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ON ROTA-BAXTER LIE 2-ALGEBRAS

SHILONG ZHANG AND JIEFENG LIU

Abstract. In this paper, we introduce the notion of Rota-Baxter Lie 2-algebras,
which is a categorification of Rota-Baxter Lie algebras. We prove that the category
of Rota-Baxter Lie 2-algebras and the category of 2-term Rota-Baxter L∞-algebras are
equivalent. We introduce the notion of a crossed module of Rota-Baxter Lie algebras,
and show that there is a one-to-one correspondence between strict 2-term Rota-Baxter
L∞-algebras and crossed modules of Rota-Baxter Lie algebras. At last, as applications
of the crossed modules of Rota-Baxter Lie algebras, we give constructions of crossed
modules of pre-Lie algebras and crossed modules of Lie algebras from them.

1. Introduction

The notion of a Rota-Baxter algebra originated from the 1960 paper [1] of G. Baxter in his
probability study to understand Spitzer’s identity in fluctuation theory. Soon afterwards,
this concept attracted the attention of well-known mathematicians such as P. Cartier and
G.-C. Rota whose fundamental papers [10, 19] around 1970 brought the subject into the
areas of algebra and combinatorics. Rota-Baxter algebras have broad connections with
mathematical physics, including the application in Connes-Kreimer’s algebraic approach
to the renormalization in perturbative quantum field theory [12]. Rota-Baxter algebras
also lead to the splitting of operads [6, 22], and are closely related to noncommutative
symmetric functions and Hopf algebras [13, 15, 17, 29]. We refer the reader to [14] for
more details about Rota-Baxter algebras.

In the Lie algebra context, a Rota-Baxter operator was introduced independently in
the 1980s as the operator form of the classical Yang-Baxter equation, named after the
physicists C.-N. Yang and R. Baxter [8, 28], whereas the classical Yang-Baxter equation
plays important roles in mathematics and mathematical physics such as integrable systems
and quantum groups [11, 24]. A Lie algebra equipped with a Rota-Baxter operator, called
a Rota-Baxter Lie algebra, naturally gives rise to a pre-Lie algebra or a post-Lie algebra
which has its origin in a study of operads [27] as a special case of the splitting of Lie
algebras [6]. Recently, as an integration and geometrization of Rota-Baxter Lie algebras,
the notions of Rota-Baxter Lie groups and Rota-Baxter Lie algebroids were introduced
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in [16]. Besides, cohomologies, deformations, extensions and homotopy theory of Rota-
Baxter Lie algebras were well studied in [18, 21, 26].

Motivated by the study of string theory, there has been great attention to higher
categorical structures. One way to obtain higher categorical structures is by categorifying
existing mathematical concepts. One of the simplest higher structures is a 2-vector space,
which is a categorification of a vector space. If we further put Lie algebra structures on
2-vector spaces, then we obtain Lie 2-algebras [2]. L∞-algebras, sometimes called strongly
homotopy Lie algebras, were introduced in [20] as a model for Lie algebras that satisfy
Jacobi identity up to all higher homotopies. It is well-known that the category of Lie
2-algebras is equivalent to the category of 2-term L∞-algebras. The structure of Lie 2-
algebras appears in many areas such as string theory [4], higher symplectic geometry [3],
and Courant algebroids [23].

In this paper, we provide a categorification of Rota-Baxter Lie algebras, called Rota-
Baxter Lie 2-algebra. Rota-Baxter operators on 2-term L∞-algebras were first introduced
in [25] as a tool to study 2-graded classical Yang-Baxter equations, which could naturally
generate examples of Lie 2-bialgebras [7]. Soon afterwards, Rota-Baxter operators on L∞-
algebras were given and studied in [21]. We prove that the category of Rota-Baxter Lie
2-algebras and category of 2-term Rota-Baxter L∞-algebras are equivalent. Here a 2-term
Rota-Baxter L∞-algebra consists of a 2-term L∞-algebra and a Rota-Baxter operator on
it. The notion of crossed modules of Rota-Baxter Lie algebras is also introduced and
we prove that there is a one-to-one correspondence between strict 2-term Rota-Baxter
L∞-algebras and crossed modules of Rota-Baxter Lie algebras. We show that a crossed
module of Rota-Baxter Lie algebras gives a crossed module of pre-Lie algebras and thus
gives a crossed module of Lie algebras naturally.

The paper is organized as follows. In Section 2, we recall Rota-Baxter Lie algebras
and their representations, 2-vector spaces and 2-term chain complexes. In Section 3, we
first give the notion of Rota-Baxter Lie 2-algebras, which is the categorification of Rota-
Baxter Lie algebras. Then we introduce the category of Rota-Baxter Lie 2-algebras and
the category of 2-term Rota-Baxter L∞-algebras and show that they are equivalent. In
Section 4, we introduce the notion of crossed modules of Rota-Baxter Lie algebras and
show that there is a one-to-one correspondence between strict 2-term Rota-Baxter L∞-
algebras and crossed modules of Rota-Baxter Lie algebras. We show that the underlying
algebraic structure of a crossed module of Rota-Baxter Lie algebras is a crossed module
of pre-Lie algebras and then a new crossed module of Lie algebras is constructed.

In this paper, all the vector spaces are over an algebraically closed field K of charac-
teristic 0, and finite dimensional.

2. Preliminaries

2.1. Rota-Baxter Lie algebras and their representations.
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2.2. Definition. Let (g, [·, ·]g) be a Lie algebra. A linear operator T : g −→ g is called
a Rota-Baxter operator if

[T (x), T (y)]g = T
(
[T (x), y]g + [x, T (y)]g

)
, ∀x, y ∈ g.

Moreover, a Lie algebra (g, [·, ·]g) with a Rota-Baxter operator T is called a Rota-Baxter
Lie algebra. We denote it by (g, [·, ·]g, T ).

2.3. Definition. A pre-Lie algebra is a pair (g, ∗g), where g is a vector space and ∗g is
a bilinear multiplication on g satisfying that the associator (x, y, z) = (x∗gy)∗gz−x∗g(y∗gz)
is symmetric in x, y, i.e.

(x, y, z) = (y, x, z), or equivalently, (x∗g y)∗g z−x∗g (y ∗g z) = (y ∗gx)∗g z−y ∗g (x∗g z).

Let (g, ∗g) be a pre-Lie algebra. The commutator [x, y]g = x ∗g y − y ∗g x defines a
Lie algebra structure on g, which is called the sub-adjacent Lie algebra of (g, ∗g) and
denoted by gc. Furthermore, L : g→ gl(g) defined by

Lxy = x ∗g y, ∀x, y ∈ g (1)

gives a representation of gc on g. See [5, 9] for more details.
The following proposition reviews the well-known transformation from a Rota-Baxter

Lie algebra to a pre-Lie algebra.

2.4. Proposition. Let (g, [·, ·]g) be a Lie algebra and T : g −→ g a Rota-Baxter operator.
Define a new operation on g by

x ∗ y = [T (x), y]g.

Then (g, ∗) is a pre-Lie algebra and T is a homomorphism from the sub-adjacent Lie
algebras (g, [·, ·]T ) to (g, [·, ·]g), where [x, y]T = x ∗ y − y ∗ x.

2.5. Definition. Let (g, [·, ·]g, T ) and (h, [·, ·]h, S) be two Rota-Baxter Lie algebras. A
Rota-Baxter Lie algebra homomorphism from (g, [·, ·]g, T ) to (h, [·, ·]h, S) is a linear
map φ : g→ h such that φ a Lie algebra homomorphism and satisfies φ ◦ T = S ◦ φ.

A Rota-Baxter Lie subalgebra (resp., Rota-Baxter Lie ideal) of a Rota-Baxter
Lie algebra (g, T ) is a Lie subalgebra (resp., a Lie ideal) I of g such that T (I) ⊆ I.
Let f : (g, T ) → (h, S) be a Rota-Baxter Lie algebra homomorphism. Then ker f is a
Rota-Baxter Lie ideal of the Rota-Baxter Lie algebra (g, T ).

2.6. Definition. ([18]) A representation of a Rota-Baxter Lie algebra (g, [·, ·]g, T )
on a vector space V with respect to a linear map T ∈ gl(V ) is a representation ρ of the
Lie algebra g on V , satisfying

ρ(T (x)) ◦ T = T ◦ ρ(T (x)) + T ◦ ρ(x) ◦ T, ∀x ∈ g. (2)

We denote the above representation by (V ; ρ,T), and give some examples as follows.
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2.7. Example. Let (g, [·, ·]g, T ) be a Rota-Baxter Lie algebra. Then (g; ad, T ) is a rep-
resentation, which is called the adjoint representation of (g, [·, ·]g, T ).

2.8. Proposition. ([18]) Let (V ;T, ρ) be a representation of a Rota-Baxter Lie algebra
(g, [·, ·]g, T ). Then (V ∗; ρ∗,−T∗) is also a representation of (g, [·, ·]g, T ), which is called
the dual representation.

2.9. Example. Let (g, [·, ·]g, T ) be a Rota-Baxter Lie algebra. Then (g∗; ad∗,−T ∗) is a
representation of (g, [·, ·]g, T ), which is called the coadjoint representation.

2.10. Proposition. Let (V ; ρ,T) be a representation of a Rota-Baxter Lie algebra (g, [·, ·]g,
T ). Then (g⊕V, [·, ·]n,T) is a Rota-Baxter Lie algebra, where [·, ·]n is the semidirect prod-
uct Lie bracket given by

[x+ u, y + v]n = [x, y]g + ρ(x)v − ρ(y)u, ∀x, y ∈ g, u, v ∈ V,

and T : g⊕ V → g⊕ V is a linear map given by

T(x+ u) = T (x) + T(u), ∀x ∈ g, u ∈ V.

2.11. 2-vector spaces. Let Vect be the category of vector spaces. Vector spaces can
be categorified to 2-vector spaces. A good introduction for this subject is [2].

2.12. Definition. A 2-vector space is an internal category in the category Vect.

Thus, a 2-vector space V = (V1, V0, s, t, i, ◦) is a category with a vector space of objects
V0 and a vector space of morphisms V1, such that the source and target maps s, t : V1 → V0,
the identity-assigning map i : V0 → V1, and the composition map ◦ : V1×V0V1 → V1 satisfy
the specified category laws.

Given a morphism f : x→ y ∈ V1, define the arrow part of f , denoted as
−→
f , by

−→
f = f − i(x).

Furthermore, we identify f : x→ y with the ordered pair (x,
−→
f ). It was shown in [2] that

the composition map ◦ : V1 × V1 → V1 is uniquely determined by

f ◦ g = (x,
−→
f +−→g ), f = (x,

−→
f ), g = (y,−→g ) ∈ V1. (3)

Thus the structure of a 2-vector space is completely determined by the vector spaces V0
and V1 together with the source, target and identity-assigning maps.

Let V and W be two 2-vector spaces. Recall that a linear functor F : V → W is an
internal functor in Vect.

Let 2Vect denote the category consisting of 2-vector spaces and linear functors be-
tween them. There is a category, denoted as 2Term, whose objects are 2-term chain
complexes and whose morphisms are chain maps.
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It is well known that the categories 2Vect and 2Term are equivalent. Roughly
speaking, given a 2-vector space V = (V1, V0, s, t, i, ◦),

ker(s)
t→ V0

is a 2-term complex. Conversely, the 2-term complex of vectors C1
d→ C0 gives a 2-vector

space of which the set of objects is C0, the set of morphism is C0 ⊕ C1, the identity-
assigning map is given by i(x) = (x, 0) for any x ∈ C0, the source map s is given by

s(x,
−→
f ) = x and the target map t is given by t(x,

−→
f ) = x+ d

−→
f for all (x,

−→
f ) ∈ C0 ⊕C1.

2.13. Definition.

1. Given two linear functors F,G : V → W between 2-vector spaces, a linear natural
transformation α : F ⇒ G is a natural transformation in Vect.

2. Given two chain maps ϕ, ψ : C → C ′ of 2-term chain complexes, a chain ho-
motopy τ : ϕ ⇒ ψ is a linear map τ : C0 → C ′1 satisfying d′τ = ψ0 − ϕ0 and
τd = ψ1 − ϕ1.

Let 2Vect denote the 2-category of 2-vector spaces, linear functors and linear natural
transformations. Also let 2Term be the 2-category of 2-term chain complexes, chain
maps, and chain homotopies.

Furthermore, we have

2.14. Proposition. ([2]) The 2-category 2Vect is 2-equivalent to the 2-category 2Term.

3. Rota-Baxter Lie 2-algebras and 2-term Rota-Baxter L∞-algebras

In this section, we first introduce the notion of a Rota-Baxter Lie 2-algebra which is a
Lie 2-algebra with a linear functor satisfying the Rota-Baxter identity up to a natural
isomorphism. Then we introduce the notion of a 2-term Rota-Baxter L∞-algebra. Finally,
we show that the category of Rota-Baxter Lie 2-algebras and the category of 2-term Rota-
Baxter L∞-algebras are equivalent.

3.1. Rota-Baxter Lie 2-algebras . We begin by reviewing the concept of a Lie
2-algebra given in [2].

3.2. Definition.

1. A Lie 2-algebra is a 2-vector space L together with a skew-symmetric bilinear func-
tor [·, ·] : L×L→ L and a completely antisymmetric trilinear natural isomorphism,
the Jacobiator,

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y],
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satisfying the identity:

([w, Jx,y,z] + 1)([Jw,y,z, x] + 1)(J[w,y],x,z + Jw,[x,y],z)[Jw,x,y, z]

= (Jw,[x,z],y + J[w,z],x,y + Jw,x,[y,z])([Jw,x,z, y] + 1)J[w,x],y,z.

A Lie 2-algebra is called strict if the Jacobiator is the identity isomorphism.

2. Given two Lie 2-algebras L and L′, a homomorphism F = (F0, F1, F2) : L → L′

consists of a linear functor (F0, F1) from the underlying 2-vector space of L to that
of L′, and a skew-symmetric bilinear natural transformation

F2[x, y] : [F0(x), F0(y)]→ F0[x, y]

satisfying

(F1(Jx,y,z))F2[F2, 1] = (F2 + F2)([1, F2] + [F2, 1])JF0(x),F0(y),F0(z).

In the following, we give the main definition in this paper.

3.3. Definition. A Rota-Baxter Lie 2-algebra is a triple ((L, [·, ·]), P,R), where
(L, [·, ·]) is a Lie 2-algebra, P = (P0, P1) : L → L is a linear functor and for x, y ∈ L,
Rx,y is an antisymmetric bilinear natural isomorphism given by

Rx,y : [P0(x), P0(y)]→ P0[P0(x), y] + P0[x, P0(y)],

such that the following Rota-Baxter relation is satisfied,

(1 + P1[Rx,y, 1z])
(
1 + P1JP0(x),z,P0(y)

) (
Rx,[P0(y),z] + Rx,[y,P0(z)] + R[x,P0(z)],y + R[P0(x),z],y

)(
[1P0(x),Ry,z] + [Rx,z, 1P0(y)]

)
JP0(x),P0(y),P0(z)

= (1 + P1[Rx,z, 1y] + P1[1x,Ry,z])
(
1 + P1JP0(x),y,P0(z) + P1Jx,P0(y),P0(z)

)(
R[P0(x),y],z + R[x,P0(y)],z

)
[Rx,y, 1P0(z)],

which can be showed as the following commutative diagram

[[P0(x), P0(y)], P0(z)]

JP0(x),P0(y),P0(z)

ss

1

++
[P0(x), [P0(y), P0(z)]] + [[P0(x), P0(z)], P0(y)]

[1P0(x),Ry,z ]+[Rx,z,1P0(y)]

��

[[P0(x), P0(y)], P0(z)]

[Rx,y,1P0(z)]

��
A

Rx,[P0(y),z]+Rx,[y,P0(z)]
+R[x,P0(z)],y+R[P0(x),z],y

��

[P0[P0(x), y], P0(z)] + [P0[x, P0(y)], P0(z)]

R[P0(x),y],z+R[x,P0(y)],z

��
B

1+P1JP0(x),z,P0(y)

��

D

1+P1JP0(x),y,P0(z)
+P1Jx,P0(y),P0(z)
��

C

1+P1[Rx,y,1z ]

++

E

1+P1[Rx,z,1y ]+P1[1x,Ry,z ]

ssF
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where

A = [P0(x), P0[P0(y), z] + P0[y, P0(z)]] + [P0[x, P0(z)], P0(y)] + [P0[P0(x), z], P0(y)];

B = P0[P0(x), [P0(y), z]] + P0[x, P0[P0(y), z]] + P0[P0(x), [y, P0(z)]] + P0[x, P0[y, P0(z)]]

+P0[P0[x, P0(z)], y] + P0[[x, P0(z)], P0(y)] + P0[P0[P0(x), z], y] + P0[[P0(x), z], P0(y)];

C = P0[P0(x), [P0(y), z]] + P0[x, P0[P0(y), z]] + P0[P0(x), [y, P0(z)]] + P0[x, P0[y, P0(z)]]

+P0[P0[x, P0(z)], y] + P0[[x, P0(z)], P0(y)] + P0[P0[P0(x), z], y] + P0[P0(x), [z, P0(y)]]

+P0[[P0(x), P0(y)], z];

D = P0[P0[P0(x), y], z] + P0[P0[x, P0(y)], z] + P0[[P0(x), y], P0(z)] + P0[[x, P0(y)], P0(z)];

E = P0[P0[P0(x), y], z] + P0[P0[x, P0(y)], z] + P0[P0(x), [y, P0(z)]] + P0[[x, P0(z)], P0(y)]

+P0[[P0(x), P0(z)], y] + P0[x, [P0(y), P0(z)]];

F = P0[P0[P0(x), y], z] + P0[P0[x, P0(y)], z] + P0[P0(x), [y, P0(z)]] + P0[[x, P0(z)], P0(y)]

+P0[P0[P0(x), z], y] + P0[P0[x, P0(z)], y] + P0[x, P0[P0(y), z]] + P0[x, P0[y, P0(z)]].

A Rota-Baxter Lie 2-algebra is called strict if (L, [·, ·]) is a strict Lie 2-algebra and the
natural isomorphism Rx,y is the identity isomorphism.

3.4. Definition. Let (L, P,R) and (L′, P ′,R′) be two Rota-Baxter Lie 2-algebras. A ho-
momorphism of Rota-Baxter Lie 2-algebras F : L→ L′ consists of a homomorphism
of Lie 2-algebras (F0, F1, F2) : L→ L′ and a natural linear transformation

F3(x) : P ′0(F0(x))→ F0(P0(x))

such that the following equation holds

(F3[P0(x), y] + F3[x, P0(y)])(P ′1F2(P0(x), y) + P ′1F2(x, P0(y)))

(P ′1[F3(x), 1F0(y)] + P ′1[1F0(x), F3(y)])RF0(x),F0(y)

= F1(Rx,y)F2(P0(x), P0(y))[F3(x), F3(y)],

or, in terms of commutative diagram,

[P ′0(F0(x)), P ′0(F0(y))]

[F3(x),F3(y)]

��

RF0(x),F0(y)// P
′
0[P

′
0(F0(x)),F0(y)]

+P ′
0[F0(x),P ′

0(F0(y))]

P ′
1[F3(x),1F0(y)

]

+P ′
1[1F0(x)

,F3(y)]
// P

′
0[F0(P0(x)),F0(y)]

+P ′
0[F0(x),F0(P0(y))]

P ′
1F2(P0(x),y)+P ′

1F2(x,P0(y))

��
[F0(P0(x)), F0(P0(y))]

F2(P0(x),P0(y))

��

P ′0(F0[P0(x), y]) + P ′0(F0[x, P0(y)])

F3[P0(x),y]+F3[x,P0(y)]

��
F0[P0(x), P0(y)]

F1(Rx,y)
// F0(P0[P0(x), y]) + F0(P0[x, P0(y)]).
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Let (L, P,R), (L′, P ′,R′) and (L′′, P ′′,R′′) be Rota-Baxter Lie 2-algebras. Let F :
(L, P,R) → (L′, P ′,R′) and G : (L′, P ′,R′) → (L′′, P ′′,R′′) be homomorphisms of Rota-
Baxter Lie 2-algebras. We define the composite functor G ◦ F : (L, P,R)→ (L′′, P ′′,R′′)

to be the usual composite of the underlying 2-vector space functor: L
F−→ L′

G−→ L′′,
while letting (G ◦ F )2 and (G ◦ F )3 be defined as the following composite

(G ◦ F )2[(G ◦ F )0(x), (G ◦ F )0(y)] = (G ◦ F2) (G2[G0(F0(x)), G0(F0(y))]) = (G ◦ F )0[x, y],

(G ◦ F )3 (P ′′0 ((G ◦ F )0(x))) = (G ◦ F3) (G3(P
′′
0 (G0(F0(x))))) = (G ◦ F )0 (P0(x)) ,

where G ◦ F2( resp. G ◦ F3) is the result of whiskering the functor G by the natural
transformation F2( resp. F3). The identity homomorphism 1L has the identity functor
as its underlying functor, together identity natural transformations (1L)2 and (1L)3. It is
straightforward to obtain

3.5. Proposition. There is a category, which we denote by RBLie2Alg, with Rota-
Baxter Lie 2-algebras as objects, Rota-Baxter Lie 2-algebra homomorphisms as mor-
phisms.

3.6. 2-term Rota-Baxter L∞-algebras. The notion of an L∞-algebra was intro-
duced by Stasheff in [20]. We begin by reviewing the concept of a 2-term L∞-algebra.

3.7. Definition. A 2-term L∞-algebra on a graded vector space G = g0 ⊕ g1 consists
of the following data:

• a complex of vector spaces: g1
l1−→ g0,

• a skew-symmetric bilinear map l2 : gi ⊗ gj −→ gi+j, where 0 ≤ i+ j ≤ 1, which we
denote more suggestively as [·, ·],

• a skew-symmetric trilinear map l3 : ∧3g0 −→ g1,

such that for all xi, x, y, z ∈ g0 and u, v ∈ g1, the following equalities are satisfied:

(a) l1l2(x, u) = l2(x, l1(u)), l2(l1(u), v) = l2(u, l1(v)),

(b) l1l3(x, y, z) = l2(x, l2(y, z)) + l2(z, l2(x, y)) + l2(y, l2(z, x)),

(c) l3(x, y, l1(u)) = l2(x, l2(y, u)) + l2(u, l2(x, y)) + l2(y, l2(u, x)),

(d) the Jacobiator identity:

4∑
i=1

(−1)i+1l2(xi, l3(x1, · · · , x̂i, · · · , x4))+
∑
i<j

(−1)i+jl3(l2(xi, xj), x1, · · · , x̂i, · · · , x̂j , · · · , x4) = 0.

We usually denote a 2-term L∞-algebra by (g1, g0, l1, l2, l3), or simply by G. A 2-term
L∞-algebra is called strict if l3 = 0.



ON ROTA-BAXTER LIE 2-ALGEBRAS 553

3.8. Definition. Let G = (g1, g0, l1, l2, l3) and G′ = (g′1, g
′
0, l
′
1, l
′
2, l
′
3) be 2-term L∞-

algebras. An L∞-homomorphism φ : G→ G′ consists of:

� a chain map φ : G→ G′ which consists of linear maps φ0 : g0 → g′0 and φ1 : g1 → g′1
preserving the differential: l′1φ1 = φ0l1,

� a skew-symmetric bilinear map φ2 : g0 × g0 → g′1,

such that the following equations hold for all x, y, z ∈ g0, u ∈ g1 :

l′1(φ2(x, y)) = φ0[x, y]− [φ0(x), φ0(y)],

φ2(x, l1(u)) = φ1[x, u]− [φ0(x), φ1(u)],

and

[φ2(x, y), φ0(z)] + φ2([x, y], z) + φ1(l3(x, y, z))

= l3(φ0(x), φ0(y), φ0(z)) + [φ0(x), φ2(y, z)] + [φ2(x, z), φ0(y)] + φ2(x, [y, z]) + φ2([x, z], y).

There is a category 2TermL∞ with 2-term L∞-algebras as objects and L∞-homomorphisms
as morphisms.

The Rota-Baxter operators on L∞-algebras are introduced in [21]. In the following,
we give the notion of Rota-Baxter operators on 2-term L∞-algebras.

3.9. Definition. Let G = (g1, g0, l1, l2, l3) be a 2-term L∞-algebra. A triple R = (R0, R1, R2),
where R0 : g0 −→ g0, R1 : g1 −→ g1 is a chain map, and R2 : ∧2g0 −→ g1 is a linear
map, is called a Rota-Baxter operator on G if for all x, y, x1, x2, x3 ∈ g0 and u ∈ g1,
the following conditions are satisfied:

1. R0

(
l2(R0x, y) + l2(x,R0y)

)
− l2(R0x,R0y) = l1R2(x, y),

2. R1

(
l2(R1u, x) + l2(u,R0x)

)
− l2(R1u,R0x) = R2(l1(u), x),

3. l2(R0x1, R2(x2, x3)) + l2(R0x3, R2(x1, x2)) + l2(R0x2, R2(x3, x1))

+R2

(
x3, l2(R0x1, x2)− l2(R0x2, x1)

)
+R2

(
x2, l2(R0x3, x1)− l2(R0x1, x3)

)
+R2

(
x1, l2(R0x2, x3)− l2(R0x3, x2)

)
+R1

(
l2(R2(x2, x3), x1)− l3(R0x2, R0x3, x1)

)
+R1

(
l2(R2(x1, x2), x3)− l3(R0x1, R0x2, x3)

)
+R1

(
l2(R2(x3, x1), x2)− l3(R0x3, R0x1, x2)

)
+l3(R0x1, R0x2, R0x3) = 0.

Moreover, a 2-term L∞-algebra G with a triple R = (R0, R1, R2) is called a 2-term Rota-
Baxter L∞-algebra. We denote a 2-term Rota-Baxter L∞-algebra by (G,R). A 2-term
Rota-Baxter L∞-algebra is called strict if l3 = 0 and R2 = 0.
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3.10. Definition. Let (G,R) and (G′,R′) be 2-term Rota-Baxter L∞-algebras. A Rota-
Baxter L∞-homomorphism φ = (φ0, φ1, φ2, φ3) : (G,R)→ (G′,R′) consists of a homo-
morphism (φ0, φ1, φ2) from the 2-term L∞-algebra G to the 2-term L∞-algebra G′ and a
linear map φ3 : g0 → g′1, such that, for all x, y ∈ g0, u ∈ g1, the following equations hold

l′1(φ3(x)) = −R′0(φ0(x)) + φ0(R0(x));

φ3(l1(u)) = φ1(R1(u))−R′1(φ1(u));

R′2(φ0(x), φ0(y)) +R′1[φ3(x), φ0(y)] +R′1[φ0(x), φ3(y)]

+R′1(φ2(R0(x), y)) +R′1(φ2(x,R0(y))) + φ3(R0(x), y) + φ3(x,R0(y))

= [φ3(x), φ3(y)] + φ2(R0(x), R0(y)) + φ1(R2(x, y)).

Let φ : (G,R) → (G′,R′) and ψ : (G′,R′) → (G′′,R′′) be a pair of Rota-Baxter L∞-
homomorphisms. The composite ψφ : (G,R) → (G′′,R′′) is the usual chain map while
defining (ψφ)2 and (ψφ)3 as follows:

(ψφ)2(x, y) = ψ2(φ0(x), φ0(y)) + ψ1(φ2(x, y)),

(ψφ)3(x) = ψ3(φ0(x)) + ψ1(φ3(x)).

The identity homomorphism 1(G,R) : (G,R) → (G,R) has the identity chain map as its
underlying map, together with (1(G,R))2 = 0 and (1(G,R))3 = 0.

With these definitions, it is straightforward to obtain

3.11. Proposition. There is a category 2TermRBL∞ with 2-term Rota-Baxter L∞-
algebras as objects and Rota-Baxter L∞-homomorphisms as morphisms.

3.12. The equivalence of Rota-Baxter Lie 2-algebras and 2-term Rota-
Baxter L∞-algebras . The well-known fact between Lie 2-algebras and 2-term L∞-
algebras is given as follows.

3.13. Theorem. ([2]) The categories Lie2Alg and 2TermL∞ are equivalent.

In order to prove the main Theorem 3.14, we first recall the construction of the equiv-
alence between Lie2Alg and 2TermL∞ in the following.

The functor from Lie2Alg to 2TermL∞ is denoted as

S : Lie2Alg→ 2TermL∞. (4)

Suppose that L is a Lie 2-algebra. The corresponding 2-term L∞-algebra S(L) = (g1, g0, l1,
l2, l3) is given by

g0 = L0, g1 = ker(s) ⊆ L1,

l1(u) = t(u), u ∈ g1,

l2(x, y) = [x, y], x, y ∈ g0,

l2(x, u) = −l2(u, x) = [1x, u], x ∈ g0, u ∈ g1,

l2(u, v) = 0, u, v ∈ g1,

l3(x, y, z) =
−−→
Jx,y,z, x, y, z ∈ g0.
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Let L and L′ be two Lie 2-algebras. Let S(L) = (g1, g0, l1, l2, l3) and S(L′) =
(g′1, g

′
0, l
′
1, l
′
2, l
′
3) be the corresponding 2-term L∞-algebras. Assume that F : L → L′

is a Lie 2-algebra homomorphism. The corresponding L∞-homomorphism φ = S(F ) :
S(L)→ S(L′) is given by

φ0 : g0 → g′0, (5)

φ1 : g1 → g′1, (6)

φ2 : V0 × V0 → V ′1 , (7)

where φ0(x) = F0(x), φ1(u) = F1|ker(s)(u) and φ2(x, y) =
−−−−−→
F2(x, y).

The functor from 2TermL∞ to Lie2Alg is denoted as

T : 2TermL∞ → Lie2Alg. (8)

Given a 2-term L∞-algebra G = (g1, g0, l1, l2, l3), we have a Lie 2-algebra T (G) = L, where
the object L0 = g0, the morphism L1 = g0⊕ g1, the source, target, identity-assigning and
composite maps are given by

s(f) = x, f = (x,
−→
f ) ∈ L1,

t(f) = x+ l1(
−→
f ), f = (x,

−→
f ) ∈ L1,

i(y) = (y, 0), y ∈ L0,

f ◦ g = (x,
−→
f +−→g ), f = (x,

−→
f ), g = (y,−→g ) ∈ L1.

Then we see t(f)− s(f) = l1(
−→
f ). The bracket functor [·, ·] : L× L→ L is given by

[x, y] = l2(x, y), (9)

[f, g] = (l2(x, z), l2(
−→
f , z) + l2(y,−→g )) = (l2(x, z), l2(x,−→g ) + l2(

−→
f , w)) (10)

for arbitrary objects x, y ∈ L0, and arbitrary morphisms f : x→ y, g : z → w ∈ L1. Note
that the identity

l2(
−→
f , z) + l2(y,−→g ) = l2(x,−→g ) + l2(

−→
f , z)

holds since l2(l1(
−→
f ),−→g ) = l2(

−→
f , l1(−→g )). The Jacobiator for L is given by

Jx,y,z = ([[x, y], z], l3(x, y, z)).

For each L∞-homomorphism φ : G → G′, we let T (G) = L and T (G′) = L′. The Lie
2-algebra homomorphism T (φ) = F : L→ L′ is defined as follows

F0 : L0 → L′0, F0(x) = φ0(x),

F1 : L1 → L′1, F1(f) = F1(x,
−→
f ) = (φ0(x), φ1(

−→
f )),

F2 : L0 × L0 → L′1, F2(x, y) = ([φ0(x), φ0(y)], φ2(x, y)).

Finally, the natural isomophisms α : TS =⇒ 1Lie2Alg and β : ST =⇒ 12TermL∞ imply
the equivalence between Lie2Alg and 2TermL∞.

As a generalization of Theorem 3.13, we have
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3.14. Theorem. The categories RBLie2Alg an 2TermRBL∞ are equivalent.

Proof. First we construct a functor SRB : RBLie2Alg → 2TermRBL∞ which ‘lifts’
the functor S in (4) as the following commutative diagram shows

RBLie2Alg SRB
//

URBLie2Alg

��

2TermRBL∞

U2TermRBL∞
��

Lie2Alg
S

// 2TermL∞

where URBLie2Alg and U2TermRBL∞ are forgetful functors.
Given a Rota-Baxter Lie 2-algebra (L, P ), we obtain a 2-term Rota-Baxter L∞ algebra

SRB(L, P ) = (G,R). Here G = (g1, g0, l1, l2, l3) is the 2-term L∞ algebra S(P ), and
R = (R0, R1, R2) on G is given by

R0 : g0 → g0, R0(x) = P0(x),

R1 : g1 → g1, R1(u) = P1(u),

R2 : g0 × g0 → g′1, R2(x, y) =
−−→
Rx,y.

In the following, we first show that the conditions (1), (2) and (3) in Definition 3.9 hold.
The condition (1) holds since

R0 (l2(R0x, y) + l2(x,R0y))− l2(R0x,R0y) = (t− s)Rx,y = t
−−→
Rx,y = l1R2(x, y).

The naturality of Rx,y implies that for any f : x→ z, we have the identity

Rx,y

(
P1[P1(f), 1y] + P1[f, 1P0(y)]

)
= [P1(f), 1P0(y)]Rz,y, (11)

Taking the arrow parts of both sides of the above Eq. (11), we have

−−→
Rx,y +

(−−−−−−−−→
P1[P1(f), 1y] +

−−−−−−−→
P1[f, 1P0(y)]

)
=
−−−−−−−−−→
[P1(f), 1P0(y)] +

−−→
Rz,y,

which implies that

P1

(
[P1(
−→
f ), 1y] + [

−→
f , 1P0(y)]

)
− [P1(

−→
f ), 1P0(y)] =

−−−→
Rz−x,y. (12)

Thus we have

R1

(
l2(R1(

−→
f ), y) + l2(

−→
f ,R0(y))

)
− l2(R1(

−→
f ), R0(y)) = R2(l1(

−→
f ), y). (13)

This implies that the conditon (2) holds.
It is straightforward to check that the Rota-Baxter relation in Definition 3.3 is equiv-

alent to

[1P0(x),
−−→
Ry,z] +

−−−−−−−−−−−−→
Rz,[P0(x),y]+[x,P0(y)] + P1

(
[
−−→
Ry,z, 1x]−

−−−−−−−→
JP0(y),P0(z),x

)
+ c.p.+

−−−−−−−−−−→
JP0(x),P0(y),P0(z) = 0,
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which implies that

l2(R0x,R2(y, z)) +R2 (g(z, l2(R0x, y)− l2(R0y, x))

+R1 (l2(R2(y, z), x)− l3(R0y,R0z, x)) + c.p.+ l3(R0x,R0y,R0z) = 0.

This implies that the conditon (3) holds.
Next we construct a Rota-Baxter L∞-homomorphism from a Rota-Baxter Lie 2-algebra

homomorphism. Let F : (L, P,R) → (L′, P ′,R′) be a Rota-Baxter Lie 2-algebra homo-
morphism. Let (G,R) = SRB(L, P,R) and (G,R) = SRB(L′, P ′,R′). Then we obtain an
L∞-homomorphism φ = S(F ) : G→ G′ of SRB(F ) as in (5-7). Define a map φ3 : V0 → V ′1
by

φ3(x) =
−−−→
F3(x) : 0→ −P ′0(φ0(x)) + φ0(P0(x)).

By the following identity

l′1(φ3(x)) = t(
−−−→
F3(x)) = −P ′0(φ0(x)) + φ0(P0(x)) = −R′0(φ0(x)) + φ0(R0(x)),

we have the first equation in Definition 3.10.
By the naturality of F3, for every morphism f : x→ y, we obtain

φ1(P1(f))F3(x) = F3(y)P ′1(φ1(f)).

Furthermore, we have

−−−→
F3(x) + φ1(P1(

−→
f )) =

−−−−−−−−−−→
φ1(P1(f))F3(x) =

−−−−−−−−−−→
F3(y)P ′1(φ1(f)) = P ′1(φ1(

−→
f )) +

−−−→
F3(y),

which implies that

φ3(l1(f)) =
−−−−−−→
F3(y − x) =

−−−→
F3(y)−−−−→F3(x) = φ1(P1(

−→
f ))− P ′1(φ1(

−→
f )).

Thus for any u ∈ g1, we have

φ3(l1(u)) = φ1(P1(u))− P ′1(φ1(u)) = φ1(R1(u))−R′1(φ1(u)).

This implies that the second equation in Definition 3.10 holds.
It is straightforward to check that the coherence law in Definition 3.4 is equivalent to

the following equation

(
−−−−−−−→
F3[P0(x), y] +

−−−−−−−→
F3[x, P0(y)])(P ′1

−−−−−−−−→
F2(P0(x), y) + P ′1

−−−−−−−−→
F2(x, P0(y)))

(P ′1[
−−−→
F3(x), 1F0(y)] + P ′1[1F0(x),

−−−→
F3(y)])

−−−−−−−→
RF0(x),F0(y)

= F1(
−−→
Rx,y)

−−−−−−−−−−−→
F2(P0(x), P0(y))[

−−−→
F3(x),

−−−→
F3(y)],

which implies that the third equation in Definition 3.10 holds.
One can also deduce that SRB preserves the identity homomorphisms and the compo-

sition of homomorphisms. Thus SRB is a functor from RBLie2Alg to 2TermRBL∞.
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Conversely, we construct a functor TRB : 2TermRBL∞ → RBLie2Alg as a ‘lifting’
of the functor T in (8) in terms of the following commutative diagram

2TermRBL∞
TRB

//

U2TermRBL∞
��

RBLie2Alg

URBLie2Alg

��
2TermL∞ T

// Lie2Alg

where U2TermRBL∞ and URBLie2Alg are corresponding forgetful functors.
Let (G,R) be a 2-term Rota-Baxter L∞ algebra, where G = (g0, g1, l1, l2, l3) is a 2-term

L∞ algebra and R = (R0, R1, R2) is a Rota-Baxter operator on G. Then we have a Lie
2-algebra T (G) = L with L0 = g0 and L1 = g0⊕ g1. Define a linear functor P : L→ L by

P0 : L0 → L0, P0(x) = R0(x) ∀ x ∈ L0,

P1 : L1 → L1, P1(y, u) = (R0(y), R1(u)), ∀ y ∈ g0, u ∈ g1.

The natural isomorphism Rx,y : [P0(x), P0(y)]→ P0([P0(x), y] + [x, P0(y)]) is defined by

Rx,y = ([P0(x), P0(y)], R2(x, y)).

Thus, we obtain a Rota-Baxter Lie 2-algebra (L, P ) = TRB(G,R) from a 2-term Rota-
Baxter L∞ algebra (G,R).

For any Rota-Baxter L∞-homomorphism φ : (G,R) → (G′,R′), we next construct a
Rota-Baxter Lie 2-algebra homomorphism F = TRB(φ) from TRB(G,R) to TRB(G′,R′).

The underlying Lie 2-algebra homomorphism is given by

F0 = φ0 : L0 → L′0,

F1 = φ0 ⊕ φ1 : L1 → L′1,

F2 : L0 × L0 → L′1, F2(x, y) = ([φ0(x), φ0(y)], φ2(x, y)).

The natural transformation F3(x) : P ′0(F0(x))→ F0(P0(x)) is defined by

F3(x) = (P ′0(F0(x)), φ3(x)).

Applying the correspondence between the composition of morphisms and the addition of
their arrow parts, the second equation in Definition 3.10 implies the naturality of F3. The
coherence law in Definition 3.4 also holds by the third equation. Thus F is a Rota-Baxter
Lie 2-algebra homomorphism. Furthermore, TRB preserves the identity homomorphisms
and the composition of homomorphisms. Therefore, TRB is a functor from 2TermRBL∞
to RBLie2Alg.

We are left to show that there are natural isomorphisms

αRB : TRBSRB ⇒ 1RBLie2Alg, βRB : SRBTRB ⇒ 12TermRBL∞ .
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For any Rota-Baxter Lie 2-algebra (L, P,R), we obtain a 2-term Rota-Baxter L∞
algebra

SRB(L, P,R) = (G,R) = ((g0, g1, l1, l2, l3), (R0, R1, R2)),

where S(L) = G, and R0 = P0, R1 = P1|g1 , R2(x, y) =
−−→
Rx,y. Applying the functor TRB to

(G,R), we obtain a Rota-Baxter Lie 2-algebra, denoted by (L′, P ′,R′). Here L′ = T (S(L)),
and for all x ∈ L′0 and (y, u) ∈ L′1 = g0 ⊕ g1, one has

P ′0(x) = R0(x), P ′1(y, u) = (R0(y), R1(u)),R′x,y = ([P0(x), P0(y)], R2(x, y)) = Rx,y.

By the isomorphism αL : L′ → L of semistrict Lie 2-algebras: (αL)0(x) = x and
(αL)1(y, u) = i(y) + u, we have P ′0(x) = P0(x), and

P1((αL)1(y, u)) = P1(i(y)+u) = i(P0(y))+P1(u) = (αL)1(P0(y), P1(u)) = (αL)1(P
′
1(y, u)).

Thus αRB : (L′, P ′,R′)→ (L, P,R) is an isomorphism of Rota-Baxter Lie 2-algebras. Also
by the naturality of α, we see that αRB is a natural isomorphism.

For a 2-term Rota-Baxter L∞ algebra (G,R) = ((g0, g1, l1, l2, l3), (R0, R1, R2)), apply-
ing the functor TRB to (G,R), we obatin a Rota-Baxter Lie 2-algebra (L, P,R), where L0 =
g0, L1 = g0⊕g1, P0(x) = R0(x), P1(y, u) = R0(y)+R1(u) and Rx,y = ([P0(x), P0(y)], R2(x, y))
for all x ∈ L0 and (y, u) ∈ g0⊕g1. Applying SRB to (L, P ), we have a 2-term Rota-Baxter
L∞ algebra (G′,R′), where G′ = S(T (G)), R′0(x) = P0(x), R′1(u) = P1(u) = R1(h) and

R′2(x, y) =
−−→
Rx,y = R2(x, y) for any x, y ∈ g0 and u ∈ g1. Thus we obtain the 2-term

Rota-Baxter L∞-algebra isomorphism βRB : (G′,R′) → (G,R). The naturality of βRB

follows that of β. Then we obtain a natural isomorphism βRB.

For strict Rota-Baxter Lie 2-algebras, there is a category SRBLie2Alg with strict
Rota-Baxter Lie 2-algebra as objects and Rota-Baxter Lie 2-algebra homomorphisms as
morphisms, which is a subcategory of RBLie2Alg.

For strict 2-term Rota-Baxter L∞-algebras, there is a category SRB2TermL∞ with
strict 2-term Rota-Baxter L∞-algebras as objects and Rota-Baxter L∞-homomorphisms
as morphisms, which is a subcategory of 2TermRBL∞.

It is straightforward to check that

3.15. Corollary. The categories SRBLie2Alg and SRB2TermL∞ are equivalent.

4. Strict 2-term Rota-Baxter L∞-algebras and crossed modules of Rota-
Baxter Lie algebras

In this section, we study the relations between strict 2-term Rota-Baxter L∞-algebras
and crossed modules of Rota-Baxter Lie algebras.

First, we recall the definition of crossed modules of Lie algebras.
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4.1. Definition. A crossed module of Lie algebras is a quadruple ((g1, [·, ·]g1),
(g0, [·, ·]g0), d, ρ), where (g1, [·, ·]g1) and (g0, [·, ·]g0) are Lie algebras, d : g1 → g0 is a
Lie algebra homomorphism and ρ : g0 → Der(g1) is an action of Lie algebra g0 on Lie
algebra g1 as a derivation, such that

d(ρ(x)(u)) = [x, du]g0 , ρ(du)(v) = [u, v]g1 , ∀ x ∈ g0, u, v ∈ g1. (14)

Relations between strict Lie 2-algebras and crossed modules of Lie algebras are de-
scribed in the following theorem.

4.2. Theorem. ([2]) There is a one-to-one corresponding between strict Lie 2-algebras
and crossed modules of Lie algebras.

4.3. Definition. A crossed module of Rota-Baxter Lie algebras is a quadruple

((g1, [·, ·]g1 , T1), (g0, [·, ·]g0 , T0), d, ρ),

where (g1, [·, ·]g1 , T1) and (g0, [·, ·]g0 , T0) are Rota-Baxter Lie algebras, d : g1 → g0 is a
Rota-Baxter Lie algebra homomorphism and (ρ, T1) : g0 → Der(g1) is an action of Rota-
Baxter Lie algebra (g0, T0) on Lie algebra g1 as a derivation of the Lie algebra, such
that

d(ρ(x)(u)) = [x, du]g0 , ρ(du)(v) = [u, v]g1 , ∀ x ∈ g0, u, v ∈ g1. (15)

It is obvious that ((g0, [·, ·]g0), (g1, [·, ·]g1), d, ρ) is a crossed module of Lie algebras.

4.4. Example. Let (g, [·, ·]g, T ) be a Rota-Baxter Lie algebra and h a Rota-Baxter Lie
ideal of (g, T ). Then (g, h, d = ı, ρ = ad) is a crossed module for Rota-Baxter Lie algebras,
where ı : h −→ g is the inclusion.

4.5. Example. For any Rota-Baxter Lie algebra homomorphism f : g −→ h, (g, ker f,
ı, ad) is a crossed module of Rota-Baxter Lie algebras.

4.6. Proposition. Let ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d, ρ) be a crossed module of Rota-
Baxter Lie algebras. Then there is a Rota-Baxter Lie algebra structure on g0 ⊕ g1 given
by

[x+ u, y + v] = [x, y]g0 + ρ(x)v − ρ(y)u+ [u, v]g1 , (16)

T (x+ u) = T0(x) + T1(u), ∀ x, y ∈ g0, u, v ∈ g1. (17)

Proof. Since ((g0, [·, ·]g0), (g1, [·, ·]g1), d, ρ) is a crossed module of Lie algebras, we have a
Lie algebra (g0 ⊕ g1, [·, ·]).

Furthermore, it is straightforward to check that T is a Rota-Baxter operator on the
Lie algebra g⊕ h if and only if T0 is a Rota-Baxter operator on the Lie algebra g0, T1 is
a Rota-Baxter operator on the Lie algebra g1 and the following equation holds:

T1(ρ(T0x)u+ ρ(x)T1u) = ρ(T0x)T1u, ∀ x ∈ g0, u ∈ g1,

which follows from that (ρ, T1) is a representation of the Rota-Baxter Lie algebra (g0, T0)
on g1.
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4.7. Theorem. There is a one-to-one corresponding between strict 2-term Rota-Baxter
L∞-algebras and crossed modules of Rota-Baxter Lie algebras.

Proof. Let (g0, g1, l1, l2, l3 = 0;R0, R1, R2 = 0) be a strict 2-term Rota-Baxter L∞-
algebra. Define the brackets [·, ·]g0 and [·, ·]g1 by

[x, y]g0 = l2(x, y), [u, v]g1 = l2(l1(u), v), ∀ x, y ∈ g0, u, v ∈ g1.

Define ρ : g0 → gl(g1) by

ρ(x)u = l2(x, u), ∀ x ∈ g0, u ∈ g1.

Then ((g0, [·, ·]g0), (g1, [·, ·]g1), d = l1, ρ) is a crossed module of Lie algebras.
Set T0 = R0 and T1 = R1. By condition (1) in Definition 3.9, T0 is a Rota-Baxter

operator on the Lie algebra g0. By condition (2) in Definition 3.9 and condition (a) in
Definition 3.7, for u, v ∈ g1, we have

T1([T1(u), v]g1 + [u, T1(v)]g1)− [T1(u), T1(v)]g1
= R1

(
l2(l1R1(u), v) + l2(l1(u), R1(v)

)
− l2(l1R1(u), R1(v)))

= R1

(
l2(R1(u), l1(v)) + l2(u,R0l1(v)

)
− l2(R1(u), R0l1(v)))

= 0,

which implies that T1 is a Rota-Baxter operator on the Lie algebra g1. By the fact that d
is a Lie algebra homomorphism from g1 to g0 and l1 ◦R1 = R0 ◦ l1, d is a Rota-Baxter Lie
algebra homomorphism from (g1, T1) to (g0, T0). By condition (2) in Definition 3.9, the
map (ρ, T1) : g0 → Der(g1) is an action of Rota-Baxter Lie algebra (g0, T0) on Lie algebra
g1. Therefore, ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d = l1, ρ) is a crossed module of Rota-Baxter
Lie algebras.

Conversely, let ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d, ρ) be a crossed module of Rota-Baxter
Lie algebras, and then we have a strict 2-term Rota-Baxter L∞-algebra

(g0, g1, l1 = d, l2, l3 = 0;R0 = T0, R1 = T1, R2 = 0),

where l2 : gi ∧ gj → gi+j, 0 ≤ i+ j ≤ 1 is given by

l2(x, y) = [x, y]g0 , l2(x, u) = ρ(x)u, ∀ x, y ∈ g0, u, v ∈ g1.

The conditions in crossed module of Rota-Baxter Lie algebras give various conditions for
a strict 2-term Rota-Baxter L∞-algebra. We omit the details.

Let (g, ∗) be a pre-Lie algebra and V a vector space. A representation of g on V
consists of a pair (l, r), where l : g −→ gl(V ) is a representation of the Lie algebra gc on
V and r : g −→ gl(V ) is a linear map satisfying

rxly − rylx = rx∗y − ryrx, ∀ x, y ∈ g. (18)
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Recall that a crossed module of pre-Lie algebras is a quadruple ((g0, ∗0), (g1, ∗1),
δ, (l, r)), where (g0, ∗0) and (g1, ∗1) are pre-Lie algebras, δ : g1 → g0 is a homomorphism
of pre-Lie algebras, and (l, r) is a representation of the pre-Lie algebra (g0, ∗0) on g1, such
that for x ∈ g0 and u, v ∈ g1 ,the following equalities are satisfied:

δ(lxu) = x ∗0 δu, δ(rxu) = (δu) ∗0 x, (19)

lδuv = rδvu = u ∗1 v. (20)

4.8. Proposition. Let ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d, ρ) be a crossed module of Rota-
Baxter Lie algebras. Define ∗0 : g0 ⊗ g0 → g0, ∗1 : g1 ⊗ g1 → g1 and l, r : g0 → gl(g1)
by

x ∗0 y = [T0x, y]g0 , u ∗1 v = [T1u, v]g1 ,

lxu = ρ(T0x)u, rxu = −ρ(x)T1(u), ∀ x, y ∈ g0, u, v ∈ g1.

Then ((g0, ∗0), (g1, ∗1), d, (l, r)) is a crossed module of pre-Lie algebras.

Proof. Since T0 is a Rota-Baxter operator on the Lie algebra (g0, [·, ·]g0), (g0, ∗0) is a
pre-Lie algebra. Similarly, (g1, ∗1) is also a pre-Lie algebra. By the fact that d is a
Rota-Baxter Lie algebra homomorphism, we have

d(u ∗1 v) = d[T1u, v]g1 = [d(T1u), dv]g1
= [T0(du), d]g1 = (du) ∗0 (dv),

which implies that d is a pre-Lie algebra homomorphism from g1 to g0.
By the fact that ρ is a representation of the Lie algebra g0 on g1 and T0 is a Rota-Baxter

operator on g0, we have

l[x,y]T0 = ρ(T0([x, y]T0)) = ρ([T0x, T0y]g0)

= [ρ(T0x), ρ(T0y)] = [lx, ly],

which implies that l is a representation of the sub-adjacent Lie algebra gc0 on g1. Further-
more, by Eq. (2) in the representation of the Rota-Baxter Lie algebra, we have

lx(ryu)− ry(lxu)− rx∗0yu+ ry(rxu)

= −ρ(T0x)ρ(y)(T1u) + ρ(y)T1(ρ(T0x)u) + ρ([T0x, y]g0)u+ ρ(y)T1ρ(x)(T1u)

= ρ(y)T1(ρ(T0x)u)− ρ(y)ρ(T0x)u+ ρ(y)T1ρ(x)(T1u) = 0.

Thus (l, r) is a representation of the pre-Lie algebra (g0, ∗0) on g1.
Furthermore, the condition d(ρ(x)(u)) = [x, du]g0 implies that

d(lxu) = x ∗0 du, d(rxu) = (du) ∗0 x

hold and the condition ρ(du)(v) = [u, v]g1 implies that

lduv = rdvu = u ∗1 v

hold. Therefore we obtain a crossed module of pre-Lie algebras ((g0, ∗0), (g1, ∗1), d, (l, r)).
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4.9. Proposition. ([25]) Let ((g0, ∗0), (g1, ∗1), d, (l, r)) be a crossed module of pre-Lie
algebras. Then ((g0, [·, ·]g0), (g1, [·, ·]g1), d, ρ = l − r) is a crossed module of Lie algebras,
where the brackets [·, ·]g0 and [·, ·]g1 are given by

[x, y]g0 = x ∗0 y − y ∗0 x, [u, v]g1 = u ∗1 v − v ∗1 u (21)

for x, y ∈ g0, u, v ∈ g1.

Let ((g1, [·, ·]g1), (g0, [·, ·]g0), dg, ρg) and ((h1, [·, ·]h1), (h0, [·, ·]h0), dh, ρh) be two crossed
modules of Lie algebras. Recall that a homomorphism from (g0, g1, dg, ρg) to (h0, h1,
dh, ρh) is a pair (ψ0, ψ1), such that ψ0 : g0 → h0 is a Lie algebra homomorphism and
ψ1 : g1 → h1 is a Lie algebra homomorphism satisfying

dh ◦ ψ1 = ψ0 ◦ dg, ψ1(ρg(x)v) = ρh(ψ0(x))ψ1(v), ∀ x ∈ g0, v ∈ g1. (22)

4.10. Proposition. Let ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d, ρ) be a crossed module of Rota-
Baxter Lie algebras. Then ((g0, [·, ·]T0), (g1, [·, ·]T1), d, ρT ) is a crossed module of Lie alge-
bras, where [·, ·]T0, [·, ·]T1 and ρT are given by

[x, y]T0 = [T0x, y]g0 − [T0y, x]g0 ,

[u, v]T1 = [T1u, v]g1 − [T1v, u]g1 ,

ρT (x)u = ρ(T0x)u+ ρ(x)T1(u), ∀ x, y ∈ g0, u, v ∈ g1.

Furthermore,

(T0, T1) : ((g0, [·, ·]T0), (g1, [·, ·]T1), d, ρT )→ ((g0, [·, ·]g0 , T0), (g1, [·, ·]g1 , T1), d, ρ)

is a homomorphism of crossed modules of Lie algebras.

Proof. The first conclusion follows from Proposition 4.8 and 4.9.
Since T0 is a Rota-Baxter operator on g0, T0 is a Lie algebra homomorphism from

(g0, [·, ·]T0) to (g0, [·, ·]g0). Similarly, T1 is a Lie algebra homomorphism from (g1, [·, ·]T1)
to (g1, [·, ·]g1). By the fact that d is a Rota-Baxter Lie algebra homomorphism, we have
d ◦ T1 = T0 ◦ d and furthermore, by the fact that ρ is a representation of the Rota-Baxter
Lie algebra g0 on g1, we have

T1(ρT (x)u)− ρ(T0(x))T1(u) = T1(ρ(T0x)u+ ρ(x)T1(u))− ρ(T0(x))T1(u) = 0.

Thus the second conclusion follows.
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Jiri Rosický, Masaryk University: rosicky@math.muni.cz
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