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JOHNSTONE-GLEASON COVERS
FOR PARTIALLY ORDERED SETS

VAKHTANG ABASHIDZE

Abstract. In 1958, Andrew Gleason proved that for every compact Hausdorff space
X there exists an extremally disconnected compact Hausdorff space X̃ and a continuous
surjection p : X̃ → X with the property that every other continuous surjection from an
extremally disconnected compact Hausdorff space onto X factors via surjection through
p. Later, several authors have extended this construction to wider contexts, including
the Gleason cover for an elementary topos introduced by Johnstone in 1980.

We investigate properties of the Gleason cover for not necessarily sober T0 Alexandroff
spaces, i. e. spaces determined by partially ordered sets. First, we introduce the notion
of co-local homeomorphism for such spaces, and prove that for every finite T0 topological
space X there exists a unique irreducible co-local homeomorphism p : X̃ → X from finite
extremally disconnected space X̃ onto X. Next, we extend this approach to arbitrary
Alexandroff topological spaces. We finish with several characterizations of Alexandroff
spaces with Alexandroff Gleason covers.

1. Introduction

The classical Gleason cover X̃ of a compact Hausdorff space X is the Stone dual of
the complete Boolean algebra of its regular closed sets (regular open sets may be used,
equivalently) [Gleason, 1958]. It is equipped with an irreducible surjective continuous
map X̃ //X and is defined uniquely up to homeomorphism.

Many authors have introduced various generalizations of this construction to many
classes of spaces — see, among others, [Flachmeyer, 1963, Iliadis, 1969, Mioduszewski,
1969, Banaschewski, 1971, B laszczyk, 1974, Ul’janov, 1975, Šapiro, 1976, Porter & Woods,
1988], — mostly under the name of absolute.

We are investigating properties of the Gleason cover in case of not necessarily sober T0

Alexandroff spaces, i. e. arbitrary partially ordered sets with the Alexandroff topology.
In 1980, Johnstone introduced a construction of the Gleason cover for an arbitrary

elementary topos [Johnstone, 1980, Johnstone, 1981] which in particular gives certain
version of absolute for any topological space and, more generally, for locales in point-free
topology. Moreover, the Johnstone-Gleason cover Ẽ of a topos E can be uniquely charac-
terized as the topos of sheaves over a minimal compact regular extremally disconnected
locale in E .
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Johnstone has demonstrated that his construction indeed gives what is commonly
known as the Iliadis absolute for regular topological spaces. More precisely, he has proved
that for the topos Sh(X) of sheaves on a regular space X his construction gives the
topos equivalent to Sh(X̃), where X̃ is the Iliadis absolute of X. However extending
such equivalence to not necessarily regular spaces seems to be more subtle and, to our
best knowledge, has not been investigated in the existing literature. This issue becomes
especially problematic for non-sober spaces, given that the sheaf topos construction (even
already the passage from a space to the lattice of its open sets) does not distinguish
between a space and its soberification. Although in [Johnstone, 1981] several results
deal with non-sober spaces, it is not clear how is his construction related to any possible
absolute constructions in the literature cited above.

In [Johnstone, 1980] also the explicit construction of the Gleason cover is provided for
the topos of sheaves on a finite category. In the particular case when this category cor-
responds to a finite partially ordered set, we show that this construction is isomorphic to
one obtained by us in [Abashidze, 2016]. However, in our work we encountered an inter-
esting phenomenon not addressed to by Johnstone. When trying to prove the uniqueness
of the Gleason cover of a finite T0 space, we could not use the key projectivity property of
extremally disconnected spaces, which does not hold in the category of topological spaces
and arbitrary continuous maps. For general spaces uniqueness of the Gleason cover is
usually established in a different way — namely, by restricting the class of maps between
spaces. In the papers cited above, either the class of proper maps or that of θ-continuous
maps is used.

In [Abashidze, 2016], unaware of this fact, we acted differently to circumvent non-
projectivity of extremally disconnected spaces with respect to arbitrary continuous maps;
We observed that the Gleason cover map in this case is a co-local homeomorphism, which,
by definition, means that it becomes a local homeomorphism if we replace spaces corre-
sponding to finite posets with the ones corresponding to the same posets but with the
opposite ordering. We proved that the co-local homeomorphism property can be used to
prove uniqueness of the Gleason cover.

We address the possibility of extending this approach to Alexandroff topologies of ar-
bitrary partially ordered sets. When this topology is sober, the generalization is relatively
straightforward. As it is well known, the Alexandroff topology of a poset P is sober if and
only if P is Noetherian [Picado & Pultr, 2011], i. e. does not possess infinite ascending
chains. As it happens, in this case construction of the Gleason cover merely repeats that
of the finite case: we take disjoint unions of downsets of all maximal elements of P

P̃ =
⊕

m∈max(P )

↓ m.

Note that the resulting map is easily seen to be a co-local homeomorphism, so we can
generalize our approach to the proof of uniqueness to this case. However, for non-sober
P , the Johnstone-Gleason cover will not necessarily produce a spatial locale, let alone an
Alexandroff space of some other poset.
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We finish with a characterization of those posets P for which the Gleason cover of the
corresponding Alexandroff space is itself Alexandroff. Namely, we prove

Theorem. The Gleason cover of an Alexandroff topological space X is an Alexandroff
space iff for any x ∈ X and for any infinite antichain S ⊆↑ x above x there exist y1, y2 ∈ S
such that ↑ y1∩ ↑ y2 ̸= ∅.

2. Preliminaries

2.1. Definition. For a family of topological spaces Xi, i ∈ I, the (topological) sum of
this family, i. e. the coproduct in the category of topological spaces and continuous maps,
is denoted by ⊕

i∈I

Xi =
⋃
i∈I

Xi × {i}.

For each i0 ∈ I the corresponding coproduct inclusion will be denoted by ji0 : Xi0
//
⊕

i∈I Xi.

We will need the following well know fact.

2.2. Definition. [Willard, 1970]A map f : X // Y is a quotient map if it is surjective,
and a subset U of Y is open if and only if f−1(U) is open.

Closed and open surjections are quotient maps [Willard, 1970].
A surjective map f : X // Y between Alexandroff spaces is a quotient map if and

only if for any V ⊆ Y , f−1(V ) is an upset if and only if V is an upset in Y .

2.3. Definition. [Porter & Woods, 1988] Let X and Y be topological spaces and let f
be a closed surjection from X onto Y . Then f is called irreducible if, whenever A is a
proper closed subset of X, f(A) ̸= Y .

2.4. Definition. Let (A,≤) be an ordered set. We will denote by (A,≤)o = (A,≥) this
set with the opposite order on it, hereafter Ao = (A,≤)o.

We will use this notation for Alexandroff spaces as well. We will need to introduce
the following notion which is dual to local homeomorphism and has the corresponding
properties dual to that of a local homeomorphism (it is closed for example).

2.5. Definition. A map f : X //Y between Alexandroff topological spaces will be called
a co-local homeomorphism if f : Xo // Y o is a local homeomorphism.

2.6. Proposition. [Erné, 1991]Any nonempty finite ordered set has a maximal element.

2.7. Definition. For a topological space X we define the specialization order ≤τ on X:
for any x, y ∈ X we will write x ≤τ y if and only if for all O ∈ τ , x ∈ O implies y ∈ O.

For any subset S of a partially ordered set we will denote the set of maximal elements
of S by max(S).



4 VAKHTANG ABASHIDZE

2.8. Proposition. [Erné, 1991]Suppose (X,≤) is a finite poset. For any A ⊂ X we
have ↓ A =↓ max(A).

2.9. Proposition. [Erné, 1991]Let X be an Alexandroff topological space with the special-
ization order ≤τ . Then for any S ⊂ X its interior is given by int(S) = {x ∈ S |↑ x ⊆ S}.

2.10. Proposition. [Erné, 1991]Let X be an Alexandroff topological space with special-
ization ≤τ . Then for S ⊂ X one has S =

⋃
{↓ x | x ∈ S}.

Recall that a set A ⊂ X is called regular closed (resp. open) if A = int(A) (resp.
A = int(A)). The set of regular closed (resp. open) sets of the topological space X will
be denoted by R(X) (resp. RO(X)).

2.11. Proposition. Let X be a finite T0 topological space with specialization ≤τ , then
for any F ∈ R(X), where R(X) is the set of regular closed sets of X, we have max(F ) =
F ∩ max(X).

Proof. F ∩ max(X) ⊂ max(F ) because F ∩ max(X) = max(F ) ∩ max(X) ⊂ max(F ).
Let us show that also conversely F ∩ max(X) ⊃ max(F ). Suppose not, and there is an
x ∈ max(F ) such that x /∈ max(X), so that there is an x′ /∈ F with x ≤ x′. From this by
definition of interior x /∈ int(F ) and because x ∈ max(F ), there does not exist x0 ∈ int(F )
with x ≤ x0. Hence by definition of closure x /∈ int(F ), and from this we conclude, that
F /∈ R(X).

Recall that Alexandroff spaces are locally connected, and locally connected spaces are
topological sums of connected clopens, so that we have

2.12. Proposition. [Erné, 1991]Every Alexandroff topological space is the sum of its
connected clopen subspaces.

2.13. Proposition. [Erné, 1991] Any open subset of an extremally disconnected space
is extremally disconnected in the induced topology.

2.14. Proposition. [Erné, 1991] A topological space X is extremally disconnected and
connected if and only if every nonempty open set of X is dense in X.

2.15. Corollary. For an Alexandroff topological space X, the following two assertions
are equivalent:

1. X is extremally disconnected and connected.

2. the space X is a directed set with respect to ≤τ .

Proof. 1 ⇒ 2 Let us consider any x, y ∈ X. As X is extremally disconnected and
connected, since ↑ x is an open set, it follows that ↓↑ x = X, thus y ∈↓↑ x. Therefore,
for any two different points x, y ∈ X there exists a third point z ∈ X such that x, y ≤τ z.

2 ⇒ 1 Suppose X is directed with respect to ≤τ . Consider any nonempty open set U .
Let us show that x ∈ U for any x ∈ X. As X is directed, for any x0 ∈ U and any x ∈ X
there exists z ∈ X such that x, x0 ≤ z. Since every open set is an upset, U is an upset,
so z ∈ U . It thus follows that x ∈ U .
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2.16. Corollary. Let X be an extremally disconnected Alexandroff space, and let

X =
⊕
I∈I

Ai

be its decomposition into topological sum of connected clopen Alexandroff spaces as in
Proposition 2.12. Then each Ai is a directed subset of X.

Proof. By virtue of Proposition 2.12 X is a topological sum of connected spaces. Each
of them will be clopen in X. So according to Proposition 2.13 they are extremally dis-
connected, hence by Corollary 2.15 each of them is a directed set. It is easy to see that
union of these directed sets will be X.

3. Finite Case

In case X is compact Hausdorff, the total space X̃ of its Gleason cover p : X̃ //X can be
taken to be the Stone space of the Boolean algebra R(X) of its regular closed sets [Porter
& Woods, 1988].

It is known for such spaces that for any ultrafilter S of R(X), the intersection of all
those regular closed sets which are elements of S is a singleton and the map p sends S to
the unique element of this singleton intersection.

We want to find a similar fact for arbitrary T0 spaces. In this section we consider only
finite spaces.

Because R(X) also will be finite, its ultrafilters will be in one-to-one correspondence
with its atoms.

So it is interesting to study what are atoms of R(X).

3.1. Proposition. If a topological space X is a finite T0 space, then the atoms A ∈ R(X)
are precisely the sets of the form ↓ a for a ∈ max(X).

Proof. Let us show, that max(A) is a singleton. Indeed let us show that if a, a′ ∈ max(A)
and a ̸= a′ then A is not an atom of R(X).

As we know that A is regular closed, by Proposition 2.11 we have max(A) ⊆ max(X).
Thus a, a′ ∈ max(X), so that ↑ a = {a}, ↑ a′ = {a′}, i. e. each singleton {a}, {a′} is
open, so that (using Proposition 2.6) ↓ a, ↓ a′ ∈ R(X). But a′ /∈↓ a, since a′ is maximal.
hence ↓ (a) ⫋ A. So A contains a proper regular closed subset, hence is not an atom.

Let A1, ..., An be all atoms of R(X), and denote N = {1, 2, ..., n}. By Proposition
3.1 each Ai, i = 1, ..., n is a downset, which has the greatest element, which also is in
the maximum of the space X. Consider the atoms Ai, i ≤ n as spaces with the induced
topology, form their topological sum and denote it by

X̃ :=
⊕
i∈N

Ai.
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We also can consider this sum as⊕
i∈N

Ãi = {(x, a) | x ≤ a, a ∈ max(X)},

where Ãi denotes the copy of Ai inside X̃. The specialization order in these terms will
be:

(x, a1) ≤ (y, a2) ⇔ x ≤ y & a1 = a2.

Also note, that
(a, a) ≤ (x, a) ⇒ a ≤ x ⇒ a = x.

Also, because always (x, a) ≤ (a, a), we obtain that (x, a) is a maximal element of
X̃ if and only if x = a. This fact will be convenient for us afterwards; the number of
maximal elements of this sum will be the same as in the maximum of the space X, because
downset of a maximal element in X is a regular closed set, which will be an atom of R(X).
Obviously from this sum we have a continuous and surjective map p :

⊕
i∈N Ai → X,

namely
p(x, a) = x.

Moreover p is a closed map. Indeed it is the induced map from the topological sum of
closed subsets Ai of X to X. Since this sum is finite, this induced map is also closed. So
the space X̃ which is constructed by us is a candidate for the Gleason cover of X.

3.2. Lemma. The map p : X̃ //X where X is a finite T0 topological space and p(x, ai) =
x, ai ∈ max(X̃), is irreducible.

Proof. Suppose to the contrary that there is a closed set F ⫋ X̃ such that p(F ) = X.
Then in the maximum of X̃ there exists an element (x, x) which does not belong to F ,
since otherwise F would be equal to X̃. Since

x = p(x, x) ∈ p(F ) = X,

there exists (y′, x′) ∈ F such that p(y′, x′) = x. From the facts y′ = x, x′ ≤ x and x′ is
maximal, it follows that x′ = x, so we conclude that y = x and (x, x) ∈ F . We obtained
contradiction. Lemma is proved.

3.3. Lemma. For a finite T0 space X, the map p : X̃ //X is closed.

Proof. Indeed, let us consider any point (x, a) ∈ X̃; its closure is ↓ (x, a) = ↓ (x)×{a},
and

p(↓ (x, a)) = p(↓ (x) × a) =↓ (x).

Now consider a closed set F ⊂ X̃. Clearly F =
⋃

(x,a)∈F ↓ (x, a). From this we have

p(F ) = p(
⋃

(x,a)∈F

↓ (x, a)) =
⋃

(x,a)∈F

p(↓ (x, a)) =
⋃

(x,a)∈F

↓ (x).

As we know X is a finite space, hence this union is closed too.



JOHNSTONE-GLEASON COVERS FOR PARTIALLY ORDERED SETS 7

3.4. Lemma. Let X be a finite T0 space. Then for the map p : X̃ //X the restriction
p|Ã : Ã // A is a homeomorphism for every atom A of R(X).

Proof. This is a particular case of the following obvious fact: if we have any family
of homeomorphisms Ãi ≈ Ai for some subspaces Ai ⊆ X, then under the induced map⊕

i Ãi
//X, each subspace Ãi ⊆

⊕
i Ãi maps homeomorphically onto its image in X.

3.5. Corollary. The map p : X̃ //X is a co-local homeomorphism.

Proof. The map P has the following property:

∀ x ∈ X̃ ∃ x ∈ F ⊂ X̃ p|F : F
≈−→ p(F );

that is, for any x ∈ X there exists a closed set F ∋ x such that p|F is a homeomorphism
onto its image.

3.6. Theorem. Let X be a finite T0 topological space and consider the map p : X̃ //X
constructed above. If we have a map f : Y //X from some finite extremally disconnected
Y to X, then there exists a continuous map π : Y // X̃ such that p ◦ π = f .

Proof. By Corollary 2.16 we may assume that Y is a topological sum of finite spaces,
each of them having the greatest element, so

Y =
⊕
i∈N

↓ (yi).

Hence by universal property of topological sum we can define the map π for every ↓ (yi)
separately, as follows: for every i ∈ I, for f(yi) there exists an atom of regularly closed
sets Ak ⊂ X such that f(yi) ∈ Ak (obviously f(↓ yi) ⊂ Ak). For y ∈ (↓ yi) we have
π(y) = jk(f(y)) where jk is defined as in Definition 2.1. From this we conclude that
p ◦ π = f for every ↓ (yi). Indeed π equals the composite

↓ (yi) ⊂ Y
f−→ Ak ⊂ X̃.

At the same time the composite
Ak ⊂ X̃

p−→ X

coincides with the inclusion of Ak into X. Hence the composite

↓ (yi) ⊂ Y
f−→ Ak ⊂ X̃

p−→ X

coincides with the restriction of f to ↓ (yi).
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3.7. Theorem. For every irreducible surjective co-local homeomorphism f : Y // X
from a finite extremally disconnected space Y to a finite T0-space X, the space Y is
homeomorphic to X̃.

Moreover, there exists a homeomorphism h : Y // X̃ such that p ◦ h = f .

Proof. By virtue of Theorem 3.6 there exists h : Y // X̃ and h′ : X̃ // Y such that
p ◦ h = f and f ◦ h′ = p.

As we know [Johnstone, 2002] h′ and h are co-local homeomorphisms, in particular
h(Y ) is a closed subset of X̃. Since p is an irreducible map and p◦h(Y ) = X, we conclude
that h(Y ) = X̃. Similarly h′(X̃) = Y since X̃ and Y are finite spaces, X̃ and Y have the
same cardinalities, so any surjective map between them is bijective. Dually to the well
known fact that any bijective local homeomorphism is a homeomorphism, also clearly
every bijective co-local homeomorphism is a homeomorphism.

We have thus obtained that for every finite T0 topological space X there exists an up
to homeomorphism unique irreducible co-local homeomorphism p : X̃ //X from a finite
extremally disconnected space X̃ onto X.

4. General Case

In this section we present a general construction of the Gleason cover for an arbitrary
topological space as given for example in [Šapiro, 1976].

Let X be topological space and let K be the set of all open ultrafilters on X. In what
follows, by “ultrafilter” we will always mean open ultrafilter, i. e. maximal filter of the
lattice of open sets, if not otherwise stated.

Denote
X̃ = {(ξ, x) ∈ K × X : x ∈

⋂
U∈ξ

U }.

The point (ξ, x) ∈ X̃ will be denoted by ξx. Let us define the natural projection by
πX : X̃ → X, πX(ξx) = x.

For each open set U ∈ τ(X), let OU = {ξx ∈ X̃ | U ∈ ξ}. We note the following main
properties of the sets OU .

a) OU∪V = OU ∪OV

b) OU∩V = OU ∩OV

c) U = V ⇒ OU = OV

The sets OU ∩ π−1
X (H) for all open sets U,H of X form a base for a topology. By

definition, this is the topology on X̃ that we will consider.
Denote: x∈̃F iff x is convergent point of F , i.e. (F, x) ∈ X̃.

4.1. Theorem. Let (Xi)i∈I be a family of topological spaces and for each i let p : X̃i → Xi

be its Gleason cover. Then the Gleason cover of the topological sum
⊕

i∈I Xi is homeo-
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morphic to the topological sum
⊕

i∈I X̃i.

˜
(
⊕
i∈I

Xi) ∼=
⊕
i∈I

X̃i.

Proof. This follows from the following three facts: that a topological sum of extremally
disconnected spaces is extremally disconnected, that a topological sum of closed maps is
closed, and that a topological sum of irreducible maps is irreducible.

4.2. Lemma. Let X be an Alexandroff space. A point x ∈ X is a convergent point of the
ultrafilter F , i. e. x∈̃F , if and only if ↑ x ∈ F .

Proof. Necessity : Suppose ↑ x ∈ F . Then for all U ∈ F we have ↑ x ∩ U ̸= ∅ which
means that x∈̃F .

Sufficiency: Suppose to the contrary that there exists an x∈̃F with ↑ x /∈ F . Then
int(X\ ↑ x) ∈ F since ↑ x ∩ int(X\ ↑ x) = ∅ and F is an ultrafilter. But x∈̃F means
that ↑ x ∩ U ̸= ∅ for all U ∈ F , contradiction.

4.3. Lemma. Let X be an Alexandroff space. A point x ∈ X belongs to an atom A ∈
R(X) of regular closed sets if and only if A ⊆↓↑ x.
Proof. Necessity : Suppose A ⊆↓↑ x. Then int(A) ⊆↓↑ x. Since ↓↑ x is the closure of ↑ x
in the Alexandroff topology, by definition of closure we conclude that any neighborhood
Oy of any y ∈ int(A) has nonempty intersection with ↑ x; in particular because int(A) is
an open neighborhood of y, there exists an y′ ∈ (int(A)∩ ↑ x). Since x ≤ y′ ∈ int(A) we
have x ∈↓ (int(A)) = A.

Sufficiency: Suppose x ∈ A, where A is atom of R(X). Since x ∈ A =↓ int(A), there
exists a z ∈↑ x ∩ int(A). Hence ↑ z ⊂ int(A) and ↓↑ z ⊂↓ (int(A)) = A. Since ↓↑ z
is a regular closed set and A is an atom of regular closed sets, ↓↑ z = A. Thus, since
↓↑ z ⊆↓↑ x, we obtain that A ⊆↓↑ x.

4.4. Lemma. In the space X̃, ηx ≤ ψy holds in the specialization order of its topology iff
both (η = ψ) and (x ≤ y) in the specialization order of X.

Proof. Necessity: If η = ψ and x ≤ y, we have to show that ηx ≤ ψy. It is the same as

to show that ηx ∈ V ⇒ ψy ∈ V , for any open set V of X̃. It suffices to show this when V
is a basic open set, V = OV ′ ∩ π−1

X (H). Then ηx ∈ V implies that (x ∈ H) and (V ′ ∈ η).
Since x ≤ y, we have that y ∈ H and because η = ψ, V ′ ∈ ψ. Thus ψy ∈ V , and we

obtain that ηx ≤ ψy.
Sufficiency: Let us show that, if ηx ∈ V ⇒ ψy ∈ V , for any open V , then η = ψ∧x ≤ y.

In particular the assumption is true for V = OU ∩ π−1
X (H). Thus, if ηx ∈ OU ∩ π−1

X (H)
then ψy ∈ OU ∩ π−1

X (H).
Assume H = X, then U ∈ η implies U ∈ ψ for any U , thus η ⊂ ψ. Since η and ψ are

ultrafilters, we conclude that η = ψ. Hence, for any H we have

(U ∈ η) ∧ (x ∈ H) ⇒ (U ∈ η) ∧ (y ∈ H) ⇒ x ≤ y.
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4.5. Lemma. In an Alexandroff topological space X, a point x ∈ X is convergent point
of no more than finite number of ultrafilters if and only if for any family of points (yj)j∈J
satisfying yj ≥ x and ↑ (yj)∩ ↑ (yk) = ∅ for any j ̸= k, j, k ∈ J , the set J is finite.

Proof. Necessity: Let us suppose to the contrary that x∈̃Fi, i ∈ I, where I is infinite.
Let us show that there is a set J of any finite cardinality such that for any i, j ∈ J yj > x
and ↑ yi∩ ↑ yj = ∅ for i ̸= j.

For F1, F2, there exist U1 ∈ F1, U2 ∈ F2 such that U1 ∩ U2 = ∅. For F1, F2, F3 there
exist U1 ∈ F1, U2 ∈ F2, U3 ∈ F3 such that U1 ∩ U2 = ∅, U1 ∩ U3 = ∅, U2 ∩ U3 = ∅... For
F1, ..., Fj there exist U1 ∈ F1, ..., Uj ∈ Fj such that Uk ∩ Uj = ∅, ∀k, j ∈ J , k ̸= j, for
J = {1, ..., j}. For each Uj, since x ∈ U j, there exists yj ∈ Uj with yj > x; let us fix such
yj ∈ Uj, so that yj > x, j ∈ J and ↑ yi∩ ↑ yj = ∅ for all j, i ∈ J ⊂ I, j ̸= i. Thus for each
natural number j we found pairwise non-intersecting ↑ y1, ..., ↑ yj with y1, ..., yj > x.

Sufficiency: Let us show that for any point x ∈ X, if there is a family yj indexed by
an infinite set J such that yj > x, j ∈ J and ↑ yi∩ ↑ yj = ∅ for all j, i ∈ J with i ̸= j,
then there is an infinite set of ultrafilters for which x is a convergent point.

Indeed: for each yj > x, j ∈ J there exists an ultrafilter Fj such that ↑ yj ∈ Fj. For
all U ∈ Fj, ↑ yj ∩ U ̸= ∅, thus yj ∈↓ U . This implies that x ∈↓ U for all U ∈ Fj, so that
x∈̃Fj.

4.6. Lemma. Let an Alexandroff topological space X be given with an infinite set of
ultrafilters Σ, such that the point x ∈ X is convergent point of each ultrafilter from Σ.
Then X possesses a free (non-principal) ultrafilter with x as a convergent point.

Proof. Suppose Fk ∈ Σ, k ∈ K, where K is infinite. On the set K we have a free
ultrafilter Φ. Consider the filter F̃ = {U | {k | U ∈ Fk} ∈ Φ}. Let us show that F̃ is
an ultrafilter. This means to show that for any open U , F̃ contains U or int(X \ U).
Suppose U /∈ F̃ , which means that SU := {k | U ∈ Fk} /∈ Φ. Since Fk are ultrafilters,
K \ SU = {k | int(X \ U) ∈ Fk} ∈ Φ. This implies int(X \ U) ∈ F̃ .

Now let us show that F̃ is a free ultrafilter. If any of the Fk is non-principal, we are
done. Otherwise for each Fk by virtue of Lemma 3.1 from [Johnstone, 1980] we have a
corresponding ultrafilter on RO(X) which is generated by an atom Ak ∈ RO(X). So
we may assume that each Fk is principal, generated by an atom Ak ∈ RO(X), thus
Fk = {U | int(↓ U) ⊇ Ak}. Suppose F̃ is principal, then there exists an atom A ∈ RO(X)
such that F̃ = {U | int(↓ U) ⊇ A}. Since A ∈ F̃ , we have that I := {i | A ∈ Fi} ⊂ Φ,
and for any i ∈ I, int(↓ A) ⊇ Ai. But A is an atom of RO(X), so there exists at most
one Ai ∈ RO(X) such that int(↓ A) ⊇ Ai.

4.7. Lemma. Let a and b be two elements of Boolean algebra B. If a ∈ η implies b ∈ η
for any ultrafilter η of B, then a ≤ b.

Proof. Let us show equivalently, that if a ̸≤ b then there exists an ultrafilter η such that
a ∈ η and b /∈ η. Indeed, in any Boolean algebra a ̸≤ b if and only if a ∧ ¬b ̸= 0. If
the latter holds, then there exists an ultrafilter η such that a ∧ ¬b ∈ η. Thus a ∈ η and
¬b ∈ η, therefore b /∈ η.
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4.8. Theorem. The Gleason cover of an Alexandroff topological space X is an Alexan-
droff space iff for any point x ∈ X and any family (yk)k∈K with x < yk, k ∈ K such that
↑ yi∩ ↑ yj = ∅, i, j ∈ K, i ̸= j, the set K is finite.

Proof. Necessity: Suppose to the contrary that the Gleason cover of an Alexandroff
topological space X is Alexandroff itself and there exist x ∈ X, x < yk, k ∈ K with
↑ yk∩ ↑ yj = ∅, for k, j ∈ K, k ̸= j, where K is an infinite set. By virtue of Lemma 4.5 x
is a convergent point of an infinite number of ultrafilters. For each yk, k ∈ K there is an
ultrafilter Fk ∋↑ yk, and by Lemma 4.2 x∈̃Fk. By Lemma 4.6 there is a free ultrafilter F̃
with x∈̃F̃ .

Consider the point F̃x of the Gleason cover X̃. Let us show that for all O ∈ τ(X̃)
containing F̃x there exists a proper open subset of O containing F̃x. Indeed, because of the
way the Gleason cover is constructed we may restrict to the case when O = OU ∩π−1

X (H),
where U ∈ F̃ and H =↑ x, as ↑ x is smallest neighbourhood of x. F̃ is a free ultrafilter,
so according to the construction I = {i | U ∈ Fi} ∈ Φ, hence {i | U∩ ↑ yi ̸= ∅} ⊆ I.⋃

i∈I

↑U yi ⊆ U,

where ↑U yi =↑ y ∩ U . Let us denote U ′ =
⋃

k∈I′ ↑U yk, where I ′ ⊂ I is such that I ′

and I \ I ′ are infinite sets, and let U ′′ be defined similarly with I ′′ = I \ I ′ in place of I ′.
Obviously U ′, U ′′ ⊆↑ x. U ′ ∩ U ′′ = ∅ since ↑ yi∩ ↑ yj = ∅ for all i, j ∈ I with i ̸= j.
Since F̃ is an ultrafilter, U ′ ∈ F̃ or U ′′ ∈ F̃ . Without loss of generality let us assume
that U ′ /∈ F̃ . Take some ultrafilter ψ such that U ′ ∈ ψ. Then x is convergent point of
ψ since x ≤ yi for all i ∈ I ′. Therefore ψx ∈ O. Because F̃ is an ultrafilter different
from |psi, there exists V ∈ F̃ such that V /∈ ψ. Let us denote U ′′′ = V ∩ U ′′. Then
F̃x ∈ OU ′′′ ∩ π−1

X (H) ⊂ OU ∩ π−1
X (H) and ψx /∈ OU ′′′ ∩ π−1

X (H), so we get a contradiction.
Sufficiency: Suppose that for any x ∈ X, whenever yk > x for k ∈ K and ↑ yi∩ ↑

yj = ∅ for all i, j ∈ K with i ̸= j, the set K is finite.
By Lemma 4.5 x is convergent point of only a finite number of ultrafilters. Let us

show that for any ultrafilter η, where x∈̃η, for the point ηx of X̃ there exists a smallest
neighborhood. Indeed because x is convergent point of only a finite number of ultrafilters,
for each ultrafilter ψ ̸= η, where x∈̃ψ, there exists U ∈ η such that U /∈ ψ. Consider
the intersection of all such open sets U and denote it by U0. Because the number of
such sets U is finite, U0 is an open set. Moreover U0 ∈ η, and U0 does not belong
to any other ultrafilter ψ with x∈̃ψ. Since by Lemma 4.5 ↑ x ∈ η and U0 ∈ η, also
↑ x ∩ U0 ∈ η. Consider O↑x∩U0 ∩ π−1

X (↑ x). Obviously ηx ∈ O↑x∩U0 ∩ π−1
X (↑ x). Let us

show that O↑x∩U0 ∩ π−1
X (↑ x) is the required smallest neighborhood of ηx. Clearly for this

it suffices to show that for any ξy ∈ O↑x∩U0 ∩ π−1
X (↑ x) we have ηx ≤ ξy. Indeed ξy ∈ X̃

means y∈̃ξ, ξy ∈ O↑x∩U0 implies ↑ x ∩ U0 ∈ ξ, and ξy ∈ π−1
X (↑ x) implies y ≥ x. Now

y∈̃ξ and y ≥ x together imply x∈̃ξ, and since U0 does not belong to any other ultrafilter
whose convergent point is x, it follows that ξ = η. Thus indeed ηx ≤ ηy = ξy.

4.9. Corollary. If the Gleason cover πX : X̃ //X of an Alexandroff topological space
X is an Alexandroff space, then the inverse image of any point x ∈ X under πX is finite.
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Proof. X is an Alexandroff topological space and X̃ is Alexandroff too, thus Theorem
4.8 and Lemma 4.5 imply that every x ∈ X is convergent point of only a finite number
ultrafilters. From the construction of πX : X̃ → X, x is the πX-image of ηx, where η is an
ultrafilter of X with x∈̃η. The number of such points in X̃ is finite, and the πX-inverse
image of x is exactly this set which is finite.

4.10. Corollary. If the set of regular open sets RO(X) of an Alexandroff topological
space X is finite, then its Gleason cover is Alexandroff.

Proof. Proof follows from Theorem 4.8.

4.11. Definition. Call an open ultrafilter F regularly principal if there is a regular open
UF ∈ F such that for any open U , U ∈ F if and only if UF ⊆ int(U).

4.12. Proposition. If the Gleason cover of an Alexandroff topological space X is an
Alexandroff space then for any point Fx ∈ X̃, F is a regularly principal ultrafilter.

Proof. Consider the point F̃x of the Gleason cover X̃. Since X̃ is an Alexandroff space,
F̃x has the smallest neighbourhood. Let O be the smallest neighbourhood of F̃x. Since
each open set is a union of basic open sets, O must be a basic open set. By construction
of the base for X̃ we may assume that O = OU ∩ π−1

X (↑ x). That O is the smallest
neighbourhood of F̃x means the following: for any F̃x ∈ OU ′ ∩π−1

X (H) we have OU ∩π−1
X (↑

x) ⊆ OU ′ ∩ π−1
X (H). Recall that F̃x ∈ OU ∩ π−1

X (H) means that U ∈ F and x ∈ H,
and take for U the open set U0 as constructed in the proof of Theorem 4.8 for F̃ . Thus,
↑ x ⊆ H and F̃x ∈ OU0 ∩ π−1

X (↑ x) ⊆ OU0 ∩ π−1
X (H), hence the smallest neighbourhood of

F̃x is OU0 ∩ π−1
X (↑ x).

Let us note that x is convergent point of F̃ and by virtue of Lemma 4.2, ↑ x ∈ F̃ . Since
U0 ∈ F̃ , it follows that U0∩ ↑ x ∈ F̃ . Hence F̃x ∈ OU0∩↑x ∩ π−1

X (↑ x). Since OU0∩↑x ⊆ OU0 ,
in fact the smallest neighbourhood of F̃x is OU0∩↑x ∩ π−1

X (↑ x).
Let us show that the ultrafilter F̃ is regularly principal. Consider UF̃ = intU0∩ ↑ x.

Obviously UF̃ is a regular open set. Let us show that U ∈ F̃ iff UF̃ ⊆ U for any
open U . Suppose to the contrary that there exists U ′ ∈ F̃ such that UF̃ ̸⊆ U ′. Then
intU0∩ ↑ x ̸⊆ U ′, which implies U0∩ ↑ x ̸⊆ U ′, hence we can take x′ ∈ (U0∩ ↑ x)\U ′.
Obviously ↑ x′ ⊆ U0∩ ↑ x and moreover ↑ x′ ∩ U ′ = ∅ since U ′ is downset. Since U ′ ∈ F̃
and ↑ x′ ∩U ′ = ∅, it follows that ↑ x′ /∈ F̃ , so that there exists an ultrafilter F ′ ̸= F̃ such
that ↑ x′ ∈ F ′ and as x ≤ x′, x∈̃F ′. Then by construction of U0 we will have U0 /∈ F ′, so,
since ↑ x′ ∈ F ′ we must have ↑ x′ ∩ U0 = ∅, contradicting x′ ∈ U0∩ ↑ x.

4.13. Theorem. The Gleason cover of an Alexandroff topological space X is an Alexan-
droff space if and only if for any x ∈ X and for any infinite antichain S ⊆↑ x there exist
y1, y2 ∈ S such that ↑ y1∩ ↑ y2 ̸= ∅.
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Proof. Necessity: By hypothesis for any x ∈ X and for any family (yk)k∈K such that
x ≤ yk for all k ∈ K and ↑ yi∩ ↑ yj = ∅ for i, j ∈ K with i ̸= j the set K is finite.
Therefore the conditions of Theorem 4.8 are satisfied.

Sufficiency: Let us suppose that the Gleason cover of X is an Alexandroff space, and
for x ∈ X let S ⊂ X be an antichain such that x ≤ y for all y ∈ S. If in S there exists
a family (yi)i∈I with infinite I, such that ↑ yi∩ ↑ yj = ∅ for any i, j ∈ I with i ̸= j, then
we will get contradiction by Theorem 4.8.

4.14. Lemma. Let X be an Alexandroff topological space. For any point x ∈ X and
for any atom A ∈ R(X) of the algebra of regular closed sets of X, x ∈ A iff for any
neighbourhood Ox of x, we have A ⊂ Ox .

Proof. Necessity: If x ∈ A then for any neighbourhood Ox of x we have A ∩ Ox ̸= ∅
and as A is an atom and Ox is a regular closed set, A ∩Ox = A, hence A ⊂ Ox.

Sufficiency: Given any neighborhood Ox of x, then A ⊆ Ox means that any neigh-
borhood of any point of A meets Ox. Since A is regular, int(A) is nonempty, hence
int(A)∩Ox ̸= ∅, thus also A∩Ox ̸= ∅. Since A is a closed set and Ox is any neighbour-
hood of x, we conclude that x ∈ A.

4.15. Theorem. The Gleason cover of an Alexandroff topological space X is an Alexan-
droff space iff for any x ∈ X we have ↓↑ x =

⋃
k∈K Ak, where Ak ∈ R(X) are atoms of

the Boolean algebra R(X) and the set K is finite.

Proof. Necessity: Suppose that for any x ∈ X we have ↓↑ x =
⋃

k∈K Ak, each Ak an
atom of R(X), and K ̸= ∅ is finite.

Let us suppose there exists a family of points (yj)j∈J such that J is infinite, yj ≥ x
for j ∈ J and ↑ yj∩ ↑ yk = ∅ for j, k ∈ J with j ̸= k. Let y1 be one of these yj. Since
↓↑ y1 ⊂↓↑ x =

⋃
k∈K Ak, for this point y1 choose a subset K1 ⊂ K such that Ak ⊂↓↑ y1

for k ∈ K1. Then
⋃

k∈K1
Ak =↓↑ y1 since otherwise, ↓↑ y1 also being finite union of atoms

of R(X), there will exists an atom of regular closed sets Ã ∈ R(X) such that y1 ∈ Ã and
Ã ̸⊂

⋃
k∈K1

Ak ⊂
⋃

k∈K Ak =↑↓ x; but as x ≤ y and y ∈ Ã is closed, we would have x ∈ Ã,
contradiction.

Now consider y2 ∈ (yj)j∈J , y2 ̸= y1. Then there is a K2 ⊂ K \K1 such that ↓↑ y2 =⋃
k∈K2

Ak, as ↑ y1∩ ↑ y2 = ∅ clearly implies that y2 /∈ Ak for any k ∈ K1. In general for
integer k, let yk ∈ (yj)j∈J and Kk ⊂ K \ (K1 ∪K2 ∪ · · · ∪Kk−1).

This process will terminate as K is finite, thus there exists n such that

K \ (K1 ∪K2 ∪ · · · ∪Kn) = ∅.

But since J is infinite, there exists at least one point yn+1 such that x ≤ yn+1 but
yn+1 /∈

⋃
k∈KAk, which leads to contradiction. Therefore, any family of points (yj)j∈J

such that ∀j ∈ J , yj ≥ x and ↑ yj∩ ↑ yk = ∅ for all j, k ∈ J with j ̸= k must be
necessarily finite.

Therefore by Theorem 4.8, Gleason cover of X is an Alexandroff space.
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Sufficiency: By Theorem 4.8, for all x ∈ X, if x < yk, k ∈ K and ↑ yk∩ ↑ yj = ∅ for
all k, j ∈ K with k ̸= j then K is finite. Let us take a maximal such K.

Denote Ak =↓↑ yk, and let us show that for all k ∈ K the set Ak is an atom of
R(X). Suppose to the contrary that for some k ∈ K there exist A′, A′′ ∈ R(X) such
that, A′ ̸= Ak, A′′ ̸= Ak and Ak = A′ ∪ A′′. Thus ↓↑ yk = A′ ∪ A′′, and there exist
points z1 ∈ A′ \ A′′, z2 ∈ A′′ \ A′. Obviously x ≤ z1, z2 and ↑ z1∩ ↑ z2 = ∅, as well as
↑ z1∩ ↑ yi =↑ z2∩ ↑ yi = ∅ where i ∈ K \ {k}. It follows that we can add to K either z1
or z2, or both, contradiction.

Now let us show that Ak, k ∈ K is the only maximal family which satisfies the required
conditions. Suppose to the contrary that there exists A ⊆↓↑ x, A ∈ R(X) and A ̸= Ak

for all k ∈ K. Then there exists y ∈ A such that y /∈ Ak for all k ∈ K, which gives
↑ y∩ ↑ yk = ∅.

Remark: In Theorem 4.15 each atom Ak is such that x ∈ Ak.

4.16. Corollary.The Gleason cover of an Alexandroff topological space X is an Alexan-
droff space iff for any x ∈ X the set of atoms A ∈ R(X) such that x ∈ A is non-empty
and finite.

Proof. The proof depends on the following well known fact:
Let B be Boolean algebra and at(B) be the set of atoms of B. If b ∈ B is the join of

a finite set A ⊆ at(B) of atoms of B, then this set A necessarily coincides with the set
A(b) = {a ∈ at(B) | a ≤ b} of all atoms below b.

4.17. Lemma. Let X be an Alexandroff space. If the Gleason cover of X is an Alexandroff
space then R(X) is atomic.

Proof. Let us show that for any R ∈ R(X) there exists an atom A of R(X) such that
A ⊆ R. Consider any point x ∈ int(R) (since R is a regular closed set, its interior is not
empty). Thus ↑ x ⊆ int(R), hence ↓↑ x ⊆↓ int(R) = R. By virtue of Theorem 4.15 there
exists an atom A of R(X) such that x ∈ A. Lemma 4.3 gives A ⊆↓↑ x ⊆ R, therefore
A ⊆ R.

4.18. Lemma. Suppose X is an Alexandroff extremally disconnected space, then X =⊕
Ai, where Ai are atoms of R(X).

Proof. Extremal disconnectedness of X implies that each A ∈ R(X) is clopen, because
int(A) = int(A) = A and int(A) is an open set. Moreover each connected clopen is an
atom of R(X). Hence each connected component of X is an atom of R(X).

4.19. Theorem. If a Gleason cover of an Alexandroff topological space X is Alexandroff
itself, then the Gleason cover of X is the topological sum of atoms of the complete Boolean
algebra of regular closed sets of X,

X̃ =
⊕

A∈atR(X)

A
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Proof. Let us show that for any ultrafilter F the set {Fx ∈ X̃ | x∈̃F} is clopen in X̃. It
is equivalent to show that each set ↓↑ {Fx} is clopen in X̃. Thus we have to show that
↓↑ Fx is open. Indeed if there exists ηx′ ∈ X̃ such that ηx′ ≥ Fy ∈↓↑ Fx for some y, then
by virtue of Lemma 4.4 η = F and x′∈̃F , hence ηx′ = Fx′ ∈↓↑ Fx.

Consider any point Fx ∈ X̃. By construction of X̃ we have that x∈̃F iff x ∈ U for all
U ∈ F . Since X̃ is Alexandroff, by virtue of Proposition 4.12 F is a regularly principal
ultrafilter. Thus there exists a regular open set UF ∈ F such that UF ⊆ intU for all
U ∈ F .

Consider A = UF ∋ x, and let us show that it is a regular closed atom. It is clear
that A is regular closed. Suppose that A is not an atom. Then there exists a nonempty
regular closed set A′ such that A′ ⊂ A = UF and A′ ̸= A. Since UF is regular open,
int(A′) ⊆ UF . Moreover int(A′) ∈ F . Indeed, for any U ∈ F we have int(A′) ⊆ UF ⊆ intU
hence int(A′) ⊂ U , hence int(A′) ∩ U ̸= ∅. Since F is an ultrafilter, this implies that
int(A′) ∈ F . By regular principality of F we conclude that UF ⊆ intint(A′) = int(A′) ⊆ A′

hence UF ⊆ int(A′) = A′, which implies A′ = UF = A.
Therefore, for each ultrafilter F of X there exists unique regular closed atom AF , such

that for all U ∈ F , AF ⊆ U . Hence for each x∈̃F we have x ∈ A and conversely, if x ∈ AF

then x∈̃F . Thus {Fx ∈ X̃ | x∈̃F} = AF . By Lemma 4.2 for any x∈̃F we have ↑ x ∈ F ,
hence for any x′∈̃F x′ ∈↓↑ x, thus ↓↑ Fx = AF .

Thus, we get

X̃ =
⊕
F∈F

↓↑ Fx =
⊕

A∈atR(X)

A

where F is the set of those ultrafilters F on X for which there exists an x ∈ X with
x∈̃F .

4.20. Theorem. For the Gleason cover πX : X̃ → X of an Alexandroff space X which
satisfies conditions of Theorem 4.8, the map πX is a co-local homeomorphism.

Proof. Take any point ηx ∈ X̃. By construction of X̃, η is one of the ultrafilters on X and
x is one of the convergent points of η. Let us show that |piX maps ↓ ηx homeomorphically
onto ↓ x.

Indeed, for any y ≤ x, if x ∈↓ U then y ∈↓ U , hence y∈̃η and ηy ≤ ηx and vice versa
because of Lemma 4.4.

Because of construction of the function πX , its restriction to ↓ ηx obviously is a map
onto ↓ x. For any ηy1 , ηy2 ≤ ηx, πX(ηy1) = y1 ̸= y2 = πX(ηy2), i. e. this restriction is
injection and therefore bijection.

From construction of topology on the X̃ and the function πX for any ηy ≤ ηx, πX(↓
ηy) =↓ y. Hence each restriction πX |↓ηx is a homeomorphism.

4.21. Proposition. Suppose X is an Alexandroff extremally disconnected space, then
each atom A of R(X) is a maximal ideal of X as a poset.
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Proof. Let us consider any atom A ∈ R(X), and show that it is a maximal ideal.
Obviously A ̸= ∅, A is a closed set, therefore A is a downset. Let us show that for any
x, y ∈ A such that x ̸= y there exists z ∈ A such that x, y ≤ z. Indeed, if not then
↑ x∩ ↑ y = ∅, hence also ↓↑ x∩ ↑ y = ∅, so that ↓↑ x would be a regularly closed proper
subset of A, thus A would not be an atom.

Let us now show that A is maximal. If not, then there exists an ideal J such that
A ⊆ J , x ∈ J and x /∈ A. For any x′ ∈ A there exists y ∈ J such that x′, x ≤ y. But
since X is extremally disconnected and A ∈ R(X), A must be clopen, which contradicts
x′ ∈ A, y /∈ A and x′ ≤ y.

4.22. Theorem. Suppose we have Gleason cover πX : X̃ → X , where X is an Alexan-
droff topological space which satisfies the conditions of Theorem 4.8. For any continuous
map f : Y → X with Y extremally disconnected Alexandroff there exists a continuous
map π : Y → X̃ such that πX ◦ π = f .

Proof. According to Proposition 2.12 the space Y is disjoint topological sum of its
connected components, and by virtue of Lemma 4.18 each component is an atom in the
algebra of regularly closed sets of Y . For any point y ∈ Y obviously there exists a
component C ⊂ Y with y ∈ C, therefore for any y1, y2 ∈ C such that y ≤ y1, y2 there
exists z ∈ C such that y1, y2 ≤ z.

For a point y ∈ Y let us show that in X there exists a regularly closed atom A ∈ R(X)
such that f(↑ y) ⊆ A.

Indeed, suppose to the contrary that f(↑ y) ⊂
⋃

i∈I Ai and for any i ∈ I, f(↑ y) ̸⊂ Ai,
f(↑ y) ∩ Ai ̸= ∅ and each Ai is an atom of R(X). Let us consider any two of them
Aj, Ak. There exist yj, yk ≥ y such that f(yj) ∈ Aj, f(yk) ∈ Ak and f(yj) /∈

⋃
i∈I\j Ai,

f(yk) /∈
⋃

i∈I\k Ai. In the component of y there exists z ∈ Y such that yj, yk ≤ z, hence

because of continuity of f , f(yj), f(yk) ≤ f(z), so f(z) /∈
⋃

i∈I\k Ai and f(z) /∈
⋃

i∈I\j Ai,

i. e. f(z) /∈
⋃

i∈I Ai, which contradicts f(↑ y) ⊂
⋃

i∈I Ai.
Thus there indeed exists an atom A ∈ R(X) such that f(↑ y) ∈ A. Since f is

continuous and A is closed, we conclude f(↓↑ y) ⊆↓ f(↑ y) ⊆ A.
Any atom A of R(X) generates ultrafilter on R(X), and by virtue of lemma 3.1 from

[Johnstone, 1980] to this ultrafilter corresponds an open ultrafilter ηA = {U | A ⊆ int(↓
U)}. Let us denote Ã = {(ηA)x | x∈̃ηA}. Let us define function π as follows: π(y) is the
unique element of π−1

X (f(y)) ∩ Ã. Hence for each y ∈ Y we have π(y) = (ηA)f(y).
To show monotonicity of the function π, note that for any two points y1, y2 ∈ Y such

that y1 ≤ y2 we have f(y1) ≤ f(y2), hence π(y1) = (ηA)f(y1) ≤ (ηA)f(y2) = π(y2).
Obviously for any point y ∈ Y we have πX(π(y)) = πX((ηA)f(y)) = f(y).

5. Examples

5.1. Example. Any finite topological space X will satisfy conditions of Theorem 4.8,
hence its Gleason cover will be Alexandroff space too.
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5.2. Example. Condition of Corollary 4.10 (that there are only finitely many regular
opens) is sufficient but not necessary for the Gleason cover of an Alexandroff space to
be Alexandroff, as the following example shows. Let P = N, the set of natural numbers,
be ordered as follows: 1 ≤ 3 ≤ 5 ≤ 7 ≤ ... and 1 ≤ 2 ≤ 4 ≤ 6 ≤ .... The topology
corresponding to this order defines the Alexandroff topological space τ(P ). Let us consider
the topological sum

⊕
i∈I τ(Pi), where I is an infinite set of indices and each τ(Pi) is a

copy of the Alexandroff space which we defined above. This topological space obviously
is an Alexandroff topological space and will satisfy Theorem 4.8, therefore its Gleason
cover will also be Alexandroff.

If an Alexandroff space has finitely many regularly closed sets, then by Corollary 26.2
its Gleason cover is Alexandroff. Moreover if an Alexandroff space is a topological sum of
Alexandroff spaces with finitely many regularly closed sets, then its Gleason cover will be
Alexandroff by combining Theorem 4.1 and Corollary 4.10. The following example shows
that there also are Alexandroff spaces which do not satisfy the above conditions but their
Gleason covers are still Alexandroff.

5.3. Example. Let P = N, the set of natural numbers, be ordered as follows: ∀n ∈ N,
2n > 2n−1, 2n+1. This topological space is an Alexandroff topological space and satisfies
the conditions of Theorem 4.8, therefore its Gleason cover will also be Alexandroff.

5.4. Example. There are Alexandroff spaces of finite height whose Gleason covers are not
Alexandroff. Let P = N ∪ {∗} be the set of natural numbers with one more point added.
Let us define a topology on P with the following open sets: τ(P ) = {U | U ⊆ N∨U = P}.
Let us note that (P, τ) is an Alexandroff topological space. The topological space (P, τ)
does not satisfy conditions of Theorem 4.8, hence its Gleason cover will not be Alexandroff.

5.5. Example. The previous example had infinite branching, i. e. there was a point
with infinitely many immediate successors. The following is an example of an Alexandroff
space with finite branching whose Gleason cover is not Alexandroff.

Let P = N, the set of natural numbers, be ordered as follows: each even number
is a maximal point, thus for any x ∈ N if x = 2k then ∀y ∈ N if x ≤ y then x = y.
Moreover for odd numbers there let us have natural ordering. Thus 1 ≤ 2, 3, 4, 5, ...,
3 ≤ 4, 5, 6, 7..., 5 ≤ 6, 7, 8, 9, 10... and so on. The topology given from this order is an
Alexandroff topology. The resulting topological space (P, τ) will not satisfy conditions of
Theorem 4.8, therefore its Gleason cover will not be Alexandroff.

In the illustrations below for these examples, red arrows indicate maps, and blue lines
describe ordering.
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