
Theory and Applications of Categories, Vol. 39, No. 15, 2023, pp. 447–492.

THE OVER-TOPOS AT A MODEL

OLIVIA CARAMELLO AND AXEL OSMOND

Abstract. With a model of a geometric theory in an arbitrary topos, we associate
a site obtained by endowing a category of generalized elements of the model with a
Grothendieck topology, which we call the antecedent topology. Then we show that
the associated sheaf topos, which we call the over-topos at the given model, admits a
canonical totally connected morphism to the given base topos and satisfies a universal
property generalizing that of the colocalization of a topos at a point. We first treat
the case of the base topos of sets, where global elements are sufficient to describe our
site of definition; in this context, we also introduce a geometric theory classified by the
over-topos, whose models can be identified with the model homomorphisms towards the
(internalizations of the) model. Then we formulate and prove the general statement over
an arbitrary topos, which involves the stack of generalized elements of the model.
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Introduction

The goal of this paper is the construction of a site of definition for the topos classifying
model homomorphisms towards (the internalizations of) a fixed model of a geometric
theory in a given Grothendieck topos. More precisely, the desired universal property can
be formulated as follows. Let T a geometric theory over a signature L, with (CT, JT) its
geometric syntactic site, E a Grothendieck topos and M in T[E ] a T-model in E . We
want to construct the T-over-topos associated with M , that is, a geometric morphism
uM : E [M ]→ E satisfying the universal property that for any E-topos g : G → E one has
an equivalence of categories

GeomE(g, uM) ' T[G]/g∗(M)

In words, we want E [M ] to classify the theory of L-structures homomorphisms from a
T-model to (an interpretation of) M . In some sense, this is a way of forcing M to become
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terminal amongst T-models. In this paper, we explicitly construct a site of definition for
the over-topos from model-theoretic data, and describe both the logical and fibrational
aspects of this construction.

In section 1 we recall the well-known notion of totally connected topos and the con-
struction of the over-topos as a finite bilimit of Grothendieck toposes. The rest of the
paper will be devoted to obtaining a site-theoretic description of this construction.

In section 2, we focus on the case of a set-based model, where the construction of our
site of definition for the over-topos simplifies thanks to specific properties of the terminal
object of the topos Set of sets. In particular, we introduce the antecedent topology on
a category of elements associated to our model, for obtaining a site of definition of the
over-topos.

In section 3, in preparation for the generalization of our construction to an arbitrary
topos, we introduce a number of stacks that are used in the sequel. Of particular rele-
vance for our purposes is the notion of lifted topology on a category of the form (1F ↓ f ∗),
where f : F → E is a geometric morphism, as the smallest topology which makes both
projection functors to E and F comorphisms to the canonical sites on E and F ; we provide
a fully explicit description of this topology by providing a basis for it.

In section 4, we generalize the construction of the over-topos to a model in an arbitrary
Grothendieck topos. For this, we construct a canonical stack associated with this model
and apply Giraud’s general construction of the classifying topos of a stack to prove the
desired universal property. In particular, we provide an explicit generalization of the
antecedents topology and recover it as a restriction of the lifted topology. We should
mention that a construction of this topology also appears in section 4.1 of [1], where site-
theoretic descriptions of general comma toposes are provided; however, their construction
of this topology only works in the case of small sites with finite limits and under the
hypothesis that the relevant geometric morphisms are induced by morphisms of sites,
whilst ours is completely general; also, they define this topology by specifying a family of
generators (lacking stability under composition), while we actually provide a pretopology,
which is moreover obtained from more general considerations on stacks.

Notation

The notations employed in the paper will be standard; in particular,

− We shall denote by Set the category of sets (within a fixed model of set theory).

− Given a geometric theory T, we shall denote by (CT, JT) its geometric syntactic site
and by Set[T] its classifying topos, which, as it is well-known, can be represented
as Sh(CT, JT) (for background on classifying toposes, the reader may refer to [4]).
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− For any geometric theory T, we denote by T[E ] the category of T-models in a
geometric category E and model homomorphisms between them. For any E , we
have an equivalence T[E ] ' CartJT(CT, E) between T[E ] and the category of cartesian
(that is, finite-limit-preserving) functors CT → E which are JT-continuous (that is,
which send JT-covering families to covering families in E). The functor CT → E
corresponding to a T-model M in E will be denoted by FM ; it sends any geometric
formula {~x. φ} over the signature of T to its interpretation [[~x. φ]]M in M , and acts
accordingly on arrows (for more details, see, for instance, Chapter 1 of [4]).

− The 2-category of Grothendieck toposes, geometric morphisms and geometric trans-
formations will be denoted by GTop, and, for any Grothendieck toposes E and F
over a Grothendieck topos S, the category of geometric morphisms over S from F
to E will be denoted by GeomS(F , E), or simply by Geom(F , E) if S is the topos
of sets.

1. The concept of over-topos

The central object of study of this work is the over-topos construction, which is known
to admit several different abstract descriptions, as a bicomma object or as a bipullback
of toposes, as well as an instance of a construction known as Artin glueing. In this first
section, we recall these abstract points of view on this concept, and also provide a few
topological remarks hinting at a link with the notion of complete spread.

1.1. Totally connected toposes and comma objects. In this subsection we recall
the well-known construction of the over-topos at a geometric morphism through bilimits
in the bicategory of Grothendieck toposes, as well as its relation with the notion of totally
connected geometric morphism. Most of the content of this subsection is standard, and
can be found in section C3.6 of [9].

In topology, given a topological space X and a point x, one may look at the up-set
↑v {x} and down-set ↓v {x} of x for the specialization order v: ↑v {x} contains all the
points above x, that is, the points which are contained in any neighborhood of x, while
↓v {x} contains all the points below x, that is, whose neighborhoods contain x. One can
define, more generally, up-sets and down-sets for arbitrary subsets of X: for any subset A
of X, one can consider the up and down closures ↑ A =

⋃
x∈A ↑ {x} and ↓ A =

⋃
x∈A ↓ {x}

of A.

These topological notions have natural topos-theoretic counterparts. Recall that a
Grothendieck topos F has a category of points

pt(F) ' Geom(Set,F)

For F a Grothendieck topos and p : Set→ F a point of F , one can look at the correspond-
ing under-category (p ↓ pt(F)) and over-category (pt(F) ↓ p), which are respectively the
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analogues of the up-set and down-set of a point. This generalizes to arbitrary geometric
morphisms: indeed, given a Grothendieck topos F and a geometric morphism f : E → F ,
one can consider respectively the under-category (f ↓ Geom(E ,F)) and the over-category
(Geom(E ,F) ↓ f) of the hom-category Geom(E ,F) at f .

In the case where F is the classifying topos Set[T] of a geometric theory T, the hom-
category Geom(E ,Set[T]) is equivalent to the category T[E ] of T-models in E , and for
a T-model M in E corresponding to a geometric morphism fM : E → Set[T], the under-
category (M ↓ T[E ]) and the over-category (T[E ] ↓ M) can be seen as “localizations”
forcing M to become respectively initial and terminal.

In this paper we shall be concerned, for a given geometric theory T and a model M of
T in a Grothendieck topos E , with a certain Grothendieck topos over E whose models in
any Grothendieck topos are exactly the homomorphisms of T-models into inverse images
of M , in other words, in a topos where M becomes “universally terminal”. Such a topos
over E is called the over-topos (or colocalization) at M . This is dual to the well-known
localization at M , where one forces M to become universally initial.

The kind of geometric morphism into E that one gets through the over-topos construc-
tion is axiomatized by the following notion:

1.2. Definition. [Theorem C3.6.16 [9]] A geometric morphism f : F → E is said to be
totally connected if the following equivalent conditions are fulfilled:

− f ∗ has a E-indexed cartesian left adjoint f!;

− f has a right adjoint in GTop/E;

− f is connected and has a right adjoint in GTop;

− f has a universal terminal section, that is, there exists s : E → F with fs = 1E and
for any g : G → E, the composite sg : G → F is the terminal object of GeomE(g, f)

In particular, a Grothendieck topos E is totally connected if its terminal geometric mor-
phism !E : E → Set is totally connected.

1.3. Remark. The condition for a topos E to be totally connected amounts to requiring
E to have a “universally terminal” point given by the terminal section of its terminal
geometric morphism

E Set

Set

tE

!E

'

In particular, if E is the classifying topos of some geometric theory Set[T], then being
totally connected means that the category of T-models T[Set] has a “universally terminal”
object.
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In the case where E is Set, that is, where M is a set-valued model of T, the over-topos
construction yields a totally connected geometric morphism over the terminal topos Set,
that is, a totally connected topos. In fact, there is a canonical, abstract way to construct
totally connected toposes by means of finite bilimits in the bicategory of Grothendieck
toposes. Recall that Grothendieck toposes have all finite bilimits, hence in particular
bipowers with 2 and bipullbacks. Explicit descriptions of such bilimits can be found, for
instance, in section B1.1 of [9]. In particular, the bipower of a topos F is equipped with
its universal 2-cell

F2 F

∂0

∂1

µF

where ∂1 : F2 → F is the universal codomain of F .

1.4. Proposition. [C.3.6.19 [9]] For a Grothendieck topos F , the universal codomain
∂1 : F2 → F is a totally connected geometric morphism.

This generic totally connected geometric morphism can be used to construct other ones
thanks to the following stability property for totally connected morphisms (cf. Lemma
C3.6.18 of [9]):

1.5. Proposition. [C3.6.18(iii) [9]] Totally connected geometric morphisms are stable
under bipullbacks.

1.6. Definition. For E a Grothendieck topos and f : E → F a geometric morphism, we
define the over-topos of E at f as the E-topos uf : E [f ] → E given by the left projection
of the following bicomma topos:

E [f ] F

E F

uf

f

ξf

λf

In other words, there is a morphism ξf : E [f ]→ F such that for any E-topos g : G → E,
there is an equivalence

GeomE(g, uf ) ' Geom(E ,F)/(f ◦ g)

natural in g, induced by composition with ξf .

1.7. Remark. Equivalently, we can define E [f ]→ E as a bipullback:

E [f ] F2

E F

y
uf ∂1

f
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1.8. Proposition. Let be f : E → F and g : G → E geometric morphisms. Then the
following square is a bipullback:

G[f ◦ g] E [f ]

G E

y
uf

g

Proof. By cancellation of bipullbacks.

More generally, we can define, for a S-toposes p : F → S and a morphism of S-topos
(f, α) : (E , q)→ (F , p) the over-topos u(f,α) of q at (f, α) as the S-topos given by the left
outer projection of the following bipullback

q[(f, α)] Inv(p ∗ µ)

E [f ] F2

E F

S

f

pq

∂1

qµ

uf

u(f,α)

α
'

y

y

which exhibits its domain q[(f, α)] as a subtopos of E [f ].
Beware that the over-topos construction depends on the base topos with respect to

which it is calculated.
In the sequel F is replaced with the classifying topos Set[T] of a geometric theory

T, and f with the geometric morphism fM corresponding to a T-model M in E via the
universal property of the classifying topos of T: in this case, we denote by uM : E [M ]→ E
the over-topos at M .

By Proposition 1.6, the T-over-topos uM : E [M ]→ E is totally connected; indeed, its
terminal point is the identity morphism 1M . In particular, all the fibers of this morphisms
are also totally connected, while a section

E [M ]

E E

uMs

just is the name of some homomorphism fs : N →M in T[E ].
In particular, the fact that the identity geometric morphism classifies the universal

T-model ensures the following:
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1.9. Proposition. The universal codomain ∂1 : Set[T]2 → Set[T] is the over-topos of
Set[T] at the universal model UT, that is, we have a geometric equivalence

Set[T]2 ' Set[T][UT]

and an invertible 2-cell:

Set[T]2 Set[T][UT]

Set[T]

∂1

'

'
uUT

1.10. Remark. Before going further, let us give a few remarks on the T-over-topos
construction in the particular case T = O, the (one-sorted) theory of objects, and compare
it with the more standard notion of the slice topos at an object. For any object E in a
topos E , the “totally connected component” of E in E

E [E] Set[O]2

E Set[O]

y
uE ∂1

E

classifies generalized elements F → E of the object E, as opposed to the usual étale topos

E/E Set[O•]

E Set[O]

y
Ê

E

which classifies global elements of E (which are those a : 1 → E), where Set[O•] is the
classifier of the theory of pointed objects - this is equivalently the slice topos Set[O]/O at
the object O corresponding to the universal model UO : Set[O] → Set[O] of the theory
of objects in Set[O] itself.

Whilst the objects of the slice topos E/E are generalized elements of E, that is, mor-

phisms F → E, the corresponding geometric morphism Ê : E/E → E actually classifies
global elements of E in the sense that its sections

E/E

E E
Ê

s

correspond to global elements 1 → E. In particular, its fibers at points are discrete (as
E only has a set of global elements).
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Note that any point of E [E] defines by composition with uE a point p of E over which
it lies. By the universal property of the pullback, it thus yields a section s of the totally
connected geometric morphism at the corresponding fiber:

Set[p∗E] E [E]

Set Set E

up∗(E)

y
uE

s

p

Note that s defines a generalized element X → p∗(E) of the stalk of E at p, equivalently
a X-indexed family of global elements of p∗(E); this should be compared with the étale
case, where points of the étale topos are mere global elements of the stalk.

Finally, we observe that the two constructions are related as in the following diagram,
where the upper square is a pullback as the bottom and front square are:

E/E Set[O•]

E [E] Set[O]2

E Set[O]

Ê

y

uE

y
∂1

E

1.11. Relation with colocalizations. Let us discuss the relation between the over-
topos construction and that of colocalization of a topos at a section of it, studied in
Theorem C3.6.19 of [9].

If M is a model of T in Set, hence a point fM : Set → Set[T] of Set[T] over
Set, the over-topos uM : Set[M ] → Set is a totally connected topos (over Set) which
coincides with the colocalization of Set[T] at M ; indeed, in this case the over-topos
uM : Set[M ] → Set admits a Set-point sM : Set → Set[M ] providing a factorization
of fM : Set → Set[T] as sM : Set → Set[M ] followed by the geometric morphism
fM ◦ uM : Set[M ] → Set[T], which satisfies the universal property of the colocalization
of Set[T] at M .

Still, for an arbitrary base topos S, given a section s : S → E of a S-topos p : E → S,
the colocalization of p at s differs in general from the over-topos of S at s, since the
universal property of the former provides an equivalence between GeomS(F , us) and
GeomS(F , E)/(s◦g) (where E is regarded as a S-topos via p), while the universal property
of the latter provides an equivalence between GeomS(F , us) and Geom(F , E)/(s ◦ g).
The condition p ◦ s = 1 is not sufficient in general to ensure that ξs is a morphism over S
(i.e., that pαs : p ◦ ξs → p ◦ s ◦ us ∼= us, where αs : ξs → s ◦ us is the canonical geometric
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transformation, is an isomorphism), which explains why the colocalization of E at s is not
in general equivalent to the over-topos of S at s. On the other hand, the colocalization of
p at s coincides with the over-topos of p at s, regarded as a morphism of S-toposes from
the identical morphism on S to p.

1.12. Over-topos as an Artin glueing. In this subsection we discuss some links
between our work and the notion of Artin glueing. This construction, as introduced in
Theorem 9.5.6 of Exposé IV of [2], is a way of glueing two toposes along a cartesian
functor. Remarkably, it is a bilimit or a bicolimit depending on the 2-category where it
is performed:

− the original Artin glueing, performed for toposes and inverse image parts of geomet-
ric morphisms, yields a bicocomma topos;

− on the other hand, the Artin glueing of cartesian categories is simultaneously an
instance of a bicomma and a bicocomma. When applied to a morphism of cartesian
sites, the obtained bicocomma notably provides a site of definition for the bicomma
in the category of Grothendieck toposes (as explained in Example C2.3.15 (b) of
[9]), encompassing in particular the over-topos construction.

The Artin glueing for toposes, as described in Theorem 9.5.6 of Exposé IV of [2],
assigns to a cartesian functor f ∗ : F → E - typically the inverse image part of a geometric
morphism - the comma object in Cat

(1E ↓ f ∗) E

F E
f∗

p1

p2 λf∗

whose objects are the triples (E,F, u : E → f ∗F ) and whose morphisms are the squares
between them. This is actually a comma object in the 2-category Cart of (large) cartesian
categories and cartesian functors, and, as in general bicolimits of Grothendieck toposes
are computed as pseudolimits of the corresponding diagrams made of the underlying cate-
gories and inverse image functors, this object is the underlying category of the bicocomma
object (E ↑ f) in GTop, the projections p1 and p2 being the inverse images of the canon-
ical inclusions into it.

As mentioned above, the Artin glueing construction can also be used to construct
a site of definition of a bicomma topos through a computation of a bicocomma in the
category Cart. In the 2-category of (either large or small) cartesian categories, several
kinds of pseudolimits happen to be also bicolimits for a dual diagram consisting of some
adjoints; see, for example, [6] and [7] for some instances of this phenomenon. In our case,
the comma object (1E ↓ f ∗) can be equipped with the structure of a bicocomma object
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in the 2-category Cart of cartesian categories, through the diagram

F E

F (1E ↓ f ∗)

f∗

q1

q2

µf

where q1 and q2 are right adjoints respectively to p1, p2, sending an object E of E to the
unique map !E : E → f ∗1 = 1 and an object F of F to the identity 1f∗(F ), and µf is the
mate of λf∗ . This construction behaves naturally with respect to sites. Indeed, given a
span consisting of small cartesian sites and cartesian functors

(C, J) (C2, J2)

(C1, J1)

f1

f2

one can construct the bicomma topos (Sh(f1) ↓ Sh(f2)) by equipping the relevant bic-
ocomma object in Cart with the topology induced by the cocomma inclusions. More
specifically, given a morphism of (small) cartesian sites f : (D, K) → (C, J), the Artin
glueing defines a bicocomma object in Cart

D C

D (1C ↓ f)

f

µf

which we can equip with the smallest topology Jf making the bicocomma inclusions mor-
phisms of sites respectively from (C, J) and (D, K), thus obtaining a site of definition for
(1Sh(D,K) ↓ Sh(f)).

1.13. Remark. In 3.6, we shall consider the same comma category and equip it with a
lifted topology, defined as the smallest topology making the canonical comma projections
comorphisms of sites. This generalizes the above construction to the non-cartesian set-
ting, where the right adjoints to the canonical projections do not necessarily exist. In the
cartesian setting, the two topologies coincide. Indeed, given a pair of adjoint functors,
the right adjoint is a morphism of sites if and only if the left adjoint is a comorphism of
sites (cf. Proposition 3.14(iii) [5]); so, since in our case each of the bicomma projections
is left adjoint to the corresponding inclusion into the Artin glueing, the smallest topology
making the Artin inclusions morphisms of sites is also the smallest topology making the
bicomma projections comorphisms of sites.

The above considerations directly yield a site of definition for the over-topos construc-
tion, as shown by the following result:
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1.14. Proposition. [Example C2.3.15 (b) [9]] Let f be a geometric morphism E → F
induced by a morphism of sites f : (D, K) → (C, J) where (C, J) and (D, K) are small
cartesian sites of definition respectively for E and F . Then the over-topos at f can be
constructed as the sheaf topos over the Artin glueing equipped with the induced topology:

E [f ] ' Sh((1C ↓ f), Jf )

We should emphasize that this result requires a choice of small sites of definition for
both the domain and codomain topos, such that the model at which we compute the
over-topos is induced by a morphism between these sites. In practice in model theory,
this is rarely the case: one generally has both a fixed geometric theory T (determining the
corresponding syntactic site (CT, JT)) classified by the codomain topos F = Set[T], and a
fixed small (cartesian) site (C, J) for the domain topos E , but the model M is only seldom
induced by a morphism of sites between those two fixed sites, as it corresponds to a J-
continuous cartesian functor CT → E . One could argue that this still defines a morphism
of sites into (E , Jcan

E ) for the canonical topology on E , knowing that E ' Sh(E , Jcan
E ),

even though this only begets large sites. Still, the point of this work is to generalize this
idea without the need to consider larges sites, but strictly using the data contained in an
arbitrarily chosen small site for the domain topos E , even when the model is not induced
from a morphism of sites as above. In the case where E is Set, we moreover show that we
can restrict to a simpler subcategory of the Artin glueing, where we only take morphisms
whose domain is the terminal object.

1.15. The over-topos as a colocalization. We close this introductory section with
a remark on the possible dual of a certain limit formula for the localization: for a point
p : S → E , one can prove that the localization Ep of E at p (which can be defined as the
pullback S ×∂0E E of the universal domain) is given by the cofiltered bilimit

Ep ' lim
(X,a)∈

∫
p∗
E/X

(where one can restrict to inverse images of representable sheaves, for a small site of
definition, in order to have a small indexing category). This is a categorification of the
formula exhibiting the upset of a point as the intersection of its open neighborhoods

↑v {x} =
⋂
{U open | x ∈ U}

open subsets being replaced by étale geometric morphisms over E .
Is is natural to ask for a categorification of the dual formula exhibiting the downset

of a point as the intersection of all the closed sets it belongs to:

↓v {x} =
⋂
{F closed | x ∈ F}

While open subsets are generalized to sheaves and the corresponding étale geometric
morphisms, closed sets can be generalized to cosheaves, which correspond to the so-called
complete spreads as defined in [3].
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It is known that any geometric morphisms admits a (pure geometric morphism, com-
plete spread) factorization, and moreover, Example 2.4.11 of [3] tells us that the middle
topos in the (pure, complete spread) factorization of a point (corresponding to a set-based
model M)

Set Set[T]

Set[M ]

M

pM sM

is actually the over-topos at M . It would be interesting to give a limit decomposition of
this complete spread sM ; we defer this to a future work investigating the role of cosheaves
and complete spreads in topos-theoretic model theory.

2. Site for the over-topos at a set-based T-model

We turn to the construction of a canonical site of the over-topos in the case of a set-based
model. We suppose in this section that E is equal to the topos Set of sets (within a fixed
model of set theory). We first list some specific properties of the terminal object 1 of Set,
we are going to make use of in this section, and which may fail in arbitrary toposes, as
we are going to see in section 3 which address the general case. First, Set is generated
under coproducts by 1, that is, for any set X one has

X '
∐

HomSet(1,X)

1

Moreover, 1 is projective, that is, any epimorphism X � 1 admits a section 1→ X, and
indecomposable, which means that for any arrow from 1 to a coproduct

∐
i∈I Xi, there is

a section for at least one i ∈ I:
Xi

∐
i∈I
Xi

1 1

Those properties simplifies substantially the description of the site for the over-topos,
which will be provided by a category of global elements together with a certain antecedents
topology we are going to describe.

2.1. The antecedents topology for global elements. We are going to use these
properties in order to define a cartesian, subcanonical site for the T-over-topos associated
with M . This involves the category of elements of M , and a certain topology related to
the syntactic topology JT of T. Let CT denote the geometric syntactic of T, and, for any
object {~x ~A. φ} of CT, that is, a geometric formula φ in the signature L in the context ~x

of sort ~A, J~x ~A. φKM the interpretation of {~x ~A. φ} in M . In particular the category
∫
M

of elements of M - seen as a geometric functor FM : CT → Set - has as objects the pairs
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({~x ~A. φ},~a), where ~a ∈ J~x ~A. φKM is a global element of M ~A satisfying the formula φ, and

as arrows ({~x ~A1
1 . φ1}, ~a1) → ({~x ~A2

2 . φ2}, ~a2) the arrows [θ] : {~x ~A1
1 . φ1} → {~x

~A2
2 . φ2} in CT

such that JθKM(~a1) = ~a2, that is diagramatically in Set:

1

J~xA1
1 . φ1KM J~xA2

2 . φ2KM

~a1 ~a2

JθKM

We shall find it convenient to present our Grothendieck topologies in terms of bases
generating them. Recall that a basis B for a Grothendieck topology on a category C is
a collection of presieves on objects of C (by a presieve we simply mean a small family of
arrows with common codomain) satisfying the following properties (where we denote by
B(c), for an object c of C, the collection of presieves in B on the object c):

(a) If f is the identity then {f} lies in B(cod(f)).

(b) If R ∈ B(c) then for any arrow g : d→ c in C there exists a presieve T in B(d) such
that for each t ∈ T , g ◦ t factors through some arrow in R.

(c) B is closed under “multicomposition” of families; that is, given a presieve {fi : ci →
c | i ∈ I} in B(c) and for each i ∈ I a presieve {gij : dij → ci | j ∈ Ii} in B(ci), the
“multicomposite” presieve { fi ◦ gij : dij → c | i ∈ I, j ∈ Ii} belongs to B(c).

The Grothendieck topology generated by a basis has as covering sieves precisely those
which contain a presieve in the basis.

It is well known that the Grothendieck topology JT on CT has as a basis the collection

BT of small families {[θi] : {~xi
~Ai . φi} → {~x ~A. φ} | i ∈ I} such that the sequent

(φ `~x
∨
i∈I

(∃~xi)θi(~xi, ~x))

is provable in T.
The fact that the following definition is well-posed in ensured by the subsequent

Lemma.

2.2. Definition. Let M be a set-based model of a geometric theory T. We define the
antecedents topology at M as the Grothendieck topology Jant

M on
∫
M generated by the

basis Bant
T consisting of the families(

(~b, {~x ~Aii . φi})
[θi]−→ (~a, {~x ~A. φ})

)
i∈I,~b | JθiKM (~b)=~a

(indexed by the objects (~a, {~x. φ}) of
∫
M and the families ([θi])i∈I in BT on {~x. φ}) con-

sisting of all the “antecedents” ~b of a given ~a ∈ J~x ~A. φKM with respect to some [θi].
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2.3. Lemma. The collection Bant
T of sieves in

∫
M is a basis for a Grothendieck topology.

Proof.

− Condition (a) is trivially satisfied.

− Condition (b): given an arrow [θ] : (~c, {y ~B. ψ})→ (~a, {~x ~A. φ}) in
∫
M and a family

[θi]T : {~x ~Aii . φi} → {~x
~A. φ})i∈I in BT on {~x ~A. φ}, we have the following pullback

squares in
∫
M for each antecedent ~b of ~a:

((~c,~b), {~y ~B, ~x ~Aii . θ(~y) = θi(~xi)}) (~b, {~x ~Aii . φi}))

(~c, {~y ~B. ψ}) (~a, {~x ~A. φ})

y
[θ∗θi] [θi]

[θ]

Note that the family {[θ∗θi] | i ∈ I} lies in BT({~y ~B. ψ}) (as BT is stable under
pullback). So the family(

[θ∗θi] : ((~c,~b), {~y ~B, ~x ~Aii . θ(~y) = θi(~xi)})→ (~c, {~y ~B. ψ})
)
i∈I

is the family of antecedents of ~c indexed by it, whence it lies in Bant
T , as desired;

indeed, Jθ∗θiKM = JθK∗MJθiKM since FM is cartesian.

− Condition (c) follows immediately from the fact that BT is a basis for JT.

2.4. Remark. For a family ([θi])i∈I in BT({~x. φ}) and a global element ~a of the inter-

pretation J~x ~A. φKM of its codomain, the fiber at ~a of some JθiKM can be categorically
characterized as the following pullback:

JθiK−1M (~a) 1

J~x ~Aii . φiKM J~x ~A. φKM

y
~a

JθiKM

As FM is a JT-continuous cartesian functor, it sends JT-covering families to jointly surjec-
tive families in Set, so by the stability of epimorphisms under pullback the global fiber
of the cover at ~a is also an epimorphism:

〈JθiKM〉−1i∈I(~a) 1

∐
i∈I

J~x ~Aii . φiKM J~x ~A. φKM

y
~a

〈JθiKM 〉i∈I
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Note that, by the stability of colimits under pullback, the global fiber of ~a decomposes as
the coproduct

〈JθiKM〉−1i∈I(~a) '
∐
i∈I

JθiK−1M (~a)

One can then identify the set of antecedents of ~a with the set of global elements
~b : 1 → 〈JθiKM〉−1i∈I(~a), which decomposes as the disjoint union of the sets of global
elements of the fibers JθiK−1M (~a) (since 1 is indecomposable and coproducts are disjoint
and stable under pullback).

Note however that the projection
∫
M → CT does not send Jant

M -covers to JT-covers as

~a ∈ J~x ~A. φKM may have antecedents in only some of the J~x ~Aii . φiKM .

2.5. Proposition. The category
∫
M of elements of M is geometric.

Proof. Actually all the properties we have to check are inherited from the geometricity
of CT and the fact that M is a model of T:

−
∫
M is cartesian: for any finite diagram D →

∫
M , the underlying diagram in CT

has a limit
lim
d∈D
{~x ~Add . φd} = {(~x ~Add )d∈D,

∧
δ:d→d′

θδ(~ad) = ~ad′}

which is sent to a limit in Set by the cartesian functor FM ; note that an element

of lim
d∈D

J~x
~Ad
d . φdKM is a family (~ad)d∈D with ~ad ∈ J~x

~Ad
d . φdKM and JθδKM(~ad) = ~ad′ for

each transition morphism δ : d→ d′ in D. This exactly says that

((~ad)d∈D, lim
d∈D
{~x ~Add . φd}) = lim

d∈D
(ad, {~x

~Ad
d . φd}).

− The image factorization in
∫
M of an arrow [θ] : (~b, {~y ~B. ψ})→ (~a, {~x ~A. φ}) is given

by

(~b, {~y ~B. ψ}) (~a, {~x ~A. φ})

(~a, {∃~yθ(~y, ~x)})

[θ]

and is easily seen to be pullback stable.

− Subobjects in
∫
M are arrows of the form (~a, {~x ~A. φ}) ↪→ (~a, {~x ~A. ψ}) with (φ `T ψ).

It thus follows at once that lattices of subobjects are frames, as their finite meets
(resp. arbitrary joins) are given by

(~a, {~x ~A.
∧
i∈I

φi}) (resp. (~a, {~x ~A.
∨
i∈I

φi}))

for any finite family (resp. arbitrary family) {(~a, {~x ~A. φi}) ↪→ (~a, {~x ~A. φ}) | i ∈ I}
of subobjects of a given (~a, {~x ~A. φ}).
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2.6. Definition. We define the T-over-topos at M as the sheaf topos Sh(
∫
M,Jant

M ),
and denote it by Set[M ].

2.7. Syntactic presentation and set-based version of the main theorem. In
this section we define a geometric theory TM whose models in any Grothendieck topos G
coincide with homomorphisms of T-models g : N → γ∗M , where γ is the unique geometric
morphism G → Set; this theory is classified by the T-over-topos at M .

2.8. Definition. Let SetM be the language with a sort S(~a,{~x ~A. φ}) for each object (~a, {~x ~A. φ})
of the category of elements of M and a function symbol

S
( ~a1,{ ~x1

~A1 . φ1})
f
~a1, ~a2
θ−→ S

( ~a2,{ ~x2
~A2 . φ2})

for each [θ(~x ~a11 , ~x
~a2
2 )]T : {~x ~a11 . φ1}−→{~x ~a22 . φ2} such that JθKM(~a1) = ~a2.

Let LcM be the extension of the language L with a tuple of constant symbols c(~a,{x ~A. φ})

for each (~a, {x ~A. φ}) ∈
∫
M . There is a canonical LcM -structure M c extending M , obtained

by interpreting each constant by the corresponding element of M .
We can naturally interpret SetM in LcM by replacing, in the obvious way, each variable

of sort S(~a,{~x ~A. φ}) appearing freely in a formula with the corresponding tuple of constants
c(~a,{xA. φ}) and each function symbol with the corresponding T-provably functional formula.

This yields, for each formula-in-context {~z ~S. ψ} over SetM a closed formula ψ].
Let TM be the theory over SetM having as axioms all the geometric sequents

(φ `
~x
~S
(~a,{~x ~A. φ})

ψ)

such that the corresponding sequent

(φ] ` ψ])

is valid in M c.

We are now endowed with a site presentation of the over-topos, as well as a geometric
theory classified by it.

2.9. Remark. Before stating the theorem, let us give the following brief remark on the
set of interpretations of formulas and how they navigates along inverse images, for it will
guide our intuition in the main proof. Given a Grothendieck topos G with global section
functor γ, the model M is sent in G to a T-model γ∗M and for each {~xA.φ}, one has

J~x ~A. φKγ∗M = γ∗(J~x ~A. φKM) =
∐

~a:1→J~x ~A. φKM

1

so any global element ~a : 1→ J~x ~A. φKM is sent into a global element γ∗(~a) : 1→ J~x ~A. φKγ∗M
in G. Note that each element of J~x ~A. φKγ∗M is counted exactly once in this coproduct (since
coproducts are disjoint in a topos).
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2.10. Theorem. Let T be a geometric theory and M a model of T in Set.

(i) The theory TM axiomatizes the T-model homomorphisms to (internalizations of)
M ; that is, for any Grothendieck topos G with global section functor γ : G → Set,
we have an equivalence of categories

TM [G] ' T[G]/γ∗M.

(ii) There is a geometric functor

FU : CTM →
∫
M

classifying a TM -model U internal to the category
∫
M :

S(~a,{~x ~A. φ}) 7→ (~a, {~x ~A. φ})
f ~a1, ~a2θ 7→ [θ] : (~a1, { ~x1

~A1 . φ1})→ (~a2, { ~x2
~A2 . φ2})

(iii) The sheaf topos Set[M ] = Sh(
∫
M,Jant

M ) is the classifying topos of TM ; that is,
for any Grothendieck topos G with global section functor γ : G → Set, we have an
equivalence of categories

Geom[G,Set[M ]] ' T[G]/γ∗M.

(iv) The TM -model U in
∫
M as in (ii) is sent by the canonical functor

∫
M → Sh(

∫
M,Jant

M )
to ‘the’ universal model of TM inside its classifying topos.

(v) There is a full and faithful canonical functor∫
M

V→ CTM
(~a, {~x ~A. φ}) 7→ {xS(~a,{~x ~A. φ}) .>}

[θ] 7→ f ~a1, ~a2θ

which is a dense (cartesian but not geometric) morphism of sites (
∫
M,Jant

M ) →
(CTM , JTM ) such that FU ◦ V = 1∫

M ; in particular, Jant
M is the topology induced by

JTM via V and, V being full and faithful, it is subcanonical.

Proof. The proof proceeds as follows. We shall first establish, for any Grothendieck
topos G, an equivalence, natural in G, between the category T[G]/γ∗M of T-model ho-
momorphisms to γ∗M and the category FlatJant

M
(
∫
M,G) of Jant

M -continuous flat functors∫
M → G. Next, we shall establish an equivalence between T[G]/γ∗M and TM [G] (natural

in G), obtaining in the process an explicit axiomatization for the theory TM ; moreover,
we show that the resulting equivalence

FlatJant
M

(
∫
M,G) ' TM [G] ' CartJTM (CTM ,G)
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is induced, on the one hand, by composition with the cartesian cover-preserving functor
V , and on the other hand, by composition with the geometric functor FU . From this we
shall deduce that we have an equivalence of toposes

Sh(
∫
M,Jant

M ) ' Sh(CTM , JTM )

whose two functors are induced by the morphisms of sites V : (
∫
M,Jant

M ) → (CTM , JTM )
and FU : (CTM , JTM )→ (

∫
M,Jant

M ). This in turn implies (by Proposition 5.3 [5]) that the
morphism of sites V is dense and that Jant

M is the Grothendieck topology on
∫
M induced

by the syntactic topology JTM . Since, as it is easily seen, FU ◦ V ∼= 1∫
M , the functor

V is full and faithful and therefore the subcanonicity of JTM entails that of Jant
M . The

above equivalence of toposes also implies, by the syntactic construction of ‘the’ universal
model of a geometric theory inside its classifying topos, that the TM -model U is sent by
the canonical functor

∫
M → Sh(

∫
M,Jant

M ) to ‘the’ universal model for TM inside this
topos, thus completing the proof of the theorem.

For the first half of the theorem, let N be in T[G] and

N
g−→ γ∗M

be a L-structure homomorphism in G. By the categorical equivalence between models of
a geometric theory and cartesian cover-preserving functors on its syntactic site, g is the
same thing as a natural transformation

J~x ~A. φKN J~x ~A. φKγ∗(M)

g
{~x ~A. φ}

(for {~x ~A. φ} ∈ CT).

Note that J~x ~A. φKN is the disjoint union

J~x ~A. φKN =
∐

~a∈J~x ~A. φKM

N~a

{~x ~A. φ}

of the fibers:

N~a

{~x ~A. φ}
1

J~x ~A. φKN J~x ~A. φKγ∗(M)

y
γ∗(~a)

g
{~x ~A. φ}

Thus g{~x ~A. φ} yields a family of objects (N~a

{~x ~A. φ}
)({~x ~A. φ},~a)∈

∫
M indexed by the category

of elements of M .
The naturality of g implies that for any morphism in

∫
M corresponding to a [θ] in

CT, one has a unique arrow

N ~a1

{~x ~a11 . φ1}

~N
~a1, ~a2
[θ]→ N ~a2

{~x ~a22 . φ2}
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making the following diagram commute:

N ~a1

{~x ~a11 . φ1}
1

N ~a2

{~x ~a22 . φ2}
1

J~x ~a11 . φ1KN J~x ~a11 . φ1Kγ∗(M)

JxA2
2 . φ2KN J~x ~a22 . φ2Kγ∗(M)

~N
~a1, ~a2
[θ]

y γ∗( ~a1)

y

γ∗( ~a2)

N([θ])

g{~x
~a1
1 . φ1}

γ∗M([θ])

g
{~x ~a22 . φ2}

Let us show that g defines a Jant
M -continuous flat functor:∫

M
g→ G

(~a, {~x ~A. φ}) 7→ N~a

{~x ~A. φ}
[θ] 7→ N ~a1, ~a2

[θ]

We have to check that g preserves the terminal object and pullbacks, and that it sends
Jant
M -covering families to jointly epimorphic families. These are actually consequences of
N being a T-model:

− For the terminal object, observe that both J[].>KN and J[].>Kγ∗M are equal to the
terminal object 1, whence N∗{[].>} = 1 too.

− For pullbacks, one knows that

J~x ~a11 , ~x
~a2
2 . θ1(~x1) = θ2(~x2)KN ' J~x ~a11 . φ1KN ×J~x ~A. φKN

J~x ~a22 . φ2KN

as N is a model; then for ~a1 ∈ J~x ~a11 . φ1KM , ~a2 ∈ J~x ~a22 . φ2KM such that Jθ1KM(~a1) =
~c = Jθ2KM(~a2), one has

N ~a1, ~a2

{~x ~a11 ,~x
~a2
2 . θ1(~x1)=θ2(~x2)}

= 1×γ
∗( ~a1),γ∗( ~a2)

J~x ~a11 ,~x
~a2
2 . θ1(~x1)=θ2(~x2)Kγ∗M

J~x ~a11 , ~x
~a2
2 . θ1(~x1) = θ2(~x2)KN

' 1×γ
∗( ~a1),γ∗( ~a2)

J~x ~a11 ,~x
~a2
2 . θ1(~x1)=θ2(~x2)Kγ∗M

(J~x ~a11 . φ1KN ×J~x ~A. φKN
J~x ~a22 . φ2KN)

' (1×γ
∗( ~a1)

J~x ~a11 . φ1Kγ∗M
J~x ~a11 . φ1KN)×

1×γ
∗(~c)

J~x ~A. φKγ∗M
J~x ~A. φKN

(1×γ
∗( ~a2)

J~x ~a22 . φ2Kγ∗M
J~x ~a22 . φ2KN)

' N ~a1

{~x ~a11 . φ1}
×N~c

{~x ~A. φ}
N ~a2

{~x ~a22 . φ2}
.

− For Jant
M -continuity: let

([θi] : (~b, {~xAii . φi})→(~a, {x ~A. φ}))~b∈〈JθiKM 〉−1
i∈I(~a)
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be a family in Bant
T . As γ∗M and N are T-models, they both send ([θi])i∈I to

epimorphic families in G. On the other hand, one can express the fiber of a along
the coproduct map 〈JθiKM〉−1i∈I as∐

〈JθiKM 〉−1
i∈I(~a)

1 '
∐
i∈I

JθiK−1M (~a)→
∐
i∈I

J~x ~Aii . φiKM .

Moreover, this pullback is preserved by γ∗, which sends it to

γ∗(〈JθiKM〉−1i∈I(~a)) '
∐
i∈I

γ∗(JθiK−1M (~a)) '
∐

〈JθiKM 〉−1
i∈I(~a)

γ∗(1) '
∐

〈JθiKM 〉−1
i∈I(~a)

1

which is the 〈JθiKM〉−1i∈I(~a)-indexed coproduct of the terminal object of G. Then by
the stability of coproducts under pullbacks one has

γ∗(〈JθiKM〉−1i∈I(~a))×J~x ~A. φKγ∗M
J~x ~A. φKN ' (

∐
~b∈〈JθiKM 〉−1

i∈I(~a)

1)×J~x ~A. φKγ∗M
J~x ~A. φKN

=
∐

~b∈〈JθiKM 〉−1
i∈I(~a)

N
~b

{~x
~Ai
i . φi}

.

So in the diagram∐
~b∈〈JθiKM 〉−1

i∈I(~a)

N
~b

{~x
~Ai
i . φi}

γ∗(〈JθiKM〉−1i∈I(~a))

N~a

{~x ~A. φ}
1

∐
i∈I

J~x ~Aii . φiKN
∐
i∈I

J~x ~Aii . φiKγ∗(M)

J~x ~A. φKN J~x ~A. φKγ∗(M)

γ∗(~a)

∐
i∈I

g
{~x

~Ai
i . φi}

g
{~x ~A. φ}

the front, right and back squares are pullbacks, whence the left square is a pullback
too: but this forces the upper left arrow∐

~b∈〈JθiKM 〉−1
i∈I(~a)

N
~b

{~x
~Ai
i . φi}

→ N~a

{~x ~A. φ}

to be an epimorphism by the stability of epimorphisms under pullback in G.
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The data of the Na
{~xA.φ}’s with their transitions morphisms define a SetM -structure Sg:

S(~a,{~x ~A. φ}) 7→ N~a

{~x ~A. φ}
f ~a1, ~a2θ 7→ N ~a1, ~a2

[θ] : N ~a1

{~x ~a11 . φ1}
→ N ~a2

{~x ~a22 . φ2}

This structure is actually a TM -model. Indeed, this follows at once from the fact that
the interpretation in Sg of any geometric formula ψ over the signature SM can be expressed
as a pullback of the interpretation of the corresponding formula ψ] in the LcM -structure
M c, as in the following diagram:

[[z
S
( ~a1,{ ~x1

~A1 . φ1})
1 , . . . , z

S
(~an,{ ~xn

~An. φn})
n . ψ]]Sg [[[].ψ]]]Mc

[[z
S
( ~a1,{ ~x1

~A1 . φ1})
1 , . . . , z

S
(~an,{ ~xn

~An. φn})
n .>]]Sg 1

[[ ~x1
~A1 , . . . , ~xn

~An .>]]N [[ ~x1
~A1 , . . . , ~xn

~An .>]]γ∗(M)
g ~A1×...×g ~An

y

<~a1,..., ~an>

y

This analysis shows that a simple axiomatization for the theory TM may be obtained by
phrasing in logical terms the property that the functor V :

∫
M → CTM in the statement of

the theorem be cartesian and cover-preserving. Recalling the well-known characterizations
of pullbacks and terminal objects in the internal language of a topos, this leads to the
following axioms for TM : (

> `[] (∃xS(~a,{[].>}))>
)
;(

> `
x
S(~a,{[].>}) ,x

′S(~a,{[].>}) (x = x′)
)
;(

> `
z

S
( ~a1, ~a2,{

~x′1
~a1 , ~x′2

~a2 . θ1(
~x′1)=θ2(

~x′2)})
f ~a1,~cθ1

(f
( ~a1, ~a2), ~a1

~x1= ~x′1
(z)) = f ~a2,~cθ1

(f
( ~a1, ~a2), ~a2

~x2= ~x′2
(z)))

)
,

(
f
( ~a1, ~a2), ~a1

~x1= ~x′1
(z) = f

( ~a1, ~a2), ~a1

~x1= ~x′1
(z′)) ∧ (f

( ~a1, ~a2), ~a2

~x2= ~x′2
(z) = f

( ~a1, ~a2), ~a2

~x2= ~x′2
(z′)) `z,z′ z = z′

)
,

(
f ~a1,~cθ1

(y1) = f ~a2,~cθ2
(y2) `

y

S
( ~a1,{ ~x1

~A1 . φ1})
1 ,y

S
( ~a2,{ ~x2

~A2 . φ2})
2

(∃z)((f
( ~a1, ~a2), ~a1

~x1= ~x′1
(z) = y1) ∧ (f

( ~a1, ~a2), ~a2

~x2= ~x′2
(z) = y2))

)
for any ~a1 ∈ J~x ~a11 . φ1KM , ~a2 ∈ J~x ~a22 . φ2KM such that Jθ1KM(~a1) = ~c = Jθ2KM(~a2);(

> `
y
S
(~a,{~x ~A. φ})

∨
i∈I,~bi∈JθiK−1

M (~a)

(∃z
S
(~bi,{~x

~Ai
i
. φi}))(f

~bi,~a
θi

(z) = y)
)

for any family {[θi] : {~xi
~Ai . φi} → {~x ~A. φ} | i ∈ I} ∈ BT({~x ~A. φ}) and any ~a ∈ J~x ~A. φKM .
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The first two axioms express the fact that N∗{[].>} = 1, the following three express the

fact that for any ~a1 ∈ J~x ~a11 . φ1KM , ~a2 ∈ J~x ~a22 . φ2KM such that Jθ1KM(~a1) = ~c = Jθ2KM(~a2),
we have a pullback square

N ~a1, ~a2

{ ~x′1
~a1
, ~x′2

~a2
. θ1( ~x′1)=θ2(

~x′2)}
N ~a1

{~x ~a11 . φ1}

N ~a2

{~x ~a22 . φ2}
N~c

{~x ~A. φ}

N
~a1,~c
θ1

N
~a2,~c
θ2

N
( ~a1, ~a2), ~a2

~x2=
~x′2

N
( ~a1, ~a2), ~a1

~x1=
~x′1

and the last one corresponds to the property of V being cover-preserving.
It is immediate to see that the JTM -continuous cartesian functor FSg : CTM → G cor-

responding to the TM -model Sg is given by g ◦FU and that, conversely, the flat functor g
can be recovered from the TM -model Sg as the composite FSg ◦ V .

We now prove the second half of the theorem: given families(
N~a

{~x ~A1 . φ}

)
(~a,{~x ~A. φ})∈

∫
M

and (
f ~a1, ~a2θ : N ~a1

{~x ~a11 . φ1}
→ N ~a2

{~x ~a22 . φ2}

)
[θ]:{ ~x1. φ1}→{ ~x1. φ1}∈CT with [[θ]]M ( ~a1)= ~a2

respectively of objects and arrows in G defining a Jant
M -continuous flat (equivalently, carte-

sian) functor G :
∫
M → G, or, equivalently a TM -model in G, we can associate with it a

T-model N in G and a homomorphism of T-models g : N → γ∗(M).
First, for each each {~xA.φ} and ~a ∈ J~xA. φKM , we set g~a{~xA.φ} equal to the composite

arrow

N~a

{~x ~A. φ}
1

J~x ~A. φKγ∗(M)

!

g~a
{~xA.φ}

γ∗(~a)

Then we define, for each object {~xA.φ} of CT, g{~x ~A. φ} as the arrow determined by

the universal property of the coproduct as in the following diagrams (where the vertical
arrows are the canonical coproduct inclusions):

N~a

{~x ~A. φ}

∐
~a∈J~xA.φKM

N~a

{~x ~A. φ}
J~x ~A. φKγ∗(M)

g~a
{~x ~A. φ}

g
{~x ~A. φ}
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We need to ensure that:

− we have a JT-continuous cartesian functor:

CT
FN−→ G

{~x ~A. φ} 7→ N{~x ~A. φ} =
∐

a∈Jx ~A. φKM

N~a

{~x ~A. φ}

θ : { ~x1
~A1 . φ1} → { ~x2

~A2 . φ2} 7→
∐

~a1∈Jx
~A1
1 . φKM

f ~a1,[[θ]]M ( ~a1) :
∐

~a1∈Jx
~A1
1 . φKM

N ~a1

{ ~x1
~A1 . φ1}

→
∐

~a2∈Jx
~A1
2 . φKM

N ~a2

{ ~x2
~A2 . φ2}

and hence a T-model N in G;

− we have a natural transformation

g = (g{~x ~A. φ}){~x ~A. φ}∈CT : N → γ∗M.

This amounts to the following conditions:

− If {[].>} is the terminal object of the syntactic site, then its interpretation in M
has exactly one global element 1 → J[],>KM = 1 so requiring FN to preserve the
terminal object is equivalent to demanding N∗{[].>} = 1, which is ensured by the fact
that the functor G preserves the terminal object by our hypotheses.

− Pullbacks in CT

{ ~x1
~A1 , ~x2

~A2 . θ1( ~x1) = θ2( ~x2)} { ~x1
~A1 . φ1}

{ ~x2
~A2 . φ2} {~x ~A. φ}

y
[θ1]

[θ2]

are sent by FM to pullbacks in Set

J ~x1
~A1 , ~x2

~A2 . θ1( ~x1) = θ2( ~x2)KM J ~x1
~A1 . φ1KM

J ~x2
~A2 . φ2KM J~x ~A. φKM ,

y
Jθ1KM

Jθ2KM

where elements of J ~x1
~A1 , ~x2

~A2 . θ1( ~x1) = θ2( ~x2)KM are pairs (~a1, ~a2) : 1→ J ~x1
~A1 . φ1KM×

J ~x2
~A2 . φ2KM such that Jθ1KM(~a1) = ~a = Jθ2KM(~a2). Now, if all the squares of the

form

N ~a1, ~a2

{ ~x1
~A1 , ~x2

~A2 . θ1( ~x1)=θ2( ~x2)}
N ~a1

{ ~x1
~A1 . φ1}

N ~a2

{ ~x2
~A2 . φ2}

N~a

{~x ~A. φ}

N
~a1,~a

[θ1]

N
~a2,~a

[θ2]
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are pullbacks, which is the case since the functor G preserves pullbacks by our
hypotheses, then, by the stability of coproducts along pullbacks, we have

N{ ~x1 ~A1 , ~x2
~A2 . θ1( ~x1)=θ2( ~x2)}

=
∐

J ~x1
~A1 , ~x2

~A2 . θ1( ~x1)=θ2( ~x2)KM

N ~a1, ~a2

{ ~x1
~A1 , ~x2

~A2 . θ1( ~x1)=θ2( ~x2)}

=
∐

J ~x1
~A1 , ~x2

~A2 . θ1( ~x1)=θ2( ~x2)KM

N ~a1

{ ~x1
~A1 . φ1}

×N~a
{~x ~A. φ}

N ~a2

{ ~x2
~A2 . φ2}

=
∐

J ~x1
~A1 . φ1KM

N ~a1

{ ~x1
~A1 . φ1}

× ∐
~a∈J~x ~A. φKM

N~a
{~x ~A. φ}

∐
J ~x2

~A2 . φ2KM

N ~a2

{ ~x2
~A2 . φ2}

= N{ ~x1 ~A1 . φ1}
×N

{~x ~A. φ}
N{ ~x2 ~A2 . φ2}

.

− JT-continuity: given a small JT-cover ([θi] : {~xi
~Ai . φi} → {~x ~A. φ})i∈I , since M is a

T-model, the corresponding functor FM : CT → G sends it to a jointly epimorphic

family (JθiKM : J~xi
~Ai . φiKM → J~x ~A. φKM)i∈I ; so each ~a ∈ JxA. φKM has an antecedent

~b ∈ J~xi
~Ai . φiKM for some i ∈ I. Therefore for each ~a ∈ J~x. φK the cocone of fibers

(
N
~b

{~xi
~Ai . φi}

N
~b,~a
[θi]−→ N~a

{~x ~A. φ}

)
i∈I, JθiKM (~b)=~a

in each of its antecedents is jointly epimorphic in G if and only if the coproduct of
fibers (

N{~xi
~Ai . φi}

N[θi]−→ N{~x ~A. φ}
)
i∈I

is. But this exactly amounts to requiring the following functor to be Jant
M -continuous:∫

M
G→ G

(~a, {~x ~A. φ}) 7→ N~a

{~x ~A. φ}
[θ] 7→ N ~a1, ~a2

[θ]

The naturality of g follows immediately from the definition of the functor FN on the
arrows of CT.

To conclude our proof of the categorical equivalence between flat Jant
M -continuous func-

tors on
∫
M and T-model homomorphisms to γ∗(M), we have to check that the two

functors defined above are mutually quasi-inverse. For the construction starting from a
homomorphism of L-structures between T-models g : N → γ∗M , observe that as the
codomain of g decomposes as the coproduct of all elements J~x ~A. φKγ∗M =

∐
~a:1→J~x ~A. φKM

1,
by the stability of coproducts under pullbacks one has

N{~x ~A. φ} '
∐

~a∈J~xA.φKM

N~a

{~x ~A. φ}.
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For the converse process, if one starts with a Jant
M -continuous flat functor N(−) :

∫
M → G

and defines, for each {~x ~A. φ}, N{~x ~A. φ} as the above coproduct, then pulling it back along

γ∗(~a) : 1→ J~x ~A. φKγ∗M , one has (again, by the stability of coproducts under pullback)

γ∗(~a)∗(
∐

~b∈J~xA.φKM

N
~b

{~x ~A. φ}) '
∐

~b∈J~xA.φKM

γ∗(~a)∗(N
~b

{~x ~A. φ}).

For any element ~b of J~x ~A. φKM , we have the following pullback squares:

γ∗(~a)∗(N
~b

{~x ~A. φ}
) 1×γ

∗(~a),γ∗(~b)

J~x ~A. φKγ∗M
1 1

N
~b

{~x ~A. φ}
1 J~x ~A. φKγ∗M

y y γ∗(~a)

γ∗(~b)

Now, there are two possible values for the pullback on the right-hand side:

0 1 1 1

1 J~x ~A. φKγ∗M 1 J~x ~A. φKγ∗M

y
whenever ~a1 6= ~a2 γ∗( ~a2)

y
whenever ~a1= ~a2 γ∗( ~a2)

γ∗( ~a1) γ∗( ~a1)

So the middle pullback is the initial object whenever ~a 6= ~b, whence γ∗(~a)∗(N
~b

{~x ~A. φ}
) ∼= 0;

on the other hand, γ∗(~a)∗(N
~b

{~x ~A. φ}
) ∼= N~a

{~x ~A. φ}
whenever ~a = ~b. This clearly implies our

thesis.

2.11. Remark. We have made use of specific properties of Set at several steps of the
above constructions and proofs:

− In the definition of the antecedent topology, we only had to consider global elements
of the sets J~x ~A. φKM . This is because 1 is a generator of Set, so that generalized
elements would just be coproducts of global elements.

− As a consequence, the very notion of antecedent element is simplified. As we shall
see in section 4, considering antecedents of generalized elements gives rise to compli-
cations when considering jointly epimorphic families, as antecedents may be indexed
by objects of the topos other than the domain of the generalized elements whose
antecedents we seek. In this case, we just had to consider the global elements of the
fiber of a global element; in other words, the antecedent topology exists already in
the comma category (1 ↓ FM); in the general case, it is scattered on the fibers of
a comma (y ↓ FM), for y the Yoneda embedding of a small, cartesian subcanonical
site for the given topos.

− We also used that 1 is indecomposable to retrieve global elements of the fibers of
a jointly surjective family. This is not anymore a valid argument in an arbitrary
Grothendieck topos.
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3. An interlude on stacks

We turn in the next section to the construction of the over-topos at a model in the general
case, where the valuation topos in which the given model lives is an arbitrary Grothendieck
topos. We chose to treat this general case separately as it requires Giraud’s theory of the
classifying topos of a stack, while the set-valuated case requires more conventional tools.
In this section we present a number of results on stacks that we shall need in our analysis.

3.1. A canonical comma construction for geometric morphisms. While in
the set-valued case, it was sufficient to see the over-topos Set[M ] as a mere topos as
its underlying morphism to Set is trivial, in the general case, we have to describe the
over-topos as a geometric morphism uM : E [M ] → E , which is induced from a certain
comorphism of site. It is worth giving some prerequisites on this notion:

3.2. Definition. Let p : M → C be a functor, and K a subcanonical Grothendieck
topology on M, J a subcanonical Grothendieck topology on C. Then p is said to be a
comorphism of site if for any object a of M and any J-cover (ui : ci → p(a))i∈I , there
is a K-cover (fj : aj → a)j∈J in M such that (p(fj))j∈J refines (ui)i∈I (that is any p(fj)
factorizes through some ui).

3.3. Proposition. Any comorphism of site p : (D, K)→ (C, J), with K, J subcanonical,
induces a geometric morphism (p∗, p∗) : Sh(D, K)→ Sh(C, J), where p∗ is precomposition
with p while p∗ = Ranyy p:

(D, K) (C, J)

Sh(D, K) Sh(C, J)

p

p∗

Given a pseudofunctor I : Cop → CAT, we denote by πI the canonical projection
functor G(I)→ C, where G(I) is the category obtained from I by applying the Grothendieck
construction. Given a Grothendieck topology J on C, there is a smallest topology JGir

I
on G(I) which makes πI a comorphism of sites to (C, J); this topology, which we call the
Giraud topology, has as covering sieves those which contain cartesian lifts of J-covering
families in C.

Let f : F → E be a geometric morphism. There are three pseudofunctors naturally
associated with it:

− We define
tf : Fop → CAT

as the functor sending any object F of F to the category (F ↓ f ∗) and any arrow
v : F → F ′ to the functor (F ′ ↓ f ∗)→ (F ↓ f ∗) induced by composition with v.
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− We define
rf : Eop → CAT

as the pseudofunctor sending an object E of E to F/f ∗(E) and an arrow u : E → E ′

to the pullback functor (f ∗(u))∗ : F/f ∗(E ′)→ F/f ∗(E).

− We define
sf : E → CAT

as the functor sending an object E of E to F/f ∗(E) and an arrow u : E → E ′ to the
functor Σf∗(u) : F/f ∗(E)→ F/f ∗(E ′) induced by composition with f ∗(u) (which is
left adjoint to the pullback functor (f ∗(u))∗ : F/f ∗(E ′)→ F/f ∗(E)).

By the adjunction between Σf∗(u) and (f ∗(u))∗ (for any arrow u in E), the fibration to
E associated with rf coincides with the opfibration associated with sf ; in particular, this
functor is both a fibration and an opfibration. This fibration is a stack for the canonical
topology on E by the results in [8]. Note that the domain of this fibration also admits a
canonical functor to F , which is precisely the fibration associated with tf .

3.4. Proposition. tf is a (split) stack for the canonical topology on F .

Proof. Let {fi : Fi → F | i ∈ I} be an epimorphic family in F and

{Ai = (Fi, Ei, αi : Fi → f ∗(Ei)) | i ∈ I}, {fij : πi
∗(Ai) ∼−→ π′j

∗
(Aj) | (i, j) ∈ I × I},

where πi and π′j are defined, for each (i, j) ∈ I × I, by the pullback square

Fi ×F Fj Fi

Fj F,

πi

π′j

fj

fi

be a collection of descent data indexed by it. For any (i, j) ∈ I,

π∗i (Ai) = (Fi ×F Fj, Ei, αi ◦ πi : Fi ×F Fj → f ∗(Ei)),

π′j
∗
(Aj) = (Fi ×F Fj, Ej, αj ◦ π′j : Fi ×F Fj → f ∗(Ej)).

So the isomorphism fij actually identifies with an isomorphism

fij : Ei ∼−→ Ej

in E such that the following triangle commutes:

Fi ×F Fj f ∗(Ei)

f ∗(Ej)

f∗(fij)
αj◦π′j

αi◦πi

Note that the fact that tf is split easily implies that
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− for any i ∈ I, fii = 1Ai ,

− for any i, j, k ∈ I, fjk ◦ fij = fik.

Let E be the colimit of the diagram in E having the Ei’s as vertices and the fij’s as
edges between them (with the above relations); the above identities actually imply that,
for each i ∈ I, E ∼= Ei. The commutativity of the above triangles ensures that we have
a cocone from the Fi’s to f ∗(E) whose legs are given by the composites of the arrows αi
with the image under f ∗ of the corresponding canonical colimit arrow Ei → E. Since
the representable HomF(−, f ∗(E)) is a sheaf for the canonical topology on F , it follows
that there is a unique arrow F → f ∗(E) which restricts on the Fi’s to the legs of this
cocone, and which therefore provides the required ‘amalgamation’ for our descent data.
The uniqueness of the amalgamation (up to isomorphism) also follows at once from the
sheaf property.

3.5. Corollary. Let M be a model of a geometric theory T in a Grothendieck topos E.
Then the functor

tfM : Eop → CAT

associated with the geometric morphism fM : E → Sh(CT, JT) corresponding to M via the
universal property of the classifying topos for T is a stack for the canonical topology on E.

In particular, if (C, J) is a site of definition for E then the functor

Cop M−→ CAT
c 7−→ (c ↓ FM),

c1
u→ c2 7−→ (c2 ↓ FM)

u∗→ (c1 ↓ FM)

where u∗ : (c2 ↓ FM)→(c1 ↓ FM) is the pre-composition functor sending any generalized

element a : c2 → J~x ~A. φKM to a ◦ u : c1 → J~x ~A. φKM is a stack for the topology J , where
FM is the functor CT → E taking the interpretations of formulae in the model M .

3.6. The lifted topology. The category (1F ↓ f ∗) = G(rf ) = G(tf ) has as objects
the triplets (F,E, α : F → f ∗(E)) (where E ∈ E , F ∈ F and α is an arrow in F)
and as arrows (F,E, α : F → f ∗(E)) → (F ′, E ′, α′ : F ′ → f ∗(E ′)) the pairs of arrows
(v : F → F ′, u : E → E ′) in F and E such that f ∗(u) ◦ α = α′ ◦ v; the functors πrf and
πtf are respectively the canonical projection functors from this category to E and F .

Since via these functors the category G(rf ) = G(tf ) is fibered both over E and over F ,
it is natural to consider the smallest Grothendieck topology on it which makes πrf and
πtf comorphisms of sites when E and F are endowed with their canonical topologies, in
other words the join of the Giraud topologies on it induced by the canonical topologies
on E and F . As we shall see, this topology plays a crucial role in connection with our
construction of the over-topos.

To this end, we more generally describe, for any category C and basis B for a Grothen-
dieck topology on C such that (C, JB) is a site of definition for E , a basis for the Grothendieck
topology on G(r′f ), where r′f is the ‘restriction’ of rf to C (that is, the composite of rf
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with the opposite of the canonical functor C → E), which is generated by the Giraud
topology induced by the canonical topology on F and by the Giraud topology induced by
JB. This result is to be applied subsequently to the syntactic site (CT, JT) of definition of
a geometric theory T inside its classifying topos.

3.7. Definition. Given a Grothendieck topology J on C (resp. a basis B for a Grothen-
dieck topology on C) such that (C, J) (resp. (C, JB)) is a site of definition for the topos E,
we shall call the Grothendieck topology on G(r′f ) generated by the Giraud topology induced
by the canonical topology on F and by the Giraud topology induced by J (resp. by JB) the
(f, J)-lifted topology (resp. the (f,B)-lifted topology) and shall denote it by L(f,J) (resp.
L(f,B)).

3.8. Theorem. Let f : F → E be a geometric morphism and B be a basis for a
Grothendieck topology on C such that (C, JB) is a site of definition for E. Then, with
the above notation, the (f,B)-lifted Grothendieck topology on G(r′f ) has as a basis the
collection of multicomposites of a family of cartesian lifts (with respect to r′f) of arrows
in a family of B with JGir

F -covering families, that is, the collection of families

((dij, (ci, bij)) (F, (c, a)))i∈I,j∈Ji
(uij , (ξi,b̃ij))

where (ξi : ci → c)i∈I is a family in B(c) and the families

(b̃ij : dij → f ∗(ci)×f∗(c) F )j∈Ji

are epimorphic in E for each i ∈ I:

dij

f ∗(ci)×f∗(c) F F

f ∗(ci) f ∗(c)

uij

bij

b̃ij

πi

ai
y a

f∗(ξi)

Proof. Note that the collection of arrows(
(dij, (ci, bij)) (F, (c, a))

)
i∈I,j∈Ji

(uij , (ξi,b̃ij))

is the multicomposite of the family(
(πi, (ξi, 1)) : (f ∗(ci)×f∗(c) F, (ci, ai))→ (F, (c, a))

)
i∈I ,

each of whose arrows is cartesian with respect to the fibration rf to E , with the families(
(b̃ij, (1ci , b̃ij)) : (dij, (ci, bij))→ (f ∗(ci)×f∗(c) F, (ci, ai))

)
j∈Ji
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(for i ∈ I), each of whose arrows is cartesian with respect to the fibration tf to F (and
vertical with respect to the fibration rf ).

The first condition in the definition of basis is clearly satisfied, since B is a basis. The
second condition follows from the stability under pullback of epimorphic families in F as
well as of families in B, in light of the compatibility of multicomposition with respect to
pullback. It remains to show that the collection of families specified in the theorem is
closed with respect to multicomposition.

Let (
(dij, (ci, bij)) (F, (c, a))

)
i∈I, j∈Ji

(uij , (ξi,b̃ij))

and, for each i ∈ I, j ∈ Ji,

(
(dijkl, (c

ij
k , b

ij
kl)) ((dij, (ci, bij))

)
k∈Kij , l∈Lijk

(uijkl, (ξ
ij
k ,b̃

ij
kl))

dijkl

f ∗(cijk )×f∗(ci) dij dij

f ∗(cijk ) f ∗(ci)

uijkl

bijkl

b̃ijkl

y
bij

f∗(ξijk )

be families satisfying the conditions in the theorem.
We want to prove that their multicomposite also satisfies these conditions.
As B is a basis for a Grothendieck topology, the family

(
cijk c

)
i∈I,j∈Ji,k∈Kij

ξi◦ξijk

is in B.
Consider the following pullback diagrams:

f ∗(cijk )×f∗(c) F f ∗(ci)×f∗(c) F F

f ∗(cijk ) f ∗(ci) f ∗(c)
f∗(ξijk ) f∗(ξi)

a
y y

f∗(ξi◦ξijk )
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For each i ∈ I and j ∈ Ji, in the diagram

∐
k∈Kij

l∈Lij
k

dijkl f ∗(cijk )×f∗(c) dij dij

f ∗(cijk )×f∗(c) F f ∗(ci)×f∗(c) F

f ∗(cijk ) f ∗(ci)

〈bijkl〉 k∈Kij
l∈Lij

k

〈uijkl〉 k∈Kij
l∈Lij

k

y

y

f∗(ξijk )

both the front lower and back squares are pullbacks, hence so is the top square. Then in
the diagram

∐
i∈I
j∈Ji

∐
k∈Kij

l∈Lij
k

dijkl
∐
i∈I
j∈Ji

∐
k∈Kij

(f ∗(cijk )×f∗(c) dij)
∐
i∈I
j∈Ji

dij

∐
i∈I
j∈Ji

∐
k∈Kij

(f ∗(cijk )×f∗(c) F )
∐
i∈I

(f ∗(ci)×f∗(c) F )

∐
i∈I
j∈Ji

∐
k∈Kij

f ∗(cijk )
∐
i∈I
f ∗(ci)

〈〈bijkl〉 k∈Kij
l∈Lij

k

〉 i∈I
j∈Ji

〈〈uijkl〉 k∈Kij
l∈Lij

k

〉 i∈I
j∈Ji

y 〈b̃ij〉 i∈I
j∈Ji

y

∐
i∈I
〈f∗(ξijk )〉 j∈Ji

k∈Kij

the upper square is a pullback, whence the left-hand arrow in it is an epimorphism
(as it is the pullback of the epimorphism 〈b̃ij〉 i∈I

j∈Ji
). Therefore the arrow

〈〈b̃ijkl〉 k∈Kij
l∈Lij

k

〉 i∈I
j∈Ji

:
∐
i∈I
j∈Ji

∐
k∈Kij

l∈Lij
k

dijkl →
∐
i∈I
j∈Ji

∐
k∈Kij

(f ∗(cijk )×f∗(c) F )

is also an epimorphism, as it is the composite of two epimorphisms. But this is precisely
the arrow corresponding to our multicomposite family, whence we can conclude that the
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latter satisfies the conditions of the theorem, as required (as coproducts are disjoint in a
topos, a coproduct of arrows is an epimorphism if and only if each of the arrows are).

We now apply the theorem to the geometric morphism to the classifying topos of a
geometric theory T, represented as the topos of sheaves on its geometric syntactic site,
induced by a model of T:

3.9. Corollary. Let M be a model of a geometric theory T in a Grothendieck topos E
and fM : E → Sh(CT, JT) the geometric morphism corresponding to it via the universal
property of the classifying topos for T. Then we have:

(i) The (fM , JT)-lifted topology L(fM ,JT) on (1E ↓ FM) has as a basis the collection of
families

(
(dij ({~x ~Aii . φi} , JθiKM(a))) (e, ({~x ~A. φ} , a)

)
i∈I,j∈Ji

(uij , ([θi]T,b̃ij))

where e ∈ E, ([θi]T : {~x ~Aii . φi} → {~x
~A. φ})i∈I is a family in BT({~x ~A. φ}) and the

families (
b̃ij : dij → JθiK−1M (a)

)
j∈Ji

are epimorphic in E for each i ∈ I:

dij

JθiK−1M (a) e

J~x ~Aii . φiKM J~x ~A. φKM

uij

bij

b̃ij

πi

JθiKM (a)
y

a

JθiKM

(ii) For any separating set C for E, the canonical functor C → E induces a L(fM ,JT)-dense
functor (iC ↓ FM)→ (1E ↓ FM), where iC is the canonical embedding of C in E, and
the Grothendieck topology induced by L(fM ,JT) on the category (iC ↓ FM) has as a
basis the collection of families

(
(dij, ({~x ~Aii . φi} , JθiKM(a))) (c, ({~x ~A. φ} , a)

)
i∈I,j∈Ji

(uij , ([θi]T,b̃ij))

where c, dij ∈ C for each i and j, ([θi]T : {~x ~Aii . φi} → {~x
~A. φ})i∈I is a family in

BT({~x ~A. φ}) and the families (
b̃ij : dij → JθiK−1M (a)

)
j∈Ji
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are epimorphic in E for each i ∈ I:

dij

JθiK−1M (a) c

J~x ~Aii . φiKM J~x ~A. φKM

uij

bij

b̃ij

πi

JθiKM (a)
y

a

JθiKM

(iii) If E is the topos Set of sets and 1 : {∗} → E is the functor from the one-object
and one-arrow category {∗} to E picking the terminal object of Set, the embedding
(
∫
M) = (1{∗} ↓ FM) → (1E ↓ FM) induced by the functor 1 is L(fM ,JT)-dense and

the topology induced by L(fM ,JT) on (
∫
M) is the antecedent topology of Definition

2.2.

Proof. (i) This is the particular case of Theorem 3.8 by taking E to be the classifying
topos of T and (C, J) the geometric syntactic site of T.

(ii) This easily follows from the definition of induced topology on a full dense subcat-
egory.

(iii) This is the particular case of (ii) when E is Set and C is the category {∗}, regarded
as a separating set for E through the embedding 1 : {∗} → E .

3.10. Giraud classifier of a cartesian stack. We now fix a Grothendieck topos
E and a small subcanonical cartesian site (C, J) of definition for E . Recall that by a
cartesian category we mean a category with finite limits.

3.11. Definition. A cartesian stack is a stack M on (C, J) such that any M(c) is a
cartesian category, and such that any transition functor M(u), for u a morphism in C, is
cartesian. A morphism of cartesian stacks is a morphism of stacks α : M1 → M2 such
that in any c, αc : M1(c)→M2(c) is cartesian.

We shall denote by Stcart(C, J) the category of cartesian stacks on a site (C, J) and
morphisms of cartesian stacks between them.

3.12. Remark. A typical example of cartesian stacks can be obtained from the pseud-
ofunctor rg associated with a geometric morphism g : G → E . Recall that we defined
rg : Eop → Cat as sending each object E to the slice category G/g∗E, which, as a
Grothendieck topos, is in particular is cartesian, and any u : E1 → E2 in E to the pull-
back functor u∗ : G/g∗E2 → G/g∗E1, which is cartesian. In particular, if E has (C, J)
as a standard site of definition, then one can restricts to objects in E that come from C
through the Yoneda embedding. Since rg is a stack for the canonical topology as recalled
above, its restriction to (C, J) is a cartesian stack.

The following lemma, whose proof is straightforward, expresses cartesian lifts in carte-
sian fibrations as pullback squares, and serves for describing one half of the correspondence
provided by Giraud’s construction of the classifying topos of a stack recalled below:
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3.13. Lemma. Let M be a cartesian stack, with 1M(c) the terminal object of the fiber of
M at c. Then, in the Grothendieck fibration πM :

∫
M → C, for any arrow u : c1 → c2

and any object a in M(c2), the following square is a pullback:

(c1,M(u)(a)) (c2, a)

(c1, 1M(c1)) (c2, 1M(c2))

(1c1 ,!M(u)(a))

(u,1M(u)(a))

y
(1c2 ,!a)

(u,11M(c1)
)

3.14. Proposition. For any cartesian stack on a site M on (C, J) whose underlying
category C is cartesian,

∫
M is a cartesian category.

Proof. We must prove that
∫
M is cartesian. As we shall see, the considered property

holds globally on
∫
M out of holding in a specific fiber. Let (ci, ai)i∈I a finite diagram in∫

M; then, as C is cartesian, we can compute the limit pi : limi∈I ci → ci in C. Moreover,
M(limi∈I ci) is cartesian, so the finite limit limi∈I M(pi)(ai) also exists in M(limi∈I ci),
providing a cone

((pi, πi) : (lim
i∈I

ci, lim
i∈I

M(pi)(ai))→ (ci, ai))i∈I

in
∫
M, where πi : limi∈I M(pi)(ai) → M(pi)(ai) is the projection in the fiber. Now for

any other cone ((vi, qi) : (c, a)→ (ci, ai))i∈I , with qi : a→M(vi)(ai), there exists a unique
arrow w : c→ limi∈I ci by the universal property of the limit in C; but, as the transition
functors M(pi) are cartesian, we have

M(w)(lim
i∈I

M(pi)(ai)) ' lim
i∈I

M(w)M(pi)(ai) ' lim
i∈I

M(vi)(ai)

inducing a unique arrow f : a→M(w)(limi∈IM(pi)(ai)), so that there is a unique factor-
ization in

∫
M

(c, a) (lim
i∈I

ci, lim
i∈I

M(pi)(ai))

(ci, ai)

(w,f)

(vi,qi) (pi,πi)

as desired.

Let us recall from [8] the following fundamental classification result:

3.15. Theorem. Let M be a cartesian stack on a cartesian site (C, J) of definition for
a topos E, and JGir

M be the Giraud topology induced by J . Then the sheaf topos E [M] =
Sh(

∫
M, JGir

M ), with its canonical morphism pM : E [M] → E induced by the comorphism
of sites πM : (

∫
M, JGir

M ) → (C, J), is the classifier of M, in the sense that the following
universal property holds: for any geometric morphism g : G → E,

GeomE(g, pM) ' Stcart(C, J)(M, rg)

where rg is the cartesian stack sending c on G/g∗(c) as defined above.
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Proof. Given a triangle

G E [M]

E
g

f

pM

of geometric morphisms, the cartesian morphism of stacks α : M→ G/g∗ associated with
g as in the theorem can be described as follows.

We have g∗ ∼= f ∗p∗M. The restriction to C of the functor p∗M is just the terminal section
1M(−), so we have a commutative (up to isomorphism) triangle∫

M G

C

f∗

1M(−)
g∗

Now, for any (c, a) in
∫
M, there is a unique arrow !a : a → 1M(c) in the fiber M(c),

which is sent by f ∗ to an arrow f ∗(1c, !a) : f ∗(c, a)→ f ∗(c, 1M(c)) ' g∗(c). This yields, for
each c ∈ C, a functor

αc : M(c) → G/g∗(c)
a 7→ f ∗(1c, !a) : f ∗(c, a)→ g∗(c)

The functors (αc : M(c) → G/g∗(c))c∈C actually define a natural transformation, that is,
all the squares of the following form commute up to isomorphism:

M(c2) G/g∗(c2)

M(c1) G/g∗(c1)

αc2

M(u) (g∗(u))∗

αc1

Indeed, by Lemma 3.13 the following square is a pullback in
∫
M:

(c1,M(u)(a)) (c2, a)

(c1, 1M(c1)) (c2, 1M(c2))

(1c1 ,!M(u)(a))

(u,1M(u)(a))

y
(1c2 ,!a)

(u,11M(c1)
)

It thus follows that, the functor f ∗ being cartesian, the following square is also a pullback:

f ∗(c1,M(u)(a))) f ∗(c2, a)

g∗(c1) g∗(c2)

αc1 (M(u)(a))

f∗(u,1M(u)(a))

y
αc2 (a)

g∗u
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So αc1(M(u)(a)) = (g∗u)∗αc2(a), which is precisely the content of the naturality condition.

The cartesianness of α is actually inherited from that of f ∗, as α acts as a restriction
of f ∗ on each fiber in light of Proposition 3.14.

4. Site for the over-topos at a model in an arbitrary topos

We turn to the construction of the over-topos uM : E [M ]→ E associated with a T-model
M in an arbitrary topos E . Recall that the desired formula is, for any E-topos g : G → E ,

GeomE(g, uM) ' T[G]/g∗(M).

We suppose that we are given a cartesian small subcanonical site of definition (C, J)
for E . Note that the canonical embedding iC of C into E identifies C with a separating
set of objects for E and J with the Grothendieck topology induced on it by the canonical
topology on E .

4.1. The cartesian stack at a model. In the case where E = Set, as Set is generated
by 1 under coproducts, the global elements 1 → J~x ~A. φKM are sufficient to generate all

the generalized elements X '
∐

X 1 → J~x ~A. φKM . In the general case, global elements
must be replaced by generalized elements, possibly restricting to those whose domain is
an object of C, which we call basic generalized elements. Indeed, we shall replace the
category of global elements of M by an indexed category of basic generalized elements
of interpretations in M of geometric formulas over the language of T, that is, with the
comma category (iC ↓ FM), where FM : (CT, JT) → E is the JT-continuous cartesian

functor sending a geometric formula-in-context {~x ~A. φ} to its interpretation J~x ~A. φKM in
M . This defines a prestack

Cop M−→ CAT
c 7−→ (c ↓ FM),

c1
u→ c2 7−→ (c2 ↓ FM)

u∗→ (c1 ↓ FM)

where u∗ : (c2 ↓ FM)→(c1 ↓ FM) is the pre-composition functor sending some a : c2 →
J~x ~A. φKM to a ◦ u : c1 → J~x ~A. φKM .

4.2. Proposition. M is a cartesian stack on (C, J). That is, for each c in C, (c ↓ FM) is
cartesian, and for any arrow u : c′ → c in C, the transition functor (u ↓ FM) is cartesian.

Proof. This is a consequence of FM being cartesian: indeed any finite diagram

(ai : c→ J~x ~Aii .φiKM)i∈I

in (c ↓ FM) defines a unique arrow (ai)i∈I : c → limi∈IJ~x
~Ai
i .φiKM ' FM(limi∈I{~x

~Ai
i .φi}).

For any arrow b : c→ J~x ~A.φKM equipped with a cone ([θi] : b→ ai)i∈I in (c ↓ FM), there



THE OVER-TOPOS AT A MODEL 483

is a canonical arrow [θ]T : {~x ~A.φ} → limi∈I{~x
~Ai
i .φi} in CT providing a factorization of the

[θi]T’s, whence JθKM also factorizes each JθiKM , thus providing a universal factorization
of the cone in (c ↓ FM). For any u : c′ → c, it is easy to see that the composite

(ai)i∈I ◦ u : c′ → FM(limi∈I{~x
~Ai
i .φi}) is the limit of the ai ◦ u’s in (c′ ↓ FM) by the

uniqueness of the factorization of a cone through the limit.

As a consequence, the fibred category
∫
M = (iC ↓ FM) is cartesian. Its objects are the

pairs (c, a), where c is an object of C and a is a c-indexed basic element a : c→ J~x ~A. φKM ,
while an arrow (c1, a1)→ (c2, a2) is a pair (u, [θ]T) consisting of an arrow u : c1 → c2 in C
and an arrow [θ]T in CT such that a2 ◦ u = JθKM ◦ a1:

c1 c2

J~x ~a11 . φ1KM J~x ~a22 . φ2KM

a1

u

a2

JθKM

In order to complete our generalization of the construction of section 2, we need to
equip the category

∫
M with a Grothendieck topology representing the analogue of the

antecedents topology. This is not straightforward since, in the general context, there are
no vertical covers a priori. Indeed, one would be tempted to define in each fiber (c ↓ FM)
a topology of c-indexed antecedents, made of families of triangles

c

J~x ~Aii . φiKM J~x ~A. φKM

b JθiKM◦b=a

JθiKM

for ([θi] : {~xi
~Ai . φi} → {~x ~A. φ})i∈I a family in BT({~x ~A. φ}) and b ranging over all the

antecedents of a along the arrows JθiKi∈I . However this would not work because, although

FM sends the family ([θi] : {~xi
~Ai . φi} → {~x ~A. φ})i∈I to an epimorphic family in E , there

is no reason for a c-indexed basic element a to have a c-indexed antecedent along any of
the JθiKM ’s. In order to take the horizontal components into account, we need to leave
the domain of ‘antecedent’ generalized elements vary among the objects of C, and require
them to cover the fibers JθiK−1M (a) of a along the arrows JθiKM :∐

i∈I

JθiK−1M (a) c

∐
i∈I

J~xi
~Ai . φiKM J~x ~A. φKM

y a∐
i∈I

JθiKM

(Note that, as in the set-based setting, some JθiK−1M (a) may be empty, though they jointly
cover c). In light of the characterization of the antecedents topology in the set-based
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setting in terms of lifted topologies, provided by Corollary 3.9, we are thus led to defining
the antecedents topology on

∫
M as follows:

4.3. Definition. The antecedents topology Jant
M on

∫
M is the Grothendieck topology on

(iC ↓ FM) induced by the (fM , JT)-topology on (1E ↓ FM) (in the sense of Definition 3.7);
that is, it has as a basis the collection of families(

(dij, bij) (c, a))i∈I, j∈Ji
(uij ,[θi]T)

where a : c→ J~x ~A. φKM is a basic generalized element, ([θi]T : {~x ~Aii . φi} → {~x
~A. φ})i∈I is a

family in BT({~x ~A. φ}), (uij : dij → c)j∈Ji is a family of arrows in C (for each i ∈ I) and

(bij : dij → J~x ~Aii . φiKM)j∈Ji is a family of arrows (for each i ∈ I) making the diagrams

dij c

J~x ~Aii . φiKM J~x ~A. φKM

uij

bij a

JθiKM

commutative and such that the family of arrows

(b̃ij : dij → 〈JθiKM〉−1(a))j∈Ji

as in the following diagram is epimorphic :

dij

JθiK−1M (a) c

J~x ~Aii . φiKM J~x ~A. φKM

uij

bij

b̃ij

πi

y a

JθiKM

4.4. Remark.

(a) The covering families in the definition of JantM are indexed by a dependent sum, with
first a set indexing a basic cover of JT and for each term of this cover, a basic
covering family. To obtain a more conventional presentation, one can equivalently
use a single indexing set J and require a family of squares ({θi}, ui)i∈I to induce an
epimorphism 〈(bi, ui)〉i∈I and have (θi)i∈I in JT. In particular, for a presentation as
above, take J =

∐
i∈I Ji and impose {θ(i,j)} := {θi}.

(b) As in the set-based case, the JθiKM ’s are only jointly epimorphic, so a generalized

element a : c→ J~x ~A. φKM may have no antecedent along a chosen θi, that is, the cor-
responding set Ji may be empty. However, antecedent families live over subfamilies
of JT-covering families, as shown by Proposition 4.5 below.
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4.5. Proposition. There is a comorphism of sites (
∫
M, Jant

M )→ (CT, JT) sending a basic

generalized element a : c→ J~x ~A. φKM to the underlying sort {~x ~A. φ}.

Proof. This follows immediately from the characterization of Jant
M as the Grothendieck

topology on (iC ↓ FM) induced by the (fM , JT)-topology on (1E ↓ FM).

4.6. Remark. The comorphism of sites of Proposition 4.5 is not a fibration, unlike its
topos-theoretic extension provided by the canonical projection functor (1E ↓ fM ∗) →
Sh(CT, JT). This explains why the antecedent topology is not a lifted topology but rather
a topology induced on a smaller subcategory by a lifted topology existing at the topos level,
and hence that its description is more involved than that for its topos-theoretic extension.
This is an illustration of the importance of developing invariant constructions at the topos-
theoretic level and of investigating only later how such notions can be described at the
level of sites.

Since Jant
M is the Grothendieck topology on (iC ↓ FM) induced by the (fM , JT)-lifted

topology on (1E ↓ FM), the canonical projection functor πM :
∫
M → C to C is a comor-

phism of sites (
∫
M, Jant

M )→ (C, J).

4.7. Main theorem in the general case. We are now ready to define the over-topos
at M in the general setting:

4.8. Definition. For a model M of T in a Grothendieck topos E, we denote as E [M ] the
sheaf topos Sh(

∫
M, Jant

M ) over the category of elements of M together with its antecedents
topology, and as uM : E [M ] → E the geometric morphism induced by the comorphism of
sites πM : (

∫
M, Jant

M )→ (C, J).

4.9. Remark.

(a) The inverse image of uM is the pre-composition sending c to C(πM(−), c) (since
πM is continuous by Theorem 4.44 [5]), while the direct image is the restriction to
sheaves of the right Kan extension along πM .

(b) In the set-based case, choosing as a presentation site the category {∗} with the
trivial topology on it, there is only one fiber, and the antecedents topology on

∫
M

of Definition 2.2 is completely concentrated in it.

4.10. Theorem. The E-topos uM : E [M ] → E satisfies the universal property of the T-
over-topos at M : that is, for any E-topos g : G → E there is an equivalence of categories

GeomE(g, E [M]) ' T[G]/g∗M

natural in g.
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Proof. The proof naturally generalizes that for a set-based model.
In one direction, suppose that f is a geometric morphism over E from g to uM :

G E [M]

E

f

g uM

This defines a Jant
M -continuous, cartesian functor∫

M f∗−→ G.

By Theorem 3.15, it also induces a morphism of cartesian stacks over E

M f−→ G/g∗

whose components

(c ↓ FM)
fc−→ G/g∗c

(for each c in C) are cartesian functors sending a given basic generalized element a : c→
J~x ~A. φKM to a certain arrow fc(a) : N(c,a) → g∗c in G. We want to associate with f a

morphism f̃ : N → g∗M in T[G]. For each {~x ~A. φ} in CT, the category (iC ↓ J~x ~A. φKM) of
basic generalized elements is small; we can thus define

N{~x ~A. φ} := colim
(iC↓{~x ~A. φ})

N(c,a) ' colim
c∈C

∐
a∈E(c,J~x ~A. φKM )

N(c,a)

and, by using the universal property of the colimit, an arrow f{~x ~A. φ} as in the following

diagram (where the ja’s are the legs of the colimit cocone):

N(c,a) g∗c

N{~x ~A. φ} J~x ~A. φKg∗M

fc(a)

ja g∗(a)

f
{~x ~A. φ}

Let us first check this yields a JT-continuous cartesian functor N : (CT, JT) → G,
showing how the above assignment on objects naturally extends to arrows.

Given an arrow [θ]T : { ~x1
~A1 . φ1} → { ~x2

~A2 . φ2} in CT, composing with JθKM allows

one to associate with any generalized element a : c → J ~x1
~A1 . φKM a generalized element

JθKM ◦ a : c→ J ~x2
~A2 . φKM . So by the functoriality of fc we have:

N(c,a) N(c,JθKM◦a)

g∗(c)

fc([θ]T)

fc(a) fc(JθKM◦a)
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We can thus define N[θ]T : N{ ~x1 ~A1 . φ1}
→ N{ ~x2 ~A2 . φ2}

as the arrow determined by the

universal property of the colimit by the requirement that all the diagrams of the form

N(c,a) N(c,JθKM◦a)

N{ ~x1 ~A1 . φ1}
N{ ~x2 ~A2 . φ2}

fc([θ]T)

ja jJθKM◦a

N[θ]T

should commute.
The fact thatN is cartesian follows at once from the fact that the functor f ∗ :

∫
M→ G

is, in light of the definition of N in terms of colimits and of the stability of these under
pullback. So it remains to prove its JT-continuity.

Let ([θi]T : {~x ~Aii . φi} → {~x ~A. φ})i∈I be a family in BT({~x ~A. φ}); we want to show
that the family

(
N[θi]T : N

{~x
~Ai
i . φi}

→ N{~x ~A. φ}
)
i∈I is epimorphic. First, we notice that

this condition can be conveniently phrased in terms of basic generalized elements, as
follows: for any basic generalized element w : e→ N{~x ~A. φ} there are an epimorphic family

{uk : ek → e | k ∈ K} lying in C and for each k ∈ K an element ik ∈ I and a basic
generalized element wk : ek → N

{ ~xik
~Aik . φik}

such that the diagram

ek e

N
{ ~xik

~Aik . φik}
N{~x ~A. φ}

uk

wk w

N[θik
]T

commutes. Since colimits yield epimorphic families in a topos, in light of the definition
of N we can further rewrite this condition as follows: for any basic generalized element
w : e→ N(c,a), where a : c→ J~x ~A. φKM , there are an epimorphic family {uk : ek → e | k ∈
K} lying in C and for each k ∈ K an element ik ∈ I, an object (dk, bk) of the category

(iC ↓ J ~xik
~Aik . φikKM) and an arrow wk : ek → N(dk,bk) such that the diagram

ek e

N(dk,bk) N(c,a)

uk

wk w

N[θik
]T

commutes.
Now, given a generalized element a : c → J~x ~A. φKM , we may obtain a covering family

for the antecedent topology Jant
M (with respect to our original JT-cover) by covering each
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of the fibers JθiK−1M (a) by basic generalized elements b̃ij : dij → JθiK−1M (a):

dij

JθiK−1M (a) c

J~x ~Aii . φiKM J~x ~A. φKM

uij

bij

b̃ij

πi

JθiK∗M (a)
y

a

JθiKM

The functor f ∗ being Jant
M -continuous, f ∗ sends this family to an epimorphic family(
f(uij, [θi]T) : N(dij ,bij) → N(c,a)

)
i∈I, j∈Ji

in G; but this clearly implies our thesis.
Conversely, let f : N → g∗M be a morphism of T-models in G. We can regard f as

a CT-indexed family {f{~x ~A. φ} : J~x ~A. φKN → J~x ~A. φKg∗M} of morphisms in G (subject to the

naturality conditions). For each basic generalized element a : c → J~x ~A. φKM , we define
N(c,a) as the following pullback:

N(c,a) g∗c

J~x ~A. φKN J~x ~A. φKg∗M

y
g∗(a)

f
{~x ~A. φ}

Given a morphism (u, [θ]T) : (c1, a1) → (c2, a2) in
∫
M, we have by the naturality of

f (seen as a morphism of JT-continuous cartesian functors) the following commutative
square:

J~x ~a11 . φ1KN J~x ~a11 . φ1Kg∗M

J~x ~a22 . φ2KN J~x ~a22 . φ2Kg∗M

JθKN

f
{~x ~a11 . φ1}

JθKg∗M
f
{~x ~a22 . φ2}

We can thus define N(u,[θ]M) : N(c1,a1) → N(c2,a2) as the unique arrow making the
following diagram (where the front and back faces are pullback) commute:

N(c1,a1) g∗(c1)

N(c2,a2) g∗(c2)

J~x ~a11 . φ1KN J~x ~a11 . φ1Kg∗M

J~x ~a22 . φ2KN J~x ~a22 . φ2Kg∗M

N(u,[θ]M) g∗(u)

a1

y

a2

JθKN

f
{~x ~a11 . φ1}

JθKg∗M
f
{~x ~a22 . φ2}
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This yields a functor ∫
M

N(−)−→ G.

We want to show that this functor is cartesian and Jant
M -continuous. The fact that it

is cartesian follows easily from the fact that the functor FN : CT → G corresponding to
the model N is, in light of the construction of finite limits in the category

∫
M provided

by Proposition 3.14.
Concerning Jant

M -continuity, we shall consider the extension of N(−) to the category
(1E ↓ FM) and show its continuity with respect to the extended topology, as the latter
admits a more natural characterization as the (fM , JT)-lifted topology; recall that this
topology has a basis consisting of multicomposites of covering families of horizontal arrows
for the fibration rfM and of covering families of horizontal arrows for the fibration tfM , so
continuity can be checked separately with respect to each of these families.

Let us start by showing the continuity with respect to the covering families of hori-
zontal arrows for tfM ; this can be checked without any problems in terms of the site of
definition (C, J) for E . For a J-covering family (ui : ci → c)i∈I and a generalized element

a : c→ J~x ~A. φKM , consider the following diagram:

N(ci,a◦ui) g∗ci

N(c,a) g∗c

J~x ~A. φKN J~x ~A. φKg∗M

N(ui,1{~x ~A. φ}
) g∗ui

y
g∗(a)

f
{~x ~A. φ}

The lower square and the outer rectangle are pullbacks, whence by the pullback lemma
the upper square is also a pullback. Since (C, J) is a site of definition for E , g∗ sends
J-covering families to epimorphic families; so we have a pullback of epimorphisms∐

i∈I

N(ci,a◦ui)
∐
i∈I

g∗ci

N(c,a) g∗c

〈N(ui,1{~x ~A. φ}
)〉i∈I

y
〈g∗ui〉i∈I

ensuring that N(−) sends the horizontal covering family(
(ui, 1{~x ~A. φ}) : (ci, ({~x ~A. φ}, a ◦ ui))→ (c, ({~x ~A. φ}, a))

)
i∈I

to an epimorphic family.
Now we turn to the proof of the continuity of N(−) with respect to the covering families

of horizontal arrows for the fibration rfM .
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Given a family
(
[θi] : {~xi. φi} → {~x. φ}

)
i∈I in BT and a generalized element a : c →

J~x ~A. φKM , we want to prove that N(−) sends the family(
(πi, [θi]) : (JθiK−1M (a), ({~xi. φi}, JθiK∗M(a)))→ (c, ({~x. φ}, a))

)
i∈I

in
∫
M to an epimorphic family.

Consider, for each i ∈ I, the following diagram:

N(JθiK−1(a),JθiK∗(a)) g∗(JθiK−1(a))

N(c,a) g∗(c)

J~xi
~Ai . φiKN J~xi

~Ai . φiKg∗M

J~x ~A. φKN J~x ~A. φKg∗M

N(πi,[θi]) g∗(πi)
JθiK∗(a))

y

a

JθiKN

f
{ ~xi

~Ai . φi}

JθiKg∗M

f
{~x ~A. φ}

The front square is a pullback by definition of N(c,a), the back square is a pullback
by definition of N(JθiK−1(a),JθiK∗(a)) and the right-hand lateral one is a pullback since g∗ is
cartesian. So the composite of the back square with the right-hand lateral square is a
pullback, and hence by the pullback lemma the left-hand lateral square is also a pullback
(as the front square is a pullback). Our thesis thus follows from the fact that, since N is
a T-model by our hypotheses, the family(

JθiKN : J~xi
~Ai . φiKN → J~x ~A. φKN

)
i∈I

is epimorphic.
Finally, proving that the functors defined above are mutually quasi-inverses is a

straightforward exercise which we leave to the reader.

To conclude this section, we remark that our construction of the over-topos is func-
torial; that is, a morphism of T-models naturally induces a canonical morphism between
the corresponding T-over-toposes. Let f : M1 → M2 be a morphism in T[E ]. This is a
same as a natural transformation

(CT, JT) E
M1

M2

f

whose components

J~x ~A. φKM1 J~x ~A. φKM2

f
{~x ~A. φ}

are indexed by the objects of CT. This induces an indexed functor α : M1 ⇒M2 assigning
to each object c of C the functor

(c ↓ FM1) (c ↓ FM2)
αc=(c↓f)
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sending a basic global element a : c → J~x ~A. φKM1 to f{~x ~A. φ} ◦ a : c → J~x ~A. φKM2 . This
clearly yields a comorphism of sites

((iC ↓ FM1), J
ant
M1

)→ ((iC ↓ FM2), J
ant
M2

)

over C, which thus induces a geometric morphism

E [α] : E [M1]→ E [M2]

over E between the associated over-toposes.

4.11. Corollary. For any geometric theory T, (C2T, JUT) is a small, cartesian site for
Set[T]2.

Proof. It suffices to apply the construction of the T-over-topos provided by Theorem
4.10 in the particular case E = Sh(CT, JT), M = UT and (C, J) = (CT, JT). Note that iC
is simply the Yoneda embedding yT : CT ↪→ Sh(CT, JT), and also FM coincides with yT,
whence the site for Set[T][UT] provided by Definition 4.8 is (yT ↓ yT) ' C2T, that is, the
arrow category of CT.
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volume 1107, 2011.

[2] M. Artin, A. Grothendieck and J. L. Verdier, Théorie des topos et cohomologie étale
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