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PRESENTATIONS FOR GLOBULAR OPERADS

RHIANNON GRIFFITHS

Abstract. In this paper we develop the theory of presentations for globular oper-
ads and construct presentations for the globular operads corresponding to several key
theories of n-category for n ⩽ 4.

1. Introduction

Operads are tools that have been used to describe a wide variety of algebraic structures.
They first arose as a way to understand operations on k-fold loop spaces in homotopy
theory [14], but the idea has since been adapted and applied across many areas of math-
ematics; see, for example, [7], [13], or [15]. Each type of operad describes a class of
algebraic theories, and a specified operad of said type concisely encodes one such theory
into a single object.

Globular operads are a kind of operad whose algebras share a strong formal similarity
with higher categories. This approach to higher categories has been worked on extensively
by Michael Batanin and by Tom Leinster, who defined fully weak n-categories as algebras
for a specified globular operad [3], [10]. Yet the current literature offers no way to find
the globular operad corresponding to a given notion of higher category, nor a proof that
such an operad must exist.

In this paper we define presentations for globular operads and demonstrate how these
presentations provide a way to explicitly construct the globular operad corresponding to
any algebraic notion of higher category. The underlying idea is the same as in presenta-
tions for simpler objects like groups or rings; we describe an algebraic structure, in this
case a globular operad, by specifying a set of generators and a set of relations between
them. In particular, we show how to construct a presentation for a globular operad in
such a way that generators correspond to the kinds of composition operations and coher-
ence cells present in the associated higher categories, and the relations correspond to the
axioms.

Additionally, we show that a presentation can be built in such a way that the coherence
theorem for the associated higher categories is satisfied automatically; see Section 5 for
a discussion of the coherence theorem. The highest dimension for which there exists a
hands-on definition of a fully weak algebraic n-category together with a proven coherence
theorem is n = 3; these are the tricategories of Nick Gurski [6]. In the final section of this
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paper, we give a presentation for the globular operad for fully weak 4-categories satisfying
the coherence theorem.

While this method of using operads to build concrete models for algebraic higher
categories has many potential applications, this work is done with a specific application
in mind. In a preprint of Michael Batanin [2], he conjectures that it should possible to take
‘slices’ of globular operads. The kth slice was said to be the symmetric operad obtained
by considering only the k-dimensional data. Thus, given a globular operad equivalent to
some notion of higher category, the slices would isolate the algebraic structure of those
higher categories in each dimension.

However, due to the gaps in knowledge surrounding globular operads at the time, it
was not possible to formulate a definition of slices. As a first application of presentations,
we will show in the follow up paper [4] that given a presentation P for a globular operad
G, there exists a symmetric operad determined by the k-dimensional data of P ; this
symmetric operad is the kth slice of G. Following this, we use slices to formally construct
the string and surface diagrams arising from several key theories of higher category and
show that, up to isomorphism, the slices do not depend on the choice of presentation.

Batanin also hypothesised that slices could tell us when one theory of higher category
is equivalent to another. This is significant because fully weak higher categories are often
the most useful for applications to areas such as algebraic topology and homotopy theory,
but become too complex for practical use in dimensions greater than 2. A solution is to
find a notion of semi-strict higher category that is just weak enough to be equivalent to
the fully weak variety, while still being tractable enough to work with directly. In Section
9 of this paper, we construct presentations for the globular operads for two different
theories of semi-strict 4-category. The first of these are 4-categories with weak units
in low dimensions, and the second are 4-categories with weak interchange laws. In [4]
we show that both are equivalent to fully weak 4-categories by studying the geometric
properties and graphical calculi of the associated surface diagrams. It is likely that using
the language of presentations, these results can be generalised to dimensions greater than
4.

1.1. Organisation of this paper. In Section 2 we describe the free strict higher
category monads used to define globular operads, which are covered in detail in Section
3. In Section 4 we define the category of algebras for a globular operad, and highlight
the similarites between these algebras and higher categories. In Section 5 we discuss
contractiblity, and show that contractible globular operads are precisely those operads
whose algebras satisfy the required properties of composition and coherence for higher
categories. Presentations are defined in Section 6, followed by an example of a presentation
for the globular operad for strict 2-categories. In Section 7 we construct presentations for
the globular operads for weak unbiased higher categories, which are used in Section 8 to
identify precisely when a globular operad is equivalent to some theory of higher category.
The final section is devoted to constructing presentations for the globular operads for
several key theories of n-category for n ⩽ 4; we first cover fully weak 4-categories, before
moving on to n-categories with weak units in low dimensions and n-categories with weak
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interchange laws, respectively.

Acknowledgements. I would like to thank my advisor Nick Gurski for his exceptional
guidance and support throughout the writing of this paper. I am also grateful to Michael
Batanin and Richard Garner for conversations related to this project, as well as the anony-
mous referee whose comments greatly improved the readability of this paper. Finally, the
material in this paper also appears in my PhD thesis [5].

2. The free strict higher category monads

This paper concerns algebraic1 notions of higher category for which the underlying graph
data is a globular set (in the case of ω-categories), or an n-globular set (in the case of
n-categories). There are other definitions of higher category for which the underlying data
is given by a more complex structure, opetopic and simplicial definitions for example, but
we will not study these here. We begin by defining strict higher categories in terms of
monads on categories of globular sets.

2.1. Definition. A globular set G is a diagram

G0G1G2
...

s

t

s

t

s

t

in Set satisfying ss = st and ts = tt ∶ Gn+2 Ð→ Gn for all n ∈ N.
We refer to the elements of Gn as the n-cells of G, and to s and t as the source and

target maps, respectively. An n-cell of a globular set may be represented diagrammatically
using its source and target k-cells for all k < n. For example, a 2-cell χ with s(χ) = x,
t(χ) = x′, ss(χ) = st(χ) =X and ts(χ) = tt(χ) = Y is represented

X Y .⇓ χ

x

x′

2.2. Definition. A morphism f ∶ G Ð→H of globular sets is a collection {fn ∶ Gn Ð→
Hn}n∈N of functions preserving the sources and targets.

2.3. Remark. Note that the category GSet of globular sets is the presheaf category
[Gop,Set], where G is generated by the graph

...210
s

t

s

t

s

t

subject to the equations ss = ts and st = tt.
1By an algebraic notion of higher category we mean a notion of higher category for which composition

and its associated coherence are given by specified operations satisfying equational axioms.
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2.4. Definition. The free strict ω-category functor (−)∗ ∶ GSet Ð→ Str ω-Cat is the
left adjoint to the canonical forgetful functor U ∶ Str ω-CatÐ→GSet from the category
of strict ω-categories; see [10, Appendix F].

The free strict ω-category G∗ on a globular set G is the ω-category whose n-cells
are n-pasting diagrams in G and whose composition is concatenation along matching
boundary cells. For instance, the 2-pasting diagrams

X Y Z U

x

x′′′

⇓ χ′
⇓ χ

⇓ χ′′

y

z

z′′

⇓ ζ

⇓ ζ ′

X Y Z U
x′′′

y

y′′

⇓ ψ

⇓ ψ′

z′′

z′′′

⇓ ζ ′′

in G are both 2-cells of G∗ whose vertical composite is the 2-cell below.

X Y Z U

x

x′′′

⇓ χ′
⇓ χ

⇓ χ′′

y

y′′

⇓ ψ

⇓ ψ′

z

z′′′

⇓ ζ ′
⇓ ζ

⇓ ζ ′′

Here it is understood that χ,χ′, χ′′, ψ,ψ′, ζ, ζ ′ and ζ ′′ are all 2-cells of G.

2.5. Definition. A degenerate n-pasting diagram in a globular set G is an n-pasting
diagram which does not contain any n-cells of G.

2.6. Examples. The following 2-pasting diagrams are both degenerate.

X Y Z UX
x y z

2.7. Remark. Each k-pasting diagram in a globular setGmay be viewed as a degenerate
n-pasting diagram for any n > k. However, the sets G∗k and G∗n of k-cells of G∗ and n-
cells of G∗, respectively, are disjoint. In other words, a degenerate n-pasting diagram
is distinct from its corresponding (n − 1)-pasting diagram. Note that the degenerate
n-pasting diagrams in G are the identity n-cells of G∗.
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2.8. Definition. Let n be natural number. The n-ball Bn is the globular set

{0,1}...{0,1}{★}∅∅...
0

1

0

1

0

1

consisting of a single n-cell. Here the arrows labelled 0 and 1 represent the constant
functions.

2.9. Definition. A simple n-pasting diagram in a globular set G is the image of a
morphism Bn Ð→G of globular sets.

2.10. Examples. Every 0-pasting diagram is simple, and the pasting diagrams below
are simple 1-, 2- and 3-pasting diagrams, respectively.

X Y
x

X Y⇓ χ

x

x′

X Y

x

x′

χ χ̃Λ⇛

2.11. Definition. The free strict ω-category monad (−)∗ = ((−)∗, η, µ) on GSet is the
monad arising from the adjunction (−)∗ ⊣ U ∶ Str ω-CatÐ→GSet.

2.12. Notation. We denote by (−)∗-Alg the category of algebras for the monad (−)∗.
It is shown in [10, Appendix F] that the forgetful functor U ∶ Str ω-Cat Ð→ GSet is

monadic, so the free-forgetful adjunctions

GSet Str ω-Cat⊥ GSet (−)∗-Alg⊥

are equivalent. In fact, a (−)∗-algebra structure on a globular set G is precisely a strict
ω-category with underlying globular set G, and a morphism of (−)∗-algebras is precisely
a strict ω-functor. This can be seen by unpacking the definitions:

2.13. Unpacked Definition. An algebra for (−)∗ is a morphism θ ∶ G∗ Ð→ G of
globular sets satisfying unit and multiplication axioms. Each θn composes n-pasting
diagrams in G into single n-cells of G in a way that is consistent with the sources and
targets.

X Y Z U

x

x′′′

⇓ χ′
⇓ χ

⇓ χ′′

y

z

z′′

⇓ ζ

⇓ ζ ′
X U⇓ θ2(χ,χ′, χ′′, y, ζ, ζ ′)

θ1(x, y, z)

θ1(x′′′, y, z′′)

θ2
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Note that θ0 is the identity function on 0-cells; this follows from the unit axiom, which
says that θn sends simple n-pasting diagrams in G to the corresponding n-cell of G.
The binary composition operations on n-cells present in an ω-category are the result of
applying θn to n-pasting diagrams consisting of a single pair of n-cells sharing a k-cell
boundary. This is demonstrated by the examples below.

X Y Z
x y

X Z
xyθ1

ZYX ⇓ χ ⇓ ψ

x

x′

y

y′

X Z⇓ χ ∗ ψ

xy

x′y′

θ2

YX
⇓ χ

⇓ χ′

x

x′′

X Y⇓ χ ⋅ χ′

x

x′′

θ2

The images of degenerate n-pasting diagrams (Definition 2.5) under θn are the identity
n-cells.

X X X
1Xθ1

X X X⇓ 11X

1X

1X

θ2

ZYX
x y

X Z⇓ 1xy

xy

xy

θ2

The algebra structure map θ therefore equips G with the data of a strict ω-category. The
multiplication axiom is equivalent to the axioms for a strict ω-category; it says that given
any n-pasting diagram in G there is exactly one way to compose it into a single n-cell.
For instance, given a 1-pasting diagram (x, y, z) we have

x(yz) = θ1(θ1(x), θ1(y, z)) = θ1(x, y, z) = θ1(θ1(x, y), θ1(z)) = (xy)z

so 1-cell composition satisfies the associativity axiom. The third and fourth equalities in
the expression above are instances of the multiplication axiom, and the second and fifth
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equations are given by the unit axiom. As another example, given a simple 1-pasting
diagram (x) in G the multiplication axiom yields the following equalities,

1Xx = θ1(1X , x) = θ1(θ1(X), θ1(x)) = θ1(x) = x

x1Y = θ1(x,1Y ) = θ1(θ1(x), θ1(Y )) = θ1(x) = x

so composition of 1-cells satisfies the identity axioms.

2.14. Unpacked Definition. A morphism f ∶ (G, θ) Ð→ (H , σ) of algebras for (−)∗ is
a morphism f ∶GÐ→H of the underlying globular sets such that the following diagram
commutes.

G∗ H∗

G H

f∗

θ

f

σ

This means that a morphism of (−)∗-algebras is a collection of functions {fn ∶ Gn Ð→
Hn}n∈N strictly preserving sources, targets, and the composition of pasting diagrams.
Such a morphism is precisely a strict ω-functor.

The free strict n-category monad, which by abuse of notation we also denote by (−)∗,
is defined analogoulsy; we just replace globular sets with n-globular sets:

2.15. Definition.The category GSetn of n-globular sets is the presheaf category [Gn,Set],
where Gn is generated by the graph

n...10
s

t

s

t

s

t

subject to the equations ss = ts and st = tt.

In keeping with the infinite dimensional case, a (−)∗-algebra on an n-globular set Gn

is precisely a strict n-category with underlying n-globular set Gn, and a morphism of
(−)∗-algebras is precisely a strict n-functor.

3. Globular operads

Having seen how to define strict higher categories in terms of monads on GSet and
GSetn, we would like a similar way to define weaker varieties of higher category. This
can be done using (n-)globular operads, which are defined using the free strict higher
category monads.
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3.1. Notation.We denote by 1 the terminal globular set given by the following diagram
in Set.

{★}{★}{★}...

The n-cells of 1∗ are n-pasting diagrams in 1; observe that there is no need to label
the individual cells within these pasting diagrams since each k-cell represents the single
k-cell of 1. A typical 2-cell π of 1∗ is illustrated below.

⋅ ⋅ ⋅ ⋅π = ⇓
⇓

⇓

⇓

⇓

We may think of the n-cells of 1∗ as the collection of possible shapes of n-pasting diagrams
in a globular set.

3.2. Notation. Since the source and target (n−1)-cells of each n-cell of 1∗ are equal,
we write ∂ rather than s or t when we want to refer to the source or target of a cell. For
example, given the 2-cell π of 1∗ depicted above, ∂π denotes the following 1-cell of 1∗.

⋅ ⋅ ⋅ ⋅∂π =

3.3. Definition.The category GColl of globular collections is the slice categoryGSet/1∗.

3.4. Definition. The functor ○ ∶ GColl ×GColl Ð→ GColl sends a pair (g ∶ G Ð→
1∗, h ∶ H Ð→ 1∗) of globular collections to the composite of the left hand diagonals in
the diagram

G ○H

G∗

1∗∗

1∗

H

1∗
!∗ h

g∗

µ1

where the upper square is a pullback square, and is defined on pairs of morphisms using
the universal property of pullbacks.

Recall that a natural transformation is cartesian if all of its naturality squares are
pullback squares.
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3.5. Definition. A monad T = (T, η, µ) on a category S is cartesian if

i) S has pullbacks,

ii) T preserves pullbacks, and

iii) η and µ are cartesian.

The free strict ω-category monad (−)∗ on GSet is cartesian [10, Appendix F]. Con-
sequently, (GColl, ○) is a monoidal category with unit η1 ∶ 1 Ð→ 1∗. The coherence
isomorphisms are defined using the universal property of pullbacks. The same property
is then used to verify the axioms for a monoidal category. The construction of the left
and right unit isomorphisms is straightforward, and uses the fact that η is cartesian. The
construction of the associativity isomorphisms is slighty more complex and uses that (−)∗
preserves pullbacks and µ is cartesian.

3.6. Definition. A globular operad is a monoid in the monoidal category (GColl, ○).

3.7. Unpacked Definition. A globular operad G = (G, g, ids, comp) is a morphism
g ∶GÐ→ 1∗ of globular sets together with an identity map ids ∶ 1Ð→G and a composition
map comp ∶G ○GÐ→G making the following diagrams commute

1 G

1∗

G ○G

G∗ 1∗∗ 1∗

G
ids

η1 g

comp

g∗ µ1

g

and satisfying identity and associativity axioms. We think of each n-cell Λ of G as an
abstract operation composing n-pasting diagrams of shape g(Λ) into single n-cells. For
example, if χ is a 2-cell of G and g(χ) = τ ,

⋅ ⋅ ⋅ = τ
⇓

⇓
YX

x

x′

⇓ χ
g

then we think of χ as an abstract operation composing 2-pasting diagrams of shape τ
into single 2-cells (and of x and x′ as operations composing 1-pasting diagrams of shape
∂τ into single 1-cells). The identity map ids ∶ 1 Ð→ G picks out an n-cell of G for each
n ∈ N. We denote this n-cell by idn and refer to it as the identity n-cell. The image of idn

under g is the simple n-pasting diagram in 1; see Definition 2.9.
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⋅ ⋅⇓id0id0

id1

id1

⇓ id2

g

The n-cells of the globular set G ○G are pairs consisting of an n-cell Λ of G together
with an n-cell of G∗ (or an n-pasting diagram in G) of shape g(Λ). A typical 2-cell
((ν, ν′, v), χ) of G ○G is

⎛
⎜⎜⎜⎜⎜⎜
⎝

U V W , X Y
v

u

u′′

⇓ ν

⇓ ν′

x

x′

⇓ χ

⎞
⎟⎟⎟⎟⎟⎟
⎠

where the left hand side is a 2-pasting diagram in G and χ is the 2-cell above satisfying
g(χ) = τ . We use this example to describe the composition map comp ∶G ○GÐ→G. Let
g(ν) = τ1, g(ν′) = τ2, and g(v) = τ3,

U V W
v

u

u′′

⇓ ν

⇓ ν′

⋅ ⋅ ⋅ ⋅ = τ3

g

⋅⋅τ1 = ⇓ g

⋅⋅τ2 =
⇓
⇓

g

and denote by τ ○ (τ1, τ2, τ3) the 2-cell of 1∗ obtained by replacing the individual cells in
τ with τ1, τ2 and τ3, respectively.

⋅ ⋅ ⋅ = τ
⇓

⇓

⋅ ⋅ ⋅ ⋅ = τ3

⋅⋅τ1 = ⇓

⋅⋅τ2 =
⇓
⇓
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⋅ ⋅ ⋅ ⋅ ⋅τ ○ (τ1, τ2, τ3) = ⇓
⇓

⇓

Then comp((ν, ν′, v), χ) = χ ○ (ν, ν′, v) is a 2-cell of G satisfying g(χ ○ (ν, ν′, v)) = τ ○
(τ1, τ2, τ3).

⋅ ⋅ ⋅ ⋅ ⋅⇓
⇓

⇓
Y ○ (W )X ○ (U)

x ○ (u, v)

x′ ○ (u′′, v)

⇓ χ ○ (ν, ν′, v)
g

We think of χ○(ν, ν′, v) as the abstract operation composing 2-pasting diagrams of shape
τ ○ (τ1, τ2, τ3) given by first using ν, ν′ and v to compose smaller components and then
applying χ to the result.

More generally, for any n-cell ((Λ1, ...,Λm),Λ) of G ○G there is an n-cell

comp((Λ1, ...,Λm),Λ) = Λ ○ (Λ1, ...,Λm)

of G for which g(Λ ○ (Λ1, ...,Λm)) is the n-pasting diagram in 1 obtained by replacing
the individual cells in g(Λ) with the g(Λi)s. We think of Λ ○ (Λ1, ...,Λm) as the abstract
operation composing n-pasting diagrams of shape g(Λ ○ (Λ1, ...,Λm)) given by first using
the Λis to compose smaller components and then applying Λ to the result. The identity
and associativity axioms for globular operads are expressed by the following equalities.

idn ○ (Λ) = Λ = Λ ○ (idn1 , ..., idnm)

Λ ○ (Λ1 ○ (Λ11, ...,Λ1k1), ...,Λm ○ (Λm1, ...,Λmkm)) = (Λ ○ (Λ1, ...,Λm)) ○ (Λ11, ...,Λ1k1 , ...,Λm1, ...,Λmkm)

3.8. Definition.Amorphism of globular operads is a morphism of monoids in (GColl, ○),
i.e., a morphism of the underlying globular collections preserving composition and iden-
tities.

3.9. Notation. We denote by GOp the category of globular operads and their mor-
phisms.

Truncating everything in this section to n-dimensions by replacing the free strict ω-
category monad on GSet with the free strict n-category monad on GSetn will give an
account of n-globular operads.

3.10. Notation. We denote by GColln and GOpn the categories of n-globular collec-
tions and n-globular operads, respectively.
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4. Algebras for globular operads

In this section we define the category of algebras associated to an (n-)globular operad. In
Section 6 we show that for any algebraic notion of higher category, we can construct an
(n-)globular operad whose algebras are precisely those higher categories.

4.1. Definition. Each globular operad G = (G, g, ids, comp) induces a monad (−)G on
GSet. The underlying endofunctor sends a globular set A to the pullback object

AG

A∗ G

1∗
!∗ g

and is defined on morphisms using the universal property of pullbacks. The same property
yields a canonical morphism j ∶ (AG)G Ð→ G ○G. The unit and multiplication of the
monad at A are then the unique morphisms satisfying the commutativity of the following
diagrams.

AG

A∗ G

1∗

multA

!∗ g

(AG)G

G ○GAG
∗

A∗∗

µA

j

compAG

A∗ G

1∗
!∗ g

A

1ηA

!

ids

unitA

4.2. Remark. The monad axioms for (−)G are satisfied by the identity and associativity
axioms for G.

The n-cells of AG are pairs consisting of an n-cell Λ of G together with an n-pasting
diagram in A of shape g(Λ). A typical 2-cell ((α,α′, b), χ) of AG is

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B C , X Y

a

a′′

b⇓ α

⇓ α′

x

x′

⇓ χ

⎞
⎟⎟⎟⎟⎟⎟
⎠
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where the left hand side is a 2-pasting diagram in A and χ is a 2-cell of G satisfying
g(χ) = τ ; see page 275. We think of each n-cell of AG as an n-pasting diagram in A
together with an operation composing it into a single n-cell. For each n-cell α of G we
have

unitA(α) = ((α), idn),

and the image of an n-cell (((α11, ..., α1k1), Λ1) , ..., ((αm1, ..., αmkm), Λm), Λ) of (AG)G
under multA is the n-cell

((α11, ..., α1k1 , ..., αm1, ..., αmkm), Λ ○ (Λ1, ...,Λm))

of A. For instance, multA sends a 2-cell

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A
⎛
⎝

B ,

a

⇓ α U V

u

⇓ ν
⎞
⎠

A
⎛
⎝

B ,

a′′′

⇓ α′

⇓ α′ U V

u′′

⇓ ν′
⎞
⎠

B C D E , V W
b c d v( ) X, Y

x

x′

⇓ χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

of (AG)G to the 2-cell of AG below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A B C D E ,

a

a′′′

b c d⇓ α′
⇓ α

⇓ α′′
X ○ (U) Y ○ (W )

x ○ (u, v)

x′ ○ (u′′, v)

⇓ χ ○ (ν, ν′, v)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Here the images of ν, ν′ and v under the underlying collection map g are as on page 276.

4.3. Definition. Let G be a globular operad. The category G-Alg of algebras for G
(or G-algebras) is the category of algebras for the monad (−)G.

4.4. Unpacked Definition. An algebra for G on a globular set A is a morphism
θ ∶ AG Ð→ A of globular sets satisfying unit and multiplication axioms. Given an n-cell
((α1, ..., αm), Λ) of AG we write

θn((α1, ..., αm), Λ) = Λ(α1, ..., αm)

and think of Λ(α1, ..., αm) as a composition of the n-pasting diagram (α1, ..., αm) in A
into single n-cell of A. For example, θ sends the 2-cell ((α,α′, b), χ) of AG above to a
2-cell
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X(A) Y (C)

x(a, b)

x′(a′′, b)

⇓ χ(α,α′, b)

of A, thought of as a composite of (α,α′, b). The unit and multiplication axioms are
expressed by the following equalities.

idn(α) = α

Λ(Λ1(α11, ..., α1k1), ..., Λm(αm1, ..., αmkm)) = (Λ ○ (Λ1, ...,Λm))(α11, ..., α1k1 , ..., αm1, ..., αmkm)

4.5. Unpacked Definition. A morphism F ∶ (A, θ) Ð→ (B, σ) of algebras for G is a
morphism F ∶AÐ→B of the underlying globular sets strictly preserving the composition
of pasting diagrams defined by the algebra structures.

Observe the similarities between the free strict higher category monad (−)∗ on GSet
and the monad (−)G induced by a globular operad G. Given a globular set A, both
A∗ and AG are globular sets whose n-cells are n-pasting diagrams in A, together with
some extra data in the case of AG, and an algebra for either monad on A is a way of
composing these pasting diagrams in a coherent way. However, not every globular operad
gives rise to something that we could call a theory of ω-category. Take for example the
initial globular operad given by equipping the globular collection η1 ∶ 1 Ð→ 1∗ with its
unique operad structure. The monad induced on GSet by this operad is isomorphic to
the identity monad, so the category of algebras is isomorphic to GSet rather than to some
category of ω-categories and the strict functors between them. In Section 8, we determine
precisely when a globular operad does give rise to some sensible theory of ω-category.

4.6. Example. [Strict ω-categories] The terminal globular operad T is given by equip-
ping the collection 1 ∶ 1∗ Ð→ 1∗ with its unique operad structure. The monad (−)T
induced on GSet is isomorphic to the free strict ω-category monad (−)∗, so the category
T -Alg of algebras for T is equivalent to the category Str ω-Cat of strict ω-categories.
We refer to T as the globular operad for strict ω-categories.

An algebra for an n-globular operad Gn is defined analogousy to an algebra for a
globular operad G.

4.7. Example. [Strict n-categories] The monad induced on GSetn by the terminal n-
globular operad Tn is isomorphic to the free strict n-category monad (−)∗, so we refer to
Tn as the globular operad for strict n-categories.
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5. Contractibility

In this section, we demonstrate how a globular operad being contractible is precisely
the property needed to guarantee that its algebras satisfy the required conditions on
composition and coherence for ω-categories. We then adjust the coherence condition to
suit n-categories, and show that a similar statement is true for n-globular operads. In
Section 8, we use the results obtained here to define subcategories of GOp and GOpn,
respectively, consisting of just those (n-)globular operads whose algebras are some variety
of higher category. We begin with a brief explanation of the composition and coherence
conditions.

The composition condition for ω-categories. For any n-pasting diagram in an ω-
category together with a composition of the (n− 1)-dimensional boundary, there should be
an operation composing it into a single n-cell that is consistent with this composition of
the boundary.

5.1. Example. Let

A B C D

a b c

a′ b′ c′

⇓ α ⇓ β ⇓ γ

be a 2-pasting diagram in some ω-category. Given any way of composing the 1-cell
boundary, say a(bc) and (a′b′)c′, there should be a way to compose the pasting diagram
into a single 2-cell of the form

A D.

a(bc)

(a′b′)c′

⇓

The coherence condition for ω-categories. For any two ways of composing the same
n-pasting diagram in an ω-category that agree on the composition of its (n−1)-dimensional
boundary, there should be a coherence (n + 1)-cell between the two composites.

5.2. Example. The compositions a(bc) and (ab)c of a 1-pasting diagram

A B C D
a b c

in an ω-category both use the same way of composing the boundary 0-cells A and D -
the ‘do nothing’ composition, so there should be a coherence 2-cell between them,
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A D.

a(bc)

(ab)c

⇓

We now give Leinster’s definition of contractibility for globular operads [10, Chap-
ter 9.1], and show how contractibility combines composition and coherence into a single
property. It should be noted that this definition differs from Batanin’s original definition,
which can be found in [3, Section 8].

5.3. Definition. Let G be a globular set. For n ⩾ 1 we say that a pair (x,x′) of n-cells
of G are parallel if they share the same source and target, so s(x) = s(x′) and t(x) = t(x′).
All pairs of 0-cells are considered parallel.

5.4. Definition. A contraction function on a globular collection g ∶ G Ð→ 1∗ is a
function assigning to each triple (x,x′, τ), where (x,x′) is a parallel pair of n-cells of G
satisfying g(x) = g(x′) = ∂τ (see Notation 3.2), an (n+1)-cell χ ∶ x Ð→ x′ of G satisfying
g(χ) = τ .

⋅ ⋅ ⋅ = τ
⇓

⇓
YX

x

x′

⇓ χ
g

Given a contraction function on a globular collection g ∶GÐ→ 1∗, we refer to the cells
of G in the image of the contraction function as contraction cells.

5.5. Definition. A globular operad G is contractible if there exists a contraction func-
tion on its underlying globular collection.

5.6. Example. There is a unique contraction on the globular operad T for strict ω-
categories; see Example 4.6. When equipped with this contraction, every n-cell of T for
n > 0 is a contraction cell.

5.7. Notation. We denote by C-GOp the category whose objects are globular operads
carrying a specified contraction and whose arrows are contraction preserving morphisms
of globular operads.

We demonstrate how the contractibilty of a globular operad ensures that its algebras
satisfy the required composition and coherence conditions for ω-categories with some low
dimensional examples. In these examples we assume that G is a contractible globular
operad with underlying globular collection g ∶ G Ð→ 1∗, and that θ ∶ AG Ð→ A is an
algebra for G on a globular set A. Note that we only assume that G is contractible, we
do not choose a specific contraction function.
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5.8. Example. [Composition] Let

A B C
a b

be a 1-pasting diagram in A, and denote by σ the following 1-pasting diagram in 1.

⋅ ⋅ ⋅σ =

Since G is contractible and (id0, id0, σ) is a triple satisfying g(id0) = g(id0) = ∂σ, there
must exist a 1-cell x ∶ id0 Ð→ id0 of G satisfying g(x) = σ. This means that

( A B C id0 id0,
a b x )

is a 1-cell of AG, denoted ((a, b), x). We think of the image θ1((a, b), x) = x(a, b) of this
1-cell under the algebra structure map θ ∶AG Ð→A as a composite of a and b in A.

A C
x(a, b)

5.9. Example. [Coherence] Let x be the 1-cell of G described in the previous example
and consider a 1-pasting diagram

A B C D
a b c

in A. The operadic composites x ○ (id1, x) and x ○ (x, id1) are parallel 1-cells of G whose
images under g are shown below.

⋅g(x ○ (id1, x)) = g(x ○ (x, id1)) = ⋅ ⋅ ⋅

By the contractibility of G there must exists a 2-cell ς ∶ x ○ (id1, x) Ð→ x ○ (x, id1) of G
satisfying

⋅g(ς) = ⋅ ⋅ ⋅

where g(ς) is a degenerate 2-pasting diagram in 1; see Definition 2.5. It follows that

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

A B C D id0 ⇓ ς id0,
a b c

x ○ (id1, x)

x ○ (x, id1)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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is a 2-cell of AG, denoted ((a, b, c), ς). Note that we are now viewing (a, b, c) as a de-
generate 2-pasting diagram in A rather than a 1-pasting diagram. Using the notation
x(a, b) = ab, the unit and multiplication axioms for G-algebras yield the following equali-
ties.

(x ○ (id1, x)) (a, b, c) = x(id1(a), x(b, c)) = a(bc)

(x ○ (x, id1)) (a, b, c) = x(x(a, b), id1(c)) = (ab)c

The image θ2((a, b, c), ς) = ς(a, b, c) of the 2-cell of AG above under the algebra structure
map θ can therefore be thought of as a coherence 2-cell a(bc) Ð→ (ab)c in A.

A ⇓ ς(a, b, c) D

a(bc)

(ab)c

5.10. Example. [Composition] Continuing from the previous example, let

A B C D

a b c

a′ b′ c′

⇓ α ⇓ β ⇓ γ

be a 2-pasting diagram in A. Since G is contractible there must exist a 2-cell ψ ∶ x ○
(id1, x) Ð→ x ○ (x, id1) of G such that

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

A B C D id0 ⇓ ψ id0,

a b c

a′ b′ c′

⇓ α ⇓ β ⇓ γ

x ○ (id1, x)

x ○ (x, id1)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

is a 2-cell of AG, denoted ((α,β, γ), ψ). The image of this 2-cell under the algebra
structure map θ is a 2-cell ψ(α,β, γ) ∶ a(bc) Ð→ (a′b′)c′ of A, thought of as a composite
of α, β and γ.

The coherence condition for n-categories is stronger than the coherence condition for
ω-categories; in n-categories the n-cells require special attention. This is clear when we
consider that algebraic definitions of higher category can be broken down into data and
axioms. For n-categories, the data consists of k-cells (0 ⩽ k ⩽ n), including specified
coherence cells, and composition operations, while the axioms impose various constraints
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on composition. It is thought that for any n-pasting diagram in an n-category together
with a way to compose its (n − 1)-dimensional boundary, the axioms should ensure that
there is a unique choice of composite n-cell that is consistent with the composition of the
boundary. Moreover, for fully weak n-categories the axioms should actually be equivalent
to this condition on n-cell composition; this is known as the coherence theorem.

The Coherence Theorem. The axioms for a fully weak algebraic n-category are equiv-
alent to the condition that for any n-pasting diagram together with a composition of the
(n− 1)-dimensional boundary, there is a unique choice of composite n-cell with respect to
this composition of the boundary.

5.11. Examples. The associativity and identity axioms for an ordinary (1-)category are
equivalent to the condition that for any sequence A Ð→ ⋯ Ð→ A′ of composable 1-cells
there is exactly one way to compose it into a single 1-cell AÐ→ A′. Similarly, the axioms
for a bicategory are equivalent to stating that given any 2-pasting diagram together with
a way of composing its 1-cell boundary, there is a unique way to compose the pasting
diagram into a single 2-cell that is consistent with this composition of the boundary [12,
Section 2.4]. Take for example a 2-pasting diagram

A B C

a b

a′′ b′′

⇓ α ⇓ β
⇓ α′ ⇓ β′

in a bicategory. The composites (α ⋅α) ∗ (β ⋅β′) and (α′ ∗β) ⋅ (α′ ∗β′) both use the same
composition of its boundary, and by the interchange law these composites are equal.

The highest dimension for which there exists a hands-on definition of fully weak alge-
braic n-category is n = 4; these are tetracategories of Alexander Hoffnung [8]. The highest
dimension for which there exists a hands-on definition of fully weak algebraic n-category
together with a proven coherence theorem is n = 3; these are the tricategories of Nick
Gurski [6].

The composition condition for n-categories is the same as for ω-categories, we just
truncate to n-dimensions. The coherence condition, however, is adjusted to include an
extra requirement, reflecting the desired properties of n-cell composition and its associated
coherence discussed above.

The coherence condition for n-categories

i) For any two ways of composing the same k-pasting diagram (k < n) in an n-category
that agree on the composition of its (k − 1)-dimensional boundary, there should be a
coherence (k + 1)-cell between the two composites; and

ii) any two ways of composing the same n-pasting diagram that agree on the composition
of its (n − 1)-dimensional boundary should be equal.
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A contraction on an n-globular collection is defined analogously to a contraction on
a globular collection. However, in keeping with the new coherence condition, there is an
extra requirement that an n-globular operad must meet in order to be contractible.

5.12. Definition. An n-globular operad Gn with underlying collection g ∶Gn Ð→ 1∗ is
contractible if

i) there exists a contraction function on its underlying n-globular collection, and

ii) any parallel pair (χ,χ′) of n-cells of Gn satisfying g(χ) = g(χ′) are equal.

5.13. Example. There is a unique contraction on the n-globular operad Tn for strict
n-categories; see Example 4.7. When equipped with this contraction every k-cell of Tn

for 0 < k ⩽ n is a contraction cell.

5.14. Notation. We denote by C-GOpn the category of n-globular operads carrying a
specified contraction and contraction preserving morphisms.

5.15. Lemma. A contractible n-globular operad Gn is completely determined by its k-
cells for all k < n. For each triple (x,x′, τ) where (x,x′) is a parallel pair of (n−1)-cells of
Gn satisfying g(x) = g(x′) = ∂τ , there exists a unique n-cell χ ∶ x Ð→ x′ of Gn satisfying
g(χ) = τ . Similarly, given any n-cell ((Λ1, ...,Λm),Λ) of Gn ○Gn there is a unique choice
of composite n-cell Λ ○ (Λ1, ...,Λm).

5.16. Example. The identity n-cell idn of a contractible n-globular operad is the n-cell
corresponding to the triple (idn−1, idn−1, ι), where ι is the simple n-pasting diagram in 1;
see Definition 2.9.

5.17. Lemma. Let Hn be an n-globular operad satisfying the second condition in Defini-
tion 5.12. A morphism f ∶Gn Ð→Hn of n-globular operads is completely determined by
the value of f on the k-cells of Gn for all k < n.

It is clear that any (n-)globular operad defining some sensible theory of higher category
should be contractible, as contractibility is precisely the property needed to guarantee the
required conditions on composition and coherence in its algebras. There are, however,
contractible (n-)globular operads whose algebras are equipped more data than higher
categories have. Take for example a contractible globular operad G with more than one
0-cell. The identity 0-cell id0 provides the ‘do nothing’ way of composing 0-cells in the
algebras of G. The existence of another 0-cell in G would mean that there exists some
other non-trivial operation on the 0-cells of its algebras, which is not the case for higher
categories.

6. Presentations for globular operads

Presentations for algebraic structures can be defined in terms of free-forgetful adjunctions
and coequalisers. For example, a group presentation is a set J whose elements we call
generators, a set R whose elements we call relations and a pair of functions
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UF (J)R
e

q

where F and U are the adjoint free-forgetful functors F ⊣ U ∶Grp Ð→ Set. We say that
(J,R, e, q) is a presentation for a group G if the coequaliser of the diagram

F (J)F (R)
e

q

is isomorphic to G. For instance, P = ({x},{r}, e, q) where e(r) = id and q(r) = xn
is a presentation for the cyclic group Cn of order n. Presentations for other kinds of
algebraic structures, such as abelian groups, monoids and rings are defined similarly by
replacing the free group adjunction with the appropriate analogous adjunction. In this
section we define presentations for (n-)globular operads. These presentations are more
complex than those for structures whose underlying data is just a single set. To construct
presentations for (n-)globular operads, we need to specify generators and relations in each
dimension, beginning in dimension 0 and building the presentation inductively. Before we
begin, we provide a preliminary motivating example for the 1-globular operad for ordinary
categories.

6.1. Example. The 1-globular operad T1 for ordinary (1-)categories (Example 4.7) is
the 1-globular operad with

● a single 0-cell, the identity id0; and

● 1-cells consisting of the operadic composites of 1-cells i1 and h1 whose images under
the underlying collection map are as follows,

id0 id0

i1 ⋅

id0 id0

h1 ⋅ ⋅ ⋅

subject to the equalities below.

i) h1 ○ (i1, id1) = id1

ii) h1 ○ (id1, i1) = id1

iii) h1 ○ (id1, h1) = h1 ○ (h1, id1)

The example above describes a presentation for T1 wherein the 1-cells i1 and h1 are
the 1-cell generators, and the equations they satisfy correspond to the 1-cell relations.
The only 0-cell of T1 is the identity 0-cell id0, so there is no need for any 0-cell generators
or relations in the presentation.

An algebra θ ∶ AT1 Ð→ A for T1 is precisely an ordinary category with underlying 1-
globular set A. The generators i1 and h1 provide 1-cell identities and binary composition
of 1-cells in A, respectively: given 1-pasting diagrams
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A A B C
a b

in A we write θ1((A), i1) = i1(A) = 1A and θ1((a, b), h1) = h1(a, b) = ab.

A A A C
1A ab

The relations ensure that the two identity axioms and the associativity axiom, respectively,
are satisfied: given 1-pasting diagrams

A B A B C D
a a b c

in A, equations i), ii) and iii) yield the following equalities.

1Aa = h1(i1(A), id1(a)) = (h1 ○ (i1, id1))(a) = id1(a) = a

a1B = h1(id1(a), i1(B)) = (h1 ○ (id1, i1))(a) = id1(a) = a

a(bc) = h1(id1(a), h1(b, c)) = (h1 ○ (id1, h1))(a, b, c) = (h1 ○ (h1, id1))(a, b, c) = h1(h1(a, b), id1(c)) = (ab)c

Observe that the generators in the presentation for T1 above correspond to the basic
composition operations in an ordinary (1-)category, and the relations correspond to the
axioms. Once we have formally defined presentations for (n-)globular operads we will be
able to construct the globular operad for any theory of higher category in an analogous
way.

Before we proceed, it will be helpful to understand the process of freely adjoining
cells. Recall that the category GColln ≅GSetn/1∗ of n-globular collections is a slice of a
presheaf category (see Definition 2.15), so GColln is itself a presheaf category [9, Lemma
1.4.12], and is therefore complete and cocomplete. In particular, GColln has pushouts,
allowing for the the following construction.

6.2. Definition. Let n be a natural number.

1. For k ⩽ n the k-ball Bk is the n-globular set

{0,1}...{0,1}{★}∅...∅
0

1

0

1

0

1

consisting of a single k-cell. Here the arrows labelled 0 and 1 represent the constant
functions.

2. For −1 ⩽ k ⩽ n the k-sphere Sk is the n-globular set
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{0,1}...{0,1}{0,1}∅...∅
0

1

0

1

0

1

consisting of a parallel pair of k-cells. Here it understood that the (-1)-sphere is the
empty n-globular set.

Let Jk be a set equipped with a function f ∶ Jk Ð→ GSetn(Bk,1
∗). Such a function

corresponds to a map f̄ ∶ Jk ⋅Bk Ð→ 1∗ of n-globular sets, where Jk ⋅Bk denotes the
coproduct of ∣Jk∣ copies of Bk, under the adjunction

Set GSetn.

− ⋅Bk

GSetn(Bk,−)

⊥

Given an n-globular collection g ∶Gn Ð→ 1∗ together with a function ∂ ∶ Jk Ð→GSetn(Sk−1,Gn)
satisfying the commuativity of

Jk GSetn(Bk,1
∗)

GSetn(Sk−1,Gn) GSetn(Sk−1,1
∗)

∂

g ⋅ −

− ⋅ ik

where ik ∶ Sk−1 Ð→Bk denotes the inclusion map, we define Jk via the pushout

Jk ⋅Sk−1 Jk ⋅Bk

Gn Jk

Jk ⋅ ik

∂̄

in GColln. The commuativity of the first square above says that ∂ ∶ Jk ⋅Sk−1 Ð→Gn is a
map of n-globular collections, rather than just a map of n-globular sets. We think of Jk

as the n-globular collection obtained by adjoining a set Jk of k-cells to Gn whose sources
and targets are specified by ∂. This method of freely adjoining cells can be extended to
n-globular operads using the following proposition.
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6.3. Proposition. [1, Chapter 9.3] If T = (T,µ, η) is a finitary monad on a complete
and cocomplete category then the category T -Alg of algebras for T is also complete and
cocomplete.

It shown in [10, Chapter 6.5] that there is a free functor F ∶ GColln Ð→ GOpn

left adjoint to canonical forgetful functor, the adjunction F ⊣ U ∶ GOpn Ð→ GColln
is monadic, and that the monad induced on GColln is finitary. It follows that GOpn

is complete and cocomplete, in particular, it has pushouts. We can now define, for any
n-globular operad Gn together with a morphism ∂̄ ∶ Jk ⋅ Sk−1 Ð→ U(Gn) of n-globular
collections, an n-globular operad Jk via the pushout in GOpn below.

Jk ⋅ F (Sk−1) Jk ⋅ F (Bk)

Gn Jk

Jk ⋅ F (ik)

∂̂

We will also make use of the following truncation functors.

6.4. Definition. Let n be a natural number and let k be an integer with −1 ⩽ k ⩽ n.
The kth truncation functor Trk ∶ GOpn Ð→ GOpn is the functor sending an n-globular
operad Gn to the n-globular operad whose j-cells are those of Gn for all j ⩽ k and whose
only m-cell is the identity m-cell idm for all m > k.

6.5. Notation. Let ϵk ∶ Trk ⇒ 1 denote the natural transformation whose components
are the inclusions.

We are now ready to define presentations for n-globular operads. For each integer k,
−1 ⩽ k ⩽ n, we define a category k-Pres of k-presentations for n-globular operads together
with an adjunction

k-Pres GOpn

Fk

Vk

⊥

satisfying FkVk = Trk and with counit ϵk. These definitions are recursive; for k = −1, we
define k-Pres to be the terminal category and F−1 to be the functor picking out the initial
n-globular operad 1 consisting only of the identity cells. For k ⩾ 0, we construct k-Pres
and the accompanying adjunction below.
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6.6. Definition.A k-presentation for an n-globular operad is a tuple Pk = (Pk−1, Jk, ∂k,Rk, rk)
where

● Pk−1 is a (k−1)-presentation;

● Jk is a set of k-cell generators, equipped with a function Jk Ð→GSetn(Bk,1
∗);

● ∂k ∶ Jk Ð→GSetn(Sk−1, UFk−1(Pk−1)) is a function for which the square

Jk GSetn(Bk,1
∗)

GSetn(Sk−1, UFk−1(Pk−1)) GSetn(Sk−1,1
∗)

∂k − ⋅ ik

commutes, where the bottom map is induced by the underlying collection map
UFk−1(Pk−1) Ð→ 1∗ of the n-globular operad Fk−1(Pk−1);

● Rk is a set of k-cell relations ; and

● rk ∶ Rk Ð→GSetn(Sk, U(Jk)) is a function, where Jk is defined via the pushout

Jk ⋅ F (Sk−1) Jk ⋅ F (Bk)

Fk−1(Pk−1) Jk,

Jk ⋅ F (ik)

∂̂k

wk

w′k

inGOpn, for which there exists a (necessarily unique) functionRk Ð→GSetn(Bk,1
∗)

such the square below commutes.

Rk GSetn(Bk,1
∗)

GSetn(Sk, U(Jk)) GSetn(Sk,1
∗)

rk − ⋅∆k

Here ∆k ∶ Sk Ð→Bk denotes the map sending both k-cells of Sk to the unique k-cell
of Bk.
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6.7. Definition. A morphism Pk Ð→ P ′k of k-presentations is a triple (π, ϱ, ρ) where
π ∶ Pk−1 Ð→ P ′k−1 is a morphism of (k−1)-presentations and ϱ ∶ Jk Ð→ J ′k and ρ ∶ Rk Ð→ R′k
are functions, satisfying the commutativity of the following diagrams.

Jk J ′k

GSetn(Bk,1
∗)

ϱ

GSetn(Sk−1, UFk−1(Pk−1))

Jk J ′k

GSetn(Sk−1, UFk−1(P ′k−1))

ϱ

∂k

UFk−1(π) ⋅ −

∂′k

Rk R′k

GSetn(Bk,1
∗)

ρ Rk R′k

GSetn(Sk, U(Jk)) GSetn(Sk, U(J ′k))

ρ

rk

U(ϱ) ⋅ −

r′k

The map ϱ ∶ Jk Ð→ J ′k above is defined using the universal property of pushouts.

6.8. Definition. The free functor Fk ∶ k-Pres Ð→ GOpn sends a k-presentation Pk =
(Pk−1, Jk, ∂k,Rk, rk) to the coequaliser

Fk(Pk)JkRk ⋅ F (Bk)
êk

q̂k

where ek, qk ∶ Rk Ð→ GSetn(Bk, U(Jk)) are the pair of maps induced by the function
rk ∶ Rk Ð→ GSetn(Sk, U(Jk)). The value of Fk on morphisms is defined using the
universal property of coequalisers.

6.9. Definition. The forgetful functor Vk ∶ GOpn Ð→ k-Pres sends an n-globular
operad Gn to the k-presentation Vk(Gn) = (Vk−1(Gn), J(Gn,k), ∂(Gn,k), R(Gn,k), r(Gn,k))
defined as follows.

● J(Gn,k) =GSetn(Bk, U(Gn)) is the set of k-cells of Gn.

● ∂(Gn,k) is the function − ⋅ ik ∶ GSetn(Bk, U(Gn)) Ð→ GSetn(Sk−1, UTrk−1(Gn));
here we are using the fact that Fk−1Vk−1 = Trk−1 is the kth truncation functor (see
Definition 6.4).

● R(Gn,k) is the pullback object
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R(Gn,k) GSetn(Bk, U(J (Gn,k)))

GSetn(Bk, U(J (Gn,k))) GSetn(Bk, U(Gn))

e(Gn,k)

q(Gn,k)

U(ϵk) ⋅ −

U(ϵk) ⋅ −

where ϵk is the unique morphism satisfying commutativity of the diagram below.

J(Gn,k) ⋅ F (Sk−1) J(Gn,k) ⋅ F (Bk)

Fk−1Vk−1(Gn)Trk−1(Gn) = J (Gn,k)

Gn

J(Gn,k) ⋅ F (ik)

∂̂(Gn,k)

wk

w′k

ϵk−1

ϵk

The outer arrows of this diagram commute since the components of the natural
transformation ϵk−1 are the inclusion morphisms; see Notation 6.5.

● r(Gn,k) is the function R(Gn,k) Ð→ GSetn(Sk, U(J (Gn,k))) induced by the pair of
functions e(Gn,k) and q(Gn,k) above.

The value of Vk on morphisms of n-globular operads is defined similarly.

6.10. Proposition. The composite FkVk is isomorphic to the kth truncation functor Trk.

Proof. For any n-globular operad Gn the diagram

J (Gn,k)R(Gn,k) ⋅ F (Bk) Trk(Gn)
ê(Gn,k)

q̂(Gn,k)

ϵk

is a coequaliser in GOpn by construction, so it follows from Definition 6.8 that Trk(Gn)
is isomorphic to FkVk(Gn).
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6.11. Proposition. The free functor Fk is left adjoint to the forgetful functor Vk, and
the counit of the adjunction is ϵk ∶ Trk ⇒ 1.

Proof. We prove the proposition by constructing a unit ηk ∶ 1 Ð→ VkFk such that ηk
and ϵk satisfy the triangle identities. Let Pk = (Pk−1, Jk, ∂k,Rk, rk) be a k-presentation.
By Definition 6.7, a morphism ηk ∶ Pk Ð→ VkFk(Pk) of k-presentations consists of three
compatible maps

1. η1k ∶ Pk−1 Ð→ Vk−1Fk(Pk);

2. η2k ∶ Jk Ð→ J(Fk(Pk),k); and

3. η3k ∶ Rk Ð→ R(Fk(Pk),k).

Define η1k to be the morphism corresponding under adjunction to the composite

Fk−1(Pk−1) Jk Fk(Pk).
wk

Next, observe that since J(Fk(Pk),k) =GSetn(Bk, UFk(Pk)) the composite

Jk ⋅Bk U(Jk) UFk(Pk)
w′k

is equivalently a function η2k ∶ Jk Ð→ J(Fk(Pk),k) of sets. Finally, let ηk be the unique
morphism satisfying the commutativity of the diagram

Jk ⋅ F (Sk−1) Jk ⋅ F (Bk)

J(Fk(Pk),k) ⋅ F (Bk)
Fk−1(Pk−1)Trk−1Fk−1(Pk−1) =

Trk−1Fk(Pk)

Jk

J (Fk(Pk),k)

Trk−1(η1k)

Jk ⋅ F (ik)

∂̂k

wk

w′k

η2k ⋅ F (1)

ηk

and define η3k to be the unique morphism making the diagram below commute.
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R(Fk(Pk),k) GSetn(Bk, U(J (Fk(Pk),k)))

GSetn(Bk, U(J (Fk(Pk),k))) GSetn(Bk, UFk(Pk))

Rk GSetn(Bk, U(Jk))

GSetn(Bk, U(Jk))

q(Fk(Pk),k)

e(Fk(Pk),k)

U(ϵk) ⋅ −

U(ϵk) ⋅ −

η3k
ek

qk

U(ηk) ⋅ −

U(ηk) ⋅ −

It is now a straighforward diagram chase to check that these morphisms are the compo-
nents of a natural transformation ηk ∶ 1 Ð→ VkFk. The triangle identities can be verified
by observing that ϵkFk, Vkϵk, Fkηk and ηkVk are all identity natural transformations.

6.12. Definition. A presentation for an n-globular operad Gn is an n-presentation Pn

together with an isomorphism Fn(Pn) Ð→Gn.

6.13. Lemma. Let Pn be a presentation for an n-globular operad Gn. By the universal
properties of coequalisers and pushouts, a morphism Gn Ð→Hn of n-globular operads is
completely determined by its value on the k-cell generators for all 0 ⩽ k ⩽ n.

We can also define a category Pres of presentations for globular operads together with
a free-forgetful adjunction

Pres GOp

F

V

⊥

satisfying FV = 1 and whose counit is the identity natural transformation. The category
Pres of presentations for globular operads is the limit of the diagram

... 1-Pres 0-Pres (−1)-Pres
U1 U0

where the Uks are the canonical forgetful functors. For each k ∈ N we have Uk−1Vk = Vk−1 ∶
GOp Ð→ k-Pres, so the Vks form a cone over the diagram, defining a forgetful functor
V ∶GOpÐ→ Pres. The value of the free functor F ∶ PresÐ→GOp at a presentation P
is the colimit of the diagram

F−1(P−1) F0(P0) F1(P1) ...
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where each Fk−1(Pk−1) Ð→ Fk(Pk) is given by the composite below.

Fk−1(Pk−1) Jk Fk(Pk)
wk

It is now a straightforward exercise using the universal properties of sequential limits and
colimits to show that FV = 1 and that F is left adjoint to V .

6.14. Definition. A presentation for a globular operad G is a presentation P together
with an isomorphism F (P ) Ð→G.

Every n-globular operad Gn has at least one presentation, namely Vn(Gn). However,
it is often possible to find a simpler presentation. Below is a detailed example of a
presentation for the 2-globular operad for strict 2-categories; see Example 4.7.

6.15. Example. To construct a presentation for the 2-globular operad T2 for strict 2-
categories, we first define P0 ∶= (⋆,∅, !,∅, !), where ⋆ is the unique object of the category
(−1)-Pres of (-1)-presentations. Then F0(P0) ≅ 1 is the initial 2-globular operad consist-
ing only of identity cells.

Next, we construct a 1-presentation P1 = (P0, J1, ∂1,R1, r1). Define J1 ∶= {i1, h1} and
let the function J1 Ð→GSet2(B1,1

∗) be the one illustrated below.

i1 ⋅

h1 ⋅ ⋅ ⋅

Since S0 is empty in dimensions ⩾ 0 and F0(P0) has exactly one 0-cell, there exists a
unique function ∂1 ∶ J1 Ð→ GSet2(S0, UF0(P0)). It follows that J1 is the 2-globular
operad whose only 0 and 2-cells are the identity cells id0 and id2, and whose 1-cells
are the free operadic composites of i1 and h1: the 1-cells of J1 are id1, i1, h1, h1 ○
(id1, i1), h1 ○ (h1, id1), h1 ○ (h1, h1), ... and so on. Define R1 = {u, v, a} and let r1 ∶ R1 Ð→
GSet2(S2, U(J1)) be the function induced by the pair of functions

GSet2(B2, U(J1))R1

e1

q1

defined below.

i) e1(u) = h1 ○ (i1, id1)
q1(u) = id1

ii) e1(v) = h1 ○ (id1, i1)
q1(v) = id1

iii) e1(a) = h1 ○ (h1, id1)
q1(a) = h1 ○ (id1, h1)
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F1(P1) is then the 2-globular operad whose only 0 and 2-cells are the identity cells
id0 and id2, and whose 1-cells are the operadic composites of 1-cells i1 and h1 with the
following images under the underlying collection map,

id0 id0

i1 ⋅

id0 id0

h1 ⋅ ⋅ ⋅

subject to the equalities below.

i) h1 ○ (i1, id1) = id1

ii) h1 ○ (id1, i1) = id1

iii) h1 ○ (h1, id1) = h1 ○ (id1, h1)

Observe that F1(P1) ≅ Tr1(T2), so F1(P1) is isomorphic to T2 in dimensions ⩽ 1.
Finally, we construct a presentation P2 = (P1, J2, ∂2,R2, r2) for T2. Define J2 =

{i2, h2, v2}, let J2 Ð→GSet2(B2,1
∗) be the function

i2 ⋅ ⋅

h2 ⋅ ⋅ ⋅⇓ ⇓

v2 ⋅ ⋅⇓
⇓

and define ∂2 ∶ J2 Ð→GSet2(S1, UF1(P1)) to be function given by,

i2, v2 id0 id0

id1

id1

∂2

h2 id0 id0.

h1

h1

∂2

Then J2 is the 2-globular operad isomorphic to T2 in dimensions ⩽ 1, and whose 2-cells
are the operadic composites of i2, h2 and v2: the 2-cells of J2 are id2, i2, h2, v2, v2 ⋅
(h2, h2 ○ (id2, i2)), h2 ○ (i2 ○ (i1), h2), ... and so on. Define R2 = {u, v, p, q, a, b, n,m} and
let r2 ∶ R2 Ð→GSet2(S2, U(J2)) be the function induced by the pair of functions
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GSet2(B2, U(J2))R2

e2

q2

defined below.

i) e2(u) = h2 ○ (i2 ○ (i1), id2)
q2(u) = id2

ii) e2(v) = h2 ○ (id2, i2 ○ (i1))
q2(v) = id2

iii) e2(p) = v2 ○ (i2, id2)
q2(p) = id2

iv) e2(q) = v2 ○ (id2, i2)
q2(q) = id2

v) e2(a) = h2 ○ (id2, h2)
q2(a) = h2 ○ (h2, id2)

vi) e2(b) = v2 ○ (id2, v2)
q2(b) = v2 ○ (v2, id2)

vii) e2(n) = h2 ○ (v2, v2)
q2(n) = v2 ○ (h2, h2)

viii) e2(m) = h2 ○ (i2, i2)
q2(m) = i2 ○ (h1)

The 2-globular operad F2(P2) is isomorphic to F1(P1) in dimensions < 2 and has 2-
cells consisting of the operadic composites of 2-cells i2, h2 and v2 whose images under the
underlying collection map are as follows,
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id0 id0

id1

id1

⇓ i2 ⋅ ⋅

id0 id0

h1

h1

⇓ h2 ⋅ ⋅ ⋅⇓ ⇓

id0 id0

id1

id1

⇓ v2 ⋅ ⋅⇓
⇓

subject to the equalities listed below.

i) h2 ○ (i2 ○ (i1), id2) = id2

ii) h2 ○ (id2, i2 ○ (i1)) = id2

iii) v2 ○ (i2, id2) = id2

iv) v2 ○ (id2, i2) = id2

v) h2 ○ (id2, h2) = h2 ○ (h2, id2)

vi) v2 ○ (id2, v2) = v2 ○ (v2, id2)

vii) h2 ○ (v2, v2) = v2 ○ (h2, h2)

viii) h2 ○ (i2, i2) = i2 ○ (h1)

These equalities mean that F2(P2) contains exactly one 2-cell for each 2-cell in 1∗, so
F2(P2) ≅ T2.

An algebra for F2(P2) on a 2-globular set A is precisely a strict 2-category with
underlying 2-globular set A. The (1-)category structure imposed on the 0 and 1-cells
of A is the same as in Example 6.1. The 2-cells i2, h2 and v2 of F2(P2) provide 2-
cell identites, horizontal composition of 2-cells and binary composition of 2-cells in A,
respectively. Equalities i) - iv) above yield the four unit axioms, equalities v) and vi)
yield the two associativity axioms, equality vii) yields the interchange law, and equality
viii) yields the axiom stating that the horizontal composite of two identity cells is another
identity cell.
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From this point onwards, we will define n-globular operads by describing the genera-
tors and relations of a presentation, as in Example 6.1. Additionally, since we are only
interested in those n-globular operads which are equivalent to some theory of n-category,
and there are no non-trivial operations on 0-cells in higher categories, our globular operads
will always have a single 0-cell - the identity id0. This means that the presentations will
contain no 0-cell generators, and therefore no 0-cell relations. Since there is no ambiguity,
we will leave the single identity 0-cell of these operads unlabelled. For example, we would
represent a 1-cell x of an n-globular operad for some theory of n-category by

⋅ ⋅x
rather than id0 id0.

x

The next example defines the 2-globular operad for strict 2-categories using the presen-
tation for T2 given in Example 6.15 above.

6.16. Example. The 2-globular operad T2 for strict 2-categories is the 2-globular operad
with

● a single 0-cell, the identity id0;

● 1-cells consisting of the operadic composites of 1-cells i1 and h1 whose images under
the underlying collection map are as follows

⋅ ⋅i1 ⋅

⋅ ⋅h1 ⋅ ⋅ ⋅

subject to the following equalities

i) h1 ○ (i1, id1) = id1

ii) h1 ○ (id1, i1) = id1

iii) h1 ○ (id1, h1) = h1 ○ (h1, id1);

and

● 2-cells consisting of the operadic composites of 2-cells i2, h2 and v2 whose images
under the underlying collection map are as follows
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⋅ ⋅

id1

id1

⇓ i2 ⋅ ⋅

⋅ ⋅

h1

h1

⇓ h2 ⋅ ⋅ ⋅⇓ ⇓

⋅ ⋅

id1

id1

⇓ v2 ⋅ ⋅⇓
⇓

subject to the equations below.

i) h2 ○ (i2 ○ (i1), id2) = id2

ii) h2 ○ (id2, i2 ○ (i1)) = id2

iii) v2 ○ (i2, id2) = id2

iv) v2 ○ (id2, i2) = id2

v) h2 ○ (id2, h2) = h2 ○ (h2, id2)
vi) v2 ○ (id2, v2) = v2 ○ (v2, id2)
vii) h2 ○ (v2, v2) = v2 ○ (h2, h2)
viii) h2 ○ (i2, i2) = i2 ○ (h1)

In this example i1 and h1 are the 1-cell generators and the equations they satisfy
correspond to the 1-cell relations. Similarly, i2, h2 and v2 are the 2-cell generators and
the equations they satisfy correspond to the 2-cell relations.

If an n-globular operad Gn is contractible then there is no need to specify any n-cell
generators or relations in a presentation for Gn; by Lemma 5.15 a contractible n-globular
operad is completely determined by the k-cells for all k < n. In light of this, we have the
following equivalent definition of T2.

6.17. Example. The 2-globular operad T2 is the contractible 2-globular operad whose 0
and 1-cells are as in Example 6.16.
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7. The globular operads for weak unbiased higher categories

Many classical definitions of higher category have two types of composition - binary and
nullary. Binary composition takes two composable cells and produces a single composite
cell, while nullary composition picks out identities. All other compositions are derived
from these two generating types. For instance, given three composable 1-cells

A B C D
a b c

in a higher category we have composites like a(bc), (ab)c, ((a1B)b)c, and so on, but there
is no specified ternary composite abc. Likewise, for a 2-pasting diagram

A B C

a b

a′′ b′′

⇓ α ⇓ β

⇓ α′ ⇓ β′

we have composites like (α ⋅α′) ∗ (β ⋅β′), (α ∗β) ⋅ (α′ ∗β′) and (α ⋅α′) ∗ (β ⋅ (1′b ⋅β′)), but
no specified operation directly composing a pasting diagram like this into a 2-cell αα′ββ′.
We say that these definitions of higher category are biased towards binary and nullary
composition. An unbiased higher category is one which takes into account all types of
composition, rather than just the binary and nullary composition operations present in
traditional definitions of higher category.

7.1. Definition. An unbiased higher category is a higher category for which, given any
k-pasting diagram together with a way of composing its (k − 1)-dimensional boundary,
there is a specified operation composing it directly into a single k-cell.

Leinster defines weak ω-categories as algebras for the initial globular operad with
contraction (Notation 5.7) and weak n-categories as algebras for the initial n-globular
operad with contraction (Notation 5.14) [10, Chapter 9]. The algebras for these operads
are weak unbiased higher categories. In this section we provide explicit definitions of these
operads by constructing presentations for them expressed in the style of Example 6.17;
that is, omitting the unnecessary n-dimensional data. We show that for n = 0,1 and 2, the
algebras for the initial n-globular operad with contraction are precisely sets, categories
and unbiased bicategories, respectively. See [11, Definition 1.2.1] for a hands-on definition
of an unbiased bicategory.

7.2. Notation. We will denote by i ∶ In Ð→ 1∗ the underlying collection map of the
n-globular operad In for weak unbiased n-categories
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7.3. Definition. The n-globular operad In for weak unbiased n-categories is the con-
tractible n-globular operad with

• a single 0-cell, the identity id0; and

• for 0 < k < n, k-cells consisting of the operadic composites of a specified k-cell
χ ∶ xÐ→ x′ satisfying i(χ) = τ for each triple (x,x′, τ) where (x,x′) is a parallel pair
of (k−1)-cells of In satisfying i(x) = i(x′) = ∂τ .

⋅ ⋅ ⋅ = τ
⇓

⇓
⋅⋅

x

x′

⇓ χ i

Note that our presentation for In has no k-cell relations, only k-cell generators. This is
what we would expect, as the k-cell relations in a presentation for the (n-)globular operad
for some theory of higher category should correspond to the axioms on k-cell composition
in those higher categories. In order to satisfy the Coherence Theorem ??, the axioms for
a fully weak higher category should impose no restraints on k-cell composition for any
k < n. We also observe that there is a canonical contraction on the underlying collection
of In, defined by taking the k-cell generators to be the contraction cells.

7.4. Lemma. When equipped with its canonical contraction, the n-globular operad In for
weak unbiased n-categories is initial in the category C-GOpn of n-globular operads with
contraction.

Proof. Morphisms of n-globular operads preserve identities and composition, and the
morphisms in C-GOpn also preserve contractions. It follows immediately from the defini-
tion above that when equipped with its canonical contraction, every k-cell of In for k < n
is a unique composite of identity cells and contraction cells. Moreover, by Lemma 5.17
every morphism of contractible n-globular operads is determined by its value on k-cells
for all k < n. It follows that for any n-globular operad with contraction Gn there exists
a unique morphism In Ð→Gn of n-globular operads with contraction.

An algebra θ ∶ AIn Ð→ A for In is a weak unbiased n-category with underlying n-
globular set A. For k < n, the generating k-cell χ ∶ x Ð→ x′ of In corresponding to the
triple (x,x′, τ) provides a specified operation directly composing k-pasting diagrams of
shape τ in A into single k-cells of A in a way that is consistent with the operations
composing their boundaries provided by x and x′. The k-cells of In obtained by operadic
composition of the generating cells provide composition operations on pasting diagrams
in A derived from these basic ones. Since there are no k-cell relations in the presentation
for In, this compositions of k-pasting diagrams in A satisfies no axioms in dimensions
k < n. In dimension n, the contractibility of In means that there exists a unique n-cell
Λ ∶ χÐ→ χ′ of In satisfying i(Λ) = π for each triple (χ,χ′, π) where χ and χ′ are parallel
(n − 1)-cells of In satisfying i(χ) = i(χ′) = ∂(π). As a result, there is a unique operation
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composing n-pasting diagrams of shape π in A with respect to any composition of the
(n − 1)-dimensional boundary, so the Coherence Theorem ?? is satisfied.

7.5. Definition. A weak unbiased n-category is an algebra for In.

Recall that a morphism F ∶ (A, θ) Ð→ (B, σ) of algebras for an n-globular operad
Gn is a morphism F ∶ A Ð→ B of the underlying n-globular sets strictly preserving
composition of pasting diagrams; see section 4.

7.6. Definition. A strict n-functor of weak unbiased n-categories is a morphism of
algebras for In.

7.7. Notation. We denote by WkU n-Catstr the category of algebras for In.

To understand these definitions it is instructive to unpack them for low values of n.
The first two cases, n = 0 and n = 1, are straightforward. The 0-globular operad I0
consists of a single 0-cell, the identity id0, so I0 is isomorphic to T0. The monad induced
on GSet0 by I0 is isomorphic to the identity monad, and so an algebra for I0 is just a
0-globular set, or equivalently, a set. Similarly, the 1-globular operad I1 is isomorphic to
T1, so the monad induced on GSet1 by I1 is isomorphic to the free category monad (−)∗,
and an algebra for I1 is just an ordinary category. The lowest dimensional non-trivial
case is the 2-globular operad I2 for weak unbiased 2-categories, or unbiased bicatgeories.

7.8. Example. The 2-globular operad I2 for unbiased bicategories is the contractible
2-globular operad with

• a single 0-cell, the identity id0; and

• 1-cells consisting of the operadic composites of 1-cells c0, c1, c2, c3, ... whose images
under the underlying collection map are as follows.

⋅ ⋅c0 ⋅i

⋅ ⋅c1 ⋅ ⋅i

⋅ ⋅c2 ⋅ ⋅ ⋅i

⋅ ⋅c3 ⋅ ⋅ ⋅ ⋅i

⋮

An algebra θ ∶ AI2 Ð→ A for I2 is precisely an unbiased bicategory with underlying
2-globular set A. For each n ∈ N, cn provides an operation directly composing 1-pasting
diagrams in A made up of n 1-cells into single 1-cells, with c0 providing 1-cell identites.
For example, given 1-pasting diagrams
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A A B C D
a b c

in A we write c0(A) = 1A and c3(a, b, c) = (abc),

A A A D.
1A (abc)

Note that c1 provides an operation composing simple 1-pasting diagrams in A (Defini-
tion 2.9) that is distinct from the ‘do nothing’ operation on simple 1-pasting diagrams
provided by the identity 1-cell id1. The 1-cells of I2 obtained by operadic composition
of the cns provide operations composing 1-pasting diagrams in A that are derived from
these basic operations. For instance, given the 1-pasting diagram (a, b, c) above we have
(c3 ○ (c2, id1, c0))(a, b, c) = ((ab)c1D) and (c3 ○ (c2, c1, c0))(a, b, c) = ((ab)(c)1D). The con-
tractibility of I2 means that for any 2-pasting diagram in A together with a composition
of the 1-dimensional boundary, there exists a unique composite 2-cell that is consistent
with this boundary composition.

7.9. Notation. We denote by UBicatstr the category I2-Alg of algebras for I2.

There is a presentation for the globular operad I for weak unbiased ω-categories
analogous to the one given for In in Definition 7.3. Like the n-dimensional case, it follows
immediately from the definition that I is contractible, and that the lemma below holds.

7.10. Lemma. When equipped with its canonical contraction the globular operad I for
weak unbiased ω-categories is initial in the category C-GOp of globular operads with
contraction.

7.11. Definition. A weak unbiased ω-category is an algebra for I.

7.12. Notation. We denote by WkU ω-Catstr the category of algebras for I.

8. Globular operads for higher categories

Recall that the globular operad T for strict ω-categories is given by equipping the terminal
globular collection 1 ∶ 1∗ Ð→ 1∗ with its unique operad structure; see Example 4.6. This
means that T contains exactly one n-cell for each n-cell of 1∗, and therefore provides
exactly one way to compose an n-pasting diagram of any given shape. Meanwhile, the
globular operad I for weak unbiased ω-categories has a unique n-cell for every possible
way to compose an n-pasting diagram in an ω-category. Intuitively, any globular operad
that lies somewhere between I and T should define a sensible theory of ω-category. A
similar statement is true for n-globular operads and n-categories. In this section we
construct a categoryCat-GOp of globular operads for ω-categories, and a similar category
Cat-GOpn of n-globular operads for n-categories.
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8.1. Definition. We say that a morphism f ∶GÐ→H of globular sets is

i) surjective on 0-cells if the function f0 ∶ G0 Ð→H0 is a surjection;

ii) k-full (respectively, k-faithful) for k > 0 if the restrictionGk(x,x′) Ð→Hk(fk−1(x), fk−1(x′))
of fk ∶ Gk Ð→Hk is a surjection (respectively, an injection) for each parallel pair (x,x′)
of (k−1)-cells of G; and

iii) full (respectively faithful) if it is k-full (respectively, k-faithful) for all k > 0.

8.2. Lemma. A globular operad G with underlying collection g ∶GÐ→ 1∗ is contractible
if and only if g is full.

8.3. Lemma. If a morphism of globular sets is surjective on 0-cells and full, then it is a
split epimorphism.

Proof. Let f ∶ G Ð→ H be surjective on 0-cells and full. We show by induction on n
that there exists a morphism f ′ ∶ H Ð→ G of globular sets such that fnf ′n = 1Hn for all
n ∈ N. For the base case, f0 ∶ G0 Ð→ H0 is a surjection of sets by assumption, so we can
choose an injective function f ′0 ∶ H0 Ð→ G0 such that f0f ′0 = 1H0 . Next, assume that for
all k, 0 ⩽ k ⩽ n, there exists a function f ′k ∶ Hk Ð→ Gk for which fkf ′k = 1Hk

and such that
the sources and targets are preserved, i.e., the diagrams below commute.

Gk

Gk−1

Hk

Hk−1

ss

f ′k

f ′k−1

Gk

Gk−1.

Hk

Hk−1

tt

f ′k

f ′k−1

Here we define G−1 = H−1 to be the terminal set consisting of a single element. We need
to construct a function f ′n+1 ∶Hn+1 Ð→ Gn+1 satisfying fn+1f ′n+1 = 1Hn+1 and preserving the
sources and targets. Let ψ ∶ y Ð→ y′ be an (n+1)-cell of H . Since f is full, the restriction

Gn+1(f ′n(y), f ′n(y′)) Hn+1(fnf ′n(y), fnf ′n(y′)) =Hn+1(y, y′)
fn+1

of fn+1 is a surjection, so we can choose an (n+1)-cell χ ∶ f ′n(y) Ð→ f ′n(y′) of G such
that fn+1(χ) = ψ. Define f ′n+1(ψ) = χ, then fn+1f ′n+1(ψ) = ψ and the source and target
diagrams for fn+1 commute at ψ by construction.
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8.4. Definition. Let f ∶ G Ð→H be a morphism of globular collections and let A be
a globular set. The morphism Af ∶ AG Ð→ AH of globular sets is the unique morphism
making the diagram below commute.

AH

A∗ H

1∗
!∗ h

AG

G

f

Af

8.5. Lemma. A morphism f ∶ G Ð→ H of globular operads induces a faithful functor
f ∶H-Alg Ð→G-Alg sending an algebra (A, θ) for H to the algebra (A, θ ⋅Af) for G.

Proof. The fact that θ ⋅Af satisfies the unit and multiplication axioms for G-algebras
can be shown using the universal property of pullbacks. The same property is used
to verify that any morphism F ∶ (A, θ) Ð→ (B, σ) of H-algebras is also a morphism
F ∶ (A, θ ⋅Af) Ð→ (B, σ ⋅Bf) of G-algebras, so f is well-defined on morphisms and
faithful.

8.6. Proposition. If a morphism G Ð→H of globular operads is a split epimorphism
on the underlying globular sets then the induced functor H-Alg Ð→ G-Alg is injective
on objects and full.

Proof. Let f ∶ G Ð→H be such a morphism. By assumption there exists a morphism
f ′ ∶H Ð→G of globular sets such that ff ′ = 1H . For each globular set A this induces a
morphism Af ′ ∶ AH Ð→ AG of globular sets satisfying AfAf ′ = 1AH

. Given H-algebra
structures θ and ϕ on A for which the composites θ ⋅Af and ϕ ⋅Af are equal we can
precompose with Af ′ to get θ = ϕ, so the functor f ∶ H-Alg Ð→ G-Alg is injective on
objects. The fact that f is full can be shown similarly.

Recall that I denotes the globular operad for weak unbiased ω-categories; see Section
7.

8.7. Lemma. Let G be a globular operad. If there exists a morphism u ∶ I Ð→ G of
globular operads which is surjective on 0-cells and full on the underlying globular sets,
then G is contractible.

Proof. By Lemma 8.2 it is enough to show that the underlying collection map g ∶GÐ→
1∗ is full. By assumption, there exists morphism u ∶ I Ð→ G of globular sets which is
surjective on 0-cells and full such that the following diagram commutes.
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I G

1∗

u

gi

Additionally, by Lemma 8.3 there exists a morphism u′ ∶ G Ð→ I of globular sets such
that uu′ = 1G. This means that for any parallel pair (x,x′) of n-cells G we have a parallel
pair (u′n(x), u′n(x′)) = (y, y′) of n-cells of I such that (x,x′) = (unu′n(x), unu′n(x′)) =
(un(y), un(y′)). The restriction

Gn+1(x,x′) 1∗n+1(gn(x), gn(x′))
gn+1

of gn+1 may then be rewritten as

Gn+1(un(y), un(y′)) 1∗n+1(gnun(y), gnun(y′)) = 1∗n+1(in(y), in(y′)).
gn+1

Since I is contractible, i must be full, so for each τ ∈ 1∗n+1(in(y), in(y′)) there exists
an element ψ ∈ In+1(y, y′) such that in+1(ψ) = τ . Then gn+1un+1(ψ) = in+1(ψ) = τ , so
gn+1 ∶ Gn+1(x,x′) Ð→ 1∗n+1(gn(x), gn(x′)) is surjective, implying that g is full.

8.8. Remark. Since I has exactly one 0-cell, the existence of a morphism u ∶ I Ð→G of
globular operads which is surjective on 0-cells implies that G must also contain exactly
one 0-cell, the identity id0.

Given a globular operad G for which there exists a morphism u ∶ I Ð→G of globular
operads which is surjective on 0-cells and full on the underlying globular sets, Lemma
8.7 and Remark 8.8 tell us that the algebras for G share many similarities with higher
categories. The fact that G is contractible means that its algebras satisfy the required
conditions on composition and coherence for ω-categories; see Section 5. The fact that
G contains exactly one 0-cell means that like higher categories, there are no non-trivial
operations on the 0-cells of its algebras. On closer inspection, we see that that the algebras
for G are precisely ω-categories: the fact that u is full means that the restriction

In(x,x′) Gn(un−1(x), un−1(x′))
un

of un is a surjection for each n > 0 and parallel pair (x,x′) of (n− 1)-cells of I, so we may
view the n-cells of G as a quotient of the n-cells of I. We think of each n-cell χ ∶ xÐ→ x′

of I as an operation composing n-pasting diagrams of shape i(χ) with respect to the
composition of the boundary given by x and x′. This means that in G some of these
composition operations are equal, which is to say that the algebras for G are a stricter
variety of the ω-categories defined by I. Furthermore, it follows from Lemmas 8.3 and
8.5 and Proposition 8.6 that the induced functor
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G-Alg I-Alg =WkU ω-Catstr
u

is injective on objects, full and faithful, i.e., a full inclusion functor. So G-Alg is a full
subcategory of the category WkU ω-Catstr of weak unbiased ω-categories.

8.9. Definition. We say that a globular operad G is a globular operad for ω-categories
if the only 0-cell of G is the identity id0 and there exists a morphism u ∶ I Ð→ G of
globular operads which is full on the underlying globular sets.

8.10. Remark. It should be noted that there are reasonable theories of ω-category that
do not fit the definition above. For example, ω-categories with multiple ways to directly
compose a pair of 1-cells would be omitted. We have chosen to consider only those higher
categories with at most one direct composition operation for each shape of n-pasting
diagram together with a composition of the boundary.

Let G and H be globular operads for ω-categories and let f ∶GÐ→H be a morphism
of globular operads which is full on the underlying globular sets. Then by the same
reasoning as above the ω-categories defined by H must be a stricter variety of those
defined by G, and the induced functor f ∶H-Alg Ð→ G-Alg is a full inclusion functor,
making H-Alg a full subcategory of G-Alg.

8.11. Definition. A morphism f ∶ G Ð→ H of globular operads for ω-categories is a
morphism of globular operads which is full on the underlying gobular sets.

8.12. Notation. We denote by Cat-GOp the category of globular operads for ω-
categories.

The globular operad I for weak unbiased ω-categories is weakly initial in Cat-GOp
by definition and the globular operad T for strict ω-categories is terminal, so every operad
in this category can be thought of as lying somewhere between I and T . This, together
with the fact that the existence of a morphism f ∶GÐ→H in Cat-GOp implies that the
ω-categories defined by H are a stricter variety of those defined by G, means that the
category Cat-GOp organises theories of algebraic ω-category according to their relative
weakness.

We now define n-globular operads for n-categories. First, recall that there is an extra
requirement n-globular operads must meet in order to be contractible; see Definition 5.12.
With this in mind, we give the following n-dimensional analog of Lemma 8.2.

8.13. Lemma. An n-globular operad Gn with underlying collection g ∶ Gn Ð→ 1∗ is
contractible if and only if g is full and n-faithful.

Next, recall the definition of the n-globular operad In for weak unbiased n-categories;
Definition 7.3.

8.14. Definition. We say that an n-globular operad Gn is an n-globular operad for
n-categories if the only 0-cell of Gn is the identity id0 and there exists a morphism
u ∶ In Ð→Gn of n-globular operads which full on the underlying n-globular sets.
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8.15. Lemma. Every n-globular operad for n-categories is contractible.

8.16. Definition. A morphism f ∶Gn Ð→Hn of n-globular operads for n-categories is
a morphism of n-globular operads which is full on the underlying n-gobular sets.

8.17. Notation. We denote by Cat-GOpn the category of globular operads for n-
categories.

To close this section, we provide some results that will be useful in Section 9.

8.18. Lemma. Let Gn and Hn be n-globular operads satisfying the second condition
in the definition of contractibility for n-globular operads; Definition 5.12. Then every
morphism Gn Ð→Hn of the underlying n-globular sets is n-full and n-faithful.

8.19. Definition. Given a morphism f ∶ Gn Ð→Hn of n-globular operads, (-)f is the
natural transformation

GSetn Gn-Alg⇓ (-)f

Hn-Alg f

whose component at an n-globular set A is Af , defined by truncating Definition 8.4 to
n-dimensions by replacing globular operads with n-globular operads.

8.20. Remark. The natural transformation in Definition 8.19 is the mate of the identity
natural transformation

Hn-Alg GSetn.⇓ 1

Gn-Algf

9. Examples of n-globular operads for n-categories

As mentioned in the introduction, a preprint of Michael Batanin [2] conjectures that
it should possible to take ‘slices’ of globular operads. The kth slice was described as the
symmetric operad determined by the k-dimensional data of a globular operad. Thus, given
a globular operad for higher categories, the slices would isolate the algebraic structure of
the associated higher categories in each dimension. As a first application of presentations,
we will show in the follow up paper [4] that given a presentation P for a globular operad
G, there exists a symmetric operad determined by the k-dimensional data of P ; this
symmetric operad is the kth slice of G.

Batanin also hypothesised that slices could tell us when one theory of higher category
is equivalent to another, and in particular, when a semi-strict notion of higher category
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is equivalent to the fully weak variety. In this section we construct presentations for
the n-globular operads for two semi-strict theories of n-category in dimensions n ⩽ 4;
n-categories with weak units in low dimensions, and n-categories with weak interchange
laws. Using the language of presentations and slices, we show in [4] that both of our
notions of semi-strict 4-category are equivalent to fully weak 4-categories.

Since the n-globular operads appearing in this section are all operads for some theory
of n-category, they must all be contractible. We therefore give the corresponding presen-
tations in the style of Example 6.17. In particular, when constructing a presentation for
some n-globular operad Gn we will declare Gn to be contractible, so that the n-cells of
Gn are determined by the lower dimensional cells and there is no need to specify any
n-cell generators or relations; see Lemma 5.15. Following this, we will need to show that
Gn is actually contractible, i.e., that the Gn also satisfies the definiton of contractibilty
in dimensions < n; see Definition 5.12.

9.1. Weak n-categories. In this section we construct presentations for the 2, 3, and
4-globular operads for bicategories, tricategories and (biased) weak 4-categories, respec-
tively.

9.2. Notation. We will denote by w ∶Wn Ð→ 1∗ the underlying collection map of the
n-globular operad Wn for weak n-categories

9.3. Definition.The 2-globular operadW2 for bicategories is the contractible 2-globular
operad with

• a single 0-cell, the identity id0; and

• 1-cells consisting of the operadic composites of 1-cells i1 and h1 whose images under
the underlying collection map are as follows.

⋅ ⋅i1 ⋅

⋅ ⋅h1 ⋅ ⋅ ⋅

Just as an algebra for the 2-globular operad I2 is an unbiased bicategory (Example
7.8), an algebra θ ∶AW2 Ð→A for W2 is precisely a (biased) bicategory with underlying
2-globular set A. A morphism of algebras for W2 is strict 2-functor between bicategories.

9.4. Notation. We denote by Bicatstr the category W2-Alg of algebras for W2.

The 2-globular operad W2 satisfies the definition of contractibility in dimension 2 by
construction. However, in order for Definition 9.3 to make sense we need to show that
that W2 is actually contractible. By Lemma 8.15 it suffices to show that W2 is an object
in the category Cat-Op2 of 2-globular operads for 2-categories, meaning that there exists
a morphism f ∶ I2 Ð→W2 of 2-globular operads which is full on the underlying 2-globular
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sets. Furthermore, since our presentation for I2 consisted of a 1-cell generator cn for each
n ∈ N (see Example 7.8), Lemmas 5.17 and 6.13 tell us that a morphism f ∶ I2 Ð→W2

of 2-globular operads is completely determined by its value on the the cns. This gives
several choices for f , for example we could choose,

f1(c0) = i1
f1(c1) = id1

f1(c2) = h1
f1(c3) = h1 ○ (h1, id1)

⋮
f1(cn) = h1 ○ (... h1 ○ (h1 ○ (h1, id1), id1)..., id1).

For this choice of f both 1-cell generators i1 and h1 of W2 are in the image of f1 ∶ I1 =
I1(id0, id0) Ð→ W1(id0, id0) = W1. Since the remaining 1-cells of W2 are operadic com-
posites of i1 and h1, and morphisms of n-globular operads preserve operadic composition,
f1 must be surjective, so f is 1-full. It now follows from Lemma 8.18 that f is full, so W2

is indeed contractible. The induced functor f ∶W2-Alg Ð→ I2-Alg is just the inclusion
functor Bicatstr Ð→ UBicatstr corresponding to our choice of f . Explicitly, it is the
functor sending a bicategory B to the unbiased bicategory whose underlying bicategory
is B and for which the n-ary composite of n composable 1-cells a1, ..., an is given by the
composite ((...((a1a2)a3)...)an−1)an.

9.5. Definition.The 3-globular operadW3 for tricategories is the contractible 3-globular
operad with

• the same 0 and 1-cells as W2; and

• 2-cells consisting of the operadic composites of 2-cells i2, h2, v2, l2, l′2, r2, r
′
2, a2 and

a′2 whose images under the underlying collection map are as follows.

⋅ ⋅

id1

id1

⇓ i2 ⋅ ⋅

⋅ ⋅

h1

h1

⇓ h2 ⋅ ⋅ ⋅⇓ ⇓

⋅ ⋅

id1

id1

⇓ v2 ⋅ ⋅⇓
⇓
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⋅ ⋅

h1 ○ (id1, i1)

id1

⇓ l2 ⋅ ⋅

⋅ ⋅

id1

h1 ○ (id1, i1)

⇓ l′2 ⋅ ⋅

⋅ ⋅

h1 ○ (i1, id1)

id1

⇓ r2 ⋅ ⋅

⋅ ⋅

id1

h1 ○ (i1, id1)

⇓ r′2 ⋅ ⋅

⋅ ⋅

h1 ○ (id1, h1)

h1 ○ (h1, id1)

⇓ a2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅

h1 ○ (h1, id1)

h1 ○ (id1, h1)

⇓ a′2 ⋅ ⋅ ⋅ ⋅

An algebra θ ∶ AW3 Ð→ A for W3 is precisely a (biased) tricategory in the sense of
[6] with underlying 3-globular set A. In dimensions ⩽ 1 an algebra for W3 is the same
as an algebra for W2, since the 0 and 1-cells of these operads are the same. The 2-cell
generators i2, h2 and v2 of W3 provide 2-cell identites, binary horizontal composition
of 2-cells and binary vertical composition of 2-cells in A, respectively. The remaining
2-cell generators for W3, l2, r2, a2, l′2, r

′
2 and a′2, provide the left unit coherence 2-cells,

right unit coherence 2-cells, associativity coherence 2-cells, and their (weak) inverses in
A, respectively.

9.6. Notation. We denote by Tricatstr the category W3-Alg of algebras for W2.

We may define a morphism f ∶ I3 Ð→ W3 of 3-globular operads which is full on
the underlying 3-globular sets similarly to how we defined the morphism I2 Ð→ W2
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of 2-globular operads on page 312. It follows that W3 is an object in the category
Cat-Op3 of 3-globular operads for 3-categories, and is therefore indeed contractible. The
induced functor f ∶W3-Alg Ð→ I3-Alg is the inclusion functor Tricatstr Ð→UTricatstr
corresponding to the choice of f .

In dimensions ⩽ 1 bicategories and tricategories are identical, so the n-globular op-
erads W2 and W3 for bicategories and tricategories, respectively, have the same 0 and
1-cells. More generally, weak n-categories and weak (n+1)-categories should be identical
in dimensions ⩽ n − 1, so the operads Wn and Wn+1 for weak n-categories and weak
(n+1)-categories, respectively, should have the same k-cells for all k ⩽ n−1. Additionally,
weak n-categories and weak (n+1)-categories share the same types of binary composition
operations on n-cells and the same coherence n-cells, but only weak n-categories possess
axioms for n-cell composition. For example, ordinary categories and bicategories both
have a single binary composition operation on 1-cells and the same coherence 1-cells,
namely the identity 1-cells. However, 1-cell composition only satisfies axioms in ordinary
categories. In bicategories, the corresponding axioms are pushed to dimension 2, where
they are replaced by the invertibility, naturality and compatibility axioms satisfied by the
coherence 2-cells. Analogously, bicategories and tricategories both have binary horizontal
and vertical composition operations on 2-cells, and the same kinds of coherence 2-cells.
However, only in bicategories does 2-cell composition satisfy any axioms. In tricategories,
the axioms are pushed to dimension 3. With this in mind, we give the following presen-
tation for the 4-globular operad W4 for weak 4-categories.

9.7. Definition. The 4-globular operad W4 for weak 4-categories is the contractible
4-globular operad with

• the same 0, 1 and 2-cells as W3; and

• 3-cells consisting of the operadic composites of forty-six 3-cells, including 3-cells i3,
h3, v3 and c3 whose images under the underlying collection map are as follows.

⋅ ⋅i3
⇛

id1

id1

id2 id2 ⋅ ⋅⇓

⋅ ⋅h3
⇛

h1

h1

h2 h2 ⋅ ⋅ ⋅⇛ ⇛
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⋅ ⋅v3
⇛

id1

id1

v2 v2 ⋅ ⋅
⇛

⇛

⋅ ⋅c3
⇛

id1

id1

id2 id2 ⋅ ⋅⇛ ⇛

An algebra for W4 is a weak 4-category. The 3-cell generators i3, h3, v3 and c3
provide 3-cell identities and binary composition of 3-cells along matching 0, 1, and 2-cell
boundaries, respectively. The remaining forty-two 3-cell generators correspond to the
kinds of coherence 3-cells in the tetracategories of [8], which in turn match the coherence
3-cells present in tricategories [6]. The 3-cell generators for W4 can be found listed
explicitly in [5].

9.8. Notation. We denote by Wk 4-Catstr the category W4-Alg of algebras for W4.

In analogy with the lower dimensional cases, it is straighforward to construct a mor-
phism f ∶ I4 Ð→W4 of 4-globular operads which is full on the underlying 4-globular sets.
It follows that W4 is indeed contractible.

9.9. Remark. It is unknown whether the tetracategories of [8] satisfy the Coherence
Theorem ??. If they do, then an algebra for W4 is precisely one of these tetracategories.
If not, then the algebras for W4 must be a stricter variation.

We can now define, for n = 2,3 and 4, a subcategory of Cat-GOpn whose objects are
globular operads for biased n-categories.

9.10. Definition. An n-globular operad for biased n-categories is an n-globular operad
Gn for which there exists a morphism Wn Ð→Gn of n-globular operads which is full on
the underlying n-globular sets.

9.11. Notation. We denote by BCat-GOpn the full subcategory of Cat-GOpn whose
objects are the n-globular operad for biased n-categories.

9.12. Remark. Note that since BCat-GOpn is a subcategory Cat-GOpn every n-
globular operad for biased n-categories is contractible.

The presentations for the n-globular operads Wn for weak n-categories given in this
section consist of a k-cell generator for each binary composition operation on k-cells and
each kind of coherence k-cell present in a weak n-category (k < n). Presentations for



316 RHIANNON GRIFFITHS

n-globular operads for stricter varieties of n-category will require fewer k-cell generators
since there are fewer coherence cells, but will also require some k-cell relations, each of
will yield an axiom for k-cell composition.

9.13. Semi-strict n-categories. In this section we construct presentations for the
n-globular operads for two theories of semi-strict n-category in dimensions n ⩽ 4. The
first are n-categories with weak identities in low dimensions (namely, dimensions ⩽ n−2),
and the second are n-categories with weak interchange laws. Note that for n = 2, both of
these are precisely strict 2-categories.

9.14. Definition. The 4-globular operad E4 for 4-categories with weak units in low
dimensions is the contractible 4-globular operad with

• a single 0-cell, the identity id0;

• 1-cells consisting of the operadic composites of 1-cells i1 and h1 whose images under
the underlying collection map are as in the presentation for W2, subject to the
equality h1 ○ (id1, h1) = h1 ○ (h1, id1);

• 2-cells consisting of the operadic composites of 2-cells i2, h2, v2, l2, l′2, r2 and r′2
whose images under the underlying collection map are as in the presentation for
W3, subject to the following equalities

i) h2 ○ (id2, h2) = h2 ○ (h2, id2)
ii) v2 ○ (id2, v2) = v2 ○ (v2, id2)
iii) h2 ○ (v2, v2) = v2 ○ (h2, h2)

and;

• 3-cells consisting of the operadic composites of thirty-two 3-cells, including 3-cells
i3, h3, v3 and c3, whose images under the underlying collection map are as in the
presentation for W4, subject to the equalities listed below.

i) c3 ○ (id3, i3) = id3

ii) c3 ○ (i3, id3) = id3

iii) h3 ○ (id3, h3) = h3 ○ (h3, id3)
iv) v3 ○ (id3, v3) = v3 ○ (v3, id3)
v) c3 ○ (id3, c3) = c3 ○ (c3, id3)
vi) h3 ○ (v3, v3) = v3 ○ (h3, h3)
vii) v3 ○ (c3, c3) = c3 ○ (v3, v3)
viii) c3 ○ (h3, h3) = h3 ○ (c3, c3)
ix) h3 ○ (i3, i3) = i3 ○ (h2)
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x) v3 ○ (i3, i3) = i3 ○ (v2)

An algebra θ ∶ AE4 Ð→ A for E4 is a 4-category with weak units in dimensions
⩽ 2 whose underlying 4-globular set is A. The single 1-cell relation, i.e., the equality
h1 ○ (id1, h1) = h1 ○ (h1, id1), yields an associativity axiom for 1-cell composition; given a
1-pasting diagram (a, b, c) in A we have

a(bc) = (h1 ○ (id1, h1))(a, b, c) = (h1 ○ (h1, id1))(a, b, c) = (ab)c.

Thus, the 2-cell generators a2 and a′2 for associativity coherence 2-cells that appear in
the presentation for Wn do not appear here, but every other 2-cell generator does. The
2-cell relations yield associativity axioms for horizontal and vertical composition of 2-
cells, respectively, and an interchange law. The twenty-eight 3-cell generators not listed
above provide coherence 3-cells related to the identity 1- and 2-cells, and can be found
listed explicitly in [5]. The first two 3-cell relations yield left and right unit axioms,
respectively, for composition of 3-cells along a 2-cell boundary. The next three yield
associativity axioms (one for each binary composition operation on 3-cells). The three
that follow yield interchange laws (one for each pair of binary composition operations on
3-cells). The final two 3-cell relations yield axioms stating that the composite of two 3-cell
identities along a 0 or a 1-cell boundary, respectively, is an identity 2-cell.

9.15. Definition. The 3-globular operad E3 for 3-categories with weak units in low
dimensions is the contractible 3-globular operad with

● the same 0 and 1-cells as E4; and

● the same 2-cell generators as E4, subject to the same equalities, as well as the
following additional equalities.

i) v2 ○ (id2, i2) = id2

ii) v2 ○ (i2, id2) = id2

iii) h2 ○ (i2, i2) = i2 ○ (h1)

An algebra for E3 on a 3-globular set A is the same as an algebra for E4 in dimensions
0 and 1. However, the 2-cells of E3 satisfy three extra axioms imposed by the additional
2-cell relations. The first two yield left and right unit axioms, respectively, for vertical
2-cell composition. The third yields an axiom stating that the horizontal composite of
two 2-cell identities is an identity 2-cell.

9.16. Notation. We denote by WkUnit n-Catstr the category En-Alg of algebras for
En.

By Lemmas 5.17 and 6.13, a morphism f ∶ Wn Ð→ En of n-globular operads is
completely determined by its value on the k-cell generators of Wn for all k < n. Thus we
can construct a canonical morphism f ∶W3 Ð→ E3 of 3-globular operads by sending the
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k-cell generators in W3 with a corresponding 3-cell generator in E3 to their counterparts,
and setting f(a2) = i2 ○ (h1 ○ (id1, h1)) = i2 ○ (h1 ○ (h1, id1)) = f(a′2). There is an analogous
morphism W4 Ð→ E4 of 4-globular operads. These morphism are clearly full on the
underlying n-globular sets by inspection so, for n = 3 and n = 4, En is an object in
category BCat-GOpn of n-globular operad for biased weak n-categories, and is therefore
contractible; see Remark 9.12. The induced functor f ∶ En-Alg Ð→ Wn-Alg is the
canonical inclusion functor

WkUnit n-Catstr Wk n-Catstr

and the corresponding natural transformation (Definition 8.19)

GSetn Wk n-Catstr⇓

WkUnit n-Catstr

is the one whose component at an n-globular set A is the canonical strict 4-functor
AWn Ð→AEn from the free weak n-category on A to the free n-category with weak units
in low dimensions on A.

We now construct presentations for the n-globular operads for n-categories with weak
interchange laws. Note that 3-categories with weak interchange laws are not the same as
Gray categories. Gray categories are strict 3-categories with no direct horizontal compos-
ite for 2-cells. On the other hand, 3-categories with weak interchange laws have a direct
horizontal composite for 2-cells, but the 2-dimensional interchange law is weak. See [5] for
a presentation for the 3-globular operad for Gray categories, and a comparsion between
this operad and the one for 3-categories with weak interchange laws.

9.17. Definition. The 4-globular operad H4 for 4-categories with weak interchange
laws is the contractible 4-globular operad with

• a single 0-cell, the identity id0;

• 1-cells consisting of the operadic composites of the 1-cells i1 and h1 whose images
under the underlying collection map are as in the presentation for W2, subject to
the following equalities;

i) h1 ○ (id1, i1) = id1

ii) h1 ○ (i1, id1) = id1

iii) h1 ○ (id1, h1) = h1 ○ (h1, id1)

• 2-cells consisting of the operadic composites of 2-cells i2, h2 and v2 whose images
under the underlying collection map are as in the presentation for W3, subject to
the following equalities;
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i) h2 ○ (id2, i2 ○ (i1)) = id2

ii) h2 ○ (i2 ○ (i1), id2) = id2

iii) v2 ○ (id2, i2) = id2

iv) v2 ○ (i2, id2) = id2

v) h2 ○ (id2, h2) = h2 ○ (h2, id2)
vi) v2 ○ (id2, v2) = v2 ○ (v2, id2)
vii) h2 ○ (i2, i2) = i2 ○ (h1)

and

• 3-cells consisting of the operadic composites of 3-cells i3, h3, v3 and c3 whose images
under the underlying collection map are as in the presentation for W4, and 3-cells
s3 and s′3 whose images under the underlying collection map are,

⋅ ⋅s3
⇛

h1

h1

x y ⋅ ⋅ ⋅
⇓

⇓

⇓

⇓

⋅ ⋅s′3⇛

h1

h1

y x ⋅ ⋅ ⋅
⇓

⇓

⇓

⇓

where x = h2 ○ (v2, v2) and y = v2 ○ (h2, h2), subject to the equalities below.

i) h3 ○ (id3, i3 ○ (i2 ○ (i1))) = id3

ii) h3 ○ (i3 ○ (i2 ○ (i1)), id3) = id3

iii) v3 ○ (id3, i3 ○ (i2)) = id3

iv) v3 ○ (i3 ○ (i2), id3) = id3

v) c3 ○ (id3, i3) = id3

vi) c3 ○ (i3, id3) = id3

vii) h3 ○ (id3, h3) = h3 ○ (h3, id3)
viii) v3 ○ (id3, v3) = v3 ○ (v3, id3)
ix) c3 ○ (id3, c3) = c3 ○ (c3, id3)
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x) h3 ○ (i3, i3) = i3 ○ (h2)
xi) v3 ○ (i3, i3) = i3 ○ (v2)

An algebra for AH4 Ð→ A for H4 is a 4-category with weak interchange laws with
underlying 4-globular set A. Note that in dimensions ⩽ 2, our presentation for H4 is
the same as the presentation for the 2-globular operad T2 for strict 2-categories given in
Example 6.16, with the exception of a single relation; H4 does not have the 2-cell relation
yielding a strict interchange law. The 3-cell generators s3 and s3 provide interchange co-
herence 3-cells and their weak inverses, respectively. The 3-cell relations yield unit axioms
for composition of 3-cells along matching 0, 1, and 2-cell boundaries, three associativity
axioms, and axioms stating the composite of two identity 3-cells along a 0 or 1-cell is
another identity 3-cell.

9.18. Definition. The 3-globular operad H3 for 3-categories with weak interchange
laws is the contractible 3-globular operad with the same 0, 1 and 2-cells as H4.

9.19. Notation. We denote by WkInt n-Catstr the category Hn-Alg of algebras for
Hn.

For n = 3 and n = 4 there is a canonical morphism Wn Ð→Hn of n-globular operads
given by sending the k-cell generators of Wn with corresponding k-cell generators in Hn

to their counterparts. There is then a unique choice of image in Hn for the remaining
k-cell generators of Wn. For example, the 2-cell generator a2 of Wn must go to the
2-cell i2 ○ (h1 ○ (id1, h1)) = i2 ○ (h1 ○ (h1, id1)) of Hn. This morphism is clearly full on
the underlying 3-globular sets by inspection, so Hn is contractible. The induced functor
Hn-Alg Ð→Wn-Alg is the canonical inclusion functor

WkInt n-Catstr Wk n-Catstr,

and the corresponding natural transformation

GSetn Wk n-Catstr⇓

WkInt n-Catstr

is the natural transformation whose component at an n-globular set A is the canonical
strict n-functor AWn Ð→AHn from the free weak n-category on A to the free n-category
with weak interchange laws on A.
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