
additive bicategories. We find a simple definition of Krull–Schmidt bicategories, for
which we prove the uniqueness of decompositions into indecomposable objects as well as
a characterization in terms of splitting of idempotents and properties of 2-cell endomor-
phism rings. Examples of Krull–Schmidt bicategories abound, with many arising from
the various flavors of 2-dimensional linear representation theory.
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1. Introduction and results

A Krull–Schmidt category is an additive category in which every object admits a decom-
position into a direct sum of finitely many objects which are strongly indecomposable,
i.e. whose endomorphism rings are local. In fact, in a Krull–Schmidt category strongly
indecomposable objects coincide with those which are indecomposable for direct sums.
Most importantly, every object is a direct sum of indecomposable ones in a unique way,
up to isomorphism and permutation of the factors. There is a nice characterization of
Krull–Schmidt categories: They are precisely those additive categories in which all idem-
potent morphisms split and all endomorphism rings are semiperfect in the sense of Bass.
See e.g. [Kra15].
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The goal of this note is to prove versions of the above eminently useful facts in the
setting of additive bicategories. Perhaps surprisingly, the new bicategorical theory is
arguably more elegant and easier to use than its classical counterpart.

The usual 1-categorical Krull–Schmidt property holds, in particular, for categories of
finite dimensional representations of groups and algebras. It is a cornerstone of repre-
sentation theory which helps alleviate the pain of leaving the semisimple case for the
modular case, where it becomes imperative to understand the global structure of cate-
gories of representations. The Krull–Schmidt property is also surprisingly subtle (e.g. it
holds for finite length modules over any ring but fails for artinian modules already over
certain semilocal noetherian commutative rings [FHLV95] [Fac03]), and it has benefited
from some serious investigation. Similarly, as 2-representation theory (in its various di-
rections) is beginning to venture beyond the semisimple case too, it seems wise to prepare
a suitable Krull–Schmidt theory. We do this in Sections 2-6.

The final Section 7 discusses examples of Krull–Schmidt bicategories. They include
various bimodule bicategories of rings (such as rings with noetherian center), bicategories
of Mackey 2-motives in the sense of Balmer–Dell’Ambrogio (Corollary 7.9 – our original
motivating example), semisimple 2-categories such as that of finite dimensional 2-vector
spaces à la Kapranov–Voevodsky–Neuchl (Example 7.10) or 2-Hilbert spaces à la Baez
(Example 7.11), finite module categories over finite tensor categories à la Etingof–Ostrik
(Corollary 7.18), the 2-category of finite dimensional 2-representations of any 2-group
over any field (Corollary 7.21), and the 2-category of 2-representations of a finitary linear
2-category à la Mazorchuk–Miemietz (Corollary 7.24). Underlying the representation-
theoretic examples is Theorem 7.14, which categorifies the classical fact that finite dimen-
sional representations of any algebra form a Krull–Schmidt category. In view of all this,
we expect Krull–Schmidt bicategories to enter the basic toolkit of any future modular (i.e.
nonsemisimple) linear 2-representation theory, where global structural questions should
gain in importance relative to combinatorial ones.

∗ ∗ ∗

We now present our theoretical results in details.
We say a bicategory is additive if it is locally additive, i.e. its Hom categories are

additive and its composition functors are additive in both variables, and if it admits all
finite direct sums of its objects; see Section 2 for details. For instance additive cate-
gories, additive functors and natural transformations form a very large additive bicate-
gory. A nonzero object X in an additive bicategory is indecomposable if a direct sum
decomposition X ≃ X1 ⊕ X2 necessarily implies that X1 ≃ 0 or X2 ≃ 0 (where ≃
denotes equivalence). We say X is strongly indecomposable if its 2-cell endomorphism
ring EndB(X,X)(IdX) is a connected commutative ring (it is always commutative by the
Eckmann–Hilton argument). Here is our main result:

1.1. Theorem. [See Theorem 4.3] Suppose that an object X of an additive bicategory
admits two direct sum decompositions Y1 ⊕ · · · ⊕ Yn and Z1 ⊕ · · · ⊕ Zm into strongly
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indecomposable objects. Then n = m and there are equivalences Yk ≃ Zσ(k) for all k after
some permutation σ ∈ Σn of the factors.

This suggests the following definition: An additive bicategory is Krull–Schmidt if every
object is equivalent to a direct sum of finitely many strongly indecomposable objects, in
the above sense. We easily deduce (Corollary 4.6) that indecomposable and strongly
indecomposable objects coincide in a Krull–Schmidt bicategory, hence that every object
admits a unique decomposition into indecomposable ones.

We also obtain a very satisfying characterization of Krull–Schmidt bicategories. Let us
call a commutative ring semiconnected if it is a direct product of finitely many connected
rings, i.e. if its Zariski spectrum has finitely many topological connected components. We
also say an additive bicategory is weakly block complete1 if every decomposition 1X =
e1 + e2 of the identity 2-cell 1X ∈ EndB(IdX) as a sum of two orthogonal idempotent
2-cells is induced by a direct sum decomposition X ≃ X1⊕X2 at the level of objects (see
details in Definition 2.10). Then:

1.2. Theorem. [See Theorem 4.8] An additive bicategory is Krull–Schmidt if and only
if it is weakly block complete and the 2-cell endomorphism ring End(IdX) of every object
X is semiconnected.

Some comments are warranted.
As far as we can see, our theory does not recover its classical counterpart because we

cannot usefully view an additive category as an additive bicategory. Thus our definitions
and results are just analogs rather than generalizations.

On its face, our 2-categorical definition of a strongly indecomposable object X may
appear to be unrelated to the original 1-categorical notion. A direct 2-categorical analog
of “End(X) is local” would be to require that whenever F and G are two 1-cells X → X
which are not equivalences, then F⊕G : X → X is not an equivalence either. But it turns
out that the latter property is a consequence of our definition, and as soon as the category
End(X) is idempotent complete (a mild hypothesis) the two become equivalent. In fact,
all reasonable options we could think of become equivalent under the same hypothesis
(Corollary 5.4).

Obviously, in an additive 1-category endomorphism rings are rarely commutative and
there are no 2-cell endomorphism rings. This might explain why passing to a higher-
categorical setting actually appears to make indecomposables and the uniqueness of de-
compositions easier to handle—insofar as semiconnected rings are easier than semiperfect
ones. It also makes examples easier to recognize, e.g. we do not feel any pressing need to
discuss higher versions of bi-chain conditions, finite length objects, etc. In order to rec-
ognize a Krull–Schmidt bicategory using our characterization, it suffices to ensure weak
block completeness (which can always be implemented by [BD20, Thm.A.7.23]) and to
have a reasonable grasp of the 2-cell Homs (e.g. it suffices that they are not unreasonably
large).

1Unfortunately, “idempotent complete” and “block complete” already have different meanings in this
context.
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We thought it instructive to give two different proofs of the uniqueness theorem. The
first proof (in Section 4), which seems not to have any 1-categorical analog, easily follows
from two facts. Firstly, that a direct summand Y of X is determined up to equivalence
by the idempotent element of End(IdX) corresponding to 1Y ; note that, by definition,
the summand is strongly indecomposable precisely when the idempotent is primitive.
Secondly, that in a commutative ring there cannot be two different decompositions of 1
as a sum of orthogonal primitive idempotents. The second proof (in Section 6) is a
calque of the usual 1-categorical proof, and proceeds by recursively comparing summands
of two decompositions of the same object via the given equivalences. Both proofs are
easy in principle but require a close inspection of the bicategorical notion of “direct
summand”, which we carry out in Section 3. To wit, in weakly block complete bicategories
we characterize a direct summand Y of X in a few equivalent ways: as a special kind of
ambijunction Y ⇆ X, or (forgetting the object Y ) as a special kind of Frobenius monad
on X, or quite magically (forgetting the 1-cell X → X) as an idempotent in End(IdX).

2. Preliminaries on direct sums

Most of these preliminaries are also covered in [BD20, §A.7], where the reader may find
more details and context.

2.1. Convention.We will use the standard terminology for bicategories, as recalled e.g.
in [BD20, App.A]. However, whenever convenient and without further mention we will
pretend our bicategories are strict 2-categories in order to simplify calculations and to
more easily talk about (internal) monads; this is justified by the coherence theorem for
bicategories ([JY21, Ch. 8]). If B is a bicategory, we write B(X, Y ) for its Hom categories
and EndB(X,Y )(F ) or just EndB(F ) or End(F ) for the 2-cell endomorphism set of a 1-cell
F : X → Y . Internally to a bicategory, ∼= and ≃ stand for isomorphism and equivalence,
respectively; IdX and idF for identity 1-cells and identity 2-cells, respectively; and also 1X
or just 1 is short for idIdX . Products, coproducts, initial and final objects in a bicategory
are understood in the sense of pseudo(co)limits (a.k.a. bilimits [JY21, §5]), rather than
strict ones; in particular, they are only unique up to equivalence rather than isomorphism.
We mostly ignore set-theoretical size issues as irrelevant to this topic.

2.2. Definition. A bicategory B is locally additive if each Hom category B(X, Y ) is
additive and each composition functor B(Y, Z)× B(X, Y ) → B(X,Z) is additive in both
variables.

2.3. Definition. Let B be a locally additive bicategory. A direct sum of two objects X1

and X2 is a diagram of 1-cells of B of the form

X1

I1 // X
P1

oo
P2

// X2

I2oo (2.4)

such that there exist isomorphisms PiIi ∼= IdXi
and PiIj ∼= 0 (for i ̸= j) as well as

I1P1 ⊕ I2P2
∼= IdX , the latter two being a zero object and a direct sum in the additive
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categories HomB(Xj, Xi) and EndB(X), respectively. As usual, we will write X1 ⊕X2 to
indicate the object X or even the whole diagram; direct sums of n ≥ 2 objects are defined
similarly; and the direct sum of no objects is by definition a zero objet of B, i.e. one which
is both initial and final.

2.5. Definition. We say that a bicategory is additive if it is locally additive and if it
admits arbitrary finite direct sums of its objects.

2.6. Example. The (very large) 2-category ADD of (non-necessarily small) additive cat-
egories, additive functors and natural transformations is an additive bicategory. Direct
sums are provided by the (strict) finite Cartesian products of categories, with their projec-
tion functors Pi : A1 ×A2 → Ai and with inclusion functors defined by I1 : A1 7→ (A1, 0)
and I2 : A2 7→ (0, A2).

2.7. Definition. An object X of an additive bicategory B is indecomposable if whenever
there is an equivalence X ≃ X1 ⊕X2 then X1 ≃ 0 or X2 ≃ 0.

2.8. Remark.One easily checks that any direct sum as in Definition 2.3 is also a product
(X,P1, P2) and a coproduct (X, I1, I2) of X1 and X2 (and similarly with n ≥ 2 factors).
It follows that direct sums are unique up to equivalence. Also, every direct sum decom-
position X ≃ X1 ⊕X2 induces equivalences of additive categories

B(Y,X) ≃ B(Y,X1)× B(Y,X2) and B(X, Y ) ≃ B(X1, Y )× B(X2, Y ) (2.9)

for all objects Y . It is therefore possible to use matrix notation in the usual way for
1-cells as well as 2-cells between two directs sums, just as one does inside each additive
Hom category. In particular (cf. [BD20, Rem.A.7.15]), we may decompose the category
EndB(X) into four factors. Then IdX corresponds to the diagonal matrix diag(IdX1 , IdX2)
and its endomorphism ring EndB(X,X)(IdX) is also diagonal (cf. Lemma 5.1 if necessary),
so that we get an isomorphism of commutative rings

EndB(IdX) ∼= EndB(IdX1)× EndB(IdX2).

The latter is equivalent to a decomposition of 1X = idIdX as a sum e1+e2 of two orthogonal
idempotents, with ei corresponding to 1Xi

. Given such a decomposition of 1X , however,
nothing guarantees that it arises as above from a direct sum decomposition X ≃ X1⊕X2.
Whence:

2.10. Definition. An additive bicategory is weakly block complete if for every object X
and every idempotent element e = e2 of the ring EndB(IdX) there exists a direct sum
decomposition X ≃ X1 ⊕ X2 under which the 2-cells e and 1X − e correspond to [ 10

0
0 ]

and [ 00
0
1 ], respectively, as in Remark 2.8. As in [BD20], we say that B is block complete if

moreover every Hom category of B is idempotent complete.

2.11. Theorem. [BD20, A.7.23–24] For every additive bicategory B, there exists a block
complete bicategory B♭ and a 2-fully faithful pseudofunctor B ↪→ B♭ which is 2-universal
among additive pseudofunctors to block complete bicategories.
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2.12. Remark. Using Theorem 2.11, we can also produce a similarly universal weak
block completion Bw♭ for any additive bicategory B: It suffices to take the smallest 2-full
sub-bicategory of B♭ which contains (the image of) B and is weakly block complete. It
will have the same objects as B♭ but may lack some of its 1-cells.

In Section 7 we will need the fact that block completeness and weak block completeness
are inherited pointwise, in the sense that bicategories of pseudofunctors inherit these
properties from their target bicategory. More precisely:

2.13. Terminology. Let k be a commutative ring. A bicategory is k-linear if its Hom
categories and composition functors are k-linear (i.e. enriched in k-modules). For instance,
a locally additive bicategory is a Z-linear bicategory which also admits finite direct sums
of parallel 1-cells. A pseudofunctor F : B → C between k-linear bicategories is k-linear if
each functor F : B(X, Y ) → C(FX,FY ) is k-linear, i.e. preserves k-linear combinations of
2-cells. Note that a k-linear pseudofunctor preserves whatever direct sums of 1-cells and
objects exist in its source, as the latter are equationally defined (cf. [BD20, Prop.A.7.14]).
We will denote by

PsFunk(B, C)

the bicategory of k-linear pseudofunctors B → C, pseudonatural transformations between
them, and modifications; see e.g. [BD20, §A.1] for details.

2.14. Proposition. If C is (weakly) block complete then so is PsFunk(B, C).

Proof. First note that PsFunk(B, C) inherits a pointwise k-linear structure. Namely,
suppose F1,F2 : B → C are pseudofunctors, t, s : F1 ⇒ F2 pseudonatural transformations,
M,M ′ : t ⇛ s modifications, and λ ∈ k a scalar. Then there is a modification M +
λM ′ : t⇛ s whose component at each object X ∈ B is defined by setting (M +λM ′)X :=
MX+λM ′

X in the k-module HomB(F1X,F2X)(tX , sX). Similarly, PsFunk(B, C) inherits direct
sums of 1-cells and objects from C: The components in C of the transformation t⊕s : F1 ⇒
F2 are

(t⊕ s)X := tX ⊕ sX : F1X → F2X

for all objects X ∈ B and the diagonal

(t⊕ s)F := tF ⊕ sF =
(
tF
0

0
sF

)
: F2F ◦ (t⊕ s)X

∼
=⇒ (t⊕ s)Y ◦ F1F

for all 1-cells F : X → Y of B (for the latter, we use that horizontal composition in C
preserves direct sums of 1-cells), with the evident direct sum structure maps.

For the direct sum F1 ⊕ F2 of pseudofunctors, set (F1 ⊕ F2)(X) := F1X ⊕ F2X on
objects, with diagonal component k-linear functors (at each pair X, Y ∈ ObjB)

F1 ⊕F2 :=
( F1
0

0
F2

)
: B(X, Y ) −→ C(F1X ⊕F2X,F1Y ⊕F2Y ),

where the right-hand side is decomposed into four categories as in Remark 2.8.
It remains to see that PsFunk(B, C) also inherits the splitting of 1-cells and objects.

SupposeM =M2 : t⇛ t is an idempotent modification. Then each componentMX : tX ⇒
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tX is an idempotent 2-cell of C, inducing a decomposition tX ∼= Im(MX)⊕ Im(idtX −MX)
as soon as that idempotent splits in C(F1X,F2X). We can then assemble these splittings
into an isomorphism t ∼= Im(M) ⊕ Im(idt −M) in the additive category PsNat(F1,F2)
of transformations and modifications. Thus if C is locally idempotent complete so is
PsFunk(B, C). If C is weakly block complete, in the special case when t = IdF is the iden-
tity transformation of F := F1 = F2 : B → C we also have decompositions FX ≃ YX⊕ZX

of objects of C with 1YX
and 1ZX

corresponding under these equivalences to the identity 2-
cells of Im(MX) and Im(1FX −MX), respectively. Any choice of such adjoint equivalences
assembles into the required decomposition IdF ≃ Im(M)⊕ Im(1F −M) in PsNat(F1,F2).
(If necessary, to see why the latter assertion is true one may use the characterizations of
direct summands treated in the next section.)

2.15. Remark. In [DR18] a notion of “idempotent completion” for linear 2-categories
is used which in general is stronger than our block completion: It requires every Hom
category to be idempotent complete and every separable monad to split (i.e. to arise from
a separable adjunction).

3. Characterizations of direct summands

We work throughout in a locally additive bicategory. Note that, when referring to a
direct sum X1 ⊕ X2 as in (2.4), we were implicitly assuming a choice was made for its
four projection and injection 1-cells, but not for the 2-isomorphisms implementing their
relations. We can do better:

3.1. Proposition. Consider any direct sum X = X1 ⊕X2 as in (2.4). Then the 2-cells
implementing the direct sum relations can be chosen so that they simultaneously form four
adjunctions Pi ⊣ Ii and Ii ⊣ Pi (i = 1, 2). More precisely, write

PiIi

εi +3
∼ IdXi

ηi

ks and I1P1 ⊕ I2P2

[
ε1 ε2

]
+3

∼ IdX ,η1
η2


ks

for the 2-cell components; they can be chosen so that, besides satisfying the relations

εi = (ηi)
−1 ηiεj =

{
idIiPi

if i = j
0 if i ̸= j

ε1η1 + ε2η2 = 1X (3.2)

they also partake in the adjunctions (for i = 1, 2)

(Pi ⊣ Ii, ηi, εi) and (Ii ⊣ Pi, ηi, εi)

as units or counits. The analogous statement holds for sums of n ≥ 2 objects.
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3.3. Definition. An adjoint direct sum in a locally additive bicategory is the data of a
direct sum diagram together with a choice of 2-cells as in Proposition 3.1.

3.4. Remark. Consider any direct sum diagram (2.4), say with 2-cell components de-
noted βi : PiIi

∼⇒ IdXi
whose inverse we will write αi, and [β1 β2] : I1P1 ⊕ I2P2

∼⇒ IdX

with inverse t[α1 α2]. These 2-cells will satisfy the direct sum relations as in (3.2), of
course. Moreover, not only are βi and αi mutually inverse, but we also have

Piβi = (Piαi)
−1 : Pi

∼⇒ Pi and βiIi = (αiIi)
−1 : Ii

∼⇒ Ii.

Indeed, these 2-cell pairs are already mutual inverses on one side (even before applying
Pi or Ii) by one of the defining relations. To see that they are inverses on the other side
too, it suffices to whisker the relation β1α1 + β2α2 = 1X by Pi or Ii, respectively, and use
that PiIj ∼= 0 for i ̸= j. We will often use this observation.

Proof of Proposition 3.1. This is a sharper version of [DR18, Prop. 1.1.3], and the
proof is similar. Start with a direct sum diagram with some choice of 2-cells, with notation
as in Remark 3.4. For each i, consider the automorphism

φi : IiPi
IiPiαi

∼
+3 IiPiIiPi

IiβiPi

∼
+3 IiPi

of IiPi, whose inverse is φ
−1
i = (IiPiβi)(IiαiPi) by Remark 3.4. We claim that the following

slightly corrected 2-cells

ηi := φ−1
i αi εi := βi ηi := αi εi := βiφi

satisfy the required conditions. They again form a direct sum for the same 1-cells, indeed
the relations (3.2) are immediately checked. It remains to see that we have two adjunc-
tions (Pi ⊣ Ii, ηi, εi) and (Ii ⊣ Pi, ηi, εi). For the first adjunction, Remark 3.4 and the
commutative diagram on the left (where we dropped the i’s)

P
Pη

!)Pα ��
PIP PIαP +3

βP ��

PIPIP
PIPβ +3

βPIP ��

PIP
εP ��

P αP +3 PIP
Pβ +3 P

P
ηP +3

Pα ��

PIP
Pε

��

PIPα ��
PIP αPIP +3

βP ��

PIPIP
PIβP ��

P αP +3 PIP
Pβ +3 P

verify the triangular identity (εiPi)(Piηi) = idPi
. This also implies the 2-cell (Iiεi)(ηiIi) =

(Iiεi)(IiεiPiIi)(IiPiηiIi)(ηiIi) = (Iiεi)(ηiIi)(Iiεi)(ηiIi) is an idempotent Ii ⇒ Ii. As the
latter 2-cell is invertible (by Remark 3.4) it must be equal to idIi , and we get the second
triangular identity. For the second adjunction, the above diagram on the right displays
(again thanks to Remark 3.4) the triangular identity (Piεi)(ηiPi) = idPi

, and the other
one follows by the precise same argument as before.
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3.5. Remark. There is a far less elementary but perhaps more suggestive proof of Propo-
sition 3.1, which goes as follows. Firstly note that the 2-category ADD of additive cate-
gories has a canonical choice of adjoint direct sums: Just take Cartesian products, with
the projections Pi and injections Ii as in Example 2.6 and the evident 2-cells (involv-
ing solely identity and zero natural transformations). Indeed, in this case we even have
PiIi = Id and all required triangular identities are trivially true. Secondly, for any lo-
cally additive (or just Z-linear) bicategory B, the bicategory PsFunZ(Bop,ADD) of additive
pseudofunctors (Terminology 2.13) inherits finite adjoint direct sums from ADD, by the
very same level-wise construction as in the proof of Proposition 2.14. Thirdly, observe
that adjoint direct sums (or even just their 2-cells) can be transported along (adjoint)
equivalences. Finally, recall (e.g. from [BD20, Rem.A.7.25]) that for any locally additive
bicategory B there is a Yoneda embedding B → PsFunZ(Bop,ADD) which is an additive
pseudofunctor and a biequivalence F : B ∼→ B′ onto its full image B′ ⊂ PsFunZ(Bop,ADD).
Using F and a pseudoinverse F−1, any direct sum diagram that exists in B can therefore
be corrected into an adjoint sum by the previous remarks.

In the following, we will tacitly assume all our direct sums to be adjoint in the sense
of Definition 3.3. Let us now study a single summand at a time.

3.6. Definition. In a locally additive bicategory, a splitting datum of an object X con-
sists of an object Y , two 1-cells I : Y → X and P : X → Y and two adjunctions

(P ⊣ I, η, ε) and (I ⊣ P, η, ε)
such that ε = η−1 and ηε = idIP . A splitting datum for X is a direct summand of X if
it appears as one of the ambijunctions Ii ⊣ Pi ⊣ Ii : Xi ⇆ X for some decomposition into
an adjoint direct sum X ≃ X1 ⊕ · · · ⊕Xn as in Definition 3.3. A morphism of splitting
data (Y, I, P, η, ε, η, ε) and (Y ′, I ′, P ′, η′, ε′, η′, ε′) is a 1-cell F : Y → Y ′ together with a
2-isomorphism θF : FP ∼= P ′, and a 2-morphism (F1, θ1) ⇒ (F2, θ2) is a 2-cell α : F1 ⇒ F2

such that θ2(αP ) = θ1. (In other words, forgetting some structure, here we are considering
splitting data as objects of the comma bicategory of B under X.) We thus obtain a notion
of equivalence of splitting data for X.

In the following series of remarks, we mention several ways one can slice and repackage
the information contained in a splitting datum.

3.7. Remark. An adjunction in a bicategory is a reflection if its counit is invertible
and a coreflection if its unit is. Thus the adjunctions (P ⊣ I, η, ε) and (I ⊣ P, η, ε) in
Definition 3.6 display Y as a reflection, respectively a coreflection, of X. Indeed the counit
ε and the unit η are mutually inverse, and we also have ηε = idIP .

3.8. Remark. Recall that a monad or comonad on an object X in a bicategory is idem-
potent if its (co)multiplication is invertible. Thus writing E := IP : X → X, we see that
a splitting datum induces both a monad and a comonad on X(

E, E2
∼

IεP +3 E , IdX
η +3 E

)
and

(
E, E ∼

IηP +3 E2 , E
ε +3 IdX

)
with the same underlying 1-cell E which are idempotent and satisfy ηε = idE.
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3.9. Remark. An idempotent monad (T : X → X,µ : T 2 ∼⇒ T, ι : IdX ⇒ T ) on an
object X is the same thing as a localization of X, namely a pair (T, ι : IdX ⇒ T ) such
that Tη and ηT : T ⇒ T 2 are equal and invertible (their common inverse then recovers
the multiplication µ). Dually, an idempotent comonad is the same as a colocalization.
Thus Remark 3.8 says that a splitting datum amounts to a pair

(E, η : IdX ⇒ E) and (E, ε : E ⇒ IdX)

of a localization and a colocalization of X, respectively, with the same underlying 1-
cell E = IP and such that ε is a section of η.

3.10. Remark. The monad and comonad of Remark 3.8 form an idempotent special
Frobenius monad (T, µ, ι, δ, ϵ) on X such that ιϵ = idT . Indeed, the latter equation is
ηε = idE again; the monad and comonad automatically form a Frobenius monad as
they originate from an ambijunction (see e.g. [Del21, Prop. 7.4]); “idempotent” refers
to multiplication µ and comultiplication δ being invertible; and “special” refers to the
equation µδ = idE, which holds since µ = (IεP ) = (IηP )−1 = δ−1.

3.11. Definition. For any splitting datum (Y, I, P, η, ε, η, ε) for X, the composite 2-cell
e := εη : IdX ⇒ IdX is an idempotent element of the commutative ring EndB(IdX). We
call it the idempotent associated to the given splitting datum. Note that the idempotents
ei associated to the direct summands of a direct sum decomposition X ≃ X1 ⊕ · · · ⊕Xn

are orthogonal and their sum is 1X .

Our last goal for this section is to show that a splitting datum is determined up to
equivalence by its associated idempotent (Proposition 3.13). Let us first recall that the
“image” of a localization is similarly uniquely, essentially because it is both the Kleisli
object and the Eilenberg–Moore object of the associated monad.

3.12. Lemma. Let I : Y ⇆ X : P and I ′ : Y ′ ⇆ X : P ′ be two reflections of an object X
in a bicategory B, as in Remark 3.7. Let (T, ι) and (T ′, ι′) be the associated localizations
of X, as in Remark 3.9. There is an isomorphism T ∼= T ′ identifying ι with ι′ if and only
if there is an equivalence Y ≃ Y ′ identifying the two adjunctions.

Proof. Write η, ε and η′, ε′ for the unit and counit of P ⊣ I and P ′ ⊣ I ′, respectively.
By hypothesis ε and ε′ are invertible, and suppose that (T, ι) ∼= (T ′, ι′), i.e. that there
is an invertible 2-cell θ : IP ∼= I ′P ′ such that θη = η′ : IdX ⇒ I ′P ′. We claim that the
composites F := P ′I : Y → Y ′ and G := PI ′ : Y ′ → Y are part of an adjoint equivalence
Y ≃ Y ′ in B.

Indeed, from the triangular identity (εP )(Pη) = idP and the invertibility of ε we
deduce that Pη : P

∼⇒ PIP is invertible. From (Pθ)(Pη) = P (θη) = Pη′ we further
deduce the invertibility of Pη′ : P ⇒ PI ′P ′, hence of the composite

α : IdY
ε−1
+3 PI

Pη′I +3 PI ′P ′I = GF.
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By symmetry, we similarly obtain the isomorphism

β : IdY ′
ε′−1

+3 P ′I ′
P ′ηI′ +3 P ′IPI ′ = FG.

The commutative diagram of isomorphisms

P ′I

Fα

�&

id +3

P ′IPIP ′Iεks P ′IPη′I+3 P ′IPI ′P ′I

β−1F

x�

P ′I

P ′ηI

KS

P ′η′I
+3

id +3

P ′I ′P ′I

P ′ηI′P ′I

KS

ε′P ′I
��

P ′I

(which uses a triangular identity of P ⊣ I and one of P ′ ⊣ I ′) displays one of the triangular
identities for an adjunction (F ⊣ G,α, β−1); the other one is similar.

We must still verify that this adjoint equivalence F : Y ≃ Y ′ : G matches the given
adjunctions P ⊣ I and P ′ ⊣ I ′. Indeed, we have the isomorphism P ′ε : FP = P ′IP

∼⇒ P ′,
and its mate under adjunction is an isomorphism I ′ ∼= IG. (One also checks immediately
that F ⊣ G is in fact an adjoint equivalence both in the comma bicategory of B under X
and that over X.)

The converse implication is obvious.

3.13. Proposition. Let X be an object of an additive bicategory. Let I : Y ⇆ X : P and
J : Z ⇆ X : Q be two splitting data for X (Definition 3.6). Then the two are equivalent,
as splitting data for X, if and only if their associated idempotent elements of End(IdX)
are equal (Definition 3.11).

Proof. Let us introduce the following notation for the units and counits of the four
adjunctions I ⊣ P ⊣ I and J ⊣ Q ⊣ J :

ηY : IdX ⇒ IP εY : PI
∼⇒ IdY ηY : IdY

∼⇒ PI εY : IP ⇒ IdX

ηZ : IdX ⇒ JQ εZ : QJ
∼⇒ IdZ ηZ : IdZ

∼⇒ QJ εZ : JQ⇒ IdX

Recall that εY = η−1
Y , εZ = η−1

Z , ηY εY = idIP and ηZεZ = idJQ by definition. The two
associated idempotents are eY := εY ηY and eZ := εZηZ .

Suppose first that there is an equivalence Y ≃ Z of splitting data, i.e. an equivalence
F : Y

∼→ Z equipped with an isomorphism θ : FP
∼⇒ Q in B. We must show that

eY = eZ . By taking mates, we easily obtain I ∼= JF and therefore IP ∼= JQ. But there is
an ambiguity: We can take mates with respect either to the left or the right adjunctions,
and the resulting isomorphism will either match ηY with ηZ or εY with εZ , accordingly,
but a priori not both. Luckily, the strong bond between the left and the right adjoint
implies the two mates coincide. Let us be more precise.
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The isomorphism JF ∼= I resulting from I ⊣ P amounts to the composite

ϕ : JF ∼
JF ηY +3 JFPI ∼

JθI +3 JQI
εZI +3 I

(this formally requires choosing an adjoint quasi-inverse for F , but then the associated
data gets canceled out.) Using P ⊣ I instead, we get the isomorphism

ψ : I
ηZI +3 JQI ∼

Jθ−1I+3 JFPI ∼
JFεY +3 JF

From ηZεZ = id and εY = η−1
Y , we immediately see that ψϕ = idJF . Hence ϕ and ψ are

mutually inverse. (Incidentally, note that the composite ϕψ computes as eZI : I ⇒ I,
showing that eZI = idI .)

We thus obtain the isomorphism (Jθ)(ψP ) : IP
∼⇒ JQ with inverse (ϕP )(Jθ−1). To

prove that eZ = eY , it therefore suffices to show that

(Jθ)(ψP )ηY = ηZ and εY (ϕP )(Jθ
−1) = εZ .

After expanding the definitions of ϕ and ψ, these equations immediately follow from one
of the triangular identities for the adjunction P ⊣ I or I ⊣ P , respectively.

To prove the converse implication, suppose now that eY = eZ for the two given splitting
data. We must find an equivalence between the latter.

First of all, since T := IP ∼= Im(eY ) and S := JQ ∼= Im(eZ) are two images of the same
morphism in the additive category EndB(IdX), there exists an isomorphism θ : T

∼⇒ S such
that θηY = ηZ and εZθ = εY . In particular, θ is an isomorphism (T, ηY ) ∼= (S, ηZ) of
the localizations of X induced by the adjunctions P ⊣ I and Q ⊣ J . By Lemma 3.12,
there exists an equivalence Y

∼→ Z preserving these adjunctions. It is in particular an
equivalence of splitting data.

3.14. Remark. A similar treatment of categorified direct summands can be found in
[DR18]. In particular, our uniqueness result corresponds to [DR18, Prop. 1.3.4]; neither
result implies the other, strictly speaking, but the ideas are closely related.

4. Krull–Schmidt bicategories

We are now ready to prove our main results. Indeed, it will be a very easy task because
most of the work is already done.

4.1. Definition. We say that a nonzero object X of a locally additive bicategory B is
strongly indecomposable if the commutative ring EndB(X,X)(IdX) is connected.

Let us justify the use of “strongly”:

4.2. Remark. Strongly indecomposable objects are indecomposable. Indeed, nontrivial
decompositions X ≃ X1⊕X2 produce (as in Remark 2.8) nontrivial decompositions 1X =
e1+ e2 in orthogonal idempotents of EndB(IdX), where ei is the idempotent associated to
the direct summand Xi as in Definition 3.11.
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4.3. Theorem. Let X be an object of an additive bicategory B which admits two direct
sum decompositions

X ≃ Y1 ⊕ · · · ⊕ Yn and X ≃ Z1 ⊕ · · · ⊕ Zm

such that all Yk and Zℓ are strongly indecomposable (Definition 4.1). Then n = m and,
after renumbering the factors, there are equivalences Yk ≃ Zk for all k.

Proof. By construction, the identities 1Yk
(k = 1, . . . , n) correspond under the given

equivalences to a complete family of orthogonal primitive idempotents ek in the com-
mutative ring EndB(IdX). Here each ek is the idempotent associated with the direct
summand Yk. Similarly, the direct summands Zℓ yield a complete family of orthogonal
primitive idempotents fℓ. But then clearly, this being a commutative ring, each of the ek
must be equal to exactly one of the fℓ. Thus n = m and we find a permutation σ such
that ek = fσ(k) for all k. It follows by Proposition 3.13 that Yk and Zσ(k) are equivalent,
even as direct summands (i.e. splitting data) of X.

4.4. Definition.We say an additive bicategory is Krull–Schmidt if every nonzero object
admits a direct sum decomposition into strongly indecomposable objects.

4.5. Remark. In a weakly block complete bicategory (Definition 2.10), indecomposable
objects and strongly indecomposable objects coincide. Indeed, by definition, each non-
trivial decomposition of the 2-cell 1X as a sum of orthogonal idempotents arises from a
nontrivial direct sum decomposition of the object X.

4.6. Corollary. In a Krull–Schmidt bicategory (Definition 4.4), indecomposable and
strongly indecomposable objects coincide, and every object decomposes in an essentially
unique way into a direct sum of indecomposable objects.

Proof. Strongly indecomposable objects are indecomposable by Remark 4.2. By hy-
pothesis every object X admits a decomposition X ≃ X1 ⊕ · · · ⊕Xn into strongly inde-
composables. If X is indecomposable, n = 1 hence X ≃ X1 is strongly indecomposable.
The remaining statement now follows from Theorem 4.3.

4.7. Definition. As in the introduction, we say a commutative ring is semiconnected if
it is a direct product of finitely many connected rings.

4.8. Theorem. An additive bicategory is Krull–Schmidt if and only if it is weakly block
complete and every 2-cell endomorphism ring is semiconnected.

Proof. Consider an idempotent 2-cell e : IdX ⇒ IdX on an object X of a Krull–Schmidt
bicategory B. Let X ≃ X1 ⊕ · · · ⊕ Xn be a decomposition in strongly indecomposable
objects Xk. This equivalence induces a decomposition 1X = e1 + · · · + en in orthogonal
primitive idempotents, where ek ∈ EndB(IdX) is the idempotent associated to Xk. It
follows that e =

∑
k∈J ek for some subset J ⊆ {1, . . . , n}. By Proposition 3.13, X ≃(⊕

k∈J Xk

)
⊕

(⊕
k ̸∈J Xk

)
realizes the decomposition 1X = e + (1X − e) at the level of
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objects. This shows that B is weakly block complete. Also, each ring EndB(IdXk
) ∼=

ek EndB(IdX) is connected as ek is primitive.
Now suppose that B is weakly block complete and that for each object X there is a

decomposition EndB(IdX) ∼= R1 × · · · × Rn in finitely many connected rings Rk. Then
1X is a sum of n primitive idempotents and, by weak block completeness, there follows
a decomposition X ≃ X1 ⊕ · · · ⊕ Xn with End(IdXk

) ∼= Rk. In particular, each Xk is
strongly indecomposable. This shows that B is Krull–Schmidt.

5. Notions of strong indecomposability

In this section we compare various candidates for the notion of strong indecomposable
objects in an additive bicategory (Corollary 5.4). This further justifies our choice in
Definition 4.1, if needed, and relates it to its 1-categorical analog.

5.1. Lemma. Suppose A and B are two objects in an additive category such that the
endomorphism ring End(A⊕ B) of their sum is commutative. Then A and B are Hom-
orthogonal and therefore End(A⊕B) = End(A)× End(B).

Proof. For x ∈ Hom(A,B) and y ∈ Hom(B,A), consider the elements u = [ 10
0
0 ], v =

[ 00
0
1 ], f = [ 0x

0
0 ] and g = [ 00

y
0 ] of End(A⊕ B). By commutativity, the calculations vf = f

and fv = 0 imply x = 0, whereas ug = g and gu = 0 imply y = 0.

5.2. Proposition. Consider the following properties of a (nonzero) additive monoid-
al category A, i.e. a category which is additive and monoidal and whose tensor functor
⊗ : A×A → A is additive in both variables:

(1) The commutative endomorphism ring EndA(1) of the tensor unit 1 is connected.

(2) The tensor unit object 1 is indecomposable in A for the direct sum.

(3) If a sum of two objects of A is tensor-invertible, one of them must be too.

(4) If A is equivalent as a monoidal category to a product A1×A2 of two additive monoidal
categories, then A1 ≃ 0 or A2 ≃ 0.

Then (1)⇒(2)⇒(3)⇒(4), and if A is idempotent complete all four are equivalent.

Proof. (1)⇒(2): Suppose that 1 ∼= E1 ⊕ E2. Since End(1) is commutative, we have
End(1) ∼= End(E1) × End(E2) by Lemma 5.1. Assuming End(1) is connected, we must
therefore have End(Ei) = 0 and thus Ei

∼= 0 for i = 1 or i = 2.
(2)⇒(3): Suppose A ⊕ B has a two-sided tensor inverse C, with A,B,C ∈ A. Then

1 ∼= (A ⊕ B) ⊗ C ∼= (A ⊗ C) ⊕ (B ⊗ C), hence if 1 is indecomposable we must have
1 ∼= A⊗ C or 1 ∼= B ⊗ C. Since C is invertible, either A or B must be too.

(3)⇒(4): Given an equivalence A ≃ A1 × A2 of additive monoidal categories, there
follows in A a decomposition 1 ∼= E1⊕E2, where Ei corresponds to the tensor unit of Ai.
Since 1 is tensor invertible in A, then by (3) either E1 or E2 must be as well. Say E1 is,
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with inverse F . Since E1⊗A2 ≃ 0, it follows that A2 = 1⊗A2 = F ⊗E1⊗A2 ≃ 0. Thus
(4) holds.

Finally, we show (4)⇒(1) assuming that A is idempotent complete. Let id1 = e1 + e2
for two orthogonal idempotents e1, e2 : 1 → 1. For every object A ∈ A, write ei⇂A for the
endomorphism of A corresponding to ei⊗A under the structural isomorphism A ∼= 1⊗A.
Note that e1⇂A and e2⇂A are orthogonal idempotents on A with idA = e1⇂A + e2⇂A. By
idempotent completion, we get a decomposition A ∼= A1 ⊕ A2 where Ai = Im(ei⇂A). One
easily checks that this direct sum decomposition is functorial in A and gives rise to a
decomposition A ≃ A1 ×A2 of A as an additive monoidal category, where Ai is the full
subcategory {A ∈ A | ei⇂A= idA} of A. By (4), we must have for either i that Ai ≃ 0,
that is that Im(ei⇂A) ∼= 0 for all A and thus ei = 0. This shows that the ring EndA(1) is
connected.

5.3. Remark. In the situation of Proposition 5.2, we could also consider the following
two properties of the category A which do not depend on its monoidal structure:

(1)′ The commutative ring End(IdA) of natural transformations IdA ⇒ IdA, i.e. the
categorical “center” of A, is connected.

(4)′ If A ≃ A1 ×A2 as an additive category then A1 ≃ 0 or A2 ≃ 0.

One can verify that (1)′⇒(1), (4)′⇒(4) and (1)′⇒(4)′ in general, and that (1)′⇔(4)′ if A
is idempotent complete. But (1)′ and (4)′ do not seem otherwise relevant here.

The endomorphism category of any object in a locally additive bicategory can be
viewed as an additive monoidal category, with tensor product given by horizontal com-
position. In this case, Proposition 5.2 translates as follows:

5.4. Corollary. For any (nonzero) object X of a locally additive bicategory B, we have
implications (1)⇒(2)⇒(3)⇒(4) between the following properties, and all four are in fact
equivalent if the additive category EndB(X) is idempotent complete:

(1) The commutative endomorphism ring EndB(IdX) is connected.

(2) The identity 1-cell IdX is indecomposable in the additive category EndB(X).

(3) If a sum of two 1-cells X → X is an equivalence, then one of them must be too.

(4) EndB(X) is indecomposable as an additive monoidal category.

5.5. Remark. Property (3) is the evident 2-categorical analog of being a strongly inde-
composable object A of an additive (1-)category A. Recall the latter means that EndA(A)
is a local ring, that is: If a sum f + g of two morphisms f, g : A → A is invertible then
either f or g is invertible. Since we do not wish to assume idempotent completion of
our Hom categories, we are left with the choice of at least four reasonable 2-categorical
analogs of strong indecomposability. In Definition 4.1, we chose the strongest and most
useful one. It is also the only one which always implies the usual indecomposability and
which is stable under (weak) block completion.
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6. Direct comparison of direct summands

In this section we explain how to categorify the usual proof of the uniqueness of decom-
positions in strongly indecomposables. This does not use the characterization of direct
summands via idempotents (Proposition 3.13), but instead requires us to understand how
to “cut down” a direct summand by another (Proposition 6.2). It is a considerably harder
task than its 1-categorical analog, which is a triviality.

6.1. Lemma. Suppose that B is weakly block complete, and that a 1-cell E : X → X is
part of an idempotent monad (E, µ, ι) and of an idempotent comonad (E, δ, ϵ) such that
ιϵ = idE. Then there is a decomposition X ≃ Y ⊕ Z such that the direct summand Y
induces the given monad and comonad as in Remark 3.8.

Proof. Since ιϵ = idE, the 2-cell e := ϵι : IdX ⇒ E ⇒ IdX is an idempotent element
of the ring EndB(IdX), and so is f := 1X − e. By weak block completion, we deduce a
direct sum decomposition X ≃ Y ⊕ Z such that IdY and IdZ correspond to Im(e) and
Im(f) respectively. Moreover, since IdX

∼= Im(e) ⊕ Im(f) and since ϵ is a split mono by
hypothesis, we have Im(e) = Im(ι) ∼= E in the category EndB(X), compatibly with the
respective structure 2-cells. We can now easily conclude.

6.2. Proposition. Let Y and Z be two direct summands (for two different decomposi-
tions) of an object X in a weakly block complete additive bicategory B, with structural
1-cells denoted respectively by

Y
I−→ X

P−→ Y and Z
J−→ X

Q−→ Z.

Suppose that PJQI is an equivalence Y
∼→ Y . Then QI : Y → Z and PJ : Z → Y are

part of a direct sum decomposition Z ≃ Y ⊕ Y ′.

Proof. By Lemma 6.1, it suffices to show that E := (QI)(PJ) is both part of an
idempotent monad (E, µ, ι) and an idempotent comonad (E, δ, ϵ) such that ιϵ = idE.
Suppose P, I and Q, J are part of two splitting data for X as usual, and write the units
and counits of the four adjunctions I ⊣ P ⊣ I and J ⊣ Q ⊣ J as follows:

ηY : IdX ⇒ IP εY : PI
∼⇒ IdY ηY : IdY

∼⇒ PI εY : IP ⇒ IdX

ηZ : IdX ⇒ JQ εZ : QJ
∼⇒ IdZ ηZ : IdZ

∼⇒ QJ εZ : JQ⇒ IdX

Thus we have εY = (ηY )
−1 and ηY εY = idIP , and similarly for Z. Then the two composite

adjunctions PJ ⊣ QI ⊣ PJ have the following units and counits:

η : IdZ
ηZ
∼
+3 QJ

QηY J +3 QIPJ ε : PJQI
P εZI +3 PI

εY
∼
+3 IdY

η : IdY
ηY
∼
+3 PI

P ηZI +3 PJQI ε : QIPJ
QεY J +3 QJ

εZ
∼
+3 IdZ

The monad (E, µ, ι) and the comonad (E, δ, ϵ) on Z are those induced by PJ ⊣ QI and
QI ⊣ PJ , respectively. In particular ι = η and ϵ = ε, so that the required relation
ιϵ = ηε = idQIPJ immediately follows from εZ = (ηZ)

−1 and ηY εY = idIP .



248 IVO DELL’AMBROGIO

It remains to verify that this monad and this comonad are idempotent. For the monad,
recall that by definition its multiplication is µ = (QI)ε(PJ), that is

µ : EE = QIPJQIPJ
QIP εZIPJ +3 QIPIPJ

QIεY PJ

∼
+3 QIPJ = E ,

hence we must show that QIP εZIPJ is invertible.
In fact, we can show that P εZI is already invertible. Indeed, the composite PJQI is

an equivalence by hypothesis. It follows that the composite adjunction PJQI ⊣ PJQI is
an adjoint equivalence. In particular, its counit

α : PJQIPJQI
PJQεY JQI+3 PJQJQI

PJεZQI

∼
+3 PJQI

P εZI +3 PI
εY
∼

+3 IdY

is an isomorphism. Thus P εZI is a split epi, since (PJεZQI)(PJQεY JQI)α
−1εY provides

a section for it. But P εZI is also a split mono, because εZ is a split mono by construction.
Therefore P εZI is invertible as claimed.

The proof that the comonad is idempotent is similar and is left to the reader.

Proof of Theorem 4.3 (alternative). We start by replacing B with its block com-
pletion B♭ as in Theorem 2.11. Note that the embedding B ↪→ B♭ preserves direct sums
(because it is an additive pseudofunctor) and strongly indecomposable objects (because
it is 2-fully faithful). Also by being 2-fully faithful, it reflects whether two given 1-cells
of B form (adjoint) equivalences, as we are setting out to establish. Thus we may and
will assume that B is block complete.

For all k and ℓ, let

Yk
Ik−→ X

Pk−→ Yk and Zℓ
Jℓ−→ X

Qℓ−→ Zℓ

denote the inclusion and projection 1-cells of the two given direct sum decompositions
of X, and let Ek := IkPk and Fℓ := JℓQℓ be the corresponding localizations of X. The
isomorphism

IdX
∼= F1 ⊕ . . .⊕ Fs

in EndB(X) induces an isomorphism

IdY1
∼= P1I1 ∼= P1(F1 ⊕ . . .⊕ Fs)I1 ∼= P1F1I1 ⊕ P1F2I1 ⊕ . . .⊕ P1FsI1

in EndB(Y1). Since Y1 is strongly indecomposable, by Corollary 5.4 (3) we can find an
ℓ ∈ {1, . . . , s} such that P1FℓI1 is an equivalence Y1

∼→ Y1. By renumbering the Zℓ’s, we
may assume that ℓ = 1. Thus

P1F1I1 ∼= (P1J1)(Q1I1) (6.3)

is an equivalence. By Proposition 6.2 and the (weak) block completeness of B, the two
composites Q1I1 : Y1 → Z1 and P1J1 : Z1 → Y1 are part of a direct sum decomposition
Z1 ≃ Y1 ⊕ Y ′

1 . As Z1 is strongly indecomposable it is also indecomposable (Remark 4.2),
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hence we must have Y ′
1 ≃ 0, that is Q1I1 and P1J1 are in fact an adjoint equivalence

Y1 ≃ Z1 of direct summands of X.
Note that, by construction, the latter equivalence is the component Y1 → Z1 of the

given composite equivalence (whose components are precisely the QℓIk)

Y1 ⊕ Y2 ⊕ . . .⊕ Yn︸ ︷︷ ︸
=:Y ′

∼→ X
∼→ Z1 ⊕ Z2 ⊕ . . .⊕ Zm︸ ︷︷ ︸

=:Z′

. (6.4)

We claim that (6.4) similarly restricts to an equivalence Y ′ ≃ Z ′, after which the conclu-
sion of the theorem will follow by a routine inductive argument. To prove the claim, note
that the equivalence Y1

∼→ Z1 identifies (up to isomorphism) I1 with J1 and P1 with Q1.
In particular we have QℓI1 ∼= 0 and P1Jℓ ∼= 0 for ℓ ̸= 1, which means that (6.4) has a
diagonal 2× 2 matrix form with respect to the sum decompositions Y1 ⊕ Y ′ and Z1 ⊕Z ′.
As (6.4) is an equivalence, it follows that the second diagonal component Y ′ → Z ′ is also
an equivalence, as claimed.

7. Examples

We finally consider some examples of Krull–Schmidt bicategories, concentrating on various
kinds of “2-representation theory”. We begin with a few generalities:

7.1. Proposition. Suppose B is an additive bicategory where the 2-cell endomorphism
ring EndB(IdX) of every object X is semiconnected (Definition 4.7). Then both its block
completion B♭ (Theorem 2.11) and its weak block completion Bw♭ (Remark 2.12) are Krull–
Schmidt bicategories.

Proof. The block completion and weak block completion are both weakly block com-
plete bicategories. Moreover, the canonical embeddings B ↪→ B♭ and B ↪→ Bw♭ are 2-fully
faithful pseudofunctors, and by construction the 2-cell endomorphism ring of every object
in either completion is a direct factor of that of some object of B (cf. Remark 2.8). Since
direct factors of semiconnected rings are semiconnected, we conclude with the character-
ization of Theorem 2.11.

Clearly not every commutative ring is semiconnected (consider R =
∏

N
Z), hence we

need some criteria. The following two lemmas already go a long way:

7.2. Lemma. Every noetherian commutative ring is semiconnected.

Proof. This can be deduced from the fact that the spectrum of a noetherian ring is a
finite union of irreducible closed subsets ([Har77, Prop. I.1.5 and Ex. II.2.13]): The latter
being connected, there are only finitely many connected components.

7.3. Lemma. Unital subrings of semiconnected rings are semiconnected.

Proof. This boils down to injective morphisms of commutative rings inducing maps with
dense image between Zariski spectra ([AM69, Ch. 1 Ex. 21(v)]): In particular, they induce
surjective maps between sets of connected components.
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The following criterion follows immediately from Lemma 7.2 and Theorem 4.8.

7.4. Corollary. Suppose B is a weakly block complete bicategory which is k-linear over
some noetherian commutative ring k and such that every 2-cell Hom space is finitely
generated as a k-module. Then B is a Krull–Schmidt bicategory.

We now turn to more concrete situations, beginning with a non-example:

7.5. Example. Recall from Example 2.6 the additive 2-category ADD of additive cate-
gories. Consider its 2- and 1-full additive sub-bicategory ADDic of idempotent complete
categories: It is block complete (see [BD20, A.7.18]) but not Krull–Schmidt, because it
contains A = ModR for rings R whose center Z(R) ∼= End(IdA) is not semiconnected.
Here, and again below, we use the well-known identification of the center of a ring with
the center End(IdModR) of its module category.

7.6. Example. Consider the full 2-subcategory B of ADDic whose objects are the idem-
potent complete additive categories A such that End(IdA) is semiconnected. Then B is
Krull–Schmidt. Indeed, if 1A = e1 + e2 ∈ End(IdA) for such a category A with e1, e2 two
orthogonal idempotents, we get a corresponding decomposition A ≃ A1⊕A2 in ADDic, as
the latter is weakly block complete. But then End(IdA) = R1×R2 with Rk

∼= End(IdAk
),

hence the categories Ak are again in B since direct factors of semiconnected rings are
semiconnected. Thus B is weakly block complete and we conclude with Theorem 4.8.

7.7. Example. Many variations of the bicategory B in Example 7.6 are possible. For
instance, we may consider the full subbicategory B′ ⊂ B of module categories A =
ModR over rings R whose center is semiconnected. (Indeed, if ModR ∼= A1 ⊕ A2 in
ADDic for idempotents e1, e2 ∈ End(IdModR) ∼= Z(R), we have Ak ≃ ModRk for the
rings Rk := ekRek = Rek (k = 1, 2). Moreover, each Z(Rk) is semiconnected since
Z(R) is and Z(R) ∼= Z(R1) × Z(R2).) Similarly, we may further restrict to rings R with
noetherian center (by Lemma 7.2) and/or replace ModR with the category of finitely
presented/generated modules, or projective modules, finitely generated projectives, etc.,
indeed any option for which the previous splitting argument still goes through. We may
also take module categories over finite dimensional algebras R over a fixed field k and
k-linear functors between them, since the center of a finite dimensional algebra is again
finite dimensional hence noetherian.

7.8. Example. Consider the bicategory of rings, bimodules and bimodules maps, and
its sub-bicategory B′′ of rings whose center is semiconnected. Then B′′ is Krull–Schmidt.
To see this, just recall that by the Eilenberg-Watts theorem we may identify B′′ with the
2-full sub-bicategory of B′ ⊂ ADDic as in Example 7.7 having the same objects but where
the only 1-cells are the colimit-preserving functors. Since all functors involved in direct
sum decompositions are colimit-preserving (they all have two-sided adjoints), the same
object decompositions of B′ equally work in B′′, hence B′′ is also weakly block complete.
As before, we may replace “semiconnected” with “noetherian”, or we may work over a
fixed k.
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Our original motivation for this article is the following application:

7.9. Corollary. Let k be any noetherian commutative ring. Every bicategory of k-linear
Mackey 2-motives in the sense of [BD20] is Krull–Schmidt. Similarly, every bicategory
of cohomological Mackey 2-motives as in [BD21] is Krull–Schmidt. By Theorem 4.3, we
deduce the uniqueness of the motivic decomposition of every finite group in each of these
bicategories.

Proof. These bicategories are constructed as block completions, hence in particular they
are weakly block complete. Moreover their 2-cell Hom spaces are easily seen to be finitely
generated free k-modules. We may thus apply Proposition 7.1 or Corollary 7.4. (The
cohomological case is also a variant of Example 7.8.)

∗ ∗ ∗

From now on we look at various flavors of linear 2-representation theory, starting with
some commonly used target 2-categories for said 2-representations:

7.10. Example. Let k be any field. Consider the 2-category 2FVectk of finite dimensional
2-vector spaces (over k) in the sense of Kapranov–Voevodsky [KV94] and Neuchl [Neu].
Recall that 2FVectk can be defined as the k-linear 2-category of finite semisimple k-linear
categories, k-linear functors and natural transformations. Here a k-linear category is finite
semisimple if it is abelian and there is a finite set of absolutely simple objects (objects
with one-dimensional endomorphism algebra) such that every other object is a direct
sum of these in an essentially unique way. (Each finite semisimple category is in fact
equivalent to vectnk for some n.) One easily checks that 2FVectk is block complete and all
its 2-cell Hom k-vector spaces are finite dimensional. In particular it is Krull–Schmidt by
Corollary 7.4.

7.11. Example. Consider the 2-category 2FHilb of finite-dimensional 2-Hilbert spaces in
the sense of Baez [Bae97] (see also [HV19]). Recall that a 2-Hilbert space is a dagger cate-
gory which is enriched on finite dimensional Hilbert spaces (compatibly with adjoints and
inner products) and has finite direct sums and split idempotents; it is finite dimensional
if it admits a finite set of simple objects generating all objects under finite direct sums.
Then 2FHilb is Krull–Schmidt. Indeed, there is a 2-functor 2FHilb

∼→ 2FVectC forgetting
daggers and inner products which is a biequivalence of bicategories (this is analogous to
the equivalence between the 1-categories of finite dimensional Hilbert spaces and finite
dimensional complex vector spaces).

7.12. Example. Let k be a field. A k-linear category is finite if it is equivalent to
that of finite dimensional representations of some finite dimensional associative unital k-
algebra. The 2-category CATfin

k of finite k-linear categories, k-linear functors and natural
transformations is Krull–Schmidt; it is indeed a variation of Example 7.7.
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7.13. Example. For a field k, consider the 2-category TRIfink whose objects are trian-
gulated categories equivalent to the bounded derived category of some finite k-linear
category (Example 7.12), triangulated functors and triangulated natural transformations.
We leave it as an exercise to verify that TRIfink is Krull–Schmidt.

The next result will essentially take care of all our remaining examples:

7.14. Theorem. Let k be any commutative ring (for instance k = Z or a field). Con-
sider the k-linear bicategory PsFunk(B, C) of k-linear pseudofunctors between two k-linear
bicategories B and C (Terminology 2.13). Then PsFunk(B, C) is Krull–Schmidt if C is
Krull–Schmidt and B has finitely many equivalence classes of objects.

Proof. By replacing B with a biequivalent sub-bicategory if necessary, we may assume it
has finitely many objects. If C is weakly block complete then so is PsFunk(B, C) by Propo-
sition 2.14. Now recall that for (non-necessarily k-linear) pseudofunctors F1,F2 : B → C
and transformations t, s : F1 ⇒ F2, a modification M : t⇛ s consists of a family {MX}X
of 2-cells MX : tX ⇒ sX of C indexed by the objects X of B, satisfying some rela-
tions. In particular, for every k-linear pseudofunctor F : B → C the ring End(IdF)
of self-modifications of the identity transformation is a unital subring of the product∏

X∈ObjB EndC(FX,FX)(IdFX). Being a product of finitely many semiconnected rings, the
latter is semiconnected. Hence so is End(IdF) by Lemma 7.3. Once again, we conclude
with Theorem 4.8.

7.15. Remark. If B and C are 2-categories with C Krull–Schmidt, the same proof (includ-
ing that of Proposition 2.14) shows that the 2-category 2Funstrk (B, C) of strict 2-functors,
strict transformations (i.e. 2-natural transformations) and modifications is also Krull–
Schmidt. In fact, if the 2-category B is small (which we had better assume anyway!),
it should be possible to show that the 2-full inclusion 2Funstrk (B, C) ⊂ PsFunk(B, C) is a
biequivalence by adapting to the k-linear case the coherence results for 2-monads due to
Power and Lack; see [Pow89] [Lac02] [Lac07].

A k-linear tensor category is a monoidal categories whose tensor product is a k-linear
functor of both variables. For a fixed such tensor category A, we may consider the
2-category PsModA whose objects are (k-linear left) module categories over A, whose
1-morphisms are module functors and 2-morphisms module natural transformations ; see
e.g. [Gre10] for detailed definitions. (These notions specialize those of pseudomonoids and
their left pseudomodules [DS97] [McC00] to the symmetric monoidal 2-category CATk of
k-linear categories, k-linear functors and natural transformations.) In fact:

7.16. Lemma. For any k-linear monoidal category A, let BA denote its delooping, i.e. the
bicategory with a single object having A as monoidal endo-category. Then there is a canon-
ical biequivalence (actually an isomorphism) of k-linear 2-categories between PsModA as
defined above and PsFunk(BA,CATk) (Terminology 2.13).
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Proof. The exponential law yields a bijection between objects of the 2-categories, with
a (coherently associative and unital) pseudoaction −⊙− : A⊗k M → M corresponding
to a strong monoidal functor A → Endk(M), that is to a pseudofunctor BA → CATk
sending the unique object of BA to M. It is immediate from the definitions that module
functors F : M1 → M2 and module natural transformations φ : F ⇒ F ′ correspond to
pseudonatural transformations and modifications.

7.17. Remark. By replacing CATk with a full 2-subcategory ADDk, ADDic
k , 2FVectk

etc. in the above, we can restrict attention to those tensor categories and their module
categories which are additive, idempotent complete etc., as appropriate.

We conclude by specializing Theorem 7.14 to some examples of interest.

7.18. Corollary. Let A be any finite (multi-) tensor category in the sense of Etingof–
Ostrik [Ost03] [EO04], over an algebraically closed field k. Then the 2-category of finite
module categories over A is Krull–Schmidt, as well as its 2-subcategory of exact module
categories.

Proof. A finite tensor (or “multi-tensor”) category A is in particular a k-linear ten-
sor category in our sense above; it is one which is finite as in Example 7.12. Since
the 2-subcategory CATfin

k ⊂ CATk of finite k-linear categories is Krull–Schmidt, so is
PsFunk(BA,CATfin

k ) by Theorem 7.14. We conclude with Lemma 7.16 and Remark 7.17
that finite A-module categories form a Krull–Schmidt 2-category.

By definition, a module category M is exact if P ⊙M is a projective object in M for
every M ∈ M and every projective P ∈ A. Over a finite A, exact module categories are
finite ([Ost03, Lemma 3.4]) and are clearly closed under taking direct summands, hence
they form a full 2-subcategory which is also Krull–Schmidt.

7.19. Corollary. Every finite semisimple 2-category in the sense of Douglas–Reutter
[DR18] is Krull–Schmidt, and its indecomposable and simple objects coincide.

Proof. As in [DR18], here we work over an algebraically closed field k of characteristic
zero. Then by [DR18, Thms. 1.4.8-9], the 2-category of finite (left) semisimple module
categories over a multifusion category A is an example of a finite semisimple 2-category,
and the latter are all of this form up to biequivalence. (The cited result is formulated
for right module categories, but it holds equally well for left ones because multifusion
categories are stable under reversing their tensor product). By definition, a multifusion
category is just a finite semisimple tensor category, thus in particular a k-linear tensor
category A as above. By Lemma 7.16, with CATk replaced by 2FVectk (Remark 7.17), we
see that the 2-category of finite semisimple module categories over A is biequivalent to
PsFunk(BA, 2FVectk). Since 2FVectk is Krull–Schmidt (Example 7.10), we can therefore
conclude with Theorem 7.14.

It is easily checked that simples and indecomposables agree.
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7.20. Remark. We found it satisfying to derive Corollary 7.19 from Theorem 7.14, but
this is overkill: More directly, and more generally, it follows from the results in [DR18]
that all locally finite semisimple 2-categories are also Krull–Schmidt.

Recall now that a 2-groupoid is a bicategory in which every 1-cell is an equivalence
and every 2-cell an isomorphism. It is a 2-group if it has a single object, i.e. if it is the
delooping of a monoidal groupoid whose objects are tensor-invertible.

7.21. Corollary. Let k be any field. Let G be a 2-groupoid with only finitely many
equivalence classes of objects (e.g. a 2-group). Then the bicategory

2FRepk(G) := PsFun(G, 2FVectk)

of finite dimensional k-linear 2-representations of G is Krull–Schmidt.

Proof. Consider the (easily constructed) free k-linearization of G, which is a k-linear
bicategory kG with the same objects as G and equipped with a pseudofunctor G → kG
inducing a biequivalence PsFunk(kG, C)

∼→ PsFun(G, C) for every k-linear bicategory C. In
particular, for C = 2FVectk we obtain a biequivalence between 2FRepk(G) and a Krull–
Schmidt bicategory as in Theorem 7.14.

7.22. Remark. By varying the 2-groupoid G, we can specialize 2FRepk(G) to an impres-
sive variety of families of interesting 2-categories already over an algebraically closed field
of characteristic zero, i.e. when we are at the semisimple intersection of Corollary 7.21
and Corollary 7.19. See the detailed bestiary in [DR18, §1.4.5].

7.23. Remark. By replacing 2FVectk with 2FHilb (Example 7.11) we obtain the Krull–
Schmidt property for unitary finite dimensional representations of 2-groups.

7.24. Corollary. Let B be any finitary 2-category in the sense of Mazorchuk–Miemietz
[MM11], over an algebraically closed field k. Then the 2-category B−mod of k-linear
2-representations of B is Krull–Schmidt.

Proof. By definition B−mod := 2Funstrk (B,CATfin
k ) as in Remark 7.15 and B has finitely

many objects, hence we may once again apply Theorem 7.14.

Many further variations are possible, for instance one may wish to study finite “de-
rived” rather than abelian or semisimple 2-representations by using the Krull–Schmidt
2-category TRIfink as target (Example 7.13). As sampled above, most directions of 2-
representation theory found in the literature impose strong finiteness conditions (often
motivated by combinatorial goals) which ensure the Krull–Schmidt property. We trust
interested readers to adapt our proofs to any such situations.
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Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk
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