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COLIMITS IN ENRICHED ∞-CATEGORIES
AND DAY CONVOLUTION

VLADIMIR HINICH

Abstract. Let M be a monoidal ∞-category with colimits. In this paper we study
colimits of M-functors A→ B where B is left-tensored over M and A is an M-enriched
category. We prove that the enriched Yoneda embedding Y : A → PM(A) yields a
universal M-functor. In case when A has a certain monoidal structure, the category
of enriched presheaves PM(A) inherits the same monoidal structure and the enriched
Yoneda embedding acquires the structure of universal monoidal M-functor.

1. Introduction

In this paper we use the word category to denote an ∞-category and the word operad
to denote an ∞-operad in the sense of Lurie [L.HA], Section 2. On the contrary, if we
want to stress that a certain ∞-category is a category in the classical sense, we call it a
conventional category.

1.1. Throughout the paper we assume that M is a monoidal category with colimits,
such that the tensor product in M preserves colimits in both arguments. This means
that M ∈ AlgAss(Cat

L), where CatL denotes the category of categories with colimits, the
arrows being the colimit-preserving functors. We denote by LModM the category of left
M-modules in CatL. In [H.EY] we constructed a Yoneda embedding Y : A → PM(A)
of an M-enriched category A into the category of enriched presheaves. In this paper we
prove that Y is universal among the functors to a left M-module B with colimits: one
has a natural equivalence

Y ∗ : FunLModM(PM(A),B)→ FunM(A,B). (1)

1.2. The existence of the functor (1) results from the functoriality of the assignement
B 7→ FunM(A,B). There is a functor in the opposite direction that can be described in
two ways: as an operadic left Kan extension, or using the notion of weighted colimit. 1
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1One can think of colimits for functors of two kinds: functors from oneM-enriched category to another,
and functors from an M-enriched category to a category left tensored over M. In this paper we deal with
this second kind of functors.
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Given an M-functor f : A→ B, where B is a category with colimits left-tensored over
M, the weighted colimit colim(f) : PM(A)→ B is defined. This gives a functor

colim : FunM(A,B)→ FunLModM(PM(A),B) (2)

quasi-inverse to Y ∗.

1.3. In the case when M is an O-algebra in the category of monoidal categories (that is,
M is a O⊗ Ass-monoidal category), one can define O-monoidal enriched M-categories, as
well as O-monoidal left-tensored categories over M. In this case, if A is an O-monoidal M-
enriched category, PM(A) inherits an O-monoidal structure, Yoneda embedding becomes
an O-monoidal M-functor (see 8.3.3), and (1) induces an equivalence

FunO
LModM

(PM(A),B)→ FunO
M(A,B) (3)

of the corresponding categories of O-monoidal functors.
The O-monoidal structure on PM(A) is an enriched version of the Day convolution

defining a monoidal structure on the presheaves on a monoidal category.

1.4. The paper was started with the aim to prove universality of enriched Yoneda em-
bedding constructed in [H.EY]. At first the task seemed very easy: given an M-enriched
category A and an M-functor f : A→ B, where B is a left M-module with colimits, one
can define the functor colim f : PM(A) → B as a weighted colimit, using Lurie’s general
machinery [L.HA] of relative tensor product (this is now explained in the beginning of
Section 6). One can easily prove that any map F : PM(A) → B in LModM is equivalent
to the colimit of its composition with the Yoneda embedding. But we have not found an
easy argument to show that for any f ∈ FunM(A,B) the composition of colim f with the
Yoneda embedding gives back f .

This is why we had to add Section 3 comparing our working definition of enriched
categories with the one given by Lurie in [L.HA], 4.2.1.28. Now universality of Y follows
from the description of colimit preserving left M-module maps PM(A) → B as operadic
left Kan extensions of their restriction to Ā ⊂ PM(A), the essential image of the Yoneda
embedding.

An O-monoidal version of the universality easily follows from the interpretation of this
operadic Kan extension in terms of weighted colimits.

Our work has a very considerable overlap with the recent manuscript by Hadrian
Heine [HH]. In it the category of enriched M-categories is proven to be equivalent to the
one defined by Lurie (we only prove that the functor A 7→ Ā is fully faithful). Heine also
proves universality of the Yoneda embedding. It seems, however, that his methods are
insufficient to deduce the O-monoidal version of the universality.

1.5. In Section 2 we provide a digest of the theory of enriched categories and enriched
Yoneda lemma. The notion of enriched category used here is the one presented in [H.EY],
Sect. 3. Our definition of enriched categories is practically equivalent to the earlier
definition of [GH].
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J. Lurie defines in [L.HA], 4.2.1.28 another notion ofM-enriched category, as a category
weakly tensored over M, and satisfying some properties.

In Section 3 we compare the notion of enriched categories used in this paper with the
one defined by Lurie. We construct a fully faithful functor from the category Cat(M) of
categories enriched over a monoidal category M with colimits, to the category of Lurie
enriched M-categories 2. What is more important to us, we interpret M-functors f : A→
B from an enriched category A to a left- tensored category B as functors between the
categories weakly tensored over M.

In Section 4 we review the theory of relative tensor products [L.HA], 3.1 and 4.6.
In Section 5 we study bar resolutions for enriched presheaves. This is a technical

section whose result is only needed in the characterization 6.4.2 of morphisms of M-
modules PM(A)→ B as operadic left Kan extensions.

The notion of relative tensor product allows us to define in Section 6 the weighted
colimits. In Section 7 we study the functoriality of the construction of Section 6. This
allows one to deduce the multiplicative version of the main universality result in Section 8.

1.6. Acknowledgement. We are grateful to Greg Arone, Ilan Barnea and Tomer
Schlank for their interest in this work and for sharing their preprint [ABS]. We are
also grateful to H. Heine for informing us about his work [HH]. The first version of the
manuscript contained a number of mistakes and unproven claims, and we are extremely
indebted to the referee who helped to sort them out.

The work was supported by ISF 786/19 grant.

2. Enriched categories and enriched Yoneda: digest

In this section we recall some important constructions of [H.EY]. The notion of operadic
left Kan extension is reviewed in 2.5.

2.1. Throughout the paper we denote by S the category of spaces and by Cat the category
of small categories. We denote (very seldom) by CAT the category of big categories.
Categories with small colimits and colimit-preserving functors form a category CatL ⊂
CAT.

2.2. The category of operads Op is a subcategory of Cat/F in∗ , where Fin∗ is the category
of finite pointed sets. If O is an operad, we denote Op/O or just OpO the category of O-
operads, that is operads endowed with a morphism to O. The terminal object in Op is the
operad for commutative algebras. We denote it Com or Fin∗.

The operad Ass⊗ governs associative algebras, and OpAss is the category of planar op-
erads. We denote by LM⊗, BM⊗ the operads governing the left modules and the bimodules,
respectively. Thus, the operad BM⊗ has three colors, so that the BM⊗-algebras are the
triples (A,M,B) consisting of two associative algebras A and B acting from the left and

2H. Heine recently proved that these two notion of enrichment are equivalent, see [HH].
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from the right on M . Similarly, a BM⊗-operad has three components, two planar operads
A and B, and a category M , with two compatible weak actions of A and of B on M .

Following [L.HA], 2.3.3 and [H.EY], 2.7.1, we often replace operads with their strong
approximations. In particular, we use the approximation Ass, LM and BM of Ass⊗, LM⊗

and BM⊗ as defined in [H.EY], 2.9.

2.3. Quivers. The notion of enriched category, as presented in [H.EY], is based on a
functor

Quiv : Catop × OpAss → OpAss (4)

carrying a pair (X,M) to a planar operad QuivX(M) whose colors are M-quivers, that is
functors A : Xop ×X →M.

The functor (4) has two variations. The first is a functor

QuivLM : Catop × OpLM → OpLM, (5)

and the second is
QuivBM : Catop × OpBM → OpBM. (6)

The functors are compatible: the Ass-component of QuivLMX (M,B) is QuivX(M), and so
on.

In good cases, the functors Quiv applied to monoidal categories with enough colimits,
produce a monoidal category.

2.3.1. More details. In Section 5 we will need a more detailed information about the
functor (5) 3.

In what follows ∆/LM denotes the category of simplices in LM. For a fixed X ∈ Cat,
one defines an LM-operad LMX by a presheaf

(∆/LM)
op → S

given by the formula
LMX(σ) = Map(F(σ), X),

where F : ∆/LM → Cat is a functor with values in conventional categories combinatorially
defined in [H.EY], 3.2. The LM-operad LMX is always flat, [H.EY], 3.3. This means that
the functor OpLM → OpLM given by product with LMX , admits a right adjoint, which is
denoted FunopLM(LMX , ). Finally, given M = (Ma,Mm) ∈ OpLM, one defines the LM-operad
QuivLMX (M) as FunopLM(LMX ,M). Two other variations of the category of quivers, Quiv
and QuivBM, have a similar description. Given M = (Ma,Mm,Mb) ∈ OpBM, the BM-operad
QuivBMX (M) has components (QuivX(Ma),Fun(X,Mm),Mb).

3The functors (4), (6) have a similar description.
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2.3.2. Cat-enrichment. Let O be an operad or a strong approximation of an operad.
The category of O-operads OpO has a Cat-enrichment that assigns to P,Q ∈ OpO the
category AlgP/O(Q).

The functor QuivLMX : OpLM → OpLM respects this enrichment. This means that, given
P,Q ∈ OpLM, one has a functor

AlgP/LM(Q)→ AlgQuivLMX(P)/LM(Quiv
LM
X (Q)) (7)

extending the map

MapOpLM(P,Q)→ MapOpLM(Quiv
LM
X (P), QuivLMX (Q)).

The map (7) is defined as follows. Its target is naturally equivalent, according to [H.EY],
2.8.6, to AlgQuivLMX(P)×LMLMX

(Q). The map (7) can therefore be defined as the one induced
by the canonical evaluation map

QuivLMX (P)×LM LMX = FunopLM(LMX ,P)×LM LMX → P.

2.4. Algebras in quivers. Fixing the second (operadic) argument, we will look at the
functors (4)–(6) as cartesian families of (planar, LM or BM) operads. Let us describe our
interpretation for the categories of algebras in various operads of quivers.

2.4.1. Enriched precategories. For a fixed planar operad M with colimits, an as-
sociative algebra in the family Quiv(M) is called M-enriched precategory. We denote
PCat(M) = AlgAss(Quiv(M)) the category of M-enriched precategories.

An enriched precategory A has a category X of objects, and an associative multipli-
cation in the underlying quiver A : Xop ×X →M.

2.4.2. M-functors. Fix an LM-operad, consisting of a planar operad M and a category
B weakly tensored over M. For fixed X ∈ Cat, the LM-operad QuivLMX (M,B) consists of
the planar operad QuivX(M) and a category Fun(X,B), weakly tensored over QuivX(M).

The LM-operads QuivLMX (M,B) form a family QuivLM(M,B).
An LM-algebra in it consists of a pair (A, f) where A is an M-enriched precategory,

and f is an A-module in Fun(X,B).
We denote PCatLM(M,B) = AlgLM(Quiv

LM(M,B)).
We interpret A-modules in Fun(X,B) asM-functors from A to B, whence the notation

FunM(A,B) = LModA(Fun(X,B)), (8)

the category of left A-modules in Fun(X,B).

2.4.3. Assume now that M is a monoidal category with colimits. Applying the above to
B := M considered as a right M-module (which is the same as left Mrev -module), we can
define the category of enriched presheaves PM(A) = FunMrev (Aop,M). It is left-tensored
over M and has colimits.

Yoneda embedding is an M-functor Y : A→ PM(A), defined by A-bimodule structure
on A, see details in [H.EY], Section 6.
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2.4.4. Enriched categories. An M-enriched category is an enriched precategory sat-
isfying a certain completeness condition. The full embedding Cat(M) ⊂ PCat(M) is right
adjoint to a localization functor L : PCat(M) → Cat(M) which can be described as fol-
lows. Given A ∈ AlgAss(Quiv(M)), we define X as the subspace of PM(A)eq spanned by
the representable functors, and define L(A) as the endomorphism object in QuivX(M) of
the tautological embedding X → PM(A), see [H.EY], 7.2.

2.4.5. Restriction of scalars.Given a cartesian family p : Q→ B×LM of LM-operads,
the embedding Ass→ LM induces a functor

AlgLM(Q)→ AlgAss(Q)

which is a cartesian fibration. This result can be found in [L.HA], 4.2.3.2 or [H.EY], 2.11.

2.4.6. Let (M,B) be an LM-operad. The assignment A 7→ FunM(A,B) is contravariant
in A. This is a special case of a general setup presented in 2.4.5.

Thus, a map f : A → A′ of M-enriched precategories gives rise to a functor f ∗ :
FunM(A

′,B) → FunM(A,B). The definition of f ∗ allows one to compose a map of M-
enriched precategories f : A→ A′ with an M-functor A′ → B.

2.5. Operadic left Kan extensions. Operadic colimits and operadic left Kan exten-
sions defined in Lurie’s [L.HA], Section 3.1, are a part of the construction of a free operad
algebra. In this subsection we present necessary details connected to these notions.

Let O be an operad and let C ∈ AlgO(Cat
L) be an O-monoidal category with colimits.

Given a morphism f : P → Q of O-operads, one has a forgetful functor f ∗ : AlgQ(C) →
AlgP(C). In this context the operadic left Kan extension always exists and defines a
functor

f! : AlgP(C)→ AlgQ(C)

left adjoint to f ∗.

2.5.1. Operadic colimit, see [L.HA], 3.1.1. For K ∈ Cat we denote K▷ = (K ×
[1]) ⊔K [0], the category obtained by adding to K the terminal object ∗.

Let p : C→ O be an O-operad. For any functor f : K → Cact to the subcategory of C
spanned by the active arrows we denote

Cact
f/ = {f} ×Fun(K,Cact) Fun(K

▷,Cact)×Cact C⟨1⟩, (9)

where the arrows from Fun(K▷,Cact) are defined by the embeddings K → K▷ and ∗ ∈ K▷.
A functor f̄ : K▷ → Cact with f := f̄ |K is called a weak operadic colimit diagram if

the natural map
Cact
f̄/ → Cact

f/ ×Oact
q◦f/

Oact
p◦f̄/

is an equivalence.
One says that f̄ is an operadic colimit diagram if for any C ∈ C the composition

K▷ f̄→ Cact ⊕C→ Cact
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is a weak operadic colimit diagram.
Let f : K → Cact be a diagram in an O-operad C and let ḡ : K▷ → O be an extension

of g = p ◦ f . We say that the diagram f has an operadic colimit over ḡ if there exists f̄
over ḡ that is an operadic colimit diagram.

In the case when C is an O-monoidal category with colimits, such that the monoidal
structure is compatible with the colimits, any diagram f : K → Cact has an operadic
colimit.

2.5.2. Operadic left Kan extensions. We present below a definition of operadic
left Kan extension due to Lurie, [L.HA], 3.1.2. We restrict ourselves to a special case of
what Lurie calls “free algebra”, see [L.HA], 3.1.3.1.

Given f : P → Q a morphism of O-operads and an O-operad C, one has an obvious
functor

f ∗ : AlgQ(C)→ AlgP(C).

For any q ∈ Q we define Kq = P×Q Q
act
/q .

Given A ∈ AlgP(C) and B ∈ AlgQ(C), a morphism j : A → f ∗(B) in AlgP(C) deter-
mines a morphism of functors αq → constB(q) : Kq → Cact, with αq being the composition
of A with the projection Kq → P and constB(q) being the constant functor with the value
B(q). Equivalently, this translates into a functor

ᾱq : K
▷
q → Cact. (10)

A morphism j : A→ f ∗(B) is called an operadic left Kan extension of A with respect
to f if for any q ∈ Q the functor ᾱq : K

▷
q → Cact is an operadic colimit diagram.

In the case when C ∈ AlgO(Cat
L), the operadic left Kan extension exists and defines

a functor f! : AlgP(C)→ AlgQ(C) left adjoint to f ∗.

3. Lurie’s enriched categories

In this section we compare the notion of M-enriched category and of an M-enriched
functor, as presented in 2.4.4 and 2.4.2, with the similar (but simpler) notions of Lurie,
[L.HA], 4.2.1.

3.1. LM-operads and Lurie’s enriched categories. Probably, the simplest way to
define an enriched∞-category over a monoidal category M is presented in Lurie’s [L.HA],
4.2.1.28.

3.1.1. The map a : Ass→ LM of operads induces a base change functor

a∗ : OpLM → OpAss (11)

assigning to each LM-operad O its planar component Oa → Ass. The fiber Om at m ∈ LM

is a category that is called weakly enriched over Oa.
We denote by LModwM the fiber of a∗ at M ∈ OpAss. This is the category of categories

weakly enriched over M.
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An object of LModwM is an LM-operad O together with an equivalence M = Ass ×LM O.
We will sometimes denote it as a pair (M,A), where A = {m}×LMO, or (when M is fixed)
as A.

3.1.2. For O,O′ ∈ LModwM we define FunLModw
M
(O,O′) as the fiber of the map

AlgO/LM(O
′)→ AlgM/Ass(M)

at idM.

Let now M be a monoidal category. Here is the definition of Lurie’s M-enriched
category.

3.1.3. Definition. Let M be a monoidal category. A Lurie M-enriched category A is
an LM-operad O with the equivalences M = Ass ×LM O, A = {m} ×LM O, satisfying the
following properties.

1. The natural map⊕mi → ⊗mi induces an equivalence Map((⊗mi)⊕a, b)→ Map(⊕mi⊕
a, b) for any mi ∈M and a, b ∈ A. Here we use the sign ⊕ as in [L.HA], 2.1.1.15 4.

2. For any a, b ∈ A the weak enrichment functor homA(a, b) : M
op → S, defined by the

formula
homA(a, b)(m) = Map(m⊕ a, b),

is representable.

Lurie M-enriched categories form a category denoted CatLur(M). This is a full sub-
category of LModwM spanned by the Lurie M-enriched categories.

In this section we assign to any M-enriched category A a Lurie M-enriched category
Ā. We prove that the category Cat(M) defined in 2.4.4 is equivalent to a full subcategory
of CatLur(M), see 3.4.1. Note that H. Heine has recently proven [HH] that the two notions
are equivalent.

3.1.4. Let M be a monoidal category with colimits.
For any M-enriched category A we define Ā ⊂ PM(A), the full subcategory of PM(A)

spanned by the representable presheaves. Obviously, Ā is an M-enriched category in the
sense of Lurie. By [H.EY], 6.1.4, this defines a functor

λ : Cat(M)→ CatLur(M).

Corollary 3.4.1 asserts that this functor is fully faithful. As H. Heine shows in [HH],
the functor λ is actually an equivalence, see Remark 3.4.2.

4The first property is a pseudo-enrichment in Lurie’s terminology. see [L.HA], 4.2.1.25. The condition
makes sense for the number of factors n ≥ 0.
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3.2. Baby Yoneda functor. In what follows we denote by (M, Ā)⊗ the LM-operad
formed by the category Ā weakly tensored over a monoidal category M.

Let M be a monoidal category with colimits, A be an M-enriched category and B be
a category with colimits left-tensored over M.

Let (M, Ā) be the corresponding Lurie enriched category.
Our aim is to construct an equivalence

FunLModw
M
(Ā,B)→ FunM(A,B). (12)

3.2.1. Functoriality of the assignment

B 7→ FunM(A,B),

as defined by the formula (8), and the preservation of Cat-enrichment by QuivLM, see 2.3.2,
yields a canonical functor

FunM(A,B′)× FunLModw
M
(B′,B)→ FunM(A,B). (13)

In particular, for B′ := Ā, we get

FunM(A, Ā)× FunLModw
M
(Ā,B)→ FunM(A,B). (14)

We claim that the Yoneda embedding Y : A → PM(A) factors uniquely through the
full embedding Ȳ : Ā → PM(A); the natural M-functor y : A → Ā so defined will be
denoted y and called the baby Yoneda functor. The existence (and uniqueness) of the
baby Yoneda immediately follows from the lemma below.

3.2.2. Lemma. Let B be a full subcategory in C that is weakly enriched over a monoidal
category M. Then, for an associative algebra A in M, one has

LModA(B) = LModA(C)×C B.

Note another obvious property of the M-functor y : A→ Ā.

3.2.3. Lemma. The forgetful functor FunM(A, Ā) → Fun(X, Ā) carries y to a map i :
X → Ā identifying X with the maximal subspace of Ā.

3.3. The functor (12) is an equivalence. In Proposition 3.3.7 we prove that the
functor (12) is an equivalence. The idea is to present the source and the target of the
map by a monad on Fun(X,B) and to verify the equivalence of the monads.

3.3.1. Recall that (M,B) is an LM-monoidal category with colimits. Let A ∈ Alg(QuivX
(M)). Let Φ : X → B be an A-module in Fun(X,B) and let a : ϕ → Φ be an arrow in
Fun(X,B). In Lemma 3.3.5 below we formulate the condition for a to represents Φ as a
free A-module generated by ϕ.

The A-module structure on Φ defines an active arrow (A,Φ) → Φ in QuivLMX (M,B)
that is explicitly described in [H.EY] 4.2.1 and 4.3.1, case (w2) with n = 2, k = 1.
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Here is the description. The active arrow above is given by a map A := [1]×LM LMX →
(M,B)act where

A = A0 ⊔C (C × [1]) ⊔C A1,

with A0 = X ×Xop ×X, A1 = X, C = Tw(X)op ×X, the map C → A0 is given by the
projection Tw(X)op → X ×Xop, whereas C → A1 is the projection to the last factor.

This yields, for any x ∈ X, a functor

θ̄Φx : (Tw(X)op)▷ → (M,B)act (15)

carrying the terminal object ∗ ∈ (Tw(X)op)▷ to Φ(x) and the arrow α : z → y from Tw(X)
to the pair (A(y, x),Φ(z)).

We denote by θΦx the restriction of θ̄Φx to Tw(X)op. The functor θϕx : Tw(X)op →
(M,B)act is define in the same way and the map a : ϕ→ Φ gives rise to a map of functors
a : θϕx → θΦx .

3.3.2. A functor f : K▷ → C can be uniquely presented by a map f |K → constf(∗) in
Fun(K,C), where constf(∗) is the constant functor with the value f(∗) ∈ C. In particular,
given f as above and an arrow α : f1 → f |K in Fun(K,C), we get a canonically defined
functor f ′ : K▷ → C with f ′|K = f1 and f ′(∗) = f(∗).

This allows one to define

θ̄ax : (Tw(X)op)▷ → (M,B)act (16)

as the functor induced by a : ϕ → Φ whose restriction to Tw(X)op is θϕx and the value at
the terminal object is Φ(x).

3.3.3. Cocartesian shift. Let p : C→ B be a cocartesian fibration and let, as above,
f : K▷ → C be a functor.

As above, f gives rise to a map f |K → constf(∗) in Fun(K,C), as well as to its image
p ◦ f |K → constp◦f(∗) in Fun(K,B). Since the map Fun(K, p) : Fun(K,C) → Fun(K,B)
is a cocartesian fibration, we get a map of functors

f → Sh(f) : K▷ → C,

such that p ◦ Sh(f) = constp◦f(∗) and for each x ∈ K the arrow f(x) → Sh(f)(x) is
p-cocartesian. In this case we will say that Sh(f) is obtained from f by a cocartesian
shift.

3.3.4. Applying the cocartesian shift to (16), we get

Sh(θ̄ax) : (Tw(X)op)▷ → B.

One has the following.

3.3.5. Lemma. A map a : ϕ → Φ in Fun(X,B) presents Φ as a free A-module if and
only if for any x ∈ X the diagram θ̄ax is an operadic colimit diagram (or, equivalently, if
Sh(θ̄ax) is a colimit diagram).

Proof. The map a : ϕ→ Φ presents Φ as a free A-module generated by ϕ if a induces a
cocartesian arrow (A, ϕ)→ Φ in QuivLMX (M,B). This easily translates to our condition.
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The evaluation of (14) at y defines the canonical functor

y∗ : FunLModw
M
(Ā,B)→ FunM(A,B).

Lemma 3.2.3 asserts that G ◦ y∗ = G′ where G : FunM(A,B) → Fun(X,B) is the
forgetful functor and G′ : FunLModw

M
(Ā,B)→ Fun(X,B) is given by the composition with

X → Ā.

3.3.6. We will now prove that y∗ is an equivalence. Our proof will use the description
of the source and the target of y∗ by monads on Fun(X,B).

Let us consider the following diagram.

FunLModw
M
(Ā,B)

y∗ //

G′

((

FunM(A,B)

Gww
Fun(X,B)

F
77

F ′

hh
(17)

Here the functor F , left adjoint to G, is the free A-module functor. The functor F ′, left
adjoint to G′, is defined by the operadic left Kan extension with respect to the map of
LM-operads

ϵ : M ⊔X → (M, Ā).

The equivalence G′ = G ◦ y∗ gives rise to a morphism of functors η : F → y∗ ◦ F ′.
Here is the main result of this section.

3.3.7. Proposition. The functor y∗ defined above is an equivalence.

Proof. According to [L.HA], 4.7.3.16, we have to verify the following conditions.

1. The functors G′ and G preserve geometric realizations.

2. The functors G and G′ are conservative.

3. η(ϕ) is an equivalence for any ϕ ∈ Fun(X,B).

The functor G is conservative by [L.HA], 3.2.2.6 and preserves colimits by [L.HA],
4.2.3.5. The functor G′ is conservative (by [L.HA], 3.2.2.6) and preserves geometric real-
izations by [L.HA], 3.2.3.1.

It remains to verify that η(ϕ) : F (ϕ)→ y∗◦F ′(ϕ) is an equivalence for any ϕ : X → B.
We will do so by verifying that the unit of the adjunction

a : ϕ→ G′ ◦ F ′(ϕ) (18)

satisfies the condition of 3.3.5 with Φ = G′ ◦ F ′(ϕ).
The map (18) defines, for any x ∈ X, Φ(x) as an operadic colimit, see [L.HA], 3.1.1.20,

3.1.3.5, which we are now going to describe.
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To shorten the notation, we denote X = M⊔X and A = (M, Ā), both considered as LM-
operads. Similarly, P will denote the LM-operad (M, PM(A)). We denote Fx = X×A Aact

/x

and define the functor
ϕ̄x : Fx → (M,B)

as the composition of the projection Fx → X and the map X→ (M,B) induced by ϕ.
The map (18) defines Φ(x) as the operadic colimit of ϕ̄x.
In 3.3.9 and 3.3.10 below we define a functor τx : Tw(X)op → Fx and prove that

θϕx : Tw(X)op → (M,B) factors as θϕx = ϕ̄x ◦ τx.
Then we prove (see 3.3.11) that τx is cofinal. This implies that the diagram θ̄ax is an

operadic colimit diagram. This, by 3.3.5, proves the assertion.

3.3.8. Construction of τx, a general idea. Here is how τx looks like. An ob-
ject f ∈ Fx is given by a collection (m1, . . . ,mn, z, β) where mi ∈ M, z ∈ X and
β : (m1, . . . ,mn, z) → x is an arrow in Q over an active arrow (anm) → m in LM. Note
that an arrow β can be equivalently described (by the Yoneda lemma, see [H.EY], Sect. 6)
by an arrow ⊗mi → A(z, x) in M.

The functor τx : Tw(X)op → Fx will carry an arrow α : z → y to

τx(α) = (A(y, x), z, α∗ : A(y, x)→ A(z, x)).

We present below a more accurate description of τx.

3.3.9. Construction of τx.The functor τx is defined by its components τX : Tw(X)op →
X and τA : Tw(X)op → Aact

/x and an equivalence of their compositions Tw(X)op → A. The

functor τX is the composition

Tw(X)op → X ×Xop →M×X, (19)

where the second map carries (z, y) to (A(y, x), z).
Since Ā is a full subcategory of P := PM(A), Aact

/x is a full subcategory of Pact
/Y (x). The

functor τA is therefore uniquely defined by a functor Tw(X)op → Pact
/Y (x) whose composition

with the forgetful functor to P is given by (19).
Since P is LM-monoidal, τA is determined by a functor Tw(X)op → P/Y (x) assigning to

α : z → y an arrow A(y, x)⊗ Y (z)→ Y (x) in P .
The right fibration p : Tw(X)op → Xop × X carrying α : z → y to the pair (y, z), is

classified by the functor h : X ×Xop → S given by the formula h(z, y) = MapX(z, y).
One has a functor Xop × X → P carrying (y, z) to A(y, x) ⊗ Y (z). In order to

lift it to a functor Tw(X)op → P/Y (x), it is enough to present a morphism of functors
MapX(z, y)→ MapM(A(y, x),A(z, x)). This latter comes from functoriality of A.

We have the following.

3.3.10. Lemma. θϕx = ϕ̄x ◦ τx.
Proof. The functor θϕx : Tw(X)op → (M,B) factors as θϕx = ϕ̄x ◦ τx as ϕ̄x factors through
X, so that the composition ϕ̄x ◦ τx can be expressed through τX given by the formula (19).
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3.3.11. Lemma. The functor τx : Tw(X)op → Fx is cofinal.

Proof. We use Quillen’s Theorem A, see [L.T], 4.1.3.1.
We claim that the comma category

Tw(X)op ×Fx (Fx)f/ (20)

has a terminal object for any f ∈ Fx. In fact, let f = (m1, . . . ,mn, z, u) where u :
⊗mi → A(z, x) is an arrow in M. The terminal object of (20) is given by τx(idz) =
(A(z, x), z, idA(z,x)).

3.4. Enriched categories and Lurie enriched categories. As an easy conse-
quence of the above, we have the following.

3.4.1. Corollary. The functor λ : Cat(M)→ CatLur(M) is fully faithful.

Proof. Let A,A′ ∈ Cat(M). The map

MapCat(M)(A,A′)→ FunM(A, PM(A
′))eq

is embedding, identifying the left-hand side with the subspace of the right-hand side
consisting of f : A → PM(A

′) with representable images. In other words, it induces an
equivalence

MapCat(M)(A,A′)→ FunM(A, Ā′)eq .

According to the theorem, one has an equivalence

FunM(A, PM(A
′))→ FunLModw

M
(A, PM(A

′))

which identifies MapCat(M)(A,A′) with MapLModw
M
(Ā, Ā′).

Note that H. Heine has recently proven [HH] that λ is an equivalence.

3.4.2. Remark. Let B be weakly enriched over a monoidal category M. Here is a
reasonable way to assign to B an M-enriched category A. Let X = Beq and let i : X → B

be the natural embedding. The LM-operad QuivLMX (M,B) defines a weak enrichment of
Fun(X,B) over QuivX(M).

The M-enriched category A can now be defined as the endomorphism object of i ∈
Fun(X,B) (if it exists). Apparently, this is precisely how [HH] proves that λ is an
equivalence.

. The forgetful functor p : AlgLM(Cat)→ AlgAss(Cat) is a cartesian fibration. In particular,
given a monoidal functor f : A → B and a category X left-tensored over B, we have an
LM-monoidal cartesian lifting f ! : (A,X)→ (B,X) in AlgLM(Cat).

3.4.3. Lemma. The arrow f ! : (A,X)→ (B,X) is also p′-cartesian, where

p′ : OpLM → OpAss

is the forgetful functor.
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Proof. The embedding AlgLM(Cat)→ OpLM has a left adjoint functor denoted PLM (mon-
oidal envelope functor). Similarly, PAss : OpAss → AlgAss(Cat) is left adjoint to the em-
bedding. The lemma immediately follows from the equivalence

PLM(O)a = PAss(Oa)

valid for any O ∈ OpLM.

4. Relative tensor product and duality

4.1. Introduction. This section is mostly an exposition of (parts of) Lurie’s [L.HA],
4.6 and 3.1. In it we do the following.

1. Starting with a monoidal category C with geometric realizations, we construct a 2-
category BMOD(C) 5 called the Morita 2-category of C, whose objects are associative
algebras in C, so that the category of morphisms Fun(A,B) is the category of A-B-
bimodules. Composition of arrows in BMOD(C) is given by the relative tensor product
of bimodules. The description of BMOD(C) is based on a study of an operad Tens over
Ass⊗∆op , see [H.EY], 2.10.5 (3) 6 describing collections of bimodules and multilinear
maps between them.

2. Duality for bimodules describes adjunction between morphisms in BMOD(C). The
special case, when the unit and the counit of the adjunction are equivalences, de-
scribes a Morita equivalence between the corresponding associative algebras in C.

3. A more general type of the relative tensor product of bimodules, with different
bimodules belonging to different categories, is described using the same operad
Tens and the ones obtained from it by a base change.

4.2. Morita 2-category and the operad Tens. We now present a construction of
the Morita 2-category BMOD(C) for a monoidal category C with geometric realizations. We
describe BMOD(C) as a Segal simplicial object in Cat, carrying [n] to a category BMODn(C).
The category BMODn(C) can be described as the category of algebras in C over a certain
planar operad (in sets).

We will denote this operad Tensn. Algebras over it are collections (A0, . . . , An) of
associative algebras in C, together with a collection of Ai−1-Ai-bimodules Mi for i =
1, . . . , n. So, BMODn(C) = AlgTensn(C). To define the simplicial object BMOD•(C), we have
to provide a compatible collection of functors s∗ : BMODn(C)→ BMODm(C) defined for each
s : [m]→ [n] in ∆, together with the coherence data.

For a map s : [m] → [n] the functor s∗ : BMODn(C) → BMODm(C) comes from a
correspondence between the operads Tensm and Tensn.

5More precisely, a category object in Cat, that is, a simplicial object in Cat satisfying the Segal
condition.

6Lurie [L.HA] describes it as a family of operads based on ∆op.
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We will present an operad Tenss over Ass⊗[1] with fibers Tensm and Tensn over 0 and

1 respectively. 7

The functors i∗0 : AlgTenss(C)→ BMODm(C) and i∗1 : AlgTenss(C)→ BMODn(C) are defined
by the embeddings i0 : Tensm → Tenss and i1 : Tensn → Tenss.

The map s∗ : BMODn(C) → BMODm(C) will be defined as the composition i∗0 ◦ i1! where
i1! is left adjoint to i∗1.

In order to describe the compatibility of s∗ with respect to composition, we will define
an operad Tens over Ass⊗∆op = Ass⊗ × Com∆op . We will have Tenss = Tens×Ass⊗

∆op
Ass⊗[1]

where s : [1]→ ∆op defines the map Ass⊗[1] → Ass⊗∆op .

4.2.1. The operad Tens. Tens is the operad in sets governing the following collection
of data.

1. For each n ≥ 0 the collection of monoids A0,n, . . . , An,n and Ai−1-Ai bimodules Mi,n

for i = 1, . . . , n.

2. For each map s : [m]→ [n] in ∆ the collection of arrows:

a. Morphism of algebras As(i),n → Ai,m, for i = 0, . . . ,m.

b. Multilinear morphisms (see remark below)

Ms(i−1)+1,n × . . .×Ms(i),n →Mi,m

of As(i−1),n-As(i),n-bimodules.

3. The collections of arrows defined in (2) for each s : [m]→ [n] compose in an obvious
way.

4.2.2. Remark.Multilinearity in the last sentence means that, in case s(i−1)+1 < s(i),
the map is compatible with the actions of all intermidiate Aj,n, j = s(i−1)+2, . . . , s(i)−1;
it means nothing if s(i) = s(i−1)+1; and it means an As(i),n-bimodule map As(i),n →Mi,m

if s(i− 1) = s(i).

4.2.3. The map to Ass⊗∆op. An Ass⊗∆op-algebra in an Ass⊗-operad C is given by a functor
A : ∆op → AlgAss(C). This functor defines a canonical Tens-algebra defined by the
formulas Ai,n = A([n]) = Mi,n. This gives a functor π∗ : AlgAss∆op (C) → AlgTens(C)
realized as the inverse image with respect to the map

π : Tens→ Ass⊗∆op .

7Recall that Ass⊗ denotes the operad governing associative algebras. The operad Ass⊗K for K ∈ Cat

governs K-diagrams of associative algebras.
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4.2.4. For any ϕ : S → ∆op one defines TensS (or Tensϕ) as ComS ×Com∆op Tens.
One defines p : BMOD(C)→ ∆op as a category over ∆op representing the functor

Fun∆op(B, BMOD(C)) = AlgTensB(C). (21)

In the case when C has geometric realizations and a monoidal structure preserving
geometric realizations, BMOD(C) is a cocartesian fibration over ∆op, so it defines a simplicial
object BMOD•(C) in Cat, see [L.HA], 4.4.3.12. It satisfies the Segal condition by [L.HA],
4.4.3.11.

4.2.5. Remark. Note that BMOD(C) is not complete. The zero component BMOD0(C) is
the category of algebras in C which is not a space. An equivalence defined by BMOD1(C) is
a Morita equivalence which is not equivalence in BMOD0(C).

4.3. Duality. In this subsection we apply the general notion of adjunction in a 2-
category to the Morita 2-category described in the previous subsection.

4.3.1. Definition. (see [L.HA], 4.6.2.3) Let C be a monoidal category with geometric
realizations. Let A,B be two associative algebras in C, M ∈A BModB(C) and N ∈B
BModA(C). A map c : B → N ⊗AM is said to exhibit N as left dual of M (or M as a right
dual of N) if there exists e : M ⊗B N → A in ABModA(C) such that the compositions

M = M ⊗B B
idM⊗c→ M ⊗B N ⊗A M

e⊗idM→ M

and
N = B ⊗B N

c⊗idN→ N ⊗A M ⊗B N
idN⊗e→ N

are equivalent to idM and idN , respectively.

Let M be a left C-tensored category with geometric realizations. A dual pair of bimod-
ules M ∈ABModB(C) and N ∈BBModA(C) determines an adjunction (see [L.HA], 4.6.2.1)

F : LModB(M)−→←−LModA(M) : G (22)

given by the formulas F (X) = M ⊗B X and G(Y ) = N ⊗A Y . This adjunction deserves
the name Morita adjunction.

A Morita adjunction is called a Morita equivalence if the arrows c and e are equiva-
lences.

Two properties of Morita adjunction are listed below. The first one, Proposition 4.3.2,
describes a good behavior of Morita adjunctions under composition. The second one,
Proposition 4.3.3, claims that the left dualizability of M ∈ABModB(C) is independent of
the algebra B.

4.3.2. Proposition. (see [L.HA], 4.6.2.6) let C be a monoidal category with geometric
realizations, A,B,C three associative algebras in C. If c : B → N ⊗A M exhibits N as a
left dual to M ∈ABModB and c′ : C → N ′⊗B M ′ exhibits N ′ as a left dual to M ′ ∈BBModC
then the composition

C
c′→ N ′ ⊗B M ′ = N ′ ⊗B B ⊗B M ′ c→ N ′ ⊗B N ⊗A M ⊗B M ′

exhibits N ′ ⊗B N as a left dual to M ⊗B M ′.
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4.3.3. Proposition. (see [L.HA], 4.6.2.12, 4.6.2.13) Let C be a monoidal category with
geometric realizations. A bimodule M ∈A BModB(C) is left dualizable if and only if its
image M ′ in
LModA(C) =ABMod1(C) is left dualizable. Moreover, if N ∈BBModA(C) is left dual to M ,
its image in RModA(C) is a left dual of M ′ ∈ LModA(C).

4.3.4. Remark. In the classical context of associative rings, an A-B-bimodule N is
right-dualizable iff it is finitely generated projective as a right A-module. This property is
independent of B and right dualizability of N is sufficient to have an adjunction between
the categories of left A and B- modules. This adjunction is an equivalence, for B =
EndA(N), if N is a generator in RModA. It would be very nice to describe in our general
context a condition on a right dualizable moduleN ∈ RModA leading to Morita equivalence.

4.3.5. We can fix a right-dualizable A-module N ∈ RModA(C) and try to reconstruct a
would-be Morita equivalence.

Let M ∈ LModA(C) be the right dual of N .
The category RModA(C) is left-tensored over C. So, given N ∈ RModA(C), one can define

an endomorphism object EndA(N) which, if it exists, acquires an associative algebra
structure. Since N is right dualizable, this object does exist, as one has a canonical
equivalence

MapC(X,N ⊗A M) = MapRModA(C)(X ⊗N,N) (23)

by [L.HA], 4.6.2.1 (3), so that EndA(N) = N ⊗A M as an object of C.

4.3.6. Corollary. Let C be a monoidal category with geometric realizations, A an asso-
ciative algebra in C, N ∈ RModA(C) a right dualizable A-module. Then M ∈ LModA(C), the
right dual of N , has a canonical structure of A-EndA(N)-bimodule and the pair (M,N)
defines a Morita adjunction

F : LModEndA(N)(C)
−→
←−LModA(C),

with F (X) = M ⊗EndA(N) X and G(Y ) = N ⊗A Y , for which the coevaluation

c : EndA(N)→ N ⊗A M

is an equivalence.

Proof. See [L.HA], 4.6.2.1 (2).

Note that this construction produces the A-A-bimodule evaluation map

e : M ⊗EndA(N) N → A. (24)

4.3.7. Remark. The algebra B = EndA(N) can be also described in terms of the left
A-module M . In fact, the category LModA(C) is right-tensored over C, so it is left-tensored
over the reversed monoidal category Crev . The endomorphism object of M ∈ LModA(C) in
Crev exists, and it coincides with the algebra Bop.
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4.4. Relative tensor product. The relative tensor product of bimodules with values
in a monoidal category C is encoded in the composition of arrows of BMOD(C). There exists
a slightly more general relative tensor product, for the bimodules having values in different
categories.

Let now C ∈ AlgTensS(Cat
L) where, as before, CatL denotes the category of categories

with small colimits, with the arrows being the colimit preserving functors.
We wish to study tensor product of bimodules with values in C.
We define, slightly generalizing 4.2.4, p : BMODϕ(C) → S as a category over S repre-

senting the functor
FunS(B, BMODϕ(C)) = AlgTensB/TensS

(C).

One has

4.4.1. Proposition.

1. The map p : BMODϕ(C)→ S is a cocartesian fibration.

2. An arrow α̃ in BMODϕ(C) over α : x → y in S is p-cocartesian iff the corresponding
Fα ∈ AlgTensϕ(α)/TensS

(C) is an operadic left Kan extension of its restriction Fϕ(x) :

Tensϕ(x) → C.

3. Let f : C→ D be a Tensϕ-monoidal functor preserving geometric realizations. Then
the induced map BMODϕ(f) : BMODϕ(C)→ BMODϕ(D) preserves cocartesian arrows.

Proof. The first two claims are just [L.HA], Corollary 4.4.3.2, with O = TensS. The
condition (*) is fulfilled as C is TensS-monoidal category with geometric realizations,
commuting with the tensor product. Claim 3 follows from Claim 2.

4.4.2. Here is an important example of the above construction.
Let ≻: [1] → ∆op be defined by the arrow ∂1 : [1] → [2] in ∆. We have then

Tens≻ = Com[1] ×Com∆op Tens.
One has natural embeddings i1 : Tens1 → Tens≻ and i2 : Tens2 → Tens≻ induced by

the embedding of the ends {1} → [1] and {0} → [1].
Note that Tens1 = BM⊗ and Tens2 = BM⊗ ⊔Ass⊗ BM⊗.

4.4.3. Let C be a Tens≻-monoidal category. Up to equivalence, C is uniquely described
by a collection of five monoidal categories Ca,Cb,Cc,Ca′ ,Cc′ , three bimodule categories
Cm ∈Ca BModCb

(Cat), Cn ∈Cb
BModCc(Cat), Ck ∈Ca′

BModCc′
(Cat), monoidal functors ϕa :

Ca → Ca′ and ϕc : Cc → Cc′ , and a Cb-bilinear functor

Cm × Cn → Ck

of Ca-Cc-bimodule categories.
The embedding i2 : Tens2 → Tens≻ induces

i∗2 : AlgTens≻(C)→ AlgTens2/Tens≻(C).
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The relative tensor product functor

RT : AlgTens2/Tens≻(C)→ AlgTens≻(C) (25)

is defined as the functor left adjoint to i∗2.
The functor RT exists if C ∈ AlgTens≻(Cat

L).
It makes sense to fix associative algebras A ∈ AlgAss(Ca), B ∈ AlgAss(Cb), C ∈

AlgAss(Cc), and restrict (25) to Tens2-algebras in C having algebra-components A,B and
C. If A′ = ϕa(A) ∈ AlgAss(Ca′) and C ′ = ϕc(C) ∈ AlgAss(Cc′), this gives

RTA,B,C :ABModB(Cm)×BBModC(Cn)→A′BModC′(Ck). (26)

4.4.4. Two-sided bar construction. The following explicit formula for the calcula-
tion of relative tensor product explains why does it exist for categories with geometric
realizations.

Recall that Tens2 governs 5-tuples of objects, (A,M,B,N,C), where A,B,C are asso-
ciative monoids, M is an A-B-bimodule and N is a B-C-bimodule. We denote the colors
of Tens2 by a,m, b, n, c. The operad Tens1 has colors a′, k, c′.

Define a functor u : ∆op → Tens2 carrying [i] to mbin ∈ Tens2, where the action of u
on the arrows is defined as follows.

• Faces correspond to the action maps mb→ m, bb→ b or bn→ n.

• Degeneracies correspond to the unit maps 1→ b.

We extend the map u : ∆op → Tens2 to u+ : ∆op
+ → Tens≻ carrying the terminal

object of ∆op
+ to k ∈ Tens1.

Let q : C → Tens≻ present a Tens≻-monoidal category. The map Fun(∆op, q) :
Fun(∆op,C) → Fun(∆op, Tens≻) is a cocartesian fibration. The functor u+ defines an
arrow β : u → u∗ in Fun(∆op, Tens≻), u∗ being the constant functor with the value
k ∈ Tens≻. Therefore, any ϕ ∈ AlgTens2/Tens≻(C) gives rise to a unique lift β! : ϕ ◦ u→ X,
where X is a simplicial object in Ck. We will denote X = Sh(ϕ◦u) and call it the two-sided
bar construction, Sh(ϕ ◦ u) = Bar(ϕ).

The following explicit description of relative tensor product is a reformulation of [L.HA],
4.4.2.8.

4.4.5. Proposition. Let C be a Tens≻-monoidal category with geometric realizations and
the tensor structure commuting with the geometric realizations, and let q : C→ Tens≻ be
the corresponding cocartesian fibration. Given a commutative diagram

Tens2
ϕ //

��

C

q

��
Tens≻

Φ

99

Tens≻

(27)
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of marked categories, with ϕ corresponding to a pair of bimodules M ∈ABModB and N ∈B
BModC with values in C. Then there exists Φ presenting a relative tensor product of M
and N . Vice versa, any extension Φ of ϕ presents a relative tensor product of M with
N if and only if the following conditions are fulfilled.

• Φ carries the maps A02 → A01 and A22 → A11 to q-cocartesian arrows in C.

• The functor Φ induces an equivalence

|Bar(ϕ)| → Φ(k).

4.4.6. Associativity. To formulate associativity, we need to use Proposition 4.4.1 ap-
plied to the family ϕ : S → ∆op defined by the commutative square

[1]

∂1

��

∂1
// [2]

∂2

��
[2] ∂1

// [3]

(28)

in ∆, and a Tensϕ-monoidal category C with geometric realizations, see [L.HA], 4.4.3.14.

4.5. Variants. The tensor product of bimodules (26) commutes with the functor for-
getting the left A-module structure and the right C-module structure.

We would like to formulate this observation as follows. Let Ten≻ be the full suboperad
of Tens≻ spanned by the colors a, b, a′,m, n, k ∈ [Tens≻]. There is an obvious embedding
i : Ten≻ → Tens≻ and the functor i∗ : AlgTens≻ → AlgTen≻ forgets the right module
structure on the bimodules described by the colors n and k.

Similarly, it makes sense to describe a yet smaller suboperad En≻ spanned by the colors
b,m, n, k ∈ [Tens≻]. We denote j : En≻ → Tens≻ the obvious embedding that forgets both
the right module structure on bimodules described by n, k and the left module structure
on bimodules described by m, k.

We define Ten2 and En2 as for Tens≻; this yields the functors i∗2 and the left adjoints
RT exactly as for Tens≻-monoidal categories. One has

4.5.1. Proposition. The forgetful functors i∗ and j∗ commute with the relative tensor
product.

Proof. The commutative square

AlgTens≻(C)

i∗

��

i∗2 // AlgTens2/Tens≻(C)

i∗

��
AlgTen≻/Tens≻

(C)
i∗2 // AlgTen2/Tens≻(C)

(29)

defines a morphism of functors
RT ◦ i∗ → i∗ ◦ RT.
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To prove that this functor is an equivalence, we use the description of RT in terms of the
two-sided bar construction. The functor u+ : ∆op → Tens≻ factors through i : Ten≻ →
Tens≻, so the bar construction used to calculate RT as a colimit, is the same for both
setups.

The version for j : En≻ → Tens≻ is proven in the same way.

4.6. Reduction.An A-B-bimodule in C can be equivalently described as a left A-module
in the category RModB(C).

We present below a similar transformation of Tens≻-monoidal categories compatible
with the formation of the weighted colimit.

The construction is based on the notion of bilinear map of operads and their tensor
product as presented in [H.EY], 2.10.

4.6.1. We define a map p : Tens≻ → BM⊗ as the obvious map carrying the colors a, a′, b,m
to a ∈ [BM], n, k to m ∈ [BM] and c, c′ to b ∈ [BM]. We have Ten≻ = LM⊗ ×BM⊗ Tens≻.

One has a standard bilinear map Pr : LM⊗× RM⊗ → BM⊗ defined in [L.HA], 4.3.2.1 and
[H.EY], 2.10.7. There is a lifting of Pr to a bilinear map

µ : Ten≻ × RM⊗ → Tens≻ (30)

uniquely defined by its action on the colors.

• µ(∗,m) = ∗ where ∗ is any color of Ten≻.

• µ(n, b) = c, µ(k, b) = c′.

4.6.2. Let C be a Tens≻-operad. Following a general pattern [H.EY], 2.10.1, we define
a Ten≻-operad Cred := Alg

µ
RM/Tens≻

(C) as the one representing the functor

K ∈ Cat/Ten≻ 7→ MapCat+
/Tens

♮
≻

(K♭ × RM♮,C♮).

We call Cred the reduction of C.
Here is a more convenient description of Cred in the case when C is a Tens≻-monoidal

category. In this case C is classified by a lax cartesian structure

C̃ : Tens≻ → Cat.

Composing it with µ, we get a functor

C̃ ◦ µ : Ten≻ × RM⊗ → Cat,

defining
C : Ten≻ → Funlax(RM⊗, Cat), (31)

that is, a functor with the values in RM-monoidal categories. Composing it with the functor
AlgRM, we get a functor C̃red : Ten≻ → Cat classifying Cred .



386 VLADIMIR HINICH

Here is a more detailed information about the functor C. For x = a, a′,m, b, C(x) is the
RM-monoidal category (Cx, [0]) describing the trivial action of the trivial monoidal category
on Cx. Thus, one has Cred

x = Cx for these values of x. Furthermore, C(n) = (Cn,Cc)
⊗ and

C(k) = (Cn,Cc′)
⊗, so that Cred

n = AlgRM(Cn,Cc) and Cred
k = AlgRM(Ck,Cc′).

The standard embedding i : Ten≻ → Tens≻ identifies the m-component of C with
i∗(C).

This defines a functor G : Cred → i∗(C) forgetting the right module structure on the
components Cred

n ,Cred
k .

The restriction with respect to µ (30) defines a natural map

θ : AlgTens≻(C)→ AlgTen≻(C
red), (32)

whose composition with the map induced by G is the obvious restriction

AlgTens≻(C)→ AlgTen≻/Tens≻
(C). (33)

We believe that the map (32) is an equivalence, that is that µ presents Tens≻ as a tensor
product.

We will actually verify a somewhat weaker statement Proposition 4.6.4 that will be
used in Section 6.

4.6.3. Lemma. The bilinear map

µ2 : Ten2 × RM⊗ → Tens2

obtained by restriction of µ, presents Tens2 as a tensor product of Ten2 with BM⊗.

Proof.We compose µ2 with the standard strong approximations RM→ RM⊗, ten2 → Ten2
as described in [H.EY], 2.9, with ten2 = BM ⊔Ass LM. We get a bilinear map ten2 × RM→
Tens2 that is easily seen to be a strong approximation.

4.6.4. Proposition. Let C be a Tens≻-monoidal category with colimits. Then µ induces
a commutative diagram

AlgTens2/Tens≻(C)
RT //

θ2 ∼
��

AlgTens≻(C)

θ
��

AlgTen2/Ten≻(C
red) RTred // AlgTen≻(C

red),

(34)

where RTred is the relative tensor product defined for the Ten≻-monoidal category Cred .

Proof. If C is a Tens≻-monoidal category with colimits, Cred is a Ten≻-monoidal category
with colimits. This implies that RTred is defined as the functor left adjoint to the restriction
ired∗2 : AlgTen≻(C

red) → AlgTen2/Ten≻(C
red). The equivalence θ2 is defined by the universal
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property of Cred = Alg
µ
RM/Tens≻

(C) and Lemma 4.6.3. The equivalence θ2 ◦ i∗2 = ired∗2 ◦ θ
induces a morphism of functors

RTred ◦ θ2 → θ ◦ RT. (35)

We claim that this morphism is an equivalence.
Let ϕ ∈ AlgTens2/Tens≻(C) be given by a pair of bimodules M ∈ABModB(Cm), N ∈B

BModC(Cn) and let Φ = RT(ϕ). By 4.4.5, the composition Φ ◦ u+ : ∆op
+ → C is an operadic

colimit diagram. This is equivalent to saying that the cocartesian shift Sh(Φ◦u+) : ∆
op
+ →

Ck is a colimit diagram.
The map u+ : ∆op

+ → Tens≻ factors through i : Ten≻ → Tens≻. By 4.4.5, the claim
of Proposition 4.6.4 will be proven once we verify that θ(Φ) ◦ u+ is an operadic colimit
diagram in Cred , or, equivalently, that the cocartesian shift Sh(θ(Φ) ◦ u+) : ∆

op
+ → Cred

k is
a colimit diagram.

The composition G◦Sh(θ(Φ)◦u+) : ∆
op
+ → Ck is a colimit diagram as the composition

G ◦ θ is the restriction (33). According to [L.HA], 3.2.3.1, G creates colimits. This proves
the proposition.

4.6.5. Remark. Let C ∈ AlgAss(Cc) be the c-component of ϕ. We define a Ten≻-
monoidal subcategory Cred

C of Cred as follows. The restriction AlgRM → AlgAss/RM applied

to the functor C (31) yields a morphism of functors

C̃red → AlgAss/RM ◦ C.

The Ten≻-monoidal subcategory Cred
C is defined as the fiber of this functor at the object

of AlgAss/RM ◦ C determined by the cocartesian arrow C → ϕc(C), in the notation of 4.4.3.

The functor θ(Φ) ◦ u+ : ∆op
+ → Cred canonically factors through Cred

C . By [L.HA], 3.2.3.1,
the functor ∆op

+ → Cred
C so defined is also an operadic colimit diagram.

5. Bar resolutions for enriched presheaves

The aim of this very technical section is to construct a certain operadic colimit diagram,
see 5.3.1, used later in the proof of the important result 6.4.2.

Given a monadic adjunction C−→←−LModA(C), any A-module M acquires a standard
resolution Bar•(A,M) (sometimes called bar resolution). This is a simplicial resolution
of M consisting of free A-modules. If one forgets the A-module structure on Bar•(A,M),
one will get a special case of the bar construction described in 4.4.4. It should not surprise
us that the A-module structure that we have just forgotten, can be reconstructed from a
monadic action.

Let C = (Ca,Cm) be an LM-monoidal category with colimits, let A be an associative
algebra in Ca and M be an A-module in Cm. The pair (A,M) is given by a map of operads
γ : LM→ C. Its composition with a functor u+ : ∆op

+ → LM (a variant of the u+ defined in
4.4.4) defines an operadic colimit diagram; its cocartesian shift Sh(γ ◦u+) is equivalent to
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G(Bar•(A,M)), where Bar(A,M) is the G-split simplicial objects defined by the monad
G ◦ F on C and G : LModA(Cm)→ Cm is the forgetful functor.

In Subsection 5.1 we explain how to reconstruct Bar•(A,M) from Sh(γ ◦u+), in terms
an action of the monad corresponding to A.

We use a similar reasoning to describe the bar resolution for enriched presheaves in
Subsection 5.2. Here we are able to say more than for general modules. In general, we
have no chance to introduce the monad action on γ ◦ u+ instead of Sh(γ ◦ u+), as the
category LModA(Cm) is not left-tensored over Ca.

As for the enriched presheaves that are defined as LModAop(Fun(Xop,M)), they have
a left M-module structure. This allows us to encode the bar resolution for a presheaf
f ∈ PM(A) into an operadic colimit diagram

K▷ → (M, PM(A))⊗, (36)

with an appropriate choice of a category K, see 5.2.6 for the precise formulation.

5.1. Bar resolution of a module. Let O be an LM-operad and let γ : LM→ O be an
LM-algebra in O defined by a pair (A,M), where A is an associative algebra in the planar
operad Oa and M ∈ Om is a left A-module.

A very special case of the two-sided bar construction 4.4.4 gives the following simplicial
resolution of a module.

We define the functor u+ : ∆op
+ → LM by the formula

u+([n]) = an+1m, n ≥ −1,

with the face maps defined by the multiplication in a and by its action on m. Note that
the image of u+ belongs to LMact, the active part of LM.

5.1.1. Lemma. The composition

γ ◦ u+ : ∆op
+ → O

is an operadic colimit diagram. In the case when O is a monoidal LM-category with
geometric realizations, it induces an equivalence |Sh(γ ◦ u)| →M in Om.

Proof. This is a direct consequence of [L.HA], 4.4.2.5, 4.4.2.8, applied to the tensor
product A⊗A M = M .

5.1.2. The functor Sh(γ ◦ u+) has a canonical lifting to an augmented simplicial object
in LModA(Om) that we call the bar resolution of A-module M and denote Bar•(A,M). In
5.1.2—5.1.5 we show how this canonical lifting can be described in terms of a monadic
action.
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5.1.3. An action of Oa on Fun(K,Om). An LM-monoidal category O = (Oa,Om) en-
codes an action of a monoidal category Oa on a category Om, or, in other words, a monoidal
functor Oa → EndCat(Om).

Fix K ∈ Cat. The functor C 7→ Fun(K,C) defines a monoidal functor End(C) →
End(Fun(K,C)). Thus, any LM-monoidal category O defines a monoidal functor Oa →
End(Om)→ End(Fun(K,Om)), that is an LM-monoidal category (Oa,Fun(K,Om)).

We wish to present two more constructions of the LM-monoidal category
(Oa,Fun(K,Om)).

1. Applying the functor FunLM(K, ) defined in [H.EY], 6.1.6, we get an LM-monoidal
category with the a-component FunLM(K,O)a = Fun(K,Oa) and
FunLM(K,O)m = Fun(K,Om). The forgetful functor AlgLM(Cat) → AlgAss(Cat) being a
cartesian fibration, the LM-monoidal category (Oa,Fun(K,Om)) described above, is equiv-
alent to i∗(FunLM(K,O)), where i : Oa → Fun(K,Oa) is induced by the map K → [0].

2. Let K ∈ Cat. Denote by KLM the LM-monoidal category describing the action of the
terminal monoidal category [0] on K. We claim that FunopLM(K

LM,O) gives yet another
presentation of (Oa,Fun(K,Om)).

We start with the map of cocartesian fibrations over LM

q : K × LM→ KLM (37)

constructed as an obvious natural transformation of the classifying functors LM → Cat.
The map q induces

K × FunLM(K
LM,O)→ KLM ×LM FunLM(K

LM,O)→ O, (38)

and, therefore, an LM-operad map

Q : FunLM(K
LM,O)→ FunLM(K,O).

The monoidal component of Q is the monoidal functor i : Oa → Fun(K,Oa) mentioned
above. Therefore, the map Q factors through

Q′ : FunLM(K
LM,O)→ i∗(FunLM(K,O)).

One can easily see that Q′ is an equivalence.

5.1.4. Corollary. Let O = (Oa,Om) be LM-monoidal category, A ∈ AlgAss(Oa), f :
K → Om a functor. Let

F : Om
−→
←−LModA(Om) : G

be the adjunction. There is an equivalence between decompositions f = G ◦ f ′, f ′ : K →
LModA(Om), and A-module structures on f .
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5.1.5. We apply Corollary 5.1.4 to the functor Sh(γ ◦ u+) : ∆
op
+ → Om.

By 5.1.3 and 5.1.4, we have to produce a map of operads LM → FunopLM((∆
op
+ )LM,O)

or, equivalently, an LM-operad map (∆op
+ )LM → O, whose a-component is given by A and

m-component is γ ◦ u+ : ∆op
+ → Om.

Let PLM be the monoidal envelope of LM. The monoidal part of PLM has objects an,
n ≥ 0, and the arrows are generated by the unit 1 → a, the product aa → a, subject
to the standard identities. The module part of PLM consists of the objects anm with the
obvious action of the monoidal part.

One has an LM-monoidal functor i : (∆op
+ )LM → PLM that is the unit on the monoidal

part, and u+ : ∆op
+ → PLM carrying [n− 1] to anm.

Since O is LM-monoidal, the map γ : LM → O uniquely extends to Γ : PLM → O. The
composition with i yields the required LM-operad map (∆op

+ )LM → O.

5.2. Bar resolution for presheaves . We apply the reasoning of the previous sub-
section to enriched presheaves. Given a monoidal category M and an M-enriched category
A with the space of objects X, we want to describe a bar resolution for f ∈ PM(A) =
FunMrev (Aop,M).

The pair γ = (Aop, f) is given by the functor

γ : LM→ QuivLMXop(Mrev ,M). (39)

The information we need about the bar resolution of f is contained in the composition

γ ◦ u+ : ∆op
+ → LM→ QuivLMXop(Mrev ,M).

Since
QuivLMXop(Mrev ,M) = FunopLM(LMXop , (Mrev ,M)),

the functor γ defines (and is uniquely defined by)

γ′ : LMXop → (Mrev ,M), (40)

where the LM-operad LMXop is the one discussed in 2.3.1.

5.2.1. We will need to know more about the LM-operad LMX and its base change LM◦X :=
∆op

+ ×LM LMX .
The explicit description of LMX is given in [H.EY], 3.2. According to this description,

LMX is presented by a functor
(∆/LM)

op → S

carrying σ : [n]→ LM to Map(F(σ), X) where F : ∆/LM → Cat has values in conventional
categories described by certain diagrams, see [H.EY], 3.2, especially the diagrams (51),
(55), (60).

The base change LM◦X = ∆op
+ ×LM LMX is described by the collection of F(σ) for σ :

[n]→ LM that factor through u+ : ∆op
+ → LM.
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The categories F(σ) for these values of σ canonically decompose F(σ) = F−(σ) ⊔ [n],
where [n] appears as the rightmost component of F(σ) in the graphic presentation [H.EY],
(55), (60), the component containing the vertex y1, see op. cit., diagram (51).

This means that LM◦X = LM
◦,−
X ×X, so that the canonical projection LM◦X → ∆op

+ factors
through the projection to LM

◦,−
X .

5.2.2. The restriction of (40) to LM◦Xop gives therefore

γ◦ : LM◦,−Xop ×Xop → u∗+(M
rev ,M), (41)

where u∗+(M
rev ,M) is the base change of (Mrev ,M) considered as a category over LM.

We compose γ◦ with the equivalence op : u∗+(M
rev ,M)→ u∗+(M,M) 8.

We get a functor

γ◦,− : LM◦,−Xop → Fun(Xop, u∗+(M,M)).

Since the projection LM◦Xop → ∆op
+ factors through LM

◦,−
Xop → LM, the map γ◦,− defines a

map
γ◦,− : LM◦,−Xop → u∗+(Fun

LM(Xop, (M,M))), (42)

where we use the notation of [H.EY], 6.1.6 to define the target of the map.

5.2.3. The right-hand side of (42) has, as Ass-component, the monoidal category Fun(Xop,
M). There is a monoidal functor

c : M→ Fun(Xop,M)

carrying m ∈M to the corresponding constant functor. The arrow

c! : (M,Fun(Xop,M))→ FunLM(Xop, (M,M)). (43)

induced by c is cartesian in OpLM by Lemma 3.4.3. Since the Ass-component of γ◦,− factors
through the map AssXop → M defining Aop, the map (42) factors through c! giving the
map that we denote by the same letter

γ◦,− : LM◦,−Xop → u∗+(M,Fun(Xop,M)). (44)

5.2.4. The category LM
◦,−
Xop has one object over the terminal object [−1] of ∆op

+ . We will
denote this object by ∗ (note that it is not a terminal object). The functor γ◦,− applied to ∗
gives G(f) ∈ Fun(Xop,M) (once more, G is the forgetful functor PM(A)→ Fun(Xop,M)).

An object of LM◦,−Xop over [n−1], n ≥ 1, is given by a collection of objects (y, xn, yn, . . . , x1)
of X.

The functor γ◦,− carries (y, xn, yn, . . . , x1) to

(f(y),A(yn, xn), . . . ,A(y2, x2), Y (x1)) ∈Mn × Fun(Xop,M),

where Y is the Yoneda embedding.

8Note that this is an equivalence over op : ∆op
+ → ∆op

+ .
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5.2.5. It is interesting to see what does γ◦,− do with the arrows.
An arrow α in LM

◦,−
Xop from (y, xn, yn, . . . , x1) to ∗ is given by a collection of maps

αi : xi → yi+1 (or αn : xn → y).
The functor γ◦,− carries α to the arrow

(f(y),A(yn, xn), . . . ,A(y2, x2), Y (x1))→ f

defined by the map

f(y)⊗A(yn, xn)⊗ . . .⊗A(y2, x2)→ f(x1),

defined by the Aop-module structure on PM(A) ∋ f .

We are now ready to formulate the enriched presheaf analog of Lemma 5.1.1.

5.2.6. Lemma. The functor

(LM◦,−Xop)/∗ → (M,Fun(Xop,M)) (45)

induced by γ◦,−, is an operadic colimit diagram.

Proof. Note that the source of the functor (45) has form K▷, where K = ∆op ×∆op
+

(LM◦,−Xop)/∗. The evaluation map ex : Fun(Xop,M)→M, x ∈ Xop, commutes with the left
M-module structure, so, in order to prove the lemma, it is sufficient to verify that for any
x ∈ Xop the composition of (45) with the evaluation map is an operadic colimit diagram
K▷ → (M,M).

We know that the composition γ◦u+ : ∆op
+ → QuivLMXop(Mrev ,M) is an operadic colimit

diagram. Since M is a monoidal category with colimits, the restriction functor

FunLM(∆
op
+ , QuivLMXop(Mrev ,M))→ FunLM(∆

op, QuivLMXop(Mrev ,M)) (46)

has a left adjoint carrying γ ◦ u to γ ◦ u+. Since, by adjunction, the arrow (46) can be
rewritten as

FunLM(LM
◦
Xop , (M,M))→ FunLM(∆

op ×∆op
+
LM◦Xop , (M,M)), (47)

this implies that the functor γ◦ is an operadic left Kan extension of its restriction to
∆op ×∆op

+
LM◦Xop . This easily implies the claim.

5.2.7. We now intend to show that (44) canonically factors through the forgetful functor

(M, PM(A))
G→ (M,Fun(Xop,M)). (48)

This implies the main result of this section, Proposition 5.3.1.
To deduce the factorization, we need, according to 5.1.4, to present the action of the

monad G ◦ F defined by Aop on the functor (44). As a first step, we will describe a left
QuivXop(Mrev)-tensored structure on the target of (44), the category u∗+(M,Fun(XopM)).

Here is a general construction in the context of BM-monoidal categories.
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5.2.8. Condensation. Let O = (Oa,Om,Ob) be a BM-monoidal category. We can look
at Om as an object of RModOb

(LModOa(Cat)). Its bar construction gives an augmented
simplicial object in LModOa(Cat) that classifies a cocartesian fibration over ∆op

+ . The total
category of this cocartesian fibration in v∗+(Om,Ob) where the functor v+ : ∆op → RM is
defined as the composition of u+ with op : LM→ RM. The resulting LM-monoidal category
will be called the condensation of O and denoted by cond(O).

Applying the condensation functor to O = QuivBMXop(Mrev), we get an LM-monoidal
category whose monoidal part is QuivXop(Mrev) and whose left-tensored part is

v∗+(Fun(X
op,M),Mrev) = u∗+(M,Fun(Xop,M)).

5.2.9. Therefore, in order to show that (44) canonically factors through (48), we have
to extend γ◦,− to a map of operads

Γ : (LM◦,−Xop)LM → cond(QuivBMXop(Mrev)). (49)

5.2.10. We will construct (49) using the presentation of LM-operads by simplicial spaces
over LM, or, equivalently, by presheaves on ∆/LM. We will describe the functors correspond-
ing to the source and the target of Γ, and we will show that (39) allows one to construct
a map of these presheaves.

We will now describe the source of (49). First of all, LM◦,−Xop is a category over ∆op
+ , so

the space of its k-simplices decomposes

(LM◦,−Xop)k =
∐

τ :[k]→∆op
+

LM
◦,−
Xop(u+ ◦ τ),

where LM◦,−Xop(u+ ◦ τ) = Map(F−(u+ ◦ τ), Xop), see the notation of 5.2.1.
Let σ : [n]→ LM be an object of ∆/LM presented by a sequence

σ : ad0m→ . . . adkm→ adk+1 → . . . adn .

We will assume k = −1 if σ factors through Ass→ LM.
Then the source of (49) is described by the following formula.

(LM◦,−Xop)LM(σ) =

{
[0], if k = −1,
(LM◦,−Xop)k =

∐
τ :[k]→∆op

+
LM
◦,−
Xop(u+ ◦ τ) otherwise.

(50)

The description of the target of (49) will be presented in 5.2.15, after a certain digression.

5.2.11. Internal mapping operad, reformulated.We need some detail on internal
operad objects, [H.EY], 2.8.

The direct product in the category P (C) of presheaves has a right adjoint assigning
to a pair F,G ∈ P (C) a presheaf FunP (C)(F,G) whose value at c ∈ C is calculated as the
limit

FunP (C)(F,G)(c) = lim
a→b→c

Map(F (b), G(a)). (51)
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Fix a category B and let us look for a similar description of the internal Hom in Cat/B.
The latter is a full subcategory of P (∆/B), so we can try to use the formula (51) with
C = ∆/B. Given F,G ∈ Cat/B, we are looking for an object FunCat/B(F,G) furnishing an
equivalence

MapCat/B(H,FunCat/B(F,G)) = MapCat/B(H × F,G). (52)

Since Cat/B is a full subcategory of P (∆/B), and since the representable presheaves
belong to Cat/B, the object FunCat/B(F,G), if it exists, is equivalent to the presheaf
FunP (∆/B)(F,G). This provides a very easy criterion for the existence of FunCat/B(F,G):
it exists if and only if FunP (∆/B)(F,G) is a category over B. Note that, by definition, for
b ∈ B, the fiber FunCat/B(F,G)b identifies with Fun(Fb, Gb).

Let us now apply the above reasoning to operads. If P is a flat O-operad, one defines
a marked category π : P′ → P over P by the formulas

P′ = Funin([1],O)×O P, (53)

where Funin([1],O) denotes the category of inert arrows in O. Let s, t : Funin([1],O)→ O

be the standard projections. An arrow in P′ is marked iff its projections to P and to O

(via s) are inert. P′ considered as a category over O is flat. One defines Fun♯
O(P

′,Q) as the
full subcategory of FunCat/O(P

′,Q) spanned by the arrows α : P′o → Qo, for some o ∈ O,
carrying the marked arrows in P′o to equivalences.

Proposition 2.8.3 of [H.EY] claims that, for any O-operad Q, Fun♯
O(P

′,Q) is an O-
operad representing FunopO(P,Q).

In particular, for s : [n]→ O,

FunopO(P,Q)(s) ⊂ lim
u→v→s

Map(P′(v),Q(u)),

consists of collections whose each component corresponding to u = v : [1]→ [0]
k→ [n]

s→
O carries the marked arrows of P′s(k) to equivalences in Qs(k).

5.2.12. Remark. Note that a map P′x → Qx factoring through π : P′x → Px automati-
cally carries the marked arrows to equivalences.

5.2.13. Condensation, for BM-operads.We need more explicit formulas for the con-
densation of a BM-monoidal category. This operation can be defined in the greater gener-
ality of BM-operads.

Given a BM-operad p : O→ BM, we will define its “condensation” q : O′ = cond(O)→
LM so that

• O′ ×LM Ass = O×BM Ass−.

• O′m = v∗+(O×BM RM),

where v+ : ∆op
+ → RM is defined as the composition v+ = op ◦ u+.

We will be using a presentation of operads by presheaves on ∆/BM and ∆/LM.
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Recall that BM = (∆/[1])
op; its objects are arrows s : [n] → [1] and an arrow from

s : [n]→ [1] to t : [m]→ [1] is given by f : [m]→ [n] such that s ◦ f = t.
An object s : [n] → [1] of BM defined by the formulas s(i) = 0, i = 0, . . . , k, s(i) =

1, i > k, is otherwise denoted akmbn−k−1, see [H.EY], 2.9.2.
We denote by BM0 the full subcategory of BM spanned by s : [n] → [1] with s(0) = 0.

The category LM is the full subcategory of BM0 spanned by the arrows s : [n]→ [1] having
at most one value of 1. The subcategories BM1 and RM are defined as images of BM0 and
LM under op : BM→ BM.

The full embeddings LM → BM0 and RM → BM1 have left adjoint functors ℓ : BM0 → LM

and r : BM1 → RM erasing superfluous values of 1 and 0 respectively. The functors ℓ and r
induce functors ∆/BM0 → ∆/LM and ∆/BM1 → ∆/RM. We will denote by ∆act

/RM the category of
simplices in RM whose all arrows are active.

For τ : [n]→ BM0 given by

τ : ac0mbd0 → . . .→ ackmbdk → ack+1 → . . .→ acn

or
τ : ac0mbd0 → . . .→ ackmbdk → bdk+1 → . . .→ bdn ,

we denote by τ− the k-simplex

ac0mbd0 → . . .→ ackmbdk

(if τ is a simplex in Ass− ⊂ BM0, we put k = −1 and τ− is empty in this case).
For σ ∈ ∆/LM we define

Π(σ) = {τ ∈ ∆/BM0|ℓτ = σ, r(τ−) ∈ ∆act
/RM}. (54)

Note that for σ ∈ ∆/Ass k = −1 and Π(σ) = {σ}.
The assignment σ 7→ Π(σ) is obviously functorial, with a map α : [m] → [n] defining

Π(σ)→ Π(σ ◦ α) carrying τ to τ ◦ α.

Let a BM-operad O be described by a presheaf F ∈ P (∆/BM). We define a presheaf
F ′ ∈ P (∆/LM) describing cond(O) by the formula

F ′(σ) =
∐

τ∈Π(σ)

F (τ). (55)

5.2.14. Lemma. The presheaf F ′ defined above represents an LM-operad.

Proof. 1. Segal condition follows from the definition of Π(σ). To verify completeness,
we can fix w = akm ∈ LM and study the simplicial space n 7→

∐
τ∈Π(wn)

F (τ), where wn is
the degenerate n-simplex determined by w ∈ LM. This simplicial space is equivalent to the
product of the fibers {ak} ×BM O and v∗+(O), which is, of course, complete as a simplicial
space. Thus, F ′ represents a category over LM which we will denote by cond(O).

2. It remains to prove that cond(O) is fibrous.
Let us describe cocartesian liftings of the inerts in LM. These are of two types
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• Erasing m. Such inert has form α : anm→ al.

• Not erasing m: either α : an → al or α : anm→ alm.

In the first case the cocartesian lifting of α in F ′(α) having a source in F (t) for t = anmbk

is an inert arrow in F (τ), where τ ∈ Π(α) is (the only) inert arrow from anmbk to al such
that ℓ(τ) = α.

In the second case, for α : anm→ alm, with the source t = anmbk, is the inert arrow
in F (τ) where τ is defined by the conditions ℓ(τ) = α, r(τ) = idmbk .

The rest of the fibrousness conditions [L.HA], 2.3.3.28 or [H.EY], 2.6.3 easily follow
from the above description.

5.2.15. We will now present the target of (49) by a presheaf on ∆/LM.
For σ : [n]→ LM we have

cond(QuivBMXop(Mrev))(σ) =
∐

σ̂∈Π(σ)

QuivBMXop(Mrev)(σ̂) (56)

⊂
∐

σ̂∈Π(σ)

lim
u→v→σ̂

Map(BM′Xop(v),M(op ◦ u)),

where the inclusion means that we have to choose the connected components preserving
the inerts, and BM′Xop is defined by the formula (53).

5.2.16. We are now ready to construct Γ. It consists of a compatible collection of maps

Γσ,τ,s,t : LM
◦,−
Xop(u+ ◦ τ)× BM′Xop(t)→M(π ◦ op ◦ s) (57)

for each σ ∈ ∆LM, σ̂ = σ ∗ (v+ ◦ op ◦ τ) ∈ Π(σ) and s→ t→ σ̂ in ∆/BM.
Equivalently, this can be described by a compatible collection

Γσ,τ : LM◦,−Xop(u+ ◦ τ)× BM′Xop(σ̂)→M(π ◦ op ◦ σ̂) (58)

for each σ ∈ ∆LM and σ̂ = σ ∗ (v+ ◦ op ◦ τ) ∈ Π(σ).

5.2.17. The collection of maps (58) we are going to present will factor through the
natural projections BM′Xop → BMXop , so, by Remark 5.2.12, it will induce a map to
Fun♯(BM′Xop ,Mrev) as needed.

The explicit formulas for BMX show that BMXop(σ̂) = BMXop(σ), so we will rewrite the
source of (58) as

Map(F−(u+ ◦ τ), Xop)×Map(F(σ), Xop) = Map(F−(u+ ◦ τ) ⊔ F(σ), Xop) =

Map(F(u+ ◦ τ) ⊔F(σk) F(σ), Xop) = Map(F(σ), Xop)×Map(F(σk),Xop) Map(F(τ), Xop),

where σk denotes the k-simplex in LM with the constant value m ∈ LM. Similarly, one has
a canonical presentation

M(π ◦ op ◦ σ̂) = M(π ◦ op ◦ σ)×M(π◦σn) M(π ◦ op ◦ τ). (59)
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5.2.18. The map γ′ (40) is described by a map of presheaves, given, for each σ : [n]→ LM,
by a map

γσ : Map(F(σ), Xop)→M(π ◦ op ◦ σ). (60)

The collection of maps Γσ,τ is defined as the fiber product of γσ and γτ .

5.3. Conclusion. We have just constructed the functor Γ (49) defined by the collection
of maps Γσ,τ (58) obtained as the fiber product of γσ and γu+τ (60). This implies the main
result of this section.

5.3.1. Proposition. The functor Γ (49) defines an operadic colimit diagram

(LM◦,−Xop)/∗ → (M, PM(A)). (61)

6. Weighted colimits

In this paper we study weighted colimits of M-functors.
Given an M-functor f : A → B where A is M-enriched category and B is a left

M-module, and an enriched presheaf W ∈ PM(A), we will define a weighted colimit
colimW (f) ∈ B. The construction is functorial in W , so that colimW (f) is the evaluation
at W of a certain colimit preserving functor colim(f) : PM(A) → B preserving the left
M-module structure. The composition colim(f)◦Y with the enriched Yoneda embedding
yields f : A→ B.

The construction of weighted colimit is also functorial in f : A → B. This will
imply Theorem 6.4.4 claiming that the Yoneda embedding Y : A→ PM(A) is a universal
M-functor.

6.1. Internal Hom. We keep the notation of 4.4.3. Let C = CatL.
Given A,B,C associative algebras in C, we have a functor

RTA,B,C :A BModB(C)× BBModC(C)→ABModC(C)

defined by the relative tensor product. This functor has a right adjoint

FunL
A : ABModB(C)

op ×ABModC(C)→BBModC(C)

which we are now going to describe.

6.1.1. The formula

Map
BBModC

(N,FunL
A,B,C(M,K)) = Map

ABModC
(M ⊗B N,K)

determines FunL
A,B,C

9 as presheaf. In the case when M is a free A-B-bimodule M =

A⊗X ⊗B, this presheaf is represented by the B-C-bimodule FunL(X ⊗B,K); since any
bimodule is a colimit of free bimodules and since the Yoneda embedding commutes with
the limits, this proves the existence of FunL

A,B,C(M,K) in general 10.

9This is a temporary notation.
10The forgetful functor CatL → CAT to the category of big categories creates the limits.
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6.1.2. The functor FunL
A,B,C , as defined above, depends on three algebras A,B,C. We

will omit B and C from the notation for the following reason.
Let b : B → B′ and c : C → C ′ be algebra maps. Then the B′-C ′-bimodule

FunL
A,B′,C′(M,K) identifies with the restriction of scalars of theB-C-bimodule FunL

A,B,C(M,
K).

6.1.3. Thus, we now assume that B = C = 1. For M,K ∈ LModA(C), we can define
FunL

A(M,K) as the full subcategory of FunLModwA(M,K), see 3.1.2, spanned by the lax
LM-monoidal functors f = (idA, fm) : (A,M)→ (A,K) satisfying two extra properties:

• f is LM-monoidal.

• fm preserves small colimits.

As we explained above, in the case when M is an A-B-bimodule and K is an A-C-
bimodule, FunL

A(M,K) acquires a natural B-C-bimodule structure.

6.2. Weighted colimit. We apply the notion of tensor product described in 4.4 to the
following context.

Fix a monoidal category M ∈ AlgAss(Cat
L) and a X ∈ Cat. Let B be a left M-module.

Let N = Fun(X,M). This is a right M-module.

6.2.1. Lemma. N is right dualizable. Its right dual is M = Fun(Xop,M) considered as
a left M-module.

Proof. We deduce the duality between M and N from the special case M = S. In this
case N = P (Xop), M = P (X) and the duality is given by the maps

c : S→ P (Xop)⊗ P (X) = P (Xop ×X)

defined as the colimit-preserving map preserving the terminal objects, and

e : P (X)⊗ P (Xop)→ S

extending the Yoneda map Xop ×X → S to preserve colimits.
To get the duality for arbitrary M, we use Proposition 4.3.2. We have three associative

algebras in CatL, A = B = S and C = M, the adjoint pair (P (Xop), P (X)) that we just
constructed, and the one defined by (M,M). The composition of these gives an adjunction
for (N,M).

6.2.2. Let us now apply Corollary 4.3.6 to A = M and N = Fun(X,M). We get the right
dual module M = Fun(Xop,M) and the endomorphism ring B = QuivX(M), see [H.EY],
4.5.3. We also get a canonical M-M-bimodule map

e : Fun(Xop,M)⊗QuivX(M) Fun(X,M)→M. 11 (62)

11In fact e is an equivalence. We do not use this fact.
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We would like to comment about the right QuivX(M)-module structure on Fun(Xop,M).
According to Remark 4.3.7, the reverse monoidal category QuivX(M)rev identifies with

the endomorphism object of the left M-module Fun(Xop,M), that is, of the right Mrev -
module Fun(Xop,M). This means that the right QuivX(M)-action on Fun(Xop,M) is
defined by the same construction as the left action on Fun(X,M), but with Mrev replacing
M and Xop replacing X.

Tensoring (62) with B over M and using associativity of the relative tensor product
4.4.6, we get a map of left M-modules

eB : Fun(Xop,M)⊗QuivX(M) Fun(X,B)→ B. (63)

This gives a Ten≻-algebra Q = QX,M,B in CatL consisting of the following categories
and operations between them described above.

• Monoidal categories Qa = Qa′ = M,Qb = QuivX(M),

• A bimodule category Qm = Fun(Xop,M), a left QuivX(M)-module Qn = Fun(X,B)
and a left M-module Qk = B.

6.2.3. Fix X ∈ Cat, (M,B) ∈ AlgLM(Cat
L). We have a relative tensor product functor

RT : AlgTen2/Ten≻(QX,M,B)→ AlgTen≻(QX,M,B). (64)

Let A ∈ AlgAss(QuivX(M)) be an M-enriched precategory with space of objects X.
The restriction RT1,A of (64) is a functor

RT1,A : RModA(Fun(X
op,M))× LModA(Fun(X,B))→ B. (65)

Taking into account that RModA(Fun(X
op,M)) = PM(A) and LModA(Fun(X,B)) =

FunM(A,B), we finally get the functor called weighted colimit,

colim : PM(A)× FunM(A,B)→ B, (66)

carrying a pair (W ∈ PM(A), f : A → B) to colimW (f) := f ⊗W ∈ B. This functor
preserves colimits separately in both arguments, as well as left M-tensored structure in
the first argument.

In particular, for a fixed f : A→ B the functor colim(f) : PM(A)→ B preserving the
colimits and the left M-tensored structure, is defined.

Since the bifunctor (66) is a special case of the relative tensor product, it defines, using
the notation (6.1), a canonical functor (that we also denote as colim)

colim : FunM(A,B)→ FunLModM(PM(A),B) (67)

6.3. Properties of the weighted colimit.

6.3.1. Lemma. Let Y : A→ PM(A) be the Yoneda embedding. Then colim(Y ) = idPM(A).
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Proof. Look at the Tens≻-monoidal category F in CatL having the following components.

• Monoidal categories Fa = Fa′ = M, Fb = Fc = Fc′ = QuivX(M),

• Fm = Fk = Fun(Xop,M), Fn = QuivX(M),

with the standardM-QuivX(M)-bimodule structure on Fun(Xop,M) and the unit QuivX(M)-
QuivX(M)-bimodule structure on QuivX(M).

We will study the relative tensor product defined by F. Let A be an associative
algebra in QuivX(M). The relative tensor product with A-A-bimodule A defines the
identity functor on RModA(Fun(X

op,M)) = PM(A).
We will now show that the calculation of colim(Y ) has the same answer.
We apply the reduction procedure described in 4.6. Let F′ = Fred

A be a Ten≻-monoidal
category obtained from F by reduction, see 4.6.2 and 4.6.5. It has the following compo-
nents.

• Monoidal categories F′a = F′a′ = M, F′b = QuivX(M).

• F′m = Fun(Xop,M), F′n = RModA(QuivX(M)), F′k = RModA(Fun(X
op,M)).

The category Fun(X,Fun(Xop,M)) has a structure of QuivX(M)–QuivX(M)-bimodule
described by the BM-monoidal category

QuivBMX (QuivBMXop(Mrev)rev),

as in [H.EY], 6.1.7. This bimodule identifies with QuivX(M). This implies that F′n as
a left QuivX(M)-module identifies with Fun(X,PM(A)), so that F′ is equivalent to the
category QX,M,B with B = PM(A).

. The construction (X,M,B) 7→ QX,M,B described in 6.2.2 is functorial in (X,M,B) ∈
Cat× AlgLM(Cat

L). The precise expression of this functoriality is given in Section 7. We
now need only a small (and obvious) fragment of it.

6.3.2. Lemma. A map g : B → B′ of M-modules in CatL induces a Ten≻-monoidal
colimit-preserving functor QX,M,B → QX,M,B′.

By Proposition 4.4.5 this induces a map preserving weighted colimits. This implies
that the colimit functor defined by formula (66) is functorial in B.

6.3.3. Corollary. For g : B→ B′ an arrow in LModM, the following diagram

PM(A)× FunM(A,B) colim //

��

B

��
PM(A)× FunM(A,B′) colim // B′

, (68)

with the vertical arrows defined by g, is commutative.
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6.3.4. Corollary. Let A be a M-enriched category and let B be a left M-modules with
colimits. For any colimit-preserving map F : PM(A) → B of left M-modules there is a
natural equivalence

F
∼→ colim(F ◦ Y ).

Proof. Follows from 6.3.1 and 6.3.3.

6.4. Universality. We define the map

Y ∗ : FunL
M(PM(A),B)→ FunM(A,B) (69)

as the composition with the Yoneda embedding Y : A→ PM(A).
In this subsection we will show that Y ∗ is an equivalence.

6.4.1. The weighted colimit defines a map (67) in the opposite direction. According to
Corollary 6.3.4, the composition colim ◦Y ∗ is equivalent to identity.

We deduce that the other composition is also equivalent to identity providing an
interpretation of the weighted colimit as an operadic left Kan extension.

Recall 3.2 that Ā ⊂ PM(A) is the full subcategory spanned by the representable
functors.

In what follows we denote

P = PM(A), P = (M, P ) ∈ AlgLM(Cat
L), A = (M, Ā) ⊂ P,B = (M,B).

Thus, A is an LM-suboperad of P. For F ∈ FunLModM(P,B) we will denote by the same
letter F : P→ B the corresponding LM-monoidal functor.

We claim the following.

6.4.2. Proposition. Any F ∈ FunLModM(P,B) is an operadic left Kan extension of F̄ =
F |A.

6.4.3. Proposition. Let F̄ : A→ B be a map of LM-operads. Then the map F : P→ B
defined as an operadic left Kan extension of F̄ preserves operadic colimits.

6.4.4. Theorem. The map (69) is an equivalence.

Proof. Let f̄ : A → B be a morphism in LModwM defined by f : A → B. By 6.4.3,
its operadic left Kan extension F : P → B preserves operadic colimits, and, therefore,
defines an arrow in LModM. Therefore, by 6.4.2, F = colim(f). This implies that the
composition Y ∗ ◦ colim is equivalent to identity.
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The rest of this subsection is devoted to proving 6.4.2 and 6.4.3.

6.4.5. Proof of Proposition 6.4.2. Let f ∈ P . Denote Ff = A×P Pact
/f .

We have to verify that the composition Ff → A
F̄→ B extends to an operadic colimit

diagram
F▷
f → B

carrying the terminal object of F▷
f to F (f).

The general case is immediately reduced to the case B = P and F = idP . Thus, we
have to verify that any f ∈ P is an operadic colimit of the functor ȳ : Ff → P defined as
the composition of the projection Ff → A with the embedding to P.

The plan of our proof is as follows.
Following to 5.3.1 , the pair γ = (Aop, f) gives rise to a factorization of the functor

γ◦,−, see (44),

LM
◦,−
Xop

Γ→ P
G→ (M,Fun(Xop,M)) (70)

through the forgetful functor G, so that Γ(∗) = f where ∗ is a (unique) object of LM◦,−Xop

over [−1] ∈ ∆op
+ . The restriction of Γ to ∆op×∆op

+
LM
◦,−
Xop factors through the full embedding

A→ P.
Recall that

K = ∆op ×∆op
+
(LM◦,−Xop)/∗

induces an equivalence

K▷ = (LM◦,−Xop)/∗.

This yields a functor

τ : K → (LM◦,−Xop)/∗ → Ff (71)

and an operadic colimit diagram (by Proposition 5.3.1)

Γ : K▷ → P (72)

extending the composition of (71) with the projection Ff → P.
It remains to verify that τ is cofinal.

6.4.6. Cofinality of τ . To prove that τ is cofinal, we use Quillen’s Theorem A in the
form of [L.T], 4.1.3.1. We have to verify that, for any ϕ ∈ Ff , the comma category

Kϕ = K ×Ff
(Ff )ϕ/

is weakly contractible.
The proof goes as follows. In 6.4.8 below we present an object tϕ of Kϕ and a functor

F : Kϕ → Fun(Λ2
0, Kϕ) whose evaluation at 1 ∈ Λ2

0 is idKϕ
and at 2 ∈ Λ2

0 is the composition
Kϕ → {tϕ} ↪→ Kϕ. The functor F provides a null-homotopy for the identity map on Kϕ.
This proves cofinality of τ and, finally, Proposition 6.4.2.
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6.4.7. We denote by p : K → ∆op the obvious projection. We also denote p : Kϕ → ∆op

the composition Kϕ → K → ∆op. The functor F : Kϕ → Fun(Λ2
0, Kϕ) will be defined as

the one assigning to t ∈ Kϕ a p-product diagram t← t′ → tϕ in the sense of [L.T], 4.3.1.1.
The latter means that for any x ∈ Kϕ the diagram

MapKϕ
(x, t′) //

��

MapKϕ
(x, t)×MapKϕ

(x, tϕ)

��
Map∆op(p(x), p(t′)) //Map∆op(p(x), p(t))×Map∆op(p(x), p(tϕ))

is cartesian. To construct F , we first construct a functor F̄ : ∆op → Fun(Λ2
0,∆

op) (this
is very easy), and then prove that for any t there exists a p-product diagram t← t′ → tϕ
whose image under p is F̄ (p(t)). By the uniqueness of relative product diagrams, the
functor F̄ lifts to a functor F : Kϕ → Fun(Λ2

0, Kϕ).

6.4.8. We define q : Ff → ∆op
+ so that the composition u+ ◦ op ◦ q is the projection to

Ff → Pact
/f → LM. This condition uniquely determines q as any object in Pact

/f has image

in u+(∆
op
+ ). The definition of q is chosen so that for t ∈ K the equality p(t) = q(τ(k))

holds.
Let ϕ ∈ Ff be defined by the collection (m1, . . . ,mn, z, β) with mi ∈M, z ∈ Xop and

β : (m1, . . . ,mn, z)→ f defined by a map ⊗mi → f(z) (we will also denote it by β).
Given d ∈ K defined by a sequence (y, xk, yk, . . . , x2, y2, x1) together with arrows

αi : xi → yi+1 (αk : xk → y), an object t : ϕ → τ(d) of Kϕ is defined by a collection of
maps

⊗rk
i−1mi → f(y);

⊗rj−1

i=rj+1mi → A(yj, xj), j = k, . . . , 2; (73)

⊗n
i=r1+1mi → A(z, x1),

for a certain sequence of numbers 1 ≤ rk ≤ . . . ≤ r1 ≤ n defining the arrow anm→ akm
in LM that is the image of t.

We define an object tϕ of Kϕ by the arrow tϕ : ϕ→ τ(dϕ) where dϕ = (z, z, idz) ∈ K,
so that τ(dϕ) is given by (f(z), z, idf(z)), and tϕ : ϕ→ τ(dϕ), an arrow in Ff over the map
anm → am induced by an → a in LM, that is the identity on z and β : ⊗mi → f(z) on
the a-component.

Note that q(tϕ) is the map ⟨n− 1⟩ → ⟨0⟩ corresponding to {0} ∈ [n− 1].
We can now define F̄ : ∆op → Fun(Λ2

0,∆
op). Its opposite carries [k − 1] ∈ ∆ to the

diagram [k − 1]→ [k]← [0] in ∆ with the arrows ∂0 : [k − 1]→ [k] and [0]→ {0} ∈ [k].
We claim that for any t ∈ Kϕ with p(t) = ⟨k − 1⟩, there is a p-product diagram

t← t′ → tϕ over F̄ (⟨k⟩).
We will now define an arrow d′ → d in K with a decomposition of t : ϕ → τ(d) via

τ(d′)→ τ(d), as well as a map d′ → dϕ decomposing tϕ.
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We put d′ = (y, xk, yk, . . . , x1, z, z) together with αi : xi → yi+1 and idz : z → z.
We have τ(d′) = (f(y),A(yk, xk), . . . ,A(y2, x2),A(z, x1), z), so that the collection of maps
(73), together with the unit 1→ A(z, z), yields a map that we denote t′ : ϕ→ τ(d′).

The arrow d′ → d in K is given by the commutative diagram

y
• xk◦αkoo

��

yk• . . .
αk−1oo x1◦α1oo

��

z• z◦oo

y
•

OO

xk◦αkoo yk•

OO

. . .
αk−1oo x1◦α1oo

(74)

where all unnamed arrows appearing in the diagram are the identity maps. The arrow
d′ → dϕ is given by the commutative diagram

y
• xk◦αkoo yk• . . .

αk−1oo x1◦α1oo z• z◦oo

��
z•

OO

z◦oo

(75)

where, once more, all unnamed arrows are the identity maps.
Thus, for a fixed map p(d′′) → p(d′) in ∆op, its lifting in d′′ → d′ in K is described

by the same collection of data as a pair of maps d′′ ← d and d′′ → dϕ. Therefore, the
diagram d ← d′ → dϕ is a p-product diagram in K. For the same reason the diagram
t← t′ → tϕ is a p-product diagram.

This proves the cofinality of τ : K → Ff , and, therefore, Proposition 6.4.2.

6.4.9. Proof of Proposition 6.4.3. We prove the claim in two steps.
1. The first step is to prove that F : P→ B is a map of LM-monoidal categories, that

is, that it preserves cocartesian arrows.
Let X = m ⊕ x ∈ M × P = Plm and let y = m ⊗ x ∈ P . We want to show that F

carries the cocartesian arrow α : X → y to a cocartesian arrow in B. By definition of F ,
F (x) is the operadic colimit of the composition

Aact
/x → A

f→ B,

that is m⊕ F (x) is the operadic colimit of the composition

Aact
/x → A

m⊕→ A
f→ B.

One has an equivalence Aact
/X → Aact

/m × Aact
/x = Mact

/m × Aact
/x (see Lemma 6.4.10 below)

defined by the decomposition X = m⊕ x, so that the map A/x
m⊕→ A/X is cofinal.

This implies that m⊕ F (x) is the operadic colimit of the composition

Aact
/X → A

f→ B,
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that implies that the arrow F (X)→ F (y) is cocartesian.
2. Let p̄ : K▷ → Pact be an operadic colimit diagram. We keep in mind that P is

a LM-monoidal category with colimits, so operadic colimits can be expressed in terms of
colimits. Since we already know that F preserves cocartesian arrows, it is sufficient to
verify the claim in the case p factors through P ⊂ Pact. Thus, from now on we can assume
that p̄ : K▷ → P , is a colimit diagram; we have to verify that its composition with F
remains a colimit diagram in B. Here we follow the proof of the similar claim in [L.T],
5.1.5.5.

For any p : K → P denote E(p) = Aact ×Pact Pact[1] ×Pact K. We have two projections
sp : E(p)→ Aact and dp : E(p)→ K. One has a canonical map up : Y ◦sp → p◦dp induced
by the projection E(p)→ Pact[1]. We assert that the composition K

p→ P
F→ Bact is a left

Kan extension of the composition f ◦ sp : E(p) → Aact → Bact along d. In fact, the map
dp : E(p) → K is a cocartesian fibration so, by [L.T], 4.3.3.10, applied to dp : E(p) → K
over K, the assertion can be verified fiberwise for each x ∈ K where it follows from the
definition of F as the left Kan extension of f . This establishes a canonical equivalence
colim(F ◦ p) = colim(f ◦ sp).

Note that, by 6.4.2, idP is an operadic left Kan extension of Y : A→ P, so everything
we said above is valid, in particular, for F = idP.

Let p̄ : K▷ → P be a colimit diagram and p = p̄|K . We have to prove that F ◦ p̄ is
a colimit diagram in Bm. In what follows we denote E = E(p) and Ē = E(p̄), as well as
s = sp, s̄ = sp̄, d = dp, d̄ = dp̄, u = up and ū = up̄.

The map s : E(p) → Aact is a cartesian fibration, so, in particular, the map sop :
E(p)op → (Aact)op, is a smooth map.

Given a ∈ Aact, the fiber E(p)a = Pact
Y (a)/ ×Pact K is a cocartesian fibration over K

classified by the composition K
p→ Pact

evY (a)→ S.
For any a ∈ A the induced map Ea → Ēa is a weak homotopy equivalence by [L.T],

3.3.4.5. Therefore, [L.T], 4.1.2.18 implies that the map E→ Ē is a contravariant equiva-
lence over Aact.

We will now apply [L.T], 5.1.5.4 to deduce the required result. We have a map of
LM-operads f : A→ B and a contravariant equivalence E→ Ē over Aact.

The morphism of functors ū : Y ◦ s̄→ p̄ ◦ d̄ gives rise to a composition

Y ◦ s̄ ū−→ p̄ ◦ d̄→ p̄(∗)

to the constant functor with the value at p̄(∗) ∈ P, that is a functor v : Ē▷ → Pact

carrying the terminal object to p̄(∗). Let us look at the composition F ◦ v : Ē▷ → B.
This is a colimit diagram as colim(f ◦ s̄ : Ē → B) = colim(F ◦ p̄ : K▷ → B) that is

obviously F (p̄(∗)).
Therefore, the restriction of F ◦v to E▷ is colimit diagram. This means that colim(F ◦p :

K → Bact) = F (∗). This completes the proof of 6.4.3.
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6.4.10. Lemma. Let P → Q be a morphism of operads and let x, y ∈ Q1. Then one has
an equivalence

Pact
/x⊕y = Pact

/x × Pact
/y .

Proof. The category Pact has a symmetric monoidal structure, see [L.HA], 2.2.4.3. One
has a symmetric monoidal functor Pact → Qact so that the monoidal operation induces a
functor ⊗ : Pact

/x × Pact
/y → Pact

/x⊕y. This is clearly an equivalence.

7. Functoriality of QX,M,B

In Section 8 we present a monoidal version of the equivalence (69). This requires a
better understanding of the functorial properties of this equivalence. Our aim is to
present the collection of Ten≻-monoidal categories QX,M,B defined in 6.2.2 as a symmetric
monoidal functor from Cat × AlgLM(Cat

L) to a certain category of Ten≻-monoidal cat-
egories, see 7.5.1. The rest of the section is devoted to justifying Corollary 7.4.6 and
Lemma 7.4.7 used in the proof of 7.5.1. The proof of Proposition 7.4.1 was suggested to
us by the referee.

7.1. Families of monoidal categories.

7.1.1. Let P be an operad. Recall that the category MonlaxP is defined as the full sub-
category of the category of P-operads OpP spanned by the P-monoidal categories. The
category MoncolaxP of P-monoidal categories and colax monoidal functors can be formally
defined as follows. First of all, one defines CoopPop , the category of Pop-cooperads, as
the category of functors p : C → Pop such that pop : Cop → P is a P-operad. The cat-
egories CoopPop and OpP are obviously equivalent but any P-monoidal category has both
operadic and cooperadic realization that are intertwined by the passage from a monoidal
category to its opposite. If M is a P-monoidal category, its operadic realization is a P-
operad M⊗ → P that is a cocartesian fibration obtained by Grothendieck construction
from the functor P → Cat describing the P-monoidal structure on M . The equivalence
between cocartesian fibrations over P and the cartesian fibrations over Pop carries M⊗

to the cooperadic realization ⊗M → Pop of M . The embeddings MonlaxP → Cat/P and
MoncolaxP → Cat/Pop preserve products.

The category Fun(Bop, MonlaxP ) is equivalent, by Grothendieck construction, to the
category of arrows p : X → B × P, with components pB : X → B and pP : X → P,
satisfying the following properties.

1. pB is a cartesian fibration, pP is a cocartesian fibration.

2. p is a map of cartesian fibrations over B and of cocartesian fibrations over P.

3. For any b ∈ B the fiber Xb = p−1B (b)→ P is a P-operad.

4. For any β : b→ b′ in B the cartesian lifting β! : Xb′ → Xb is a map of P-operads.
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The first two properties mean that p : X → B × P is a lax bifibration in the sense of
[H.D], 3.1.2.

Recall that Catcoc/B (resp., Catcart/B ) denotes the full subcategory of Cat/B spanned by

the cocartesian (resp., cartesian) fibrations.
One has

7.1.2. Proposition. (see [H.EY], 2.11.3) One has an equivalence Fun(Bop, MonlaxP ) =
AlgP(Cat

cart
/B ).

There is a similar description of Fun(B, MoncolaxP ). This category is equivalent to the
category of arrows q : X → Pop ×B such that

1. qB is a cocartesian fibration, qPop is a cartesian fibration.

2. q is a map of cocartesian fibrations over B and of cartesian fibrations over Pop.

3. For any b ∈ B the fiber Xb = q−1B (b)→ Pop is a Pop-cooperad.

4. For any β : b→ b′ in B the cocartesian lifting β! : Xb → Xb′ is a map of P-cooperads.

The following result is an immediate consequence of 7.1.2.

7.1.3. Proposition. One has an equivalence Fun(B, MoncolaxP ) = AlgP(Cat
coc
/B ).

Let now P and Q be two operads. In the lemma below the categories MonlaxP and
MoncolaxQ are endowed with the cartesian symmetric monoidal structure.

7.1.4. Lemma. There is an equivalence of categories

AlgQ(Mon
lax
P ) = AlgP(Mon

colax
Q ).

Proof. The category AlgP(Mon
colax
Q ) indentifies with the full subcategory of functors

f : P → Cat/Qop satisfying the Segal condition and such that for any p ∈ P f(p) is a
(cooperad presentation of a) P-monoidal category. This can be equivalently described
as the category of (Qop,P)-lax bifibrations [H.D] that is maps q : X → Qop × P that
are simultaneously map of cartesian fibrations over Qop and of cocartesian fibrations over
P, satisfying the listed above properties. Equivalently, this can be rewritten in terms of
(Q,P)-Gray fibrations [HHLN] p : X → P× Q satisfying the properties

• for any q ∈ Q the fiber Xq → P is a P-monoidal category.

• Any decomposition q = q1 ⊕ q2 gives rise to a cartesian diagram

Xq
//

��

Xq1

��
Xq2

// P

.

Rewriting these as functors Q→ Cat/P, we get the subcategory AlgQ(Mon
lax
P ).
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7.2. Monoidal structure on Mon
lax/colax,L
P . The category MonLP = AlgP(Cat

L) has a
symmetric monoidal structure inherited from that on CatL. In this subsection we show
that the lax and the colax versions of this category also have a symmetric monoidal
structure.

We denote by Mon
lax,×
P the cocartesian fibration over Fin∗ defined by the cartesian

symmetric monoidal structure on MonlaxP
12. The subcategory Mon

lax,L,⊗
P of Mon

lax,×
P is

defined as follows. Its objects are the collections of P-monoidal categories with colimits.
An arrow C1× . . . Cn → C in Mon

lax,×
P belongs to Mon

lax,L,⊗
P if it preserves colimits in each

argument. The composition p : Monlax,L,⊗P → Mon
lax,×
P → Fin∗ is an operad.

7.2.1. Proposition. p is a cocartesian fibration. This yields a structure of SM category
on Mon

lax,L
P . The embedding MonLP → Mon

lax,L
P is a symmetric monoidal functor.

Proof. Given A1, . . . , An in Mon
lax,L
P let ⊗Ai denote their tensor product in MonLP . We

have to verify that the map ⊕Ai → ⊗Ai is a cocartesian lifting of the active arrow
⟨n⟩ → ⟨1⟩, that is, that the natural map

j : Map
Mon

lax,L
P

(⊗Ai, B)→ Map
Mon

lax,L,⊗
P

(⊕Ai, B) (76)

is an equivalence for any B ∈ Mon
lax,L
P . The source of j is a subspace of MapOpT(⊗Ai, B) =

MapP(P,FunopP(⊗Ai, B)). We will use the following properties of FunopP, see [H.EY],
2.8.9. Let A, B be P-monoidal categories. Then FunopP(A,B) is a P-operad whose
objects over p ∈ P1 are the functors Ap → Bp; for an active arrow ⊕pj → q in P let
fj : Apj → Bpj and g : Aq → Bq. Then MapFunopP(A,B)(⊕fj, g) identifies with the space

MapFun(
∏

Apj ,Bq)(g ◦ α
A
! , α

B
! ◦ ⊕fj), (77)

where the notation is expained by the diagram∏
Apj

αA
! //

⊕fj
��

Aq

g

��∏
Bpj

αB
! // Bq

.

We define Funop′P(⊗Ai, B) ⊂ FunopP(⊗Ai, B) as the full suboperad spanned by the
collections of functors ⊗(Ai)p → Bp preserving the colimits. Then the source of (76)
identifies with MapP(P,Funop

′
P(⊗Ai, B)).

Similarly, we define Funop′P(
∏

Ai, B) ⊂ FunopP(
∏

Ai, B) as the full suboperad spanned
by the collections of functors

∏
(Ai)p → Bp preserving the colimits in each argument.

Then the target of (76) identifies with MapP(P,Funop
′
P(
∏

Ai, B)).
This implies that, in order to prove our assertion, it is sufficient to prove that the map

of operads

Funop′P(⊗Ai, B)→ Funop′P(
∏

Ai, B)

12Here MonlaxP consists of big P-monoidal categories and lax P-monoidal functors.
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is an equivalence. It is sufficient to prove that this map defines an equivalence of the spaces
of colors (this is obvious) and of the spaces of operations Map(⊕fj, g). The verification
is straighforward, based on the description (77).

A similar symmetric monoidal structure can be defined on the category Mon
colax,L
P of

P-monoidal categories with colimits and colax monoidal functors. We define Mon
colax,L,⊗
P

as the suboperad of Moncolax,×P whose objects are collections of P-monoidal categories with
colimits and arrows preserving colimits in each argument.

7.2.2. Proposition. Moncolax,L,⊗P is a symmetric monoidal category so that the embedding

MonLP → Mon
colax,L
P becomes a symmetric monoidal functor.

Proof. Passing to the opposite monoidal categories, we are back to a suboperad of
Mon

lax,×
P , but this time working with limits instead of colimits. The proof of 7.2.1 now

works without change.

7.3. The category Cat
coc,L
/B . Here we define the category of cocartesian fibrations with

the fibers having colimits.

7.3.1. Let B be a category. We denote by Catcoc/B the full subcategory of Cat/B spanned
by the cocartesian fibrations X → B.

The subcategory Cat
coc,L
/B of CATcoc/B is spanned by the cocartesian fibrations p : X → B

classified by a functor B → CatL ⊂ CAT. The arrows in Cat
coc,L
/B are those preserving the

colimits on the fibers.

7.3.2. Relative presheaves. A category X over B is called flat if the functor ×BX
preserves colimits. In this case the right adjoint functor Y 7→ FunB(X, Y ) is defined. Any
cocartesian fibration is flat. One has

7.3.3. Lemma. Let X be a cocartesian fibration over B classified by a functor X : B →
Cat. Denote by X◦ the cocartesian fibratino classified the the composition op ◦ X : B →
Cat→ Cat. Then FunB(X◦, B×S) is a a cocartesian fibration classified by the composition

B
X→ Cat

P→ CatL. (78)

Having in mind this description, we will denote by PB(X) the obtained cocartesian
fibration. This is the category of relative presheaves in X.

Proof. FunB(X◦, B × S) is a cartesian fibration over B classified by the composition

Fun(−, S) ◦ Xop : Bop → Catop → Cat

by [GHN], Proposition 7.3. This cartesian fibration is also cocartesian and as such it is
classified by (78).
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7.3.4. Lemma. The functor PB : X 7→ PB(X) is left adjoint to the forgetful functor
Cat

coc,L
/B → Catcoc/B .

Proof. Let X ∈ Catcoc/B and Y ∈ Cat
coc,L
/B . We have to verify that the composition with

the Yoneda embedding induces an equivalence

Map
Cat

coc,L
/B

(PB(X), Y )→ MapCatcoc
/B
(X, Y ).

A standard reasoning of [L.T], 5.1.5.5 proves that a map PB(X) → Y over B preserves
vertical colimits iff it is a relative left Kan extension of its restriction to X. Since, by
[L.T], 4.3.2.14, any functor X → Y over B has a relative left Kan extension, this implies
the result.

7.4. SM structure on Cat
coc,L
/B . The category Catcoc/B has a cartesian SM structure. We

denote by Cat
coc,×
/B the corresponding category over Fin∗.

Denote by Cat
coc,L,⊗
/B the subcategory of CATcoc,×/B whose objects over ⟨n⟩ ∈ Fin∗ are

collections (Xi → B)i=1,...,n of objects in Cat
coc,L
/B and morphisms are those preserving

colimits in each argument. The composition p : Catcoc,L,⊗/B → Fin∗ is obviously an operad.
We have

7.4.1. Proposition.

1. p is a cocartesian fibration. This yields a structure of SM category on Cat
coc,L
/B .

2. For X1, . . . , Xn ∈ Cat
coc,L
/B and b ∈ B one has

(X1 ⊗ . . .⊗Xn)b = (X1)b ⊗ · · · ⊗ (Xn)b.

Proof. To prove the first claim, we present for each collection X1, . . . , Xn ∈ Cat
coc,L
/B a

universal arrow
α : ⊕n

i=1Xi → X

in Cat
coc,L,⊗
/B . If Xi → X is classified by a functor Fi : Bi → CatL, we define p : X → B

as the cocartesian fibration classified by the functor F : B → CatL given by the formula
F (b) = F1(b) ⊗ . . . ⊗ Fn(b). The arrow ⊕Xi → X is obviously defined. We will now
show that it is cocartesian in Cat

coc,L,⊗
/B , that is that for any Y ∈ Cat

coc,L
/B α induces an

equivalence
α∗ : Map

Cat
coc,L
/B

(X, Y )→ Mapact
Cat

coc,L,⊗
/B

(⊕Xi, Y ). (79)

Let us first assume that Y → B is both cocartesian and cartesian fibration 13. In this
case we will be able to present the source and the target of (79) as subspaces of the space
of sections of cocartesian fibrations over B. The target space is embedded into

Mapact
Cat

coc,⊗
/B

(⊕Xi, Y )

13We thank the referee for suggesting this idea of the proof of 7.4.1.
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that is the space of sections of FunB(
∏

Xi, Y ) → B (here
∏

denotes the product over
B) which is a cocartesian fibration by [L.T], 3.2.2.13 classified by the functor carrying
b ∈ B to Fun(

∏
(Xi)b, Yb). Similarly, the source space is embedded into MapCatcoc

/B
(X, Y )

that is the space of sections of the cocartesian fibration FunB(X, Y ) → B classified by
the functor b 7→ Fun(⊗(Xi)b, Yb). One readily sees that the source and the target of
(79) both identify with the space of sections of the cocartesian fibration classified by the
functor b 7→ FunL(⊗(Xi)b, Yb). This proves the assertion in the case when q : Y → B is a
cartesian fibration.

To prove that (79) is an equivalence for general q, we embed Y into PB(Y ) as in 7.3.2.
This is a full embedding. This allows one to identify the left and the right hand sides of
(79) with the subcategories of the similar expressions for PB(Y ).

7.4.2. Lemma. The functor PB : Catcoc/B → Cat
coc,L
/B is symmetric monoidal.

Proof. We define C as the full subcategory of Fun([1], CAT/B) spanned by the arrows

X → P where X ∈ Catcoc/B and P ∈ Cat
coc,L
/B . Denote by p0 : C→ Cat and p1 : C→ CatL

the obvious projections. C is closed under finite products and we denote by C× the
corresponding category over Fin∗. We denote by D⊗ ⊂ C× the subcategory whose objects
are collections of the arrows f : X → P inducing an equivalence PB(X)→ P . Arrows in
D⊗ are defined by the diagrams ∏

Xi
a //

∏
fi

��

X

f

��∏
Pi

b // P

where b preserves colimits in each argument. One has obvious functors p0 : D
⊗ → Cat

coc,×
/B

and p1 : D
⊗ → Cat

coc,L,⊗
/B . We will now show that D⊗ is a SM category. Given a collection

fi : Xi → Pi, we define a map u : ⊕fi → f in D⊗ lifting the active arrow ⟨n⟩ → ⟨1⟩ in
Fin∗ as follows. We put X =

∏
Xi and a = idX . We put P = ⊗Pi with the canonical

map b :
∏

Pi → ⊗Pi. The map u so defined is a cocartesian lifting; this can be verified by
induction in n, using universality of PB proven in 7.3.4. Now the functor p0 : D

⊗ → Cat×

is a SM functor that is an equivalence of categories. Therefore it is an equivalence of SM
categories. Finally p1 is also symmetric monoidal, and this proves the assertion.

7.4.3. Lemma. Let X ∈ Catcoc/B . Then PB(X) is dualizable in Cat
coc,L
/B with dual PB(X

op).

Proof. Yoneda embedding Y : X → PB(X) gives rise to a morphism X ×B Xop → S in
Catcoc/B . This induces a map e : PB(X ×B Xop) = PB(X

op)⊗ PB(X)→ S in Cat
coc,L
/B . The

map c : S→ PB(X
op)⊗PB(X) = PB(X

op×X) is uniquely defined by the final section of
PB(X

op ×X). The maps c and e are a unit and a counit of adjunction.
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7.4.4. Cat
cart,L
/B . Everything said about the category of cocartesian fibrations with colimits

holds also for the category of cartesian fibrations with colimits. Passing to opposite
categories establishes an equivalence of Catcart/B with Catcoc/Bop . This equivalence carries
cartesian fibrations with colimits to cocartesian fibrations with limits. Fortunately, the
proof of Proposition 7.4.1 is valid when one replaces the colimits with the limits.

We will now deduce from 7.1.2 the version for the categories with colimits as follows.
The equivalence 7.1.2 restricts to the following.

7.4.5. Corollary. The equivalence 7.1.2 induces an equivalence Fun(Bop, Monlax,LP ) =

AlgP(Cat
cart,L
/B ).

Proof. The left-hand side is a subcategory of Fun(Bop, MonlaxP ), with the objects con-
sisting of P-monoidal categories with colimits and arrows preserving these colimits. The
embedding Cat

cart,L,⊗
/P → Cat

cart,×
/P defines AlgP(Cat

cart,L
/B ) as a the same subcategory of

AlgP(Cat
cart
/B ).

Similarly, one has

7.4.6. Corollary. The equivalence 7.1.3 induces an equivalence Fun(B, Moncolax,LP ) =

AlgP(Cat
coc,L
/B ).

Lemma 7.1.4 has also a version for categories with colimits.

7.4.7. Lemma. The equivalence 7.1.4 induces an equivalence

AlgQ(Mon
lax,L
P ) = AlgP(Mon

colax,L
Q ). (80)

Proof. Both the left and the right hand side are subcategories of

AlgQ(Mon
lax
P ) = AlgP(Mon

colax
Q ).

A Q-algebra in MonlaxP represented by a functor f : Q → MonlaxP belongs to AlgQ(Mon
lax,L
P )

if the following three properties are satisfied.

1. For any p ∈ P1, q ∈ Q1 one has f(q)p ∈ CatL.

2. For p = p1⊕· · ·⊕pn with r, pi ∈ P1, an active arrow α : p→ r in P, the composition∏
i

f(q)p1
ρ−1

→ f(q)p
α!→ f(q)r

preserves colimits in each argument. Here ρ : f(q)p →
∏

f(q)pi is an equivalence
since f(q) satisfies the Segal condition in p.
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3. For q = q1 ⊕ · · · ⊕ qn, s, qi ∈ Q1, p ∈ P1 and an active arrow β : q → s in Q, the
composition ∏

i

f(qi)p
ρ−1

→ f(q)p
α!→ f(s)p

preserves colimits in each argument. Here ρ : f(q)p →
∏

f(qi)p is an equivalence
since f satisfies the Segal condition in q.

The same three conditions define the subcategory AlgP(Mon
colax,L
Q ) of AlgP(Mon

colax
Q ).

7.5. The functor Q : Cat × AlgLM(Cat
L) → MoncolaxTen≻. In this subsection we prove the

following

7.5.1. Proposition. The assignment (X,M,B) 7→ QX,M,B gives rise to a symmetric

monoidal functor Q : Cat× AlgLM(Cat
L)→ Mon

colax,L
Ten≻ .

Note that the SM structure on AlgLM(Cat
L) is induced from that on CatL and the

structure on Mon
colax,L
Ten≻ is defined as in 7.2. In the rest of this section we use the notation

T = Ten≻.

Proof. Recall 6.2.2 that the T-monoidal category QX,M,B is constructed in three steps,
the first one assigning to (X,M,B) the dualizable right M-module Fun(X,M), the second
assigning to it the corresponding counit diagram (62) and, finally (63), tensoring it with
B. We will follow 6.2.2 and 7.4.6 and present a T- algebra object in C := Cat

coc,L
/B with

B = Cat× AlgLM(Cat
L). We denote by X ∈ Catcoc/B the tautological family defined by the

projection B → Cat, use PB(X) and PB(X
op) instead of P (X) and P (Xop) and define M

and B to be the cocartesian fibrations classified by the projections of B to the components
of AlgLM(Cat

L). Lemma 7.4.3, gives us a T-algebra object in Cat
coc,L
/B , that is, by 7.4.6, a

functor
Q : Cat× AlgLM(Cat

L)→ Mon
colax,L
T (81)

carrying the triple (X,M,B) to the T-monoidal category QX,M,B.
We will now show that the functor (81) canonically extends to a symmetric monoidal

functor. We will present Q as a tensor product of two symmetric monoidal functors,
Q0 : Cat → Mon

colax,L
T and Π : AlgLM(Cat

L) → Mon
colax,L
T . The functor Π is defined by the

map of operads π : T → LM carrying the colors a, a′,m, b to A ∈ [LM] and n, k to M ∈ [LM].
The functor Π is the composition of π∗ : AlgLM(Cat

L)→ AlgT(Cat
L) and the obvious SM

embedding AlgT(Cat
L)→ Mon

colax,L
T .

It remains to construct the SM functor Q0. T-monodial category Q0(X) is defined by
the formulas

A = A′ = S, M = P (X), N = P (Xop), B = QuivX(S), K = S.

Our aim is to canonically extend this to a SM functor. We construct a new category C

as follows. Its objects are collections consisting of a category X, a T-monoidal category
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(M,B,N,K), a functor i : X → M and an arrow k : [0] → K (that is, an object of K).
The category C has a cartesian SM structure.

We now define a subcategoryD⊗ of C× as follows. The objects ofD⊗ are the (collection
of) objects of C satisfying the following properties.

• (M,B,N,K) is a T-monoidal category with colimits.

• i : X →M presents M as P (X) and k ∈ K induces an equivalence κ : S→ K.

• The right action of B on M determines an equivalence Bop = End(M).

• The composition M ×N → K
κ−1

→ S establishes N as right dual to M .

The morphisms are the maps C1×· · ·×Cn → C in C× with C,Ci satisfying the properties
as above and such that the corresponding maps

∏
Mi → M , etc.,

∏
Ki → K, preserve

colimits in each argument.
One can easily see that the forgetful functor D⊗ → Cat× is an equivalence. The

composition D⊗ → C× → Mon
colax,×
T induces a SM functor D⊗ → Mon

colax,L,⊗
T .

8. Multiplicative structures

In this section we present a monoidal version of the universality Theorem 6.4.4.
Let O be an operad. Assume that M is an O-algebra object in AlgAss(Cat

L). Equiva-
lently, we assume that M ∈ AlgO⊗Ass(Cat

L). In this case many objects mentioned above
acquire a structure of O-algebra 14. For instance, the notion of O-monoidal M-enriched
category makes sense, as well as the notion of O-monoidal left M-module. We prove
that if A is an O-monoidal M-enriched category, the enriched presheaves PM(A) form an
O-monoidal left M-module category and Yoneda embedding is an O-monoidal M-functor
universal among such functors to O-monoidal left M-modules with colimits.

8.1. From associative algebras to left modules.

8.1.1. Recall [L.HA], 2.10, that, given a bilinear map of operads µ : P × Q → R, and
an R-operad X, the P-operad p : Algµ

Q/R(X)→ P is defined as the object representing the
functor

K ∈ Cat/P 7→ MapCat+
/R♮

(K♭ × Q♮,X♮),

see [H.EY], 2.10. In the case X is R-monoidal, Algµ
Q/R(X) is P-monoidal. In the case µ

represents R as a tensor product of P and Q, one has an equivalence

AlgP(Alg
µ
Q/R(X)) = AlgR(X).

We will suppress the letter µ from the notation if it is clear from the context.
We will need the following general claim about cocartesian fibrations.

14This sentence becomes slightly imprecise if O is not monochrome: an O-algebra consists of more than
one object.
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8.1.2. Lemma. Let

P
f //

p ��

Q

q��
B

be a map of cocartesian fibrations over B. Assume that

(1) For any b ∈ B fb : Pb → Qb is a cocartesian fibration.

(2) For any α : b→ b′ in B the functor

α! : Pb → Pb′

carries fb-cocartesian arrows to fb′-cocartesian arrows.

Then f is a cocartesian fibration.

Proof. By [L.T], 2.4.2.11, f is a locally cocartesian fibration, with locally cocartesian
arrows of the form u = u′′ ◦ u′ where u′ is p-cocartesian and u′′ ∈ Pb′ fb′-cocartesian, with
p(u) : b→ b′. Condition (2) ensures that the composition of locally cocartesian arrows is
locally cocartesian. This implies the claim.

Let O be an operad and let C ∈ AlgO⊗LM(Cat
L).

8.1.3. Proposition. The forgetful functor

AlgLM/O⊗LM(C)→ AlgAss/O⊗LM(C) (82)

is an O-monoidal cocartesian fibration.

Proof. This result is very close to [L.HA], 4.5.3. We will apply Lemma 8.1.2 to the
forgetful functor f : AlgLM/O⊗LM(C)→ AlgAss/O⊗LM(C) over B := O.

For o ∈ O we denote Co the LM-monoidal category obtained from C by the base change
along LM

o→ O⊗ LM.
The fiber fo of f at o ∈ O1 is a cartesian fibration as it is a forgetful functor

AlgLM(Co) → AlgAss(Co). Since these are categories with geometric realizations, fo is
also a cocartesian fibration. The same is true for fo at any o ∈ O as cocartesian fibrations
are closed under products. This proves the condition (1) of Lemma 8.1.2. Let us verify
the condition (2). Given α : o→ o′ in O, the functor

α! : AlgLM(Co)→ AlgLM(Co′)

is induced by the colimit preserving LM-monoidal functor Cα : Co → Co′ induced by α.
An arrow (A,M) → (B,N) in AlgLM(Co) is fo-cocartesian if it induces an equivalence
B ⊗A M → N . Thus, α! preserves this property.



416 VLADIMIR HINICH

The forgetful functor (82) is classified by a lax O-monoidal functor

LMod : AlgAss/O⊗LM(C)→ Cat,

see Prop. A.2.1. of [H.R]. In particular, we have the following.

8.1.4. Corollary. The functor LMod defined as above assigns an O-monoidal category
of left modules LModA(C) to an O-algebra object A in AlgAss/O⊗LM(C). A morphism of
O-algebra objects A→ A′ gives rise to an O-monoidal functor LModA(C)→ LModA′(C).

8.1.5. Remark. It is worthwhile, in order to keep track of what we are doing, to repeat
the above construction in down-to-earth terms.

An O-algebra object in AlgAss/O⊗LM(C) consists of a collection of associative algebra
objects Ao in LM-monoidal categories Co, with operations ⊗Aoi → Ao corresponding
to each operation α : (o1, . . . , on) → o in O. The category LModA(C) has components
LModA(C)o = LModAo(Co), and the operation α : (o1, . . . , on)→ o in O assigns to a collec-
tion Mi ∈ LModAai

(Cai) the pushforward of ⊗Aoi-module ⊗Mi along ⊗Aoi → Ao.

We apply Corollary 8.1.4 a number of times.

8.2. O-monoidal left-tensored categories.

8.2.1. For M ∈ AlgO⊗Ass(Cat
L) the category LModM is O-monoidal. An O-monoidal left

M-module B is defined as an O-algebra in LModM.
An O-monoidal left M-module B defines an O⊗ LM-operad (M,B). It makes sense to

talk about O-monoidal and lax O-monoidal functors between O-monoidal left M-modules.

8.2.2. Definition. For B,B′ ∈ AlgO(LModM) we define FunO,lax
LModM

(B,B′) as the full sub-
category of the fiber of the forgetful functor

Alg(M,B)/O⊗LM(M,B′)→ AlgM/O⊗Ass(M)

at idM, spanned by the maps of O ⊗ LM-operads f = (idM, fm) : (M,B) → (M,B′)
satisfying the conditions

• f preserves cocartesian liftings of the arrows in LM.

• fm preserves colimits.

8.2.3. Definition.A lax O-monoidal morphism of leftM-modules f : (M,B)→ (M,B′)
is called O-monoidal if it preserves cocartesian liftings of all arrows in O⊗ LM.

The full subcategory of FunO,lax
LModM

(B,B′) spanned by O-monoidal arrows is denoted by

FunO
LModM

(B,B′).

8.3. O-monoidal enriched categories.
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8.3.1. A lax SM functor
quiv : OpAss → FamcartOpAss,

as well as its relatives quivLM : OpLM → FamcartOpLM and quivBM : OpBM → FamcartOpBM,
have been constructed in [H.EY], 3.5.2. Since the functor AlgAss : FamcartOpAss → Cat

preserves the limits, the composition AlgAss ◦ quiv : OpAss → Cat carrying M ∈ OpAss to
the category PCat(M) of M-enriched precategories, is lax symmetric monoidal. The same
holds for the compositions AlgLM ◦ quivLM : OpLM → Cat and AlgBM ◦ quivBM : OpBM → Cat.

Fix an operad O. Any O-algebra M in OpAss (for instance, M ∈ AlgO⊗Ass(Cat
L)), gives

rise to an O-monoidal category PCat(M).
Similarly, an O-algebra M in OpLM (for instance, M ∈ AlgO⊗LM(Cat

L)), gives rise to an
O-monoidal category PCatLM(M).

8.3.2. Definition. Let M ∈ AlgO⊗Ass(Cat
L). An O-monoidal M-enriched precategory

is an O-algebra object in PCat(M).

Note that a precategory A ∈ PCat(M) is an associative algebra in the family of
planar operads QuivX(M) parametrized by X ∈ Cat. Thus, an O-algebra in PCat(M) has
automatically an O-monoidal category X of objects.

8.3.3. Day convolution. Let (M,B) ∈ AlgO⊗LM(Cat
L). This means that M is an

O⊗ Ass-monoidal category with colimits and B is an O-monoidal category with colimits,
left-tensored over M.

By 8.3.1, the category PCatLM(M,B) = AlgLM(Quiv
LM(M,B)) is O-monoidal.

By 8.1.3, the forgetful functor

PCatLM(M,B)→ PCat(M) (83)

is an O-monoidal cocartesian fibration. Therefore, it is classified by the lax O-monoidal
functor PCat(M)→ Cat carrying A ∈ PCat(M) to FunM(A,B).

In particular, for any O-monoidal M-enriched category A the category FunM(A,B) is
O-monoidal. This is an enriched form of the Day convolution [L.HA], 2.6.

Let us repeat that if O is not monochrome, M is actually a collection of monoidal
categories, PCat(M) is actually a collection of categories, etc.

8.3.4. Let X ∈ Cat and let 1X denote the unit of the monoidal category QuivX(M),
see [H.EY], 4.7.3. By definition, FunM(1X ,B) = Fun(X,B). If now M ∈ AlgO⊗Ass(Cat

L),
any O-monoidal category X gives rise to an O-monoidal M-category 1X . The enriched
Day convolution defines an O-monoidal structure on FunM(1X ,B). The internal Hom in
operads [L.HA], 2.6 defines an O-monoidal structure on Fun(X,B). These two O-monoidal
structures coincide, according to the following lemma.

8.3.5. Lemma. The forgetful functor FunM(1X ,B) → Fun(X,B) is an equivalence of
O-monoidal categories.



418 VLADIMIR HINICH

Proof. The O-monoidal structure on FunM(1X ,B) is induced from the identification

FunM(1X ,B) = AlgLM(Quiv
LM
X (M,B))×AlgAss(QuivX(M)) {1X}

and an O-algebra structure on

QuivLMX (M,B) = (QuivX(M),Fun(X,B).

This immediately implies that the forgetful functor FunM(1X ,B) → Fun(X,B) is O-
monoidal. Since it is an equivalence, it is an O-monoidal equivalence.

8.3.6. Definition. Given (M,B) ∈ AlgO⊗LM(Cat
L) and an O-monoidal M-enriched cat-

egory A, a lax O-monoidal M-functor f : A→ B is an O-algebra in FunM(A,B).

We denote by FunO,lax
M (A,B) = AlgO(FunM(A,B)) the category of lax O-monoidal

M-functors from A to B.

8.3.7. O-monoidal M-functors. Let (M,B) ∈ AlgO⊗LM(Cat
L) and let A be an O-

monoidal M-enriched category.
One has a canonical O-monoidal functor 1 : 1X → A for any O-monoidal enriched

precategory with the O-monoidal category of objects X. It induces a forgetful functor

FunM(A,B)
1∗→ FunM(1X ,B) = Fun(X,B). It is automatically lax O-monoidal since it

is right adjoint to an O-monoidal free module functor defined by 1 : 1X → A, see 8.1.4.
O-algebras in Fun(X,B) are lax O-monoidal functors from X to B.

Definition. A lax O-monoidal M-functor f : A→ B is called O-monoidal if the lax
O-monoidal functor 1∗(f) : X → B obtained from f by forgetting the A-module structure,
is O-monoidal. We denote by FunO

M(A,B) the category of O-monoidal M-functors from
A to B.

8.4. O-monoidal Yoneda embedding.

8.4.1. Assume M is O ⊗ Ass-monoidal category in CatL and let A be an O-monoidal
M-enriched precategory, that is, an O-algebra in PCat(M).

We will now repeat the construction of Yoneda embedding for A.
Denote π : BM→ Ass the canonical map of (planar) operads. For any planar operad C

(or a family of planar operads) the functor π∗ : AlgAss(C)→ AlgBM(C) carries an associative
algebra A to the A-A-bimodule A.

The folding functor ϕ : OpBM → OpLM defined in [H.EY], 3.6, preserves limits, so the
functor ϕ ◦ π∗ : AlgAss(C)→ AlgLM(ϕ ◦ π∗(C)) also preserves limits, and, therefore, carries
O-algebras to O-algebras.

We apply this to C := Quiv(M) and an O-algebra A in PCat(M). We get an O-algebra
in PCatLM(M⊗Mrev ,M).

According to 8.3.3, this defines a lax O-monoidal M⊗Mrev -functor Ỹ : A⊠Aop →M.
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. One uses the adjoint associativity equivalence to deduce Yoneda embedding from the
functor A⊠Aop →M.

Recall [H.EY], 6.1.7. Below B is a left M ⊗ M′-module, A ∈ PCat(M) and A′ ∈
PCat(M′). There is a canonical equivalence

FunM⊗M′(A⊠A′,B) = FunM(A,FunM′(A′,B)). (84)

Let now O be an operad, M and M′ be in AlgO⊗Ass(Cat
L) and B be an O-monoidal

category left-tensored overM⊗M′. Then the left and the right side of (84) are O-monoidal
categories by (8.3.3)

8.4.2. Proposition. Under these assumptions (84) is an an equivalence of O-monoidal
categories.

Proof. Let T = (M,B,M′rev) be the BM-monoidal category defined by the left M⊗M′-
module B. The equivalence (84) is constructed in [H.EY], 6.1.7, from the equivalence

FunopBM(BMX × BMrevX′ ,T) = QuivBMX (QuivBMX′(Trev)rev). (85)

Both left and right hand sides, cosidered as functors of T, preserve limits. Therefore, in
case T is O-monoidal, (85) is an equivalence of O⊗ BM-monoidal categories.

Proposition 8.4.2 and the fact that the functor Ỹ : A⊠ Aop → M is lax O-monoidal,
immediately imply that the Yoneda embedding Y : A→ PM(A) is lax O-monoidal.

8.4.3. Proposition. Y : A→ PM(A) is O-monoidal.

Proof. We have to verify that the lax O-monoidal functor

Y : X → PM(A) = LModAop(Fun(Xop,M))

is O-monoidal.
The unit 1 : 1X → A gives rise to a decomposition of Y into

X
Y1−→ PM(1X) = Fun(Xop,M)

F−→ PM(A),

where F is the free Aop-module functor, see [H.EY], 6.2.6. The free module functor F
is O-monoidal by 8.1.4, whereas Y1 is the composition of the usual ∞-categorical Yoneda
embedding YX : X → P (X) and the functor P (X)→ PM(1X) = P (X)⊗M, so it is also
O-monoidal.
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8.5. Universality of Yoneda embedding in the monoidal setting. Recall that
the composition with the Yoneda embedding defines an equivalence (69)

Y ∗ : FunL
M(PM(A),B)→ FunM(A,B)

for any left M-tensored category with colimits B. In this subsection we present two
O-monoidal versions of this equivalence.

8.5.1. Let A be an O-monoidal M-enriched category.
In this case PM(A) is also O-monoidal (as a left M-module) and the Yoneda embed-

ding is an O-monoidal M-functor, see 8.4.3. In Theorem 8.5.3 below we show that the
equivalence (69) induces the equivalences

Y O,lax∗ : FunO,lax
LModM

(PM(A),B)→ FunO,lax
M (A,B) (86)

and
Y O∗ : FunO

LModM
(PM(A),B)→ FunO

M(A,B). (87)

8.5.2. The assignment
B 7→ FunM(A,B),

as defined by the formula (8), defines a functor AlgO(LModM)→ AlgO(Cat) which yields
a canonical functor

FunO,lax
M (A, PM(A))× FunO,lax

LModM
(PM(A),B)→ FunO,lax

M (A,B). (88)

Evaluating it at the O-monoidal Yoneda embedding Y : A→ PM(A), we get a map (86).
The map (87) is its restriction.

8.5.3. Theorem. Let O be an operad, M ∈ AlgO⊗Ass(Cat
L) be an O ⊗ Ass-monoidal

category with colimits. Let, furthermore, A be an O-monoidal M-enriched category and
let B ∈ AlgO(LModM) be an O-monoidal category with colimits left-tensored over M. Then
the functors (86) and (87) are equivalences.

Proof. By Proposition 7.5.1 QX,M,B is an O-algebra object in Mon
colax,L
Ten≻ . By Lemma 7.1.4

it gives rise to a Ten≻-algebra object QX,M,B in Mon
lax,L
O . This yields, for an O-monoidal

M-enriched category A, similarly to (66), a lax O-monoidal functor

colim : PM(A)× FunM(A,B)→ B.

By 8.4.3, this induces a functor

colim : FunO,lax
M (A,B)→ FunO,lax

LModM
(PM(A),B). (89)

Let [O] = O
eq
1 be the space of colors of the operad O. We have a forgetful functor

G : AlgO(Cat
K)→ (CatK)[O] that commutes with sifted colimits, see [L.HA], 3.2.3.1.

By Proposition 4.4.1(3), the forgetful functor G commutes with the weighted colimits.
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Choose o ∈ [O] and look at the following diagram

FunO,lax
LModM

(PM(A),B)
Y O∗

//

Ga

��

FunO,lax
M (A,B)

colim
oo

Ga

��
FunLModM(PMo(Ao),Bo)

Y ∗
o //

FunMo(Ao,Bo),
colim
oo

(90)

with Y ∗o induced by the Yoneda embedding for Ao and Ga denoting the a-component of
the functor forgetting the O-algebra structure. Both squares of the diagram are homotopy
commutative.

Since for all o ∈ [O] the arrows Y ∗o and colim are homotopy inverse, and since the
forgetful functor G is conservative, Y O∗ and colim are also homotopy inverse.

This proves that (86) is an equivalence. Let us prove that the map (87) is also an
equivalence. This amounts to verifying that a lax O-monoidal functor

Φ : PM(A)→ B

is O-monoidal whenever its composition ϕ with the embedding Y : X ⊂ PM(A) is O-
monoidal. The embedding Y is a composition

X
h→ P (X)

i→ Fun(Xop,M)
F→ PM(A)

where h is the (non-enriched) Yoneda embedding, i is induced by the unit S → M and
F is the free A-module functor, see [H.EY], 6.2.6. If ϕ : X → B is O-monoidal, the
composition Φ ◦ F ◦ i : P (X) → B is O-monoidal by Lemma 8.5.4 below. Then the
composition Φ ◦F : Fun(Xop,M)→ B is O-monoidal as Φ ◦F can be reconstructed from
Φ ◦ F ◦ i as the composition

Fun(Xop,M) = M⊗ P (X)
idM⊗(Φ◦F◦i)−→ M⊗B→ B.

Finally, since any Φ ∈ PM(A) is a colimit of free A-modules, Lemma 8.5.4 implies that
Φ is O-monoidal.

8.5.4. Lemma. Let Φ : C → D be an arrow in Mon
lax,L
O , i : C0 → C in MonO so that

Φ ◦ i : C0 → D is also in MonO. Assume that C0 generates C by colimits. Then Φ is in
MonLO.

Proof. Let α : x→ y be an arrow in O. We have to verify that Φ preserves cocartesian
liftings of α. Let c ∈ C be over x. We have c = colim{i : I → (C0)x → Cx}. Since
α! : Cx → Cy preserves colimits, α!(c) = colim{α! ◦ i}. Since Φ ◦ i is in MonO, the arrows
Φ(ci)→ Φ(α!(ci)) are cocartesian liftings of α. Since the functor α! : Dx → Dy preserves
colimits, the arrow colim(Φ(ci))→ colim(Φ(α!(ci))) is a cocartesian lifting of α.
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Jiri Rosický, Masaryk University: rosicky@math.muni.cz
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