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ON DUALIZABLE OBJECTS IN MONOIDAL BICATEGORIES

PIOTR PSTRĄGOWSKI

Abstract. We prove coherence theorems for dualizable objects in monoidal bicat-
egories and for fully dualizable objects in symmetric monoidal bicategories, describing
coherent dual pairs and coherent fully dual pairs. These are structures one can attach to
an object which we show are property-like and equivalent to, respectively, dualizability
and full dualizability. In the latter case, our work reduces the two-dimensional Cobord-
ism Hypothesis of Baez-Dolan to a comparison problem between two explicitly defined
bicategories.
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1. Introduction

In this paper we prove coherence theorems for dualizable objects in monoidal bicategories
and fully dualizable objects in symmetric monoidal bicategories. These coherence results
are modeled on the classical fact that any equivalence of categories can be promoted to
an adjoint equivalence, and that such an adjoint equivalence is unique up to a unique
isomorphism.

We define a collection of data, that of a coherent dual pair, see Definition 3.3, Defini-
tion 3.11, that one can attach to an object in a monoidal bicategory. Intuitively, this data
consists of an algebraic proof that a given object is dualizable, so that it consists of an-
other object, co(unit) morphisms, and invertible 2-cells witnessing the triangle identities,
subject to appropriate coherence equations, one of which we describe informally below.
We then prove the following result.

1.1. Theorem. [3.16] Let M be a monoidal bicategory. The forgetful homomorphism

CohDualPair(M) → (Md)
∼=
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between, respectively, the bicategory of coherent dual pairs and the groupoid of dualizable
objects, is a surjective on objects equivalence.

In particular, an object can be completed to a coherent dual pair if and only if it
is dualizable and any two coherent dual pairs living over a given object are canonically
equivalent. In the language of Kelly and Lack [KL97], the theorem implies that a coherent
dual pair is a property-like structure equivalent to the property of dualizability.

We then move on to the case of fully dualizable objects in symmetric monoidal bicat-
egories. Again, we describe a collection of data, a coherent fully dual pair, that one can
attach to an object, which intuitively consists of an algebraic proof that the object in
question is fully dualizable, subject to its own coherence equations.

1.2. Theorem. [4.27] Let M be a symmetric monoidal bicategory. The forgetful homo-
morphism

CohFullyDualPair(M) → (Mfd)
∼=

between, respectively, the bicategory of coherent fully dual pairs and the groupoid of fully
dualizable objects, is a surjective on objects equivalence.

In both the case of dual and fully dual pairs, the additional coherence equations we
impose are inspired by the generating relations of the oriented bordism bicategory, as
described by Schommer-Pries [SP11]. To give the reader some idea of what these look
like, let us describe informally one of these equations, the so-called Swallowtail, whose
formal description is given in Definition 3.11.

In a monoidal category, a dual pair consists of objects L,R, an evaluation map e :
L ⊗ R → I and a coevaluation map c : I → R ⊗ L, which are subject to the triangle
equations of the form

L R L
L

Le

c

id= R L R
R

R

c

e

id=

.

In the case of monoidal bicategories, each of the above equalities needs to be replaced by an
invertible 2-cell, and each of these 2-cells in turn induces an a priori different isomorphism

L R L R
L R

e

c

e
e

≃

.

The Swallowtail equation, which is a part of the definition of a coherent dual pair,
asserts that these two invertible 2-cells are in fact the same, and Theorem 1.1 implies
that this — and an analogous equation concering the coevaluation morphism — can
always be arranged, and that dual pairs satisfying these conditions are essentially uniquely
equivalent.
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The current work is strongly connected to the Cobordism Hypothesis of Baez-Dolan
[BD95] [Lur09], as Theorem 1.2 can be interpreted as saying that the free symmetric mon-
oidal bicategory on a coherent fully dual pair satisfies the conjectural universal property of
the framed bordism bicategory. This reduces the two-dimensional Cobordism Hypothesis
to comparing these two explicitly-defined symmetric monoidal bicategories.

1.3. Summary of contents. Section 1 is introductory and illustrates the main ideas
of the current work in the familiar setting of monoidal categories.

Section 2 concerns the theory of dualizable objects in monoidal bicategories. We define
a collection of data one can attach to a dualizable object, a dual pair, whose existence
is by definition equivalent to dualizability. We then describe additional equations on the
components of a dual pair and term those pairs that satisfy them coherent. We then prove
a strictification result that any dualizable object can be completed to a coherent dual pair
and a coherence theorem which says that the forgetful homomorphisms from the bicat-
egory of coherent dual pairs into the 2-groupoid of dualizable objects is an equivalence.

Section 3 develops the theory of fully dualizable objects in symmetric monoidal bicat-
egories. We start by recalling the notion of a Serre autoequivalence, which is a canonical
automorphism one can attach to any fully dualizable object in a symmetric monoidal bic-
ategory, and verify its basic properties. We then introduce the notions of fully dual pairs
and coherent fully dual pairs, and prove strictification and coherence theorems analogous
to the dualizable case.

In the Appendix A we write down a variant on the theory of monoidal generated by
a set of data, modeled on computadic symmetric monoidal bicategories of Christopher
Schommer-Pries [SP11]. The variant described has the advantage of allowing generating
1-cells and generating 2-cells whose sources and targets are only consequences of other
generating data, and are not necessarily generating themselves. We also prove a couple
of technical results concerning the behaviour of these bicategories when some of the gen-
erating data is omitted.

1.4. Notation and terminology. We will assume that all of the objects we consider
are small with respect to some fixed universe; this has no effect on our considerations as
all of our constructions are determined by a finite list of data.

A monoidal bicategory is by definition a tricategory with one unnamed object. We use
the definition of a tricategory as given in [Gur13a], which differs from the one of [GPS95]
by the fact that it is fully algebraic in the sense that all functors that are postulated to
be equivalences come in form of adjoint equivalences. The related notions of symmet-
ric monoidal bicategories, (symmetric) monoidal homomorphisms, transformations and
modifications can be found in [SP11].

We will refer to functors between bicategories as homomorphisms ; they are always
assumed to be strong, that is, their constraint 2-cells are isomorphisms, but not necessarily
identities. If they are identities, we will talk about strict homomorphisms. The word
functor itself will be reserved for ordinary functors between categories.

If M is a monoidal bicategory, we will denote its monoidal product by ⊗ and by I its
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monoidal unit. If it doesn’t lead to confusion, we will also denote the monoidal product
by juxtaposition. The associator will be denoted by a and if M is symmetric, we will
denote the symmetry by σ.

We will usually use the name of the object in question to denote identity one-cells,
constraint 2-cells witnessing naturality of a homomorphism of bicategories will be denoted
by the name of the homomorphism.

If M is a bicategory, by M
∼= we denote the underlying 2-groupoid ; that is, the bicat-

egory obtained by disregarding all the morphisms that are not equivalences and all the
2-cells that are not isomorphisms. By h(M) we will denote its homotopy category, which
is obtained by identifying isomorphic 1-cells. The categories of morphisms will be denoted
by M(−,−) and referred to as Hom-categories.

When working with Gray-monoids, see below for an explanation, we will use the “first
the maps on the left” convention. More specifically, when writing f1 ⊗ · · · ⊗ fn we will
always mean (1⊗ . . . 1 · · · fn) ◦ (1⊗ · · · fn−1 ⊗ 1) ◦ · · · ◦ (f1 ⊗ 1⊗ · · · ⊗ 1). We will denote
the interchange isomorphism via Σf,g : (1 ⊗ g)(f ⊗ 1) ⇒ (f ⊗ 1)(1 ⊗ g). We reserve the
right to suppress it in the presence of a different 2-cell if it is clear it should be inserted
to make the pasting diagram well-formed.

1.5. Coherence issues. By the coherence theorem for bicategories, see [Gur13a], [SP11],
a pasting diagram of 2-cells in a bicategory has a unique value once a choice of association
has been made for the source and target. As a consequence, we will not name or draw
any constraint 2-cells coming from the structure of a bicategory.

There are two related coherence results in the theory of monoidal bicategories which
we will use. The first one is a classical theorem of Robert Gordon, Anthony Power and
Ross Street.

1.6. Theorem. [GPS95] Any monoidal bicategory is equivalent to a Gray-monoid.

A Gray-monoid is a monoid object in the category of 2-categories and strict homo-
morphisms equipped with the Gray tensor product. It can be identified with a particularly
strict kind of a monoidal bicategory, which is strict as a bicategory, its associator, left
and right units are given by the identities, and whose tensor product homomorphism is
cubical, in particular strict in each variable separately.

Related to the fact that not every monoidal bicategory can be fully strictified is the
issue that diagrams consisting only of constraint 2-cells need not always commute [Gur13a,
10.3]. To alleviate this, one has the following result of Nick Gurski.

1.7. Theorem. [Gur13a, 10.6] Let E be a locally discrete category-enriched graph. Then,
any diagram of 2-cells in F(E), the free monoidal bicategory generated by E, commutes.

This implies that in any monoidal bicategory, if we have two isomorphic composites of
morphisms which are both in the image of some strict homomomorphism out of a freely
generated monoidal bicategory as above (ie. can be written in terms of the same set of
generators), then there is a preferred composite of constraint 2-cells between them.
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We will use two coherence results for symmetric monoidal bicategories. The first one,
due to Nick Gurski and Angélica Osorno, is a more restrictive analogue of Theorem 1.7
and is used in the same way .

1.8. Theorem. [GO13] In a free symmetric monoidal bicategory F(X) on a set of objects
X, any diagram of 2-cells commutes.

The second result is due to Christopher Schommer-Pries, and is an analogue of the
strictification of monoidal bicategories of Gordon, Power and Street.

1.9. Theorem. [SP11, 2.96] Any symmetric monoidal bicategory is equivalent to a quasi-
strict one.

A quasi-strict symmetric monoidal bicategory is a partially strict kind of symmetric
monoidal bicategories which has, among other things, a Gray-monoid as an underlying
monoidal bicategory.

1.10. Acknowledgements. This paper is around one half of the author’s Master’s
thesis, written at Bonn University. I would like to thank Christopher Schommer-Pries,
who supervised this project, for his guidance, patience and many helpful comments. I
would also like to thank the anonymous referee, whose comments greatly improved the
current work.

2. Recollections on dualizable objects in monoidal categories

In this short section we review the basic theory of dualizable objects in monoidal categor-
ies. Everything here is classical, and our main goal is to state the coherence result in a
way which generalizes to the case of monoidal bicategories.

2.1. Definition. Let (M,⊗, I) be a monoidal category. A dual pair (X, Y, e, c) in M

consists of an object X, which we call the left dual, an object Y , which we call the right
dual, together with evaluation e : X ⊗ Y → I and coevaluation c : I → Y ⊗X maps that
satisfy triangle equations pictured below.

X

X ⊗ Y ⊗X

X

X⊗c e⊗X

id

Y

Y ⊗X ⊗ Y

Y

c⊗Y Y⊗e

id

We say that an object X ∈ M is left dualizable if it can be completed into a dual pair
as a left dual.
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X

Y

X

X X=

Y

X

Y

Y Y=

Figure 1: Triangle equations in string diagram form

2.2. Remark. Similarly, one defines an object to be right dualizable if it can be completed
to a dual pair as a right dual. Their theory is formally analogous and so we will focus
exclusively on left dualizability, referring to it simply as dualizability.

The triangle equations can be drawn using string diagrams, which reveal the con-
nection with topology of 1-manifolds. If we denote evaluation with the right elbow and
coevaluation with the left elbow, we can picture the equations as in Figure 1.

Observe that being dualizable is a property. More specifically, it entails existence of
some amount of data, but does not specify it. A given dualizable object can be in general
completed to many different dual pairs and thus it is a valid question to ask whether all
such pairs are in fact in some sense the same. This is indeed the case, as we will show
below in Theorem 2.5.

Using the language of Lack and Kelly, we say that the structure of a dual pair is
property-like [KL97]. This means that an appropriately defined space (in the sense of
homotopy theory) of dual pairs over a given object is either empty or contractible, de-
pending on whether the object in question is dualizable. The terminology is motivated
by the fact that in this case the space-valued association

X 7→ (Collection of dual pairs over X)

takes only two values, and so is uniquely determined by a subset of X.

2.3. Definition. If M is a monoidal category, then a morphisms of dual pairs

(X1, Y1, e1, c1) → (X2, Y2, e2, c2)

consists of arrows x : X1 → X2, y : Y1 → Y2 that are natural with respect to (co)evaluation
maps; that is, we have e2 ◦ (x⊗ y) = e1 and c2 = (y⊗ x) ◦ c1. We will denote the category
of dual pairs by DualPair(M)

Another possible approach to making dual pairs into a category, one which generalizes
well to higher-dimension, is to consider an appropriate free monoidal category.

2.4. Proposition. There exists a monoidal category Fd, the free monoidal category on
a dual pair, such that for any other monoidal category there is a bijection

MonCatstrict(Fd,M) ≃ { Dual pairs in M }



ON DUALIZABLE OBJECTS IN MONOIDAL BICATEGORIES 263

between strict monoidal homomorphisms Fd → M and the set of dual pairs in M, natural
with respect to strict homomorphisms.

By Yoneda lemma, such a monoidal category is unique up to a canonical invertible
strict homomorphism. Observe that the above natural bijection endows the set of dual
pairs with a natural structure of a category, with morphisms given by natural transform-
ations. It is not difficult to check that this structure coincides with the one given in
Definition 2.3.

The question of whether the structure of a dual pair is property-like can now be
answered in affirmative in the form of the following theorem.

2.5. Theorem. [Coherence for dualizable objects in monoidal categories] Suppose

(x, y) : (X1, Y1, e1, c1) → (X2, Y2, e2, c2)

is a morphism of dual pairs. Then x : X1 → X2 is an isomorphism and, conversely, for
any such isomorphism there is a unique y : Y1 → Y2 that completes it to a map of dual
pairs. More concisely, the forgetful functor

DualPair(M) → (Md)
∼=

(X, Y, e, c) 7→ X

from the category of dual pairs into the groupoid of dualizable objects in M is a surjective
on objects equivalence of categories.

Proof. If a : X2 → X1 and b : Y1 → Y2 are morphisms, then we define their duals ã, b̃
using the string diagrams

ã := X2 X1

Y1

Y2

e1

c2
a

b̃ := Y1 Y2

X1

X2
e2

c1

b

.

The triangle equations imply that this establishes inverse bijections M(Y1, Y2) ≃ M(X2, X1).
We claim that ỹ is inverse to x. Indeed, one composite is equal to identity by the easy
computation

Y1 Y2

X1

X2

X2

e2

c1

y

x

= Y2

X2

X2

e2

c2

= X2 X2
id

,

where we have used the fact that y ⊗ x commutes with coevaluation. For the other we
compute
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Y1 Y2

X1

X2X1
e2

c1

y

x

= Y1

X1

X1

e1

c1

= X1 X1
id

,

using that x ⊗ y commutes with evaluation. This also shows that there is at most one
such y, as it must then be necessarily equal to x̃−1, as taking dual twice recovers the
morphism.

Conversely, one verifies easily that if x : X1 → X2 is invertible, then setting y = x̃−1

does indeed complete it to a morphism of dual pairs.

2.6. Remark. One of our main results is an analogue of Theorem 2.5 for dualizable
objects in monoidal bicategories. In this context, the most naive definition of dual pair will
not have the needed property and we will have to require additional coherence equations.

3. Dualizable objects in monoidal bicategories

This section is devoted to the theory of dualizable objects in monoidal bicategories. Our
main result is a description of a property-like structure that one can attach to an object
in a monoidal bicategory, namely that of a coherent dual pair, equivalent to the property
of being dualizable.

3.1. Definition. Let M be a monoidal bicategory. We say that an object L ∈ M is left
dualizable if it is left dualizable as an object of the homotopy category h(M).

3.2. Remark. As in the case of monoidal categories, there is an analogous notion of
right dualizability. We will exclusively focus on left dualizability and refer to it simply as
dualizability.

In the case of monoidal bicategories, like in the classical case, the property of being
dualizable can be rephrased as requiring existence of some auxiliary data. It is rather easy
to specify the latter, as it arises as a direct categorification of the notion of a dual pair
introduced in Definition 2.1, where the triangle equations are now replaced by invertible
2-cells.

3.3. Definition. A dual pair in a monoidal bicategory M is a tuple (L,R, e, c, α, β),
where L,R ∈ M are objects, e : L ⊗ R → I, c : I → R ⊗ L are 1-cells and α, β are
isomorphisms

L

L⊗ I

L⊗ (R⊗ L) (L⊗R)⊗ L

I ⊗ L

L

r•

L⊗c
a•

e⊗L

l

L

⇓α
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R

I ⊗R

(R⊗ L)⊗R R⊗ (L⊗R)

R⊗ I

R

l•

c⊗R
a

R⊗e

r

R

⇓β

.

We will refer to e as evaluation, to c as coevaluation and to α, β as cusp isomorphisms.

3.4. Remark. The terminology of referring to α, β as cusp isomorphisms comes from
the oriented bordism bicategory, whose presentation was obtained by Schommer-Pries,
see [SP11]. In this bicategory one has a dual pair consisting of a positive and negative
point. The (co)evaluation maps are given by appropriate elbows and cusp isomorphisms
are given by surfaces that exhibit a type of cusp.

Note that if M has only identity 2-cells, so that it can be identified with an ordinary
monoidal category, then the cusp isomorphisms are necessarily unique and equal to the
identity, so that the above definition reduces to Definition 2.1.

3.5. Notation. We will often refer to the whole dual pair in the sense of Definition 3.3
just by referring to the underlying objects, using the notation ⟨L,R⟩d := (L,R, e, c, α, β).

3.6. Proposition. An object L ∈ M is dualizable if and only if it can be made part of a
dual pair ⟨L,R⟩d for some choice of R, (co)evaluation maps and cusp isomorphisms.

Proof. Clearly, if an object is a part of a dual pair then it is dualizable. Conversely,
assume that L is dualizable, so that one can complete it to a dual pair in the homotopy
category h(M), giving us the right dual and (co)evaluation maps. The fact that the
triangle equations hold in the homotopy category implies existence of witnessing invertible
2-cells, which we can take to be the cusp isomorphisms α, β.

To organize dual pairs into a bicategory, we will use the language of computadic mon-
oidal bicategories and of P -shapes developed in [SP11], which we also recall in Appendix A.
Informally, a monoidal bicategory is computadic if it admits an explicit presentation P in
which one allows generating objects, 1-cells and 2-cells, and where the sources and targets
of generating 1-cells and 2-cells are not necessarily generators themselves, but only their
consequences. The only allowed relations are at the level of 2-cells.

If P is such a presentation and M is an auxiliary monoidal bicategory, then a P -shape
in M consists of a compatible association of objects, morphisms and 2-cells of M to each
generator in P , subject to appropriate relations, see Definition A.11. These shapes can be
assembled into a bicategory P (M) which is by construction isomorphic to the bicategory
of strict homomorphisms out of the computadic monoidal bicategory generated by P .

3.7. Definition. Let Gd be a generating datum for a monoidal bicategory consisting of

1. two generating objects L,R,
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2. two generating morphisms e : L⊗R → I and c : I → R⊗ L,

3. four generating 2-cells α, β, α−1 and β−1, where α, β have sources and targets exactly
like the cusp isomorphisms and α−1, β−1 the opposite.

Let Rd consist of relations that α, α−1 and β, β−1 are inverse to each other. We call
the pair Pd = (Gd,Rd) the presentation of the free monoidal bicategory on a dual pair.

The bicategory of dual pairs can be now be conveniently described as a bicategory of
shapes of the above type.

3.8. Definition. If M is a monoidal bicategory, we define the bicategory of dual pairs
in M as

DualPair(M) := Pd(M),

the bicategory of shapes in M of type Pd in the sense of Definition A.11.

Below, we give an explicit description of the bicategory of dual pairs, both for the
convenience of the reader and also to fix notation. We will assume that M is Gray-
monoid to make drawing diagrams manageable, but after adding appropriate coherence
constraints the description given below holds in the general case.

3.9. Notation. The objects of DualPair(M) are precisely the dual pairs in the sense of
Definition 3.3. A morphism (s, t)d : ⟨L,R⟩d → ⟨L′, R′⟩d of dual pairs consists of data of
1-cells s : L→ L′, t : R → R′ and constraint invertible 2-cells γ, δ of type

I

I

R′ ⊗ L′

R⊗ L

I

c′

c

t⊗s≃δ

L′ ⊗R′

L⊗R

I

I

Is⊗t

e

e′

≃γ

whose purpose is to witness naturality of s, t with respect to (co)evaluation maps. Addi-
tionally, these constraint isomorphisms are required to satisfy further naturality condition
with respect to cusp isomorphisms, namely that

L′
L′ ⊗R′ ⊗ L′

L′

L
L⊗R⊗ L

L

L′⊗c′ e′⊗L′

L⊗c e⊗L

s

s⊗t⊗s

s

L

≃s⊗δ ≃γ⊗s

≃α

=

L′
L′ ⊗R′ ⊗ L′

L̃

L L

L′⊗c′ e′⊗L′

s s
L′

L

≃α̃

=
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and

R′
R′ ⊗ L′ ⊗R′

R′

R
R⊗ L⊗R

R

c′⊗R′ R′⊗e′

c⊗R R⊗e

t

t⊗s⊗t

t

R

≃δ⊗t ≃s⊗γ

≃β

=

R′
R′ ⊗ L′ ⊗R′

R′

R R

c⊗R′ L⊗e

t t
R

R

≃β̃

=

.

If (s1, t1)d, (s2, t2)d are parallel morphisms, then a 2-cell Γ : (s1, t1)d → (s2, t2)d consists
of data of 2-cells

L L′ R R′

s2

s1

t2

t1

⇑ΓL ⇑ΓR

that satisfy naturality equations with respect to isomorphisms witnessing naturality of
maps (s1, t1)d, (s2, t2)d of the form

I R⊗ L R⊗ L
c

t2⊗s2

t1⊗s1

c

≃δ1

⇑ΓR⊗ΓL I R⊗ L R⊗ L
c t2 ⊗ s2

c

≃δ2
=

and

L⊗R L⊗R I
e

s2⊗t2

s1⊗t1

e

≃γ2

⇑ΓL⊗ΓR L⊗R L⊗R I
es1⊗t1

e

≃γ1

=

.

We now proceed to establish a basic property of bicategories of dual pairs, namely
that they are groupoids. This is analogous to the similar result for dual pairs in ordinary
monoidal categories, which we have discussed in the introduction.

3.10. Proposition. The bicategory DualPair(M) of dual pairs is a 2-groupoid; that is,
all of its morphisms are equivalences and all of its 2-cells are isomorphisms.
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Proof. By construction, we can identify DualPair(M) with the bicategory

MonBicatstrict(F(Pd),M)

of strict monoidal homomorphisms out of the computadic monoidal bicategory generated
by the presentation Pd of Definition 3.7. By the cofibrancy result, see Theorem A.17, the
inclusion

MonBicatstrict(F(Pd),M) ↪→ MonBicat(F(Pd),M)

into the bicategory of all monoidal homomorphisms, is an equivalence. Since the latter
clearly only depends on M up to equivalence, to prove the result we can assume that M

is a Gray-monoid.
We first show that all morphisms are equivalences. Observe that a 1-cell (s, t)d =

(s, t, γ, δ) is an equivalence if and only if s, t are, this follows from the corresponding
statement in the homomorphism bicategory. Any map of dual pairs in a monoidal bic-
ategory induces a map of the corresponding dual pairs in the homotopy category h(M),
whose both components must be isomorphisms by Theorem 2.5. It follows that s, t are
equivalences.

We are now left with showing that all 2-cells are isomorphisms, by the part above it is
enough to do so for 2-cells between autoequivalences. We will do so by exhibiting for any
endomorphism (s, t)d : ⟨L,R⟩d → ⟨L,R⟩d a “canonical” pseudoinverse to the component
s : L → L, together with “canonical” witnessing isomorphisms between the respective
composites and the identity. By “canonical” we mean that this structure will be natural
with respect to maps of such endomorphisms.

We construct it as follows. The pseudoinverse of s is given by

s−1 := (e⊗ L) ◦ (L⊗ t⊗ L) ◦ (L⊗ c),

that is, the the dual of t. It is easy to observe that the witnessing isomorphisms θ : ss−1 ≃
idL and ϑ : s−1s ≃ idL pictured below

L

L L⊗R⊗ L L⊗R⊗ L L

L⊗R⊗ L

L

s

L⊗c L⊗t⊗L e⊗L

L⊗c

s⊗R⊗L

s⊗t⊗L

e⊗L

L

L

≃Σc,s

≃Σs,t⊗L

≃γ

≃α

:=ϑ
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L

LL⊗R⊗ LL⊗R⊗ LL

L⊗R⊗ L

L

s

e⊗LL⊗t⊗LL⊗c

e⊗L

s⊗R⊗L

s⊗t⊗L

L⊗c

L

L

≃Σe,s

≃Σs,t⊗L

≃δ

≃α

:=θ

are natural with respect to maps between such endomorphisms. This follows from the
naturality properties of the interchanger and the naturality of γ, δ constraint 2-cells with
respect to such maps.

Once we know that the component s : L → L of an endomorphism of a dual pair
is canonically exhibited as a witnessed equivalence, the fact that such 2-cells must be
invertible follows by a variation on the argument from Theorem 2.5. In detail, suppose
we are now given two endomorphisms (s, t)d = (s, t, γ, δ) and (s′, t′)d = (s′, t′, γ′, δ′) of
⟨L,R⟩d. Consider the composite

L L L⊗R⊗ L L⊗R⊗ L L L
L⊗c e⊗L

L⊗t1⊗L

L⊗t2⊗L

s2 s1

L

L

⇓L⊗ΓR⊗L

≃ϑ2

≃θ1

.

If we paste ΓL from below, which amounts to postcomposition, by the naturality of θ
the resulting pasting diagram will be an isomorphism involving θ2, ϑ2. Similarly, if we
paste ΓL from above, which amounts to precomposition, the naturality of ϑ implies that
the resulting diagram will be an isomorphism involving θ1, ϑ1. It follows that ΓL is an
isomorphism itself.

The argument for ΓR is analogous, where we would now exhibit the t-component of a
map of dual pairs as a witnessed equivalence with pseudoinverse given by the dual of s.

As observed before in Proposition 3.6, it is almost tautological that an object is dual-
izable if and only if it can be completed to a dual pair. However, the naive bicategorical
analogue of Theorem 2.5 fails — the forgetful homomorphism DualPair(M) → (Md)

∼=

onto the groupoid of dualizable objects is usually not an equivalence of bicategories. In
particular, a given object can in general be completed to many non-equivalent dual pairs.



270 PIOTR PSTRĄGOWSKI

III

LR

LR

I(LR)

(LR)I

(LR)(LR)

(IL)R

L(RI)

((LR)L)R

L(R(LR))

(L(RL))R

L(R(LR))

(LI)R

L(IR)
LR

l•

r•

e

e

l•

r•

Ie

eI

e(LR)

(LR)e

a

lR

a•

Lr

(eL)R

a

L(Re)

a•

aR

La

a

(Lc)R

L(cR)

a

r•R

Ll•

LR

LR

≃ Lβ

≃αR

≃ ≃a ≃

≃a

≃a•

≃⊗

≃

≃

≃r•

≃l•

Figure 2: Swallowtail composite (E)

To fix this defect, we will introduce a class of dual pairs which satisfy additional
coherence equations, and which we we will simply call coherent. Our main result of this
section, namely Theorem 3.16, will be that any object can be completed to an essentially
unique coherent dual pair.

3.11. Definition. We say a dual pair (L,R, e, c, α, β) is coherent if the Swallowtail
composites depicted in Figure 2 and Figure 3 are both equal to the identity.

3.12. Remark. The Swallowtail equations were first introduced by Dominic Verity in
[Ver11] in the context of Gray-categories and later generalized to tricategories by Nick
Gurski, see [Gur12]. One way to motivate them geometrically is that they hold for a nat-
ural choice of cusp isomorphisms in the bordism bicategory [SP11], and are an ingredient
in the proof of the categorified Riemann-Roch theorem of Hoyois, Safronov, Scherotzke
and Sibilla [HSSS18].

We will first prove a straightforward strictification theorem, which says that given a
fixed choice of L,R and candidate (co)evaluation maps e, c, if the cusp isomorphisms α, β
can be chosen at all, then one can also make a choice that would make the resulting dual
pair coherent.

We begin with the following straighforward lemma, which is the obvious categorifica-
tion of the usual result on bijections between certain Hom-sets for dual pairs in ordinary
monoidal categories.
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I II

RL

RL

I(RL)

(RL)I

(RL)(RL)

(IR)L

R(LI)

((RL)R)L)

R(L(RL))

(R(LR))L

R((LR)L)

(RI)L

R(IL)
RL

l•

r•

c

c

Ic

cI

c(RL)

(RL)c

l

r

l•L

a•

Rr
′•

a

(cR)L

a•

R(Lc)

a

aL

Ra•

a

(Re)L

R(eL)

a

rL

Rl

RL

RL

≃

≃l

≃r•

≃⊗

≃

≃

≃a•

≃a

≃
≃a

≃

≃βL

≃ Rα

Figure 3: Swallowtail composite (C)

3.13. Lemma. Let A,B ∈ M be objects and let ⟨L,R⟩d be a dual pair in a monoidal
bicategory M. Then, the functor M(A⊗R,B) → M(A,B⊗L) given by f 7→ (f⊗L)◦(A⊗c)
is an equivalence of categories with an explicit inverse given by g 7→ (B ⊗ e) ◦ (g ⊗R).

Proof. The needed natural isomorphisms between the relevant composites and identities
are induced by the cusp isomorphisms.

Observe that in the statement of Lemma 3.13 we have supressed the obvious associators
and unitors that should be included in the definition of the functors so that they are well-
formed. By coherence result of Gurski which we stated as Theorem 1.7, any choices one
would have to make do not matter, as all the different composites of associators and
unitors are uniquely isomorphic.

3.14. Theorem. [Strictification for dual pairs] If a dual pair ⟨L,R⟩d satisfies either of
the Swallowtail equations, then it satisfies both of them.

Moreover, if we keep the objects and (co)evaluation maps fixed, then for any choice
of a cusp isomorphism α there is a unique cusp isomorphism β such that together they
satisfy both Swallowtail equations. In particular, any dual pair can be made coherent by
only a change of β.

3.15. Remark. The strictification result was first proven by Nick Gurski in [Gur12] under
the additional assumption that the (co)evaluation maps e, c are equivalences.
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Proof. We first claim that it is enough to prove the result under the additional assump-
tion that M is a Gray-monoid.

Indeed, let M be an arbitrary monoidal bicategory and let M̃ be its computadic
(“cofibrant”) replacement in the sense of Definition A.5 and Definition A.9. In more
detail, let M̃ be the computadic monoidal bicategory freely generated by all the objects,
1-cells and 2-cells on M, subject to the relation that two 2-cells are equal if and only if
their images under the obvious strict homomorphism M̃ → M are equal.

The strict homomorphism in question is an equivalence, as it is surjective on objects,
morphisms and locally bijective on 2-cells by construction. Since any dual pair in M is an
image of a dual pair in M̃, local bijectivity on 2-cells allows us to deduce that the theorem
holds for M if and only if it holds for its computadic replacement.

By coherence for tricategories, which we stated as Theorem 1.6, we can choose an
equivalence M̃ → G, where G is a Gray-monoid. By the cofibrancy theorem for com-
putadic monoidal bicategories, see Theorem A.17, we can assume that it is in fact a strict
homomorphism. Since M̃ → G is locally bijective on 2-cells and we already know that
the theorem holds for all dual pairs in G, we deduce that the same is true for M̃, ending
the argument.

Thus, let us assume that M is a Gray-monoid. In this case the Swallowtail equations
take a particularly simple form. Namely, identity (C) reads

I

RL

RL

RLRL RL

c

c

c⊗1

1⊗c

1⊗e⊗1

1

I RL RLRL RL
c 1⊗c 1⊗e⊗1

1

≃Σc,c

≃βL
≃Rα

=

and similarly identity (E) is

LR LRLR

LR

LR

I
1⊗c⊗1

e⊗1

1⊗e

e

e

1

LR LRLR LR I
1⊗c⊗1 e⊗1 e

1

≃Lβ

≃Σe,e

≃αR=

.

We will show that equation (E) implies equation (C), the other case is analogous. By
Lemma 3.13, it is enough to show that
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R

RLR

RLR

RLRLR RLR

R

cR

cR

cRLR

RLcR

ReLR

RLR

Re

R RLR RLRLR RLR

R

cR RLcR ReLR

RLR

Re

≃Σc,c⊗R

≃βLR

≃RαR

=

,

as the functor (R⊗e)◦ (−⊗R) is an equivalence on the respective Hom-categories. Using
the naturality of the interchanger we can rewrite the left hand side of the equation as

R

RLR

RLR

RLRLR RLR

R

R

cR

cR

cRLR

RLcR

ReLR

RLR

Re

Re

R

R

RLR

RLR

RLRLR RLR

RLR R

R

cR

cR

cRLR

RLcR

ReLR

cR

Re
Re

Re

R

≃Σc,c⊗R

≃βLR

=

=
≃Σc,c⊗R

≃Σe,(Re)(cR)

≃β

.

Similarly, the right hand side can be rewritten as

R

RLR
RLRLR RLR

R

RLR

cR

RLcR
ReLR

Re
RLRe

Re
RLR

≃RLβ ≃R⊗Σe,e

R
RLR

RLRLR RLR

R

RLR
R

RLR

cR
RLcR

ReLR

Re
RLRe

Re

cR

Re

cR
R

≃β

≃Σc,(Re)(cR) ≃R⊗Σe,e
=

by first using the Swallowtail identity (E) to replace RαR by RLβ and some coherence and
then using the naturality of the interchanger exactly like we did during the manipulation
of the left hand side. Thus, we have shown that under the assumption of (E), equation
(C) is equivalent to one of the form
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R RLR R RLR R

RLR RLRLR RLR

cR Re cR Re

R

cR

RLcR ReLR

Re≃ coherence

≃β

R RLR R RLR R

RLR RLRLR RLR

cR Re cR Re

R

cR

RLcR ReLR

Re≃ coherence

≃β

=

.

We claim the above equation always holds. The equality of

R RLR R RLR R
cR Re cR Re

R

≃β

R RLR R RLR R
cR Re cR Re

R

≃β
=

.

follows from the simple fact that in any ordinary monoidal category, if A → I is an
isomorphism with the monoidal unit, the composite A ≃ A ⊗ I → A ⊗ A is equal to
A ≃ I ⊗ A → A ⊗ A. Here, we apply it to the the isomorphism β in the endomorphism
monoidal category M(R,R).

To see that the two coherence regions are also equal, one would like to apply coherence
for monoidal bicategories, but one cannot do so directly, as the relevant composites involve
non-trivially the unit. Instead, we rewrite

R
RLR

RLRLR RLR

R

RLR
R

RLR

cR
RLcR

ReLR

Re

RLRe

Re

cR

Re
cR

≃Σc,(Re)(cR)

≃R⊗Σe,e

R
RLR

RLRLR RLR

R

RLR
R

RLR

cR
RLcR

ReLR

Re

RLRe

Re

cR

Re
cR

cRLR

≃R⊗Σe,e≃Σc,cR

≃Σc,Re

=

and similarly

R

RLR

RLR

RLRLR RLR

RLR
R

R

cR

cR

cRLR

RLcR

ReLR

cR

ReRe

Re

R

RLR

RLR

RLRLR RLR

RLR
R

R

cR

cR

cRLR

RLcR

ReLR

RLRe

cR

ReRe

Re

≃Σc,c⊗R
=

≃Σc,c⊗R

≃Σe,cR

≃Σe,Re

≃Σe,(Re)(cR)
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using the compatibility of the interchanger with composition. The coherence result of
Nick Gurski, which we stated as Theorem 1.7, now applies to any of the three inside
regions of the right hand sides, implying that the coherence cells inside must coincide.

We now move to the second part, namely that choosing one of the cusp isomorphisms
uniquely determines the other subject to the Swallowtail equations. To see this, notice
that the right hand side of the identity (C) is the image of α under the equivalence of
categories of Lemma 3.13. Thus, a choice of β uniquely determines α. Conversely, the left
hand side of the identity is the image of β under an equivalence of Lemma 3.13 together
with pasting an invertible 2-cell. Thus, similarly a choice of α uniquely determines β.
This ends the argument.

In particular, Theorem 3.14 implies that any dualizable object can be made part of
a coherent dual pair. The next theorem, which is the main result of this section, shows
that this coherent dual pair is essentially unique.

3.16. Theorem. [Coherence for dualizable objects] Let M be a monoidal bicategory.
Then, the forgetful homomorphism

π : CohDualPair(M) → (Md)
∼=,

⟨L,R⟩d 7→ L

between, respectively, the bicategory of coherent dual pairs in M and the 2-groupoid of
dualizable objects in M, is a surjective on objects equivalence of bicategories.

3.17. Remark. Observe that we know that the image of π must land in the maximal
subgroupoid of Md, since CohDualPair(M) is a groupoid itself by Proposition 3.10.

The result should be understood as saying that the notion of a coherent dual pair is
a property-like structure equivalent to the property of being dualizable. This means, in
particular, that an object is dualizable if and only if it can be completed to a coherent
dual pair, and any two coherent dual pairs living over the same dualizable object are
equivalent. In fact, even more is true — a suitably defined space of coherent dual pairs
over any given object is necessarily contractible.

We will now proceed with the proof, which will take the remainder of this section.
Notice that by Theorem 3.14, we already know that the functor π is surjective on objects.
Hence, we are left with showing that π is essentially surjective on morphisms and locally
fully faithful, as these are exactly the conditions for a homomorphism of bicategories to
be an equivalence.

We will first reduce to the case of M being a Gray-monoid and later prove essential
surjectivity and local fully faithfulness directly as Lemma 3.19 and Lemma 3.20. This
will end the proof.

3.18. Lemma. Let P be a property of homomorphisms of bicategories that is stable under
composition with equivalences. Then πM : CohDualPair(M) → (Md)

∼= satisfies P if and
only if πG : CohDualPair(G) → (Gd)

∼= does, where G is any Gray-monoid equivalent to
M.
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Proof. Arguing as in in the beginning of the proof of Theorem 3.14, let M̃ denote the
computadic replacement and choose a strict homomorphism M̃ → G into a Gray-monoid
which is also an equivalence of monoidal bicategories. In the commutative diagram

CohDualPair(G)

(Gd)
∼=

CohDualPair(M̃)CohDualPair(M)

(M̃d)
∼=(Md)

∼=

π
M̃πM πG

of bicategories and strict homomorphisms the horizontal maps are all equivalences, from
which we immediately conclude that πG satisfies P if and only if πM does.

3.19. Lemma. The homomorphism π : CohDualPair(M) → (Md)
∼= is essentially surject-

ive on morphisms. In other words, any equivalence in Md is isomorphic to one that is an
image under π of a morphism in CohDualPair(M).

Proof. By Lemma 3.18 we may assume that M is a Gray-monoid, so that we may use
explicit description of the bicategory of dual pairs following Definition 3.8, as well as the
corresponding notation. We will prove that in this case every equivalence in M may be
lifted to one in the bicategory of coherent dual pairs.

Let ⟨L,R⟩d, ⟨L′, R′⟩d be coherent dual pairs and suppose we are given an equivalence s :
L→ L′. We have to complete it to a 1-cell (s, t)d : ⟨L,R⟩d → ⟨L′, R′⟩d in CohDualPair(M)
with components (s, t)d = (s, t, γ, δ).

We first pass to the homotopy category of M. Observe that by coherence for dual
pairs in monoidal categories, which we stated as Theorem 2.5, there is a morphism t,
unique up to an invertible 2-cell, that will complete s to a map of dual pairs in h(M). In
fact, we see from the proof of the aforementioned result that it is given by the dual of any
pseudoinverse of s. We fix any such morphism to be the component t. We are now left
with choosing the needed constraint isomorphisms.

The fact that s, t commute with (co)evaluation maps in the homotopy category implies
that we can choose the constraint isomorphisms γ, δ in some way. However, we need to
be careful and choose them in a way that makes them natural with respect to the cusp
isomorphisms α, β.

The first step in showing that this can be done is to prove that for any choice of
γ, δ, naturality with respect to α implies naturality with respect to β. This can be done
in several ways, one of which is a straightforward manipulation with diagrams, which is
rather lengthy. This is, luckily, unnecessary. Instead, we will leverage the work put into
Theorem 3.14, which shows that for coherent dual pairs, any cusp isomorphism uniquely
determines the other.

Suppose we have chosen some γ, δ that are natural with respect to the cusp iso-
morphism α. The data of (s, t, γ, δ) then already defines an equivalence (L,R, e, c) →
(L′, R′, e′, c′) in the bicategory G′

d(M) of 1-truncated Gd-shapes, where Gd is as in Defin-
ition 3.7. Explicitly, the objects of this shape bicategory consist of a pair of objects
together with candidate (co)evaluation maps, but no choice of cusp isomorphisms.
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Using Lemma A.20, we can transport the structure of an (untruncated) Gd-shape
along the chosen equivalence from ⟨L,R⟩d to (L′, R′, e′, c′). The new Gd-shape, which we
will denote by ⟨L′, R′⟩◦d, will be a coherent dual pair by Lemma A.23, as it is equivalent
to one. Note that the chosen tuple (s, t, γ, δ) defined an equivalence ⟨L,R⟩d ≃ ⟨L′, R′⟩d
of dual pairs if and only if we have ⟨L′, R′⟩◦d = ⟨L,R⟩d, which amounts to agreeing on
cusp isomorphisms, as the two dual pairs agree on objects and (co)evaluation maps by
construction.

As (s, t, γ, δ) was assumed natural with respect to it, the dual pairs ⟨L′, R′⟩◦d and
⟨L,R⟩d share the same cusp isomorphism α. However, they are both coherent, The-
orem 3.14, implies that they are equal. This ends the first step, showing that we only
need to construct a tuple (s, t, γ, δ) which is natural with respect to one of the cusp
isomorphisms.

To finish the proof of the lemma, we are left with showing that one can choose con-
straint isomorphisms γ, δ such that they satisfy the equation of α-naturality, which can
be rewritten as

L′

L′ ⊗R′ ⊗ L′

L′

L

L⊗R⊗ L

L

L′⊗c′ e′⊗L′

L⊗c e⊗L

s s⊗t⊗s s≃s⊗δ ≃γ⊗s =

L′

L′ ⊗R′ ⊗ L′

L̃

L L

L⊗R⊗ L

L′⊗c′ e′⊗L′

s s

L′

L

L⊗c e⊗L

≃α′

=

≃α

.

By adding the inverse of γ⊗s to the bottom right corner we now see the equation becomes

L′

L′ ⊗R′ ⊗ L′

L′

L

L⊗R⊗ L

L′⊗c′ e′⊗L′

L⊗c

s s⊗t⊗s≃s⊗δ = { isomorphism only depending on γ }

,

where we do not redraw the right hand side, as for our purpose it is not needed to know its
exact value, as long as it is an isomorphism completely definable in terms of only the two
dual pairs in question and γ. We now apply interchangers to the equation above, to the
maps in the bottom right to move the left s from the cell s⊗ t⊗s = (L′⊗ t⊗s)(s⊗R⊗L)
past the L⊗ c before it, so that we obtain
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L′

L′ ⊗R′ ⊗ L′

L′

L′

L′ ⊗R⊗ LL

L′⊗c′ e′⊗L′

L′⊗c

L′ L′⊗t⊗s

s

≃L′⊗δ = { isomorphism only depending on γ }

.

As s is an equivalence, this equation is equivalent to one of the form

L′

L′ ⊗R′ ⊗ L′

L′

L′

L′ ⊗R⊗ L

L′⊗c′ e′⊗L′

L′⊗c

L′ L′⊗t⊗s≃L′⊗δ = { isomorphism only depending on γ }

and Lemma 3.13 implies that it has a unique solution, ending the proof.

We will now finish the proof of Theorem 3.16 by showing that π is locally bijective on
2-cells. This holds for arbitrary dual pairs, not necessarily coherent, hence we state the
result in this slightly greater generality.

3.20. Lemma. The homomorphism π : DualPair(M) → (Md)
∼= is locally bijective on

2-cells.

Proof. As in the proof of Lemma 3.18, we will assume M is a Gray-monoid and use the
corresponding explicit description of the bicategory of dual pairs.

Suppose we have morphisms (si, ti)d : ⟨L,R⟩d → ⟨L′, R′⟩d of dual pairs for t = 1, 2,
with components (si, ti)d = (si, ti, γi, δi). For simplicity, we may assume that ⟨L,R⟩d =
⟨L′, R′⟩d. Indeed, the two relevant bicategories are both groupoids, so that π is bijective
on all 2-cells if and only if it is locally bijective on 2-cells between endomorphisms.

Let ΓL : s1 → s2 be an isomorphism between the images of these two endomorphisms
under π. We have to show that ΓL lifts uniquely to an invertible 2-cell in the bicategory
of dual pairs, which amounts to finding an invertible 2-cell ΓR : t1 → t2 such that together
they satisfy γ and δ-naturality equations.

As in the proof of Lemma 3.18, we will first establish that one of the naturality
equations implies the other by using transport of structure.

Suppose we have chosen some isomorphisms ΓL,ΓR that are natural with respect to the
constraint isomorphism δ. This data alone defines an invertible 2-cell Γ : (s1, t1) → (s2, t2)
between morphisms of 0-truncated Gd-shapes. Here, explicitly, a 0-truncated Gd-shape is
just a pair of objects with no choice of (co)evaluation maps or cusp isomorphisms, and a
morphism of such is just a pair of morphisms in M.
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By Lemma A.25, we can transport the structure of a map of 1-truncated Gd-shapes
from (s1, t1)d to (s2, t2) along the above isomorphism Γ. This way, we obtain a new
equivalence (s2, t2)

◦
d which, being isomorphic to a map of dual pairs, is a morphism of

dual pairs too; in other words, it is compatible with the cusp isomorphisms.
Observe that both (s2, t2)d and (s2, t2)

◦
d are equivalences of dual pairs which agree

on their morphism components by construction and moreover agree on the constraint
isomorphism δ, as we assumed that Γ was natural with respect to it. However, from the
proof of Lemma 3.19 above we know that for any given equivalence of dual pairs, the
constraint isomorphism δ determines the constraint isomorphism γ.

This implies that we have (s2, t2)d = (s2, t2)
◦
d, so that the isomorphisms ΓR,ΓL were

natural with respect to both γ, δ to begin with. This ends the first step, showing that for
any choice of Γ, naturality with respect to δ implies naturality with respect to γ.

We will now prove that δ-naturality makes ΓL uniquely determine ΓR, this will end
the proof of the lemma. We can redraw the relevant equation as

I R⊗ L R⊗ L
c

t2⊗s2

t1⊗s1

⇑ΓL⊗ΓR

I R⊗ L R⊗ L

R⊗ L

c t2 ⊗ s2

c

c
t1⊗s1

≃δ2

≃δ1
=

or perhaps more simply as

I R⊗ L R⊗ L R⊗ L
c

t2⊗L

t1⊗L

R⊗s2

R⊗s1

⇑ΓR⊗L ⇑R⊗ΓL = { isomorphism not depending on ΓR,ΓL }

since, again, we do not need to know precisely what is the right hand side. Note that to
obtain an equation of this form from the one just above we needed to apply interchangers
to the top and the bottom, as according to our convention (t ⊗ s) = (t ⊗ L)(r ⊗ R) and
here we want it the other way around. We can now append R⊗Γ−1

L to the left hand side
to get

I R⊗ L R⊗ L R⊗ L
c

t2⊗L

t1⊗L

R⊗s2⇑ΓR⊗L = { isomorphism not depending on ΓR }

.

This equation clearly has a unique solution ΓR. Indeed, postcomposition with R⊗s2 is an
equivalence on Hom-categories, since the morphism itself is an equivalence, as is tensoring
via −⊗ L followed by precomposition with c by Lemma 3.13. This ends the argument.
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4. Fully dualizable objects in symmetric monoidal bicategories

In this section we focus on the theory of fully dualizable objects in symmetric monoidal
bicategories. Our main goal is a coherence result analogous to the one we proved for
dualizable objects, namely description of a property-like structure equivalent to full du-
alizability.

4.1. Serre autoequivalence and fully dual pairs. We will first define full dual-
izability and show that every fully dualizable object in a symmetric monoidal bicategory
admits a canonical up to isomorphism autoequivalence, the Serre autoequivalence of Lurie
[Lur09]. We then use it to identify minimal conditions for an object to be fully dualizable,
which we then package into a notion of a fully dual pair.

The property of full dualizability is one of the possible ways to strengthen dualizability
by putting some conditions on the (co)evaluation maps. In an ordinary monoidal category,
essentially the only thing one can do is to require them to be isomorphisms, obtaining the
notion of a monoidal inverse.

However, in the bicategorical case there is a property of morphisms which is weaker
then being an equivalence, but has some of the same consequences: the property of having
an adjoint. In the strongest version we might require the (co)evaluation maps to have
all adjoints, that is, to have both left and right adjoints and also that these left/right
adjoints should have both adjoints on their own, and so on. This is what we will call full
dualizability.

4.2. Definition. If M is a bicategory, let Madj be the maximal subbicategory with the
property that all its 1-cells admit both adjoints.

The bicategory Madj can be obtained by an iterated process of removing morphisms
that do not have a left or a right adjoint. Namely, if M is a bicategory, let M(1) ⊆ M be
the subbicategory with the same objects, only those morphisms that admit both a left and
right adjoint in M, and all 2-cells between them. One sees easily that Madj =

⋂
i≥1M

(i),
where M(i+1) = (M(i))(1).

4.3. Proposition. If M is symmetric monoidal, then the symmetric monoidal structure
restricts to give one on Madj.

Proof. It is enough to show that the tensor product preserves the property of having
adjoints, as then one can naively restrict the monoidal structure to Madj. However, if we
have f1 ⊣ g1, f2 ⊣ g2, then f1 ⊗ f2 ⊣ g1 ⊗ g2.

4.4. Definition. We say an object L ∈ M in a symmetric monoidal bicategory is fully
dualizable if it is dualizable as an object of Madj.

In other words, an object L ∈ M is fully dualizable if and only if it can be completed
to a dual pair ⟨L,R⟩d in the sense of Definition 3.3 with (co)evaluation maps admitting
all adjoints.
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4.5. Remark. A vigilant reader will point out that full dualizability as we defined it
makes sense even in a non-symmetric monoidal bicategory. We will not work in this
generality and restrict to the symmetric case; one reason to do is that to define the Serre
autoequivalence, see Definition 4.6 below, one needs at least some weak form of symmetry.

We start by deriving some basic properties of fully dualizable objects. Note that, a
priori, to show that an object is fully dualizable one needs an infinite amount of data, as
one has to witness an existence of infinitely many adjoints. Our goal will be to describe
a finite set of data whose existence witnesses full dualizability.

4.6. Definition. Let ⟨L,R⟩d be a dual pair in a symmetric monoidal bicategory M and
suppose we have adjunctions eL ⊣ e, cL ⊣ c. We define the Serre autoequivalence q of L
and the pseudoinverse to Serre autoequivalence q−1 to be the 1-cells

L

R

L

R

L

L

c

cL

q

L

L

R

L

R

L

eL

e

q−1

.

Note that, a priori, the Serre autoequivalence depends on the choice of a dual pair
and the adjoints to (co)evaluation morphisms. We will see below, in Corollary 4.11, that
at least up to invertible 2-cells, the Serre autoequivalence is intrinsic to the object L.

4.7. Remark. The terminology of Serre equivalence is due to Jacob Lurie, see [Lur09,
4.2.4]. It is motivated by a particular case of a suitably defined (∞, 2)-category of cocom-
plete dg-categories, where the endofunctor described by Serre autoequivalence has tradi-
tionally been called the Serre functor.

4.8. Remark. There is a more general, geometric definition of the Serre autoequivalence
which rests on the Cobordism Hypothesis [Lur09, 2.4.14]. Namely, if M is a symmetric
monoidal (∞, n)-category, its space of fully dualizable objects is predicted to be equivalent
to the space of n-dimensional framed topological field theories with values in M, and so
should acquire an action of the Lie group O(n), which acts via change of framing.

If n ≥ 1, then the group π1(O(n)) is cyclic, generated by a “full twist”. Under the
action on the space of fully dualizable objects, this generator corresponds to a natural
endotransformation of the identity. The component of this transformation at any given
fully dualizable object is precisely its Serre autoequivalence.

We will proceed by establishing some basic properties of the Serre autoequivalence,
using the definition in terms of string diagrams given above. Note that most of these
properties would follow trivially if we defined the Serre autoequivalence as the component
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of some invertible endotransformation of the identity homomorphism, but doing so would
require us to assume the Cobordism Hypothesis. We will instead proceed directly using
Definition 4.6.

4.9. Proposition. The Serre autoequivalence q and its pseudoinverse q−1 are, in fact,
pseudoinverse to each other. In other words, [q]◦ [q−1] = [q−1]◦ [q] = [idL] in the homotopy
category h(M).

Proof. Since the homotopy category is an ordinary symmetric monoidal category, we
can perform a calculation with classical string diagrams. The class of [q−1] ◦ [q] can be
represented by

L

R

L

R

L
c

cL

L

R

L

R

L

eL

e

L

R

R

L

cL

L

R L

eL

≃

,

where we obtain the right hand side from the left hand side by using the triangle equations,
which are witnessed by cusp isomorphisms. Since in a symmetric monoidal category the
composition of braidings depends only on the underlying permutation, we can rewrite the
right hand side as

L

R

R

L

L

cL

L

R L L

eL

L

R

L

cL

eL

≃

.

However, the right hand side is a left adjoint to the corresponding composite of e, c and
so it is the identity by the triangle equations, which ends the proof that [q−1]◦ [q] = [idL].
The case of [q] ◦ [q−1] = [idL] is completely analogous.

4.10. Proposition. Suppose that ⟨L,R⟩d, ⟨L′, R′⟩d are dual pairs and s : L → L′ is an
equivalence. Then, [s] ◦ [q] = [q′] ◦ [s] in the homotopy category.

Proof. Again, we can argue using classical string diagrams. Choose a map t : R → R′

that completes it into a map of dual pairs in the homotopy category, which can be done
by Theorem 2.5. One computes that [s] ◦ [q] can be represented by
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L

R

L

R

L

L′

c

cL

s

≃

L

R

L

R

L

L′

R′

L′

c′

cL

ss−1

t−1

≃

L R

L L

R′

L′

R′

L′

t−1

c′

cL

.

The right hand side of the above is

L R

L

R′

L′

R′

L′

R′

L′

t−1

c′

c′L

t

s
≃

L L′

L′

R′

L′

R′

L′

c′

c′L

s

,

as one sees by observing that c′L ◦ (t⊗ s) is isomorphic to cL, as they are both left adjoint
to c. This ends the proof, as the last composite represents [q′] ◦ [s].

To deduce the corollary, apply the proposition to the identity morphism of L with
different choices of (co)evaluation maps and their left adjoints on both sides.

4.11. Corollary. Up to invertible 2-cells, the Serre autoequivalence of L does not depend
on the choice of its dual, (co)evaluation maps or their left adjoints. Moreover, it descends
to a natural automorphism of the identity on the homotopy category of dualizable objects
in M and equivalences.

Proof. This is immediate from Proposition 4.10, with the first part following from the
case s = idL for a choice of two different dual pairs completing L.

4.12. Proposition. Let ⟨L,R⟩d be a dual pair and suppose we have adjunctions cL ⊣
c, eL ⊣ e. Then, in the homotopy category h(M), the classes of cL and eL can be repres-
ented by

R

L

L

R

L

R

q

e

cL

R

L L

R L

R

c
q−1

eL .

In particular, up to invertible 2-cells, the left adjoints to (co)evaluation maps are definable
in terms of Serre autoequivalence and its pseudoinverse alone.
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Proof. We only prove the theorem for cL, as the proof for eL is basically the same. In
this case, the relevant composite is

R

L

L

R

L

R

R

L

L

R

c

cL

e

R

L

L

R

R

L

cL≃

,

where the isomorphism pictured is induced by the cusp. The right hand side is isomorphic
to cL, as that composite of braidings corresponds to the identity permutation.

4.13. Theorem. [Minimal conditions for full dualizability] Let ⟨L,R⟩d be a dual pair
and suppose that the (co)evaluation morphisms admit left adjoints, so that L admits au-
toequivalences q and q−1. Then, for all n ∈ Z we have adjunctions

1. (q−n−1 ⊗R) ◦ σ ◦ c ⊣ e ◦ (qn ⊗R),

2. (R⊗ q−n−1) ◦ c ⊣ e ◦ σ ◦ (R⊗ qn),

3. e ◦ σ ◦ (R⊗ qn+1) ⊣ (R⊗ q−n) ◦ c,

4. e ◦ (qn+1 ⊗R) ⊣ (q−n ⊗R) ◦ σ ◦ c,

where σ : R⊗ L→ L⊗R is the symmetry. In particular, L is already fully dualizable.

Proof. The families (1) and (2) correspond to each other through the symmetry, as do
(3) and (4), so it is enough to prove only one from each pair.

For n = 0, the adjunctions (1) and (3) are exactly Proposition 4.12. All the other
adjunctions can be obtained by composing with q ⊣ q−1 or q−1 ⊣ q and using the fact
that the composite of adjoints is adjoint to the composite.

As discussed above, Theorem 4.13 is very convenient, as the property of full dualizabil-
ity is a priori difficult to verify, as it assures the existence of an infinite strings of adjoints.
However, it follows that it is enough to verify that only two of the needed adjoints exist,
as all of the others can be defined in terms of the Serre autoequivalence.

This suggests the following compact, fully dualizable analogue of the notion of a dual
pair in a monoidal bicategory introduced in Definition 3.3.

4.14. Definition. A fully dual pair in a symmetric monoidal bicategory M is a tuple

(L,R, e, c, q, q−1, α, β, µe, ϵe, µc, ϵc, ψ, ϕ)

which consists of
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1. a dual pair ⟨L,R⟩d,

2. morphisms q, q−1 : L → L together with isomorphisms ψ : qq−1 ≃ idL, ϕ : q−1q ≃
idL,

3. 2-cells µe : idI → e ◦ eL and ϵe : eL ◦ e→ idL⊗R, where eL = σ ◦ (R⊗ q−1) ◦ c, which
satisfy triangle equations which make them into a unit and counit of an adjunction
eL ⊣ e,

4. 2-cells µc : idR⊗L → c ◦ cL and ϵc : cL ◦ c → idI , where cL = e ◦ (q ⊗ R) ◦ σ, which
satisfy triangle equations which make them into a unit and counit of an adjunction
cL ⊣ c

Here, σ : R⊗ L→ L⊗R is the symmetry.

4.15. Notation. By abuse of language, we will sometimes refer to the whole fully dual
pair just by referring to the underlying objects, in which case we will denote it by ⟨L,R⟩fd
to distinguish it from the similar notation for dual pairs.

The intuition about this definition is that by Theorem 4.13, to witness full dualizability
it is enough to give the left adjoints of (co)evaluation maps. Thus, one way to define a
“fully dualizable pair” would be to include these left adjoints as part of the structure.

However, for technical reasons, we take a slightly different route. Instead of adjoints,
we postulate the Serre autoequivalence as part of the data of a fully dual pair and only
express the left adjoints in terms of it using the formula given by Proposition 4.12. Observe
that this forces q, q−1 that are given as part of a structure of a fully dual pair to be,
up to isomorphism, Serre autoequivalence and its pseudoinverse of L in the sense of
Definition 4.6.

4.16. Proposition. An object L ∈ M in a symmetric monoidal bicategory is fully dual-
izable if and only if it can be completed to a fully dual pair ⟨L,R⟩fd.

Proof. Clearly any object L that is a part of a fully dual pair is fully dualizable by
Theorem 4.13, as its (co)evaluation maps have left adjoints.

Conversely, if L is a fully dualizable object, then in particular it can be completed to
a dual pair ⟨L,R⟩d for which there exist left adjoints eL, cL to the chosen (co)evaluation
maps. In terms of these maps we can define q, q−1 using Definition 4.6.

We are now only left with giving the missing 2-cells. We can find the invertible 2-
cells ψ : qq−1 ≃ idL and ϕ : q−1q ≃ idL as the relevant maps are pseudoinverse by
Proposition 4.9. Finally, by Proposition 4.12, the composites (q−1 ⊗R) ◦ σ ◦ c and e ◦ σ ◦
(R⊗ q) are left adjoint to (co)evaluation maps and this allows us to define the necessary
(co)unit cells.
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As in the non-fully dual case given in as in Definition 3.7, to organize fully dual pairs
into a bicategory, we will again use the language of computadic (symmetric) monoidal
bicategories.

4.17. Definition. Let Gfd be a generating datum for a symmetric monoidal bicategory
consisting of

1. two generating objects L,R,

2. four generating morphisms e : L⊗R → I, c : I → R⊗L, q : L→ L and q−1 : L→ L,
and

3. twelve generating 2-cells α, α−1, β, β−1, ϕ, ϕ−1, ψ, ψ−1, ϵe, µe, ϵc and µc, whose sources
and targets are exactly as in Definition 4.14.

Let Rfd consist of relations that α, α−1, β, β−1, ϕ, ϕ−1 and ψ, ψ−1 are inverse to each
other and that ϵe, µe, ϵc, µc satisfy triangle equations.

4.18. Definition. We define the bicategory of fully dual pairs in M as

FullyDualPair(M) := Pfd(M),

the bicategory of shapes in M of type Pfd = (Gfd, Rfd).

The above compact definition can be made explicit, and we do so below.

4.19. Notation. If M is a symmetric monoidal bicategory, then the objects of the bicat-
egory FullyDualPair(M) are precisely the fully dual pairs in the sense of Definition 4.14.

A morphism (s, t)fd : ⟨L,R⟩fd → ⟨L′, R′⟩fd consists of data of 1-cells s : L → L′,
t : R → R′ and constraint 2-cells γ, δ, κ, τ of the form

I

I

R′ ⊗ L′

R⊗ L

I

c′

c

t⊗s≃δ

L′ ⊗R′

L⊗R

I

I

Is⊗t

e

e′

≃γ

L′ L′

L L

s s

q′

q

≃κ

L′ L′

L L

s s

q−1′

q−1

≃τ

.

These constraint isomorphisms are assumed to satisfy naturality equations with respect
to cusp isomorphisms α, β, (co)units ϵe, µe, ϵc, µc and witnessing isomorphisms ψ and
ϕ. We will not draw these, as they are completely analogous to the ones appearing in
Notation 3.9.

A 2-cell Γ : (s1, t1)fd → (s2, t2)fd consists of data 2-cells ΓL,ΓR in M of the form

L L′ R R′

s2

s1

t2

t1

⇑ΓL ⇑ΓR

.
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These are required to satisfy naturality with respect to constraint isomorphisms γ, δ, κ
and τ .

An important property of the bicategory of dual pairs, namely that it is a groupoid,
implies the same property for bicategories of fully dual pairs, as the following shows.

4.20. Proposition. The bicategory FullyDualPair(M) is a 2-groupoid.

Proof. A map of fully dual pairs induces a map of underlying dual pairs and similarly
for 2-cells. Moreover, comparing Notation 3.9 and Notation 4.19 we see that between dual
pairs and fully dual pairs, morphisms and 2-cells differ only in constraint cells, which are
necessarily invertible. Since non-constraint cells of a morphism or a 2-cell in DualPair(M)
are invertible by Proposition 3.10, the same is true in the case of fully dual pairs and the
result follows.

4.21. Coherence for fully dualizable objects. As in the dualizable case, a fully
dualizable object in a symmetric monoidal bicategory can in general be completely to
many non-equivalent fully dual pairs. We will remedy this by adding additional coherence
equations at the level of 2-cells.

Our main result will be an analogue of Theorem 3.16, showing that any fully dualizable
object can be completed to an essentially unique fully dual pair which is coherent in the
following sense.

4.22. Definition. We say a fully dual pair ⟨L,R⟩fd is coherent if

1. it is coherent as a dual pair,

2. witnessing isomorphisms ϕ, ψ make q, q−1 into an adjoint equivalence, and

3. the cusp-counits equation (CC1) = (CC2) holds, where the composites (CC1),
(CC2) are given by pasting diagrams pictured below in Figure 4 and Figure 5.

4.23. Remark. In Figure 5 defining the cusp-counits composite (CC2), there are some
unmarked regions. Each of these has a unique way to be filled out with a composite
of constraint 2-cells, by coherence results of Nick Gurski and Angélica Osorno which we
stated as Theorem 1.7 and Theorem 1.8, and this is the unmarked cell.

4.24. Remark. The cusp-counits equation is inspired by geometry of two-dimensional
manifolds; more precisely, it is a form of the cusp flip relation in the presentation of the
oriented bordism bicategory due to Schommer-Pries [SP11].
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L

L⊗ I

L⊗ (R⊗ L)

(L⊗R)⊗ L

I ⊗ L

(R⊗ L)⊗ L

(R⊗ L)⊗ L (L⊗R)⊗ L

L⊗ (R⊗ L)

L⊗ (L⊗R)

L⊗ (L⊗R)

L⊗ I

L
r•

L⊗c

a•

e⊗L

c⊗L

(R⊗q−1)⊗L
σ⊗L

a

L⊗σ

L⊗(q⊗R)

L⊗e

r

1

1

1

1

⇓ϵe⊗L

≃a

⇓L⊗ϵc

≃r

Figure 4: Cusp-counits composite (CC1)

L

L⊗ I

L⊗ (R⊗ L)

(L⊗R)⊗ L

I ⊗ L

(R⊗ L)⊗ L

(R⊗ L)⊗ L (L⊗R)⊗ L

L⊗ (R⊗ L)

L⊗ (L⊗R)

L⊗ (L⊗R)

L⊗ I

L

L

L⊗ I

L⊗ (R⊗ L)
(L⊗R)⊗ L

L⊗ (R⊗ L)

I ⊗ L

(L⊗R)⊗ L

L⊗ (R⊗ L) (L⊗R)⊗ L

L⊗ I

I ⊗ L
L

L

r•

L⊗c

a•

e⊗L

c⊗L

(R⊗q−1)⊗L
σ⊗L

a

L⊗σ

L⊗(q⊗R)

L⊗e

r

1

σ

l•

1

r

σ

a•
σ

L⊗c

L⊗(R⊗q−1)

σ

l

(q⊗R)⊗L

e⊗Lq⊗(R⊗L)

a•

(L⊗R)⊗qq⊗I

L⊗c

e⊗L I⊗q−1

r•

q

q

l q−1
1

≃α

≃

≃

≃

≃

≃σ

≃

≃

≃σ

≃

≃

≃
≃α

≃ϕ

Figure 5: Cusp-counits composite (CC2)
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4.25. Remark. We feel like we owe the reader some explanation as to why requiring
an identity as complicated as the cusp-counits equation is a reasonable thing to do. For
one thing, as one sees in the first diagram in the proof of Proposition 4.26, at least
the composite (CC1) is not that complicated once one removes coherence cells from
the picture, for example by working with a Gray-monoid, as it consists of a repeated
application of two adjunction counits.

The composite (CC2) is more complex, but its only property which matter in practice
is that it does not depend at the adjunction (co)units at all. Thus, requiring (CC1) =
(CC2) has the effect of asking for the two adjunctions to be compatible with each other
by fixing the value of the composite.

We now begin the proof of the coherence result, starting with strictification.

4.26. Proposition. Any fully dualizable object can be completed to a coherent fully dual
pair.

Proof. In the same way as in the proof of Theorem 3.14, we can use strictification results
of Schommer-Pries to reduce to the case where the symmetric monoidal bicategory M has
an underlying Gray-monoid. Indeed, any symmetric monoidal bicategory can be related
by a span of strict homomorphisms to a quasi-strict one, see [SP11][2.96]. The latter are
partially strict symmetric monoidal bicategories that have, among other things, underlying
Gray-monoids, as needed.

Let L be fully dualizable. By Proposition 4.16 we can complete it to a not-necessarily
coherent fully dual pair and by strictification for dual pairs, that is, Theorem 3.14, we
can make the chosen data satisfy Swallowtail identities by only a change of the cusp
isomorphism β. Since q, q−1 are pseudoinverse, one can choose a unique ϕ such that
together with the already chosen ψ they form an adjoint equivalence.

We are now only left with enforcing the cusps-counits equation. Under our assumption
of M having an underlying Gray-monoid, we can draw it as

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

⇓ϵe⊗L

⇓L⊗ϵc

(CC2)=

.

Here, the precise value of the right hand side is not needed; it is only important to observe
that it is an isomorphism and that it does not depend on the adjunction (co)units ϵ, ν.

The left hand side is also an isomorphism. Indeed, it is the counit of the induced
adjunction (L ⊗ cL) ◦ (eL ⊗ L) ⊣ (e ⊗ L) ◦ (L ⊗ c) and since the right adjoint, being
isomorphic to the identity, is an equivalence, the adjunction itself must be an adjoint
equivalence and so both (co)units are isomorphisms.
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It follows that in the cusp-counits equation, the difference between the right and left
hand is at most some automorphism ζ : idL ≃ idL, in the sense that

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

1

⇓ϵe⊗L

⇓L⊗ϵc

≃ζ

(CC2)=

already holds. The idea is to “absorb” this ζ into one of the counits, this will enforce the
cusps-counits equation. To do so, we first commute ζ with ϵc to obtain that

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

1

⇓ϵe⊗L

⇓L⊗ϵc

≃ζ⊗R⊗L (CC2)=

.

We claim that the upper part of the diagram on the left hand side is already of the
form ϵ ⊗ L for some different counit of eL ⊣ e. This finishes the proof, as replacing the
original ϵe, µe by these new (co)units we obtain a fully dual pair that is coherent. We have

L⊗R⊗ L

L

L⊗R⊗ L

e⊗L eL⊗L

1

1

⇓ϵe⊗L

≃ζ⊗R⊗L

=

L⊗R⊗ L L⊗R⊗ L

L

L⊗R⊗ L

e⊗L eL⊗L

11

e⊗L

⇓ϵe⊗L≃ζ⊗R⊗L

,

as ζ is an automorphism of the identity. However, the right hand side is precisely obtained
by applying −⊗L to the counit of the induced adjunction eL ⊣ e obtained by transferring
the original one along the isomorphism e ◦ (ζ ⊗R) : e ≃ e and the identity of eL.
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We will devote the rest of this section to the proof of the coherence theorem for fully
dualizable objects, which identifies the notion of a coherent fully dual pair as a property-
like structure equivalent to full dualizability.

4.27. Theorem. Let M be a symmetric monoidal bicategory. The forgetful homomorph-
ism

π : CohFullyDualPair(M) → (Mfd)
∼=,

⟨L,R⟩fd 7→ L

between, respectively, the bicategory of coherent fully dual pairs and the groupoid of fully
dualizable objects, is a surjective on objects equivalence.

4.28. Remark. The statement of Theorem 4.27 has a strong connection with the Cobor-
dism Hypothesis of Baez-Dolan [BD95], as we now explain.

The bicategory of coherent fully dual pairs can be identified with the bicategory of
strict homomorphisms F(Pcfd) → M from the computadic symmetric monoidal bicategory
generated by the presentation of Definition 4.18 together with the coherence relations. In
turn, the cofibrancy results of Schommer-Pries allows us to identify it with the bicategory
of all symmetric monoidal homomorphisms [SP11].

Then, Theorem 4.27 implies that a homomorphisms out of the explicitly constructed
symmetric monoidal bicategory F(Pcfd) is essentially uniquely determined by the image
of the distinguished object L, which can take any fully dualizable value. This is exactly
the universal property which the Cobordism Hypothesis predicts is satisfied by a suitably
defined bicategory of framed cobordisms.

This precise statement of the Cobordism Hypothesis is due to Lurie, who also sketches
a proof of the general case in the setting of (∞, n)-categories [Lur09]. The results of this
paper give a more direct approach to the two-dimensional case by reducing it to the
question of comparing the framed bordism bicategory with F(Pcfd). This is an essentially
computational task which can be attacked using Morse-theoretic techniques of Schommer-
Pries, see [Pst14][Ch.8].

The rest of this section will be devoted to the proof of Theorem 4.27. We will fix
a symmetric monoidal bicategory M; arguing as in the proofs of Proposition 4.26 and
Lemma 3.18 we may assume that the underlying monoidal bicategory is a Gray-monoid.

We have already established that the forgetful functor π is surjective on objects. Thus,
we are left with essential surjectivity on morphisms, which we prove as Lemma 4.30, and
local bijectivity on 2-cells, which is Lemma 4.31.

4.29. Lemma. Suppose ⟨L,R⟩fd and ⟨L′, R′⟩fd are fully dual pairs which share the same
objects, same morphisms and same 2-cells except possibly for the (co)units of the adjunc-
tion eL ⊣ e. Then, if they both satisfy the cusps-counits equation, they are equal.
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Proof. As both fully dual pairs in question satisfy cusp-counits equation, we also have

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

⇓ϵe⊗L

⇓L⊗ϵc

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

⇓ϵ′e⊗L

⇓L⊗ϵc

=

,

as these are exactly the (CC1) composites of the dual pairs in question, and so must be
equal to (CC2), which doesn’t depend at all on the counits. As observed before, both
sides are invertible.

Since both ϵe and ϵ′e are counits of an adjunction eL ⊣ e, they can at most differ by an
automorphism of any of the components. Let ζ : e ≃ e be the difference between them,
so that we have

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L eL⊗L

L⊗cL

1

1

⇓ϵe⊗L

⇓L⊗ϵc

L

L⊗R⊗ L

L

L⊗R⊗ L

L

L⊗c

e⊗L

e⊗L

eL⊗L

L⊗cL

1

1

⇓ϵe⊗L

⇓L⊗ϵc

≃ζ⊗L

=

.

We want to show that this equation implies that ζ = ide, as then we will know that
ϵe = ϵ′e.

Using the fact that the big triangle composite is an isomorphism, the above equation
is equivalent to

L L⊗R⊗ L L L⊗R⊗ L L
L⊗c

e⊗L

e⊗L

eL⊗L L⊗cL
≃ζ⊗L

being the identity, as one sees from pasting the inverse to the triangle from below. The
composite of the last two morphisms is left adjoint to one of the cusp composites, so it is
an equivalence, and thus the equation above is equivalent to

L L⊗R⊗ L L
L⊗c

e⊗L

e⊗L

≃ζ⊗L = id

.

By Lemma 3.13, this equation implies that ζ is the identity, ending the argument.
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4.30. Lemma. The homomorphism π : CohFullyDualPair(M) → (Mfd)
∼= is essentially

surjective on morphisms.

Proof. We will in fact show that given coherent ⟨L,R⟩fd any ⟨L′, R′⟩fd, any equivalence
s : L→ L′ can be lifted to one of fully dual pairs.

To do so, we have to choose the component t : R → R′ and constraint isomorphisms
γ, δ, κ, τ as spelled out in Notation 4.19; that is, in a way that where the latter will be
natural with respect to all the 2-cells that are part of the structure of a fully dual pair.

Since both pairs are coherent, among these 2-cells we have three (co)unit pairs, namely
ϵe, µe witnessing the adjunction eL ⊣ e, ϵc, µc witnessing cL ⊣ c and ψ, ϕ witnessing q ⊣ q−1.
We claim that it is enough to choose the constraints so that they are natural with respect
to counits, and that this will already imply also the naturality with respect to the units.

To see this, suppose we have chosen constraint isomorphisms such that they are natural
with respect to the counits. This already determines an equivalence ⟨L,R⟩fd → ⟨L′R′⟩fd
of G′

fd-shapes, where Gfd is the 1-truncation of Gfd.
By Lemma A.20 we can use this equivalence to transport the structure of a (non-

truncated) Gfd-shape to obtain a new fully dual pair ⟨L′, R′⟩◦ which differs from ⟨L′, R′⟩
only in 2-cells. Since the equivalence we constructed was assumed to be natural with
respect to the counits, these two fully dual pairs must also have the same counits. Since
in any adjunction, (co)units determine each other, the original and transported structure
must also agree on units, proving naturality also in this case.

By the same argument and Lemma 4.29, we similarly see that if we choose constraint
isomorphisms that are natural with respect to all structural 2-cells except maybe ϵe, µe,
then they will already be natural with respect to all of them.

We now begin the argument proper. By Lemma 3.19, s can be completed to an equi-
valence of dual pairs, which allows us to choose t and constraint γ, δ which are natural
with respect to the cusp isomorphisms α, β. By Proposition 4.10, the Serre autoequival-
ence is natural up to invertible 2-cells, so that we can choose some invertible constraint
κ.

We would like to choose a κ which satisfies, in particular, naturality with respect to
ϵc; in other words, such that

I

I

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

c

c′

σ

σ

q⊗R

q′⊗R′

e

e′

1

1

t⊗s s⊗t s⊗t

1

≃δ

≃σ ≃κ⊗t
≃γ

⇓ϵc

I

I

R′ ⊗ L′ L′ ⊗R′ L′ ⊗R′

I

I
1

c′

σ q′⊗R′

e′

1

1 1

=

=

⇓ϵ′c

.

Observe that the left hand side is the counit ϵc of the pair ⟨L,R⟩fd transported to the
pair ⟨L′, R′⟩fd, so it differs from ϵ′c at most by an automorphism of cL′, as they are both



294 PIOTR PSTRĄGOWSKI

counits of the same adjunction. In other words, we can find some invertible ζ : cL′ ≃ cL′

such that

I

I

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

c

c′

σ

σ

q⊗R

q′⊗R′

e

e′

1

cL′

1

t⊗s s⊗t s⊗t

1

≃δ

≃σ ≃κ⊗t
≃γ

⇓ϵc

≃ζ

I

I

R′ ⊗ L′ L′ ⊗R′ L′ ⊗R′

I

I
1

c′

σ q′⊗R′

e′

1

1 1

=

=

⇓ϵ′c

.

already holds. The idea, very similar to the one we used in the proof of Lemma 4.29, is
to “absorb” this ζ into the isomorphism κ. This new, “corrected” κ̃, together with the γ, δ
we already have, will then satisfy naturality with respect to ϵc. Thus, our goal is to show
that there exists κ̃ such that

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

cL′

t⊗s s⊗t s⊗t 1≃σ ≃κ⊗t ≃γ

≃ζ

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

t⊗s s⊗t s⊗t 1≃σ ≃κ̃⊗t ≃γ=

,

In fact, we will see that such κ̃ must be unique, this will be important later on, in the
proof of Lemma 4.31.

As the symmetry σ is an equivalence, there exists a unique automorphism ζ ′ of e′ ◦
(q′ ⊗ R′) which has the property that it reduces to ζ under whiskering by σ. Thus, an
equation equivalent to the one given above is

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

e′◦(q′⊗R′)

t⊗s s⊗t s⊗t 1≃σ ≃κ⊗t ≃γ

≃ζ′

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

t⊗s s⊗t s⊗t 1≃σ ≃κ̃⊗t ≃γ=

.

As the two outer squares on both sides are invertible, we can omit them to obtain an
equivalent equation. One can then remove σ is well, as it is an equivalence. In the end,
we are left with showing that the equation
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L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′ I

q⊗R

q′⊗R′

e′

e′◦(q′⊗R′)

s⊗t s⊗t≃κ⊗t

≃ζ′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′ I

q⊗R

q′⊗R′

e′

s⊗t s⊗t≃κ̃⊗t=

.

has a unique solution κ̃. By adding the necessary interchangers to the left bottom square
we can move the t⊗(−) component to the front and whisker t out, obtaining an equivalent
equation. We can then leave out t altogether, as it is an equivalence, so that the are left
with

L⊗R′

L′ ⊗R′

L⊗R′

L′ ⊗R′ I

q⊗R′

q′⊗R′

e′

e′◦(q′⊗R′)

s⊗R′ s⊗R′≃κ⊗R′

≃ζ′

L⊗R′

L′ ⊗R′

L⊗R′

L′ ⊗R′ I

q⊗R′

q′⊗R′

e′

s⊗R′ s⊗R′≃κ̃⊗R′
=

.

This has a unique invertible solution κ̃ by Lemma 3.13, as the left hand side is an iso-
morphism not depending on κ̃.

Replacing the first choice of κ by κ̃, we see that we can choose constraint isomorphisms
γ, δ, κ which satisfy naturality with respect to cusp isomorphisms and ϵc. By our reasoning
above using transport of structure, this also implies that they are natural with respect to
µc, and thus also ϵe, µe.

We are then left with choosing τ , which has to satisfy the equation of ψ-naturality

L

L′

L

L′

L

L′

s

s

s

q−1 q

q′−1 q′

1

≃τ ≃κ

≃ψ L

L′

L′

L

L′

s s

q′−1 q′

1

1

≃ψ′

=

=

.

This clearly has a unique invertible solution, as everything in sight is either invertible or
an equivalence. As observed above, this τ will also then satisfy ϕ-naturality, as ψ, ϕ form
a (co)unit pair. This ends the proof.
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4.31. Lemma. The homomorphism π : CohFullyDualPair(M) → (Mfd)
∼= is locally biject-

ive on 2-cells.

Proof. Consulting Notation 4.19, we see that a 2-cell between morphisms of fully dual
pairs has the same components as a 2-cell between morphisms of dual pairs, since it
consists only of components indexed on objects, the only difference is that it is bound by
more equations. This will allow us to reduce most of the argument to the case of dual
pairs Lemma 3.20.

Suppose that (s1, t1)fd, (s2, t2)fd : ⟨L,R⟩fd → ⟨L′, R′⟩fd are parallel equivalences of
fully dual pairs which agree on their morphism components as well as constraint iso-
morphisms γ, δ. We claim that they must be in fact equal.

To see this, observe that since both satisfy naturality with respect to ϵc, we must have

I

I

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

c

c′

σ

σ

q⊗R

q′⊗R′

e

e′

1

1

t⊗s s⊗t s⊗t

1

≃δ

≃σ ≃κ1⊗t
≃γ

⇓ϵc

I

I

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

c

c′

σ

σ

q⊗R

q′⊗R′

e

e′

1

1

t⊗s s⊗t s⊗t

1

≃δ

≃σ ≃κ2⊗t
≃γ

⇓ϵc

=

,

as both sides are equal to ϵ′c. If we paste

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

R′ ⊗ L′

σ

σ

q⊗R

q′⊗R′

e

e′ c′

1

t⊗s s⊗t s⊗t

1

≃σ ≃κ1⊗t

≃γ

⇓µc

to the right hand side along their common boundary c′ = c′⊗ 1, then after an application
of the naturality of (s2, t2)fd with respect to µc and zig-zag equations for µc, ϵc, we will
be left with

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

t⊗s s⊗t s⊗t 1≃σ ≃κ2⊗t ≃γ

.
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Similarly, doing the same pasting to the right hand side we will obtain

R⊗ L

R′ ⊗ L′

L⊗R

L′ ⊗R′

L⊗R

L′ ⊗R′

I

I

σ

σ

q⊗R

q′⊗R′

e

e′

t⊗s s⊗t s⊗t 1≃σ ≃κ1⊗t ≃γ

.

so these two diagrams must be equal.
However, we’ve already seen in the proof of the Lemma 4.30 that these composites

uniquely determine κ, so we deduce that κ1 = κ2. Since constraints κ and τ uniquely
determine each other via ψ or ϕ-naturality, it follows that also τ1 = τ2. This ends the
proof that an equivalence of fully dual pairs is uniquely determined by its morphisms-
and γ, δ-components.

Now suppose that (s1, t1)fd, (s2, t2)fd : ⟨L,R⟩fd → ⟨L′, R′⟩fd are arbitrary equivalences
and that we have an isomorphism ΓL : L → L′. We want to lift it to an isomorphism of
morphisms of fully dual pairs.

As we’ve shown in Lemma 3.20, there is a unique lift to a 2-cell Γ = (ΓL,ΓR) between
morphisms of dual pairs, in other words, Γ is natural with respect to the constraint
isomorphisms γ, δ. We will argue that it is also natural with respect to κ, τ .

By Lemma A.25, we can transport the structure of a morphism of Gfd-shapes from
(s1, t1)fd along the isomorphism Γ to obtain a new morphism (s2, t2)

◦
fd of Gfd-shapes.

Since it is isomorphic to one, it is also a morphism of fully dual pairs, and it agrees with
(s2, t2)fd on its components on objects by construction.

Since Γ was natural with respect to γ, δ, (s2, t2)◦fd and (s2, t2)fd also agree on these
two constraint isomorphisms. Thus, by what we’ve shown above they must in fact be
equal, showing that Γ is a 2-cell between morphisms of fully dual pairs. This ends the
argument.

A. Computadic monoidal bicategories and shapes

In this section we give an overview of the theory of computadic monoidal bicategories.
Informally, this is a specific class of freely generated monoidal bicategories, where the
presentation is allowed to have generating datum of all levels, but relations only at the level
of 2-cells. This approach is completely analogous to the theory of computadic symmetric
monoidal bicategories developed by Christopher Schommer-Pries [SP11].

We also prove a few technical results related to bicategories of P -shapes, which give an
explicit description of bicategories of strict homomorphisms out of computadic monoidal
bicategories. These are rather simple-minded in nature and are used in several places of
the current work to simplify bookkeeping.
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A.1. Computadic monoidal bicategories. There are different kinds of data one can
use to generate a monoidal bicategory, like sets, category-enriched graphs and bicategories
themselves. Many of these have been studied in the literature, see [Gur13b].

These approaches are, however, not quite sufficient for our purposes. We would like to
allow the generating 1-cells to have domains and codomains that are only consequences
of the generating data at the level of objects and similarly for 2-cells. This can make the
presentations of bicategories defined using such data smaller and more readable.

A.2. Definition. A 0-truncated generating datum (for a monoidal bicategory) consists
of a set G0. We inductively define the set BW (G0) of binary words in G0 by declaring
that

1. the symbol I is a binary word,

2. the symbol X is a binary word for all X ∈ G0,

3. if X, Y are binary words, then so is (X ⊗ Y ).

In what follows we will talk and construct objects with source and target maps into
some other kind of objects. We will then use the function notation to talk about these,
even when there is no category in sight, so that for example “f : A → B” will just mean
“f has source A and target B”.

A.3. Definition. A 1-truncated generating datum consists of a tuple of sets (G0, G1)
together with source and target maps s, t : G1 → BW (G0).

If (G0, G1) is a 1-truncated generating datum, then we inductively define the set
BW (G1) of binary words in G1, also with source and target in BW (G0), by declaring
that

1. if X is a binary word in G0, then the symbol idX is a binary word in G1 with source
and target X,

2. If X, Y, Z are binary words in G0 and x is a symbol taken from Table 1, then x is a
binary word in G1 with source and target given according to the table,

3. if X, Y, Z are binary words in G0 and x is a symbol taken from Table 1, then x• is
a binary word in G1 with source and target opposite to the one given in the table,

4. If f ∈ G1, then the symbol f is a binary word with source s(f) and target t(f).

Moreover, we inductively define the set BS(G1) of binary sentences in G1, again with
source and target in BW (G0), by declaring that

1. If f ∈ BW (G1) is a binary word, then f is a binary sentence with the same source
and target,
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2. If f, g ∈ BS(G1) are binary sentences such that the target of f matches the source
of g, then (g) ◦ (f) is a binary sentence with source s(f) and target t(g),

3. If f, g ∈ BW (G1) are binary sentences, then f ⊗ g is a binary sentence with source
s(f)⊗ s(g) and target t(f)⊗ t(g).

A.4. Definition. A generating datum consists of a tuple (G0, G1, G2), where (G0, G1) is
a 1-truncated generating datum, together with source and target maps s, t : G2 → BS(G1)
satisfying the globularity condition s(s(ζ)) = s(t(ζ)) and t(s(ζ)) = t(t(ζ)) for all ζ ∈ G2.

If (G0, G1, G2) is a generating datum, we inductively the set of binary words in G2

with source and target in BS(G1), by declaring that

1. if X, Y, Z are binary words in G0 and x is a symbol taken from Table 1, then µx is
a binary word in G2 with source ids(x) and target x• ◦ x and ϵx is a binary word in
G2 with source x ◦ x• and target idt(x),

2. if f : A → B, f ′ : B → C, f ′′ : C → D are binary sentenes in G1 and x is a
bicategorical constraint symbol from Table 2, then x is a binary word in G2 with
source and target as given in the table and x−1 is a binary word with source and
target opposite to the given ones,

3. if f : B → C, f ′ : A → B, g : Y → Z, g′ : X → Y and h : P → Q are binary
sentences in G1 and x is a monoidal morphism constraint symbol from Table 3, then
x is also a binary word in G2 with source and target as given in the table and x−1

is a binary word with source and target opposite to the given ones,

4. if A,B,C,D are binary words in G0 and x is a monoidal object constraint symbol
from Table 4, then x is also a binary word in G2 with source and target as given in
the table and x−1 is a binary word with source and target opposite to the given ones,

5. if ζ in G2, then the symbol ζ is binary word.

Consequently, we inductively define the set BS(G2) of binary sentences in G2 with source
and target maps in BS(G1) by declaring that

1. if α is a binary word in G2, then it is also a binary sentence with the same source
and target,

2. if α, β are binary sentences in G2 such that t(t(α)) = s(s(β)), then β ∗α is a binary
sentence in G2 with source s(β) ◦ s(α) and target t(β) ◦ t(α),

3. if u, v are binary sentences in G2, then u⊗v is binary sentence with source s(u)⊗s(v)
and target t(u)⊗ t(v),

4. if α0, α1, . . . , αk is a composable sequence of sentences, that is, we have s(αi) =
t(αi−1) for all 1 ≤ i ≤ k, then pkpk−1 . . . p0 = pk ◦ pk−1 ◦ . . . ◦ p0 is a binary sentence
in G2 with target t(pk) and source s(p0).
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Table 1: Symbols for binary words in G1

Symbol Source Target

lX I ⊗X X

rX X ⊗ I X

aX,Y,Z (X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

Table 2: Bicategorical constraint symbols for binary words in G2

Symbol Source Target

idf f f

acf,f ′,f ′′ (f ◦ f ′) ◦ f ′′ f ◦ (f ′ ◦ f ′′)

rcf f ◦ idA f

lcf idB ◦ f f

Table 3: Morphism constraint symbols for binary words in G2

Symbol Source Target

ϕ⊗
(f,g),(f ′,g′) (f ⊗ g) ◦ (f ′ ◦ g′) (f ◦ f ′)⊗ (g ◦ g′)

αf,g,h aC,Z,Q ◦ (f ⊗ g)⊗ h f ⊗ (g ⊗ h) ◦ aB,Y,P
lf lC ◦ (idI ⊗ f) f ◦ lB
rf rC ◦ (f ⊗ idI) f ◦ lB
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Table 4: Object constraint symbols for binary words in G2

Symbol Source Target

ϕ⊗
(A,B) idA⊗B idA ⊗ idB

πA,B,CD ((idA ⊗ aB,C,D) ◦ aA,B⊗C,D) ◦ (aA,B,C ⊗ id) aA,B,C⊗D ◦ aA⊗B,C,D
µA,B ((idA ⊗ lB) ◦ aA,I,B) ◦ (rA ⊗ idB) idA⊗B

λA,B lA ⊗ idB lA⊗B◦1,A,B
ρA,B idA ⊗ rB aA,B,1◦A⊗B

We are now ready to define a computadic monoidal bicategory generated by a free
generating datum.

A.5. Definition. Let G = (G0, G1, G2) be a generating datum. We define F(G), the
computadic monoidal bicategory generated by G, as follows.

1. The objects of F(G) are precisely the binary words in G0.

2. The morphisms of F(G) are precisely the binary sentences in G1, with source and
target as defined.

3. The 2-cells of F(G) are equivalence classes of sentences in G2, with source and target
as defined.

The equivalence relation ∼ on binary sentences is the smallest equivalence relation such
that

1. if x is a symbol from Table 2, Table 3 or Table 4, then xx−1 ∼ idt(x) and x−1x ∼
ids(x),

2. the 2-cells ac, rc, lc, ϕ⊗
(f,g),(f ′,g′), ϕ

⊗
(X,Y ), af,g,h, lf , rf are components of a natural trans-

formation, that is, in the relevant naturality pasting diagrams the two different com-
posites are equivalent

3. the axioms of a monoidal bicategory hold and

4. the equivalence relation is closed under the tensor product ⊗, horizontal composition
∗ and vertical composition ◦.

The structure of a monoidal bicategory is defined formally. More specifically, the
composite of two binary words f and f ′ is f ◦ f ′, the horizontal composite of equivalence
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classes α, β is β ∗α, their vertical composite is β ◦α. Similarly, one defines the monoidal
product of objects, morphisms and 2-cells using the symbol ⊗. All the required axioms that
this structure has to satisfy are enforced by the equivalence relation on binary sentences
in G2.

We will now discuss relations on monoidal bicategories, the only kind we will consider
is of relations between paralell 2-cells.

A.6. Definition. A class of relations R on a monoidal bicategory M consists of a relation
on the set of its 2-cells such that if α ∼R β, then the source and target of α, β coincide.
If R is a class of relations, then we define its closure c(R) to be the smallest equivalence
class of relations that contains R and also

1. it is closed under vertical composition, that is, if α ∼c(R) α
′ and β ∼c(R) β

′ and α, β
are vertically composable, then βα ∼c(R) β

′α′,

2. it is closed under whiskering, that is, if α ∼c(R) α
′, then also f ∗ α ∼c(R) f ∗ α′ and

α ∗ g ∼c(R) α
′ ∗ f whenever this makes sense, ie. when f and s(f) or s(f) and g are

composable, and

3. it is closed under tensor product, that is, if α ∼c(R) α
′ then also f ⊗ α ∼c(R) f ⊗ α′

and α⊗ f ∼c(R) α
′ ⊗ f .

A.7. Definition. Suppose M is a monoidal bicategory and R is a class of relations on it.
We define the quotient monoidal bicategory M⧸R to have the same objects and morphisms
as M and with 2-cells given by equivalence classes of 2-cells of M under the closure c(R).

Observe that there is a canonical strict quotient homomorphism πR : M → M/R given
by identity on objects and morphisms and by passing to equivalence classes on 2-cells.
We will now establish its universal property.

A.8. Proposition. For any monoidal bicategory N, the precomposition homomorphism

π∗ : MonBicat(M⧸R,N) → MonBicat(M,N)

between bicategories of monoidal homomorphisms identifies the source with the full subbic-
ategory of the target spanned by those homomorphisms ϕ : M → N satisfying ϕ(α) = ϕ(β)
whenever α ∼R β.

Proof. Clearly any homomorphism coming from precomposition with π will have this
property, as we have π(α) = π(β) if α ∼R β. Conversely, any such ϕ must also necessarily
satisfy ϕ(α) = ϕ(β) if α ∼c(R) β, where c(R) is the closure. Thus, it factors through the
quotient, showing that π∗ is an inclusion onto the right subbicategory.

The homomorphism π∗ is fully faithful by direct inspection of the definitions of a
monoidal transformation and modification, which have no components related to 2-cells
at all.
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We can now define a generating datum for a monoidal bicategory, which will consists
of a free generating datum together with a class of relations. The associated computadic
monoidal bicategory will be the obvious quotient.

A.9. Definition. A presentation of a monoidal bicategory consists of a tuple P =
(G,R), where G = (G0, G1, G2) is a generating datum and R is a class of relations on
F(G). The corresponding computadic monoidal bicategory F(P ) is the quotient F(G)⧸R.

It is not too difficult to see that any monoidal bicategory is equivalent to a computadic
one through a strict homomorphism. However, computadic monoidal bicategories are
special as they have the following two properties which make them convenient to work
with:

1. for any monoidal bicategory M, the bicategory of strict homomorphisms F(P ) → M

admits a compact description as bicategory of P -shapes, which we describe below
and

2. any monoidal homomorphism F(P ) → M is equivalent to a strict one.

To expand on the first property, one sees by inspecting Definition A.5 that the cells of a
computadic monoidal bicategory are freely generated by Gi under the operations available
in the structure of a monoidal bicategory. It follows that a strict homomorphism out of
such a bicategory is uniquely determined by the list of its values on the generators, this
list is what we will call a P -shape. Thus, a P -shape S will be given by a triple of maps
Si : Gi → Mi, where Mi is the set of i-cells of M, the triple is required to be globular,
that is, respect source and targets.

To make sense of this, one needs to observe that given such a triple there is a canonical
extension of S0 to all of BW (G0), the set of binary words in generating objects of G,
given by inductively declaring that S0(I) = IM, the unit of M and that S0(X ⊗ Y ) =
S0(X) ⊗M S0(Y ). Similarly, there are extensions of S1 to the set BS(G1) of binary
sentences in G1 and of X2 to the set BS(G2) of binary sentences in G2 given by evaluation
of expressions using the structure of the monoidal bicategory M.

Additionally, if the set of relations R is non-empty, there are additional conditions
that are needed to ensure that the homomorphism will in fact factor through the quotient
F(P ) = F(G)/R.

A.10. Definition. Let G be a generating datum for a monoidal bicategory. A triple S
of maps Si : Gi → Mi, where Mi is the set of i-cells of M is a G-shape with values M if
the globularity conditions

1. s(S1(f)) = S0(s(f)), t(S1(f)) = S0(t(f)) for all f ∈ G1

2. s(S2(α)) = S1(s(α)), t(S2(α)) = S1(t(α)) for all α ∈ G2
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are satisfied after the canonical extension of P0 to the set of binary words in G0, of P1 to
the set of binary sentences in G1 and of P2 to the set of binary sentences in G2.

If S is a G-shape with values in M, then the associated strict homomorphism F(G) →
M, which we will also denote by S, is the unique strict homomorphism given on i-cells by
Si.

A.11. Definition. If P = (G,R) is a presentation for a monoidal bicategory, then a
G-shape is called a P -shape if and only if the associated strict homomorphism factors
through F(P ); that is, when we have P (α) = P (β) whenever α ∼R β.

A.12. Remark. Observe that being a P -shape is a property, rather than additional struc-
ture, on a given G-shape S.

We will now proceed to define a bicategory of P -shapes with values in a fixed monoidal
bicategory M. As the reader can guess, since a P -shape encodes a homomorphism, cells
between them will encode natural transformations and modifications.

A.13. Definition. A morphism w : S → S ′ of G-shapes with values in M consists of a
tuple of maps w0 : G0 → M1 and w1 : G1 → M2, where w0(X) : S(X) → S ′(X) for all
X ∈ G0 and w1(f) is an isomorphism fitting the diagram

S(A)

S ′(A)

S(B)

S ′(B)

w0(A) w0(B)

S(f)

S′(f)

≃w1(f)

.

These are required to satisfy naturality with respect to all α ∈ G2; in other words, that for
all such α : f1 → f2 we have

S(A) S(B)

S ′(A) S ′(B)

w(A) w(B)
S(f1)

S(f2)

S′(f1)

⇓S(α)

≃w(f1)

S(A) S(B)

S ′(A) S ′(B)

S(A) S(B)

S′(f1)

S′(f2)

S(f2)

≃w(f2)

⇓S′(α)

=

.

Here, w1 was uniquely extended to all binary paragraphs in G1 in such a way that
this family of 2-cells plays a role of constraint isomorphisms for a natural transformation
between the associated homomorphisms, the associated natural transformation.

Observe that a natural transformation associated to a morphism of shapes is partially
strict. More precisely, it is not necessarily strict as a natural transformation of homo-
morphisms between monoidal bicategories — it would be so precisely when S(f) = id for
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all f ∈ G1 — but the additional data making it into a monoidal transformation is trivial.
This is in line with the notion of P -shape itself, which encodes a strict homomorphism,
rather than an arbitrary one.

A.14. Remark. The theme of working with strict homomorphisms together with non-
strict transformations is a recurrent one in category theory. For example, one often
considers the natural enrichment of the category 2-Cat of strict 2-categories in itself,
using 2-categories of strict functors and all transformations. This leads to the Gray
tensor product, which is already “weak enough” to model all tricategories [GPS95].

A.15. Definition. If w, v : S → S ′ are morphisms of G-shapes, then a transformation
ζ : w → v consists of a map ζ0 : G0 → M2 such that for all X ∈ G0 we have ζ0(X) :
w(X) → v(X). Additionally, we require naturality with respect to all f ∈ G1, ie. that for
all such f : A→ B we have

S(A)

S ′(A)

S(B)

S ′(B)

w(B)

S(f)

S′(f)

v(A) w(A)

⇒
ζ(A)

≃w(f)

S(A)

S ′(A)

S(B)

S ′(B)

w(B)v(B)

S(f)

S′(f)

v(A)

≃v(f) ⇒
ζ(B)=

,

Here, the function ζ is implicitly extended to the set of all binary words in G0 so that its
components give the associated modification between natural transformations presented
by w, v.

As expected, together with the above definitions, G-shapes in a given monoidal bicat-
egory can be assembled into a bicategory of their own.

A.16. Definition. Let M be a monoidal bicategory and P = (G,R) be a presentation.
The bicategory of P -shapes, denoted by M(P ), has objects given by P -shapes in M, 1-cells
given by their morphisms and 2-cells given by transformations.

As observed above, any P -shape determines a strict homomorphism F(P ) → M from
the computadic monoidal bicategory generated by P . Similarly, morphisms between
shapes determine natural tranformations between the associated homomorphisms, and
2-cells determine modifications. This construction assembles to a homomorphism

M(P ) → MonBicat(F(P ),M)

which identifies the source as the subbicategory spanned by strict homomorphisms, mon-
oidally strict natural transformations and all modifications.

The convenient property of computadic monoidal bicategories is that this inclusion is
in fact an equivalence.
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A.17. Theorem. [Cofibrancy theorem] The inclusion M(P ) ↪→ MonBicat(F(P ),M)
is an equivalence of bicategories. In particular, any monoidal homomorphism out of a
computadic monoidal bicategory is equivalent to a strict one.

Proof. A detailed account in the symmetric monoidal setting is given in [SP11][2.78].
Since the monoidal case is identical, we just sketch the argument here.

If ϕ : F(P ) → M is an arbitrary monoidal homomorphism, not necessarily strict, then
an appropriate restriction of ϕ to the generators of F(P ) will yield a P -shape. This gives
a homomorphism MonBicat(F(P ),M) → M(P ) going in the other direction. Of the two
relevant composites, one is the identity and the other can be shown to be equivalent to it
by an explicit natural transformation.

A.18. Promotion between bicategories of shapes. In this section we will present
a few results concerning truncations ofG-shapes, by which we mean that the data of higher
morphisms is ommited. We will be mainly interested in singling out favourable conditions
under which such a truncated set of data can be “promoted” to more complete one. These
are mainly used to simplify bookkeeping, see Remark A.22 for explanation.

Let G be a generating datum for a monoidal category and let G′ be its 1-truncation
in the sense that we have G′

0 = G0, G
′
1 = G1 and G′

2 = ∅. The inclusions G′
i ⊆ Gi yield

a strict homomorphism i : F(G′) → F(G) which is, as one sees immediately from the
construction, bijective on objects and morphisms.

Dually, if M is any monoidal category, then any G-shaped diagram in M yields a G′-
shaped by neglecting data of higher cells, similarly one can “truncate” homomorphisms
and transformations. This assembles to a strict forgetful homomorphism τ≤1 : M(G) →
M(G′) which in our description of the diagrams as encoding a monoidal homomorphism
corresponds to precomposition with the above inclusion i.

A.19. Lemma. The forgetful homomorphism τ≤1 : M(G) → M(G′) is locally on Hom-
categories an inclusion of a full subcategory closed under isomorphisms.

Proof. One sees directly from the definition of the shape bicategories that if S1, S2 ∈
M(G), then to give a map S1 → S2 of G-shapes is exactly the same data as to give a
map of G′-shapes, as it concerns only objects and 1-cells of the generating datum, only
the conditions are different. In different words, to be a map of G-shapes — compared to
being a map of G′-shapes — is a property rather than a structure. This shows that τ≤1

is locally injective on morphisms.
Similarly, directly from the definitions one sees that a 2-cell in the bicategory of shapes

is given by data concerning only the objects of the generating datum and axioms only
concerning the 1-cells. These both coincide for G and G′, which yields that τ≤1 is locally
bijective on 2-cells.

We now only have to verify closure under isomorphisms. Let s : S1 → S2 be a map
of G-shapes, s : S1 → S2 be a map of G′-shapes and suppose we have an isomorphism
ω : s ≃ t. We have to show that then s : S1 → S2 is also a map in M(G), which amounts
to verifying that it satisfies naturality with respect to 2-cells in G2.
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Let α : w1 → w2 be an element of G2, where wi are sentences in G1 with wi : A→ B.
We have to verify that

S1(A) S1(B)

S2(A) S2(B)

tA tB
S1(w1)

S1(w2)

S2(w1)

⇓S1(α)

≃tw1

S1(A) S1(B)

S2(A) S2(B)

tA tB

S2(w1)

P2(w2)

S1(w2)

≃tw2

⇓S2(α)

=

.

However, since ω is an isomorphism of maps of G′-shapes, we have for each sentence
w in G1

S1(A) S1(B)

S2(A) S2(B)

tA tB

S1(w)

S2(w)

≃tw1

S1(A) S1(B)

S2(A) S2(B)

tA sA sB tB

S1(w)

S2(w)

≃sw≃ωA ≃ωB=

.

Pasting these decompositions of twi
in terms of swi

into the naturality equation above we
see that it reduces to naturality for s, which we assumed.

A.20. Lemma. [Promoting equivalences of G′-shapes] Let S1 ∈ M(G), S2 ∈ M(G′) and
suppose we are given an equivalence s : π≤1(S1) → S2. Then there is a unique G-shape
S̃2 such that there exists an equivalence s̃ : S1 → S̃2 of G-shapes with τ≤1(s̃) = s.

Proof. To promote S2 to a G-shape we have to define it on each 2-cell α ∈ G2. To say
that s : S1 → S̃2 is an equivalence of G-shapes is to say that for each such α the naturality
equation

S1(A) S1(B)

S2(A) S2(B)

sA sB
S1(w1)

S1(w2)

S(w1)

⇓S1(α)

≃sw1

S1(A) S1(B)

S2(A) S2(B)

tA tB

S2(w1)

S2(w2)

S1(w2)

≃sw2

⇓S̃2(α)

=

.

holds. However, since s is an equivalence, the vertical maps are all equivalences and we
see that this equation uniquely defines S̃2(α).
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A.21. Corollary. If S1, S2 are G-shapes and s : τ≤1(S1) → τ≤1(S2) is an equivalence of
G′-shapes, then it can be lifted to an equivalence of G-shapes if and only if S2 = ˜τ≤1(S2),
where the latter is as in Lemma A.20.

Proof. This follows immediately from uniqueness.

A.22. Remark. We feel we owe the reader some explanation as to a how a result as
straightforward as Lemma A.20 could be useful towards anything. The key here is Co-
rollary A.21, which allows one to reduce checking that a given equivalence of underlying
G′-shapes is actually an equivalence G-shapes, which asks for more naturality equations to
hold, to checking that two G-shapes are equal. This allows one to reapply any coherence
results already proven for objects to the case of equivalences of such, see Lemma 4.30 for
a typical application.

A.23. Lemma. Let P = (G,R) be a presentation for a monoidal bicategory and let
S1, S2 ∈ M be equivalent G-shapes. Then, if S1 is a P -shape if and only if S2 is.

Proof. Recall that a G-shape S is a P -shape if and only if the associated homomorphism
F (G) → M factors through the quotient F(P ) = F(G)⧸R. If S1 is a P -shape, then for
any relation α ∼ β in R we have S1(α) = S1(β). Then, the naturality equation for some
chosen equivalence s : S1 → S2 as in the proof of Lemma A.20 forces S2(α) = S2(β), as
needed.

Let us now move to the case of the 0-truncation G′′, by which we mean that G′′
0 = G0,

G′′
1 = ∅ and G′′

2 = ∅. In other words, G′′ has the same generating objects as G and has
no generating 1-cells or 2-cells.

A.24. Proposition. The forgetful homomorphism τ≤0 : M(G′) → M(G′′) is locally faith-
ful on 2-cells.

Proof. Observe that to give a 2-cell in the bicategory of shapes is to give data concerning
only the objects of the generating datum. The two agree for G′ and G′′ and the conclusion
follows.

A.25. Lemma. [Promotion of invertible 2-cells] Let S1, S2 ∈ M(G′) and suppose we are
given a homomorphism s : S1 → S2 of G′-shapes, a homomorphism t : τ≤0(S1) → τ≤0(S2)
of G′′-shapes and an invertible 2-cell ω : τ≤0(s) → t. Then, there is a unique map of
G′-shapes t̃ with τ≤0(t̃) = t such that there exists an invertible 2-cell ω̃ : s → t̃ with
τ≤0(ω̃) = ω.

Proof. To promote t to a map of G′-shapes we have to define the constraint isomorphisms
for all 1-cells in G′

1 = G1. Let f : A → B be one such, where A,B are some words in
G0. If we want ω to become an isomorphism 2-cell in M(G′′), then for each such f the
naturality equation
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S1(A)

S2(A)

S1(B)

S2(B)

tB

S1(f)

S2(f)

sA tA⇒ ωA

≃tf

S1(A)

S2(A)

S1(B)

S2(B)

tBsB

S1(f)

S2(f)

sA

≃sf

⇒ ωB=

must hold. However, since the components of ω are isomorphisms, this equation clearly
has a unique solution tf . This allows one to define the needed constraint 2-cells and shows
that they are unique.

A.26. Corollary. If s, t : S1 → S2 are both maps of G′-shapes and ω : τ≤0(s) → τ≤0(t)
is an isomorphism of maps of G′′-shapes, then it is also an isomorphism in M(G′) if and
only if we have t = τ̃≤0(t), where the latter is as in Lemma A.25.

Proof. This follows immediately from uniqueness.

A.27. Remark. By the closure under isomorphisms part of Lemma A.19, if S1, S2 are in
fact G-shapes and s is a map of G-shapes, the promotion t̃ of Lemma A.25 will also be.
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