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THE CATEGORY OF L-ALGEBRAS

WOLFGANG RUMP

Abstract. The category LAlg of L-algebras is shown to be complete and cocomplete,
regular with a zero object and a projective generator, normal and subtractive, ideal
determined, but not Barr-exact. Originating from algebraic logic, L-algebras arise in the
theory of Garside groups, measure theory, functional analysis, and operator theory. It is
shown that the category LAlg is far from protomodular, but it has natural semidirect
products which have not been described in category-theoretic terms.

1. Introduction

As a non-additive generalization of abelian categories, Barr-exact [3] and protomodular
categories [8] are fundamental. Every topos is Barr-exact; the dual of a topos, and
many classical categories (groups, rings, Lie algebras, Heyting algebras, crossed modules,
etc.) are Barr-exact and protomodular [10]. Additive categories are Barr-exact if and
only if they are abelian, and pointed Barr-exact categories are protomodular if and only
if they satisfy the (Split) Short Five Lemma [11]. For a pointed Barr-exact category
with pushouts of split monomorphisms, protomodularity is equivalent to the existence of
semidirect products in the sense of [11].

In the additive context, exact categories [47, 15] in the sense of Quillen [63] typically
arise as full subcategories of abelian categories. For example, many categories of topo-
logical vector spaces, and all quasi-abelian categories [75], are exact in a natural way. A
non-additive analogue consists in the regular categories [3]. Every regular category admits
a canonical embedding into a Barr-exact category, its exact completion [51, 18].

In this paper, we analyse the category LAlg of L-algebras [67]. We show that LAlg is
complete and cocomplete, pointed (i. e. with zero object), and regular (Proposition 4.5),
with a natural kind of semidirect product (Section 7) which is not covered by any known
categorical construction [11, 56, 57, 58, 13]. L-algebras pX; �q are defined by a single
binary operation. There is an element 1 P X (necessarily unique) satisfying 1 � x � x and
x � x � x � 1 � 1, and

px � yq � px � zq � py � xq � py � zq

x � y � y � x � 1 ùñ x � y
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holds in X. Without the latter implication, X is called a unital cycloid [67]. Thus
unital cycloids form a variety Cyc�. Examples of L-algebras are Brouwerian semilattices
[49] (e. g., Heyting algebras, locales [54]), MV-algebras [20, 21, 35], measure algebras
[55, 32, 71], projection lattices of von Neumann algebras [46, 70], and lattice effect algebras
[29, 65, 81]. Many other structures are determined by L-algebras. For example, Artin’s
braid group [2] is associated with an L-algebra, and projective spaces with an elliptic
polarity [16, 39] are L-algebras where the element 1 has been removed [72].

Every L-algebra X is partially ordered (x ¤ y :ô x � y � 1), with a universal map

qX : X Ñ GpXq

into a group, the structure group [67] of X. For example, the structure group of a non-
degenerate involutive set-theoretic solution to the Yang-Baxter equation [30] comes from
an L-algebra [69]. In this and other cases, the structure group is a right ℓ-group [69] (a
group with a lattice order such that the right multiplications are lattice automorphisms),
and qX embeds X as an L-subalgebra into the negative cone of GpXq. (For any right
ℓ-group G, the negative cone G� :� tg P G | g ¤ 1u is an L-algebra.)

The class of right ℓ-groups is very wide. Spherical Artin-Tits groups [14, 27] and more
generally, all Garside groups [34, 24, 25, 26], are right ℓ-groups. They are structure groups
of a finite L-algebra. The structure group of an orthomodular lattice X is a right ℓ-group
which determines X up to isomorphism [70]. Two-sided ℓ-groups [6, 23] arise, e. g., as
spaces of continuous functions [52]. Mundici’s equivalence [61] and its generalization to
non-abelian ℓ-groups [28] admit a simple reformulation and proof in terms of the structure
group of a commutative L-algebra.

Now let us return to the category LAlg of L-algebras. We prove that the variety
Cyc� is the exact completion of LAlg (Theorem 6.1). Unlike general regular categories,
LAlg can be retrieved from its exact completion by a process similar to the formation
of the Lindenbaum algebra in logic. The proof of Theorem 6.1 rests upon the fact that
free unital cycloids are L-algebras (Theorem 5.3). Moreover, the partial order of a free
L-algebra is trivial in the sense that all non-maximal elements are pairwise incomparable
(Theorem 5.3). Such L-algebras have an underlying projective geometry [69, 72]. We show
that the regular epimorphisms of an L-algebra are normal and surjective (Proposition 4.3),
while monomorphisms in LAlg are injective maps (Corollary of Proposition 4.2). There
is a reflective full subcategory ssL of self-similar L-algebras. Its reflector S : LAlgÑ ssL
embeds any L-algebra X into its self-similar closure. In contrast to LAlg, the L-algebras
in ssL form a variety. Besides its L-algebra operation, a self-similar L-algebra has a
monoid structure, and its partial order is a ^-semilattice. In the above examples, the
self-similar closure is the negative cone of the structure group.

Despite the close relationship between L-algebras and groups, the categories LAlg,
Cyc� and ssL are not protomodular (Examples 7 and 8), and thus don’t have semidirect
products in the sense of [11]. On the other hand, it has been known from the beginning
that semidirect products of L-algebras exist in a very natural way [68]. In fact, there is
a natural concept of action [68] of an L-algebra U on an L-algebra I, which leads to a
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semidirect product I � U , and there is a corresponding short exact sequence

I � ¡ I � U
p
¡¡ U

with an ideal I of I � U , and a split epimorphism p. The failure of protomodularity
cannot be repaired by concepts like “S-protomodularity” [13]. For a semidirect product
I � U of L-algebras, the embedding U ãÑ I � U is a strong section (Definition 7.1), with
no relationship to “strong points” [13, 58]. Conversely, we prove that any strongly split
short exact sequence I ãÑ X ↠ U extends, up to isomorphism, to a unique short exact
sequence I ãÑ I � U ↠ U (Theorem 7.4).

We prove that the pointed regular category LAlg is normal [41] and subtractive [40]
(Proposition 8.1), which implies that the upper and lower 3 � 3 lemma [41] holds in
LAlg. Furthermore, we show that LAlg has a “good theory of ideals” [37], that is,
LAlg is ideal determined [45] in the sense that normal subobjects are mapped to normal
subobjects under a regular epimorphism f . As LAlg is not Barr-exact, this gives a
counter-example to a question in [45]. More importantly, we prove that f respects finite
intersections of ideals (Proposition 8.2), which implies that the lattice of ideals of an
L-algebra is distributive. Regular epimorphisms of L-algebras are shown to be effective
descent morphisms (Proposition 8.3).

If the operation of an L-algebra is interpreted as implication, its axioms provide a
logical formalism which specializes to three known types of algebraic logic [73], including
quantum logic where the structure group determines the L-algebra. We show that free
L-algebras arise from a single axiom and four inference rules which are closely related to
the (not so obvious) defining properties of an L-algebra ideal. The logic of L-algebras
is shown to be complete (Proposition 5.2). The ideals of an L-algebra are in one-to-
one correspondence with the ideals of its self-similar closure (Theorem 3.5). For self-
similar L-algebras, the everywhere defined multiplication allows a simple, more customary
characterization of ideals (Proposition 3.6).

2. L-algebras as partial monoids

In this section, we recall the concept of an L-algebra [67], a system pX;Ñq with a binary
operation, which can be interpreted as logical implication. Since applications of L-algebras
go far beyond algebraic logic, we use the more convenient notation with a dot instead of
an implicational arrow.

Thus, let pX; �q be a set with a binary operation. An element 1 P X is said to be a
logical unit [67] if the equations

1 � x � x and x � x � x � 1 � 1 (1)

hold for all x P X. Eqs. (1) collect basic properties of a constant 1 which characterizes
logical truth. Since x � x � 1, a logical unit must be unique. In logical terms, the relation

x ¤ y :ðñ x � y � 1 (2)
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interprets logical entailment. The following equation

px � yq � px � zq � py � xq � py � zq (3)

holds in fundamental systems of algebraic logic [73] like Heyting algebras [59, 54], MV-
algebras [20, 21, 35, 71], and orthomodular lattices [46, 70]. If X satisfies Eqs. (1) and
(3), it is said to be a unital cycloid1 [67]. Eq. (3) guarantees that the entailment relation
(2) is transitive: x ¤ y ¤ z ñ x � z � px � yq � px � zq � py � xq � py � zq � py � xq � 1 � 1.
Furthermore, Eqs. (1) and (3) yield

y ¤ z ùñ x � y ¤ x � z. (4)

A subset I of a unital cycloid X is said to be an ideal [67] if 1 P I and

x, x � y P I ùñ y P I (5)

x P I ùñ px � yq � y, y � x, y � px � yq P I (6)

holds in X. By [67], Proposition 1, every congruence � defines an ideal

I :� tx P X | x � 1u,

and each ideal I gives rise to a congruence

x � y :ðñ x � y, y � x P I. (7)

So the conguence classes form a unital cycloid X{I. The ideal t1u leads to a congruence
(7) which signifies logical equivalence. It is natural to take it as equality:

x � y � y � x � 1 ùñ x � y, (8)

so that entailment (2) becomes a partial order of X.

2.1. Definition. A set pX; �q with a binary operation is said to be an L-algebra [67] if
it satisfies Eqs. (1) and (3) together with the implication (8).

Now we show that every L-algebra X has a partial multiplication. For each x P X
there is a map σx : Óx Ñ X from the downset Óx :� ty P X | y ¤ xu to X, given by
σxpyq :� x � y. By Eq. (3), we have

σxpyq � σxpzq � px � yq � px � zq � py � xq � py � zq � y � z

for y, z ¤ x. Thus (2) implies that each σx is an order isomorphism from Óx to a subposet
of X. In particular, the σx are injective. They give rise to a partial multiplication in X:

2.2. Definition. Let X be an L-algebra, and x, y P X. We say that the product xy is
defined in X if x � σypzq for some z ¤ y. If xy is defined, we set xy :� z.

Note that the element xy is unique since σy is injective.

1The terminology comes from cycle sets [66] which characterize a class of set-theoretic solutions to the
Yang-Baxter equation.
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2.3. Proposition. Let X be an L-algebra, and x, y, z P X. If xy exists, the following
equations hold in X:

xy � z � x � py � zq

z � xy �
�
py � zq � x

�
pz � yq.

Proof. By Definition 2.2, xy ¤ y and y � xy � x. Hence Eq. (3) implies that xy � z �
1 � pxy � zq � pxy � yq � pxy � zq � py � xyq � py � zq � x � py � zq, which proves the first equation.

Furthermore, pz � yq � pz � xyq � py � zq � py � xyq � py � zq � x. Since xy � y � 1, (4) implies
that z � xy ¤ z � y. So the second equation follows by Definition 2.2. l

As a consequence, we have the following adjointness property:

Corollary 1. If xy exists, then xy ¤ z ô x ¤ y � z.

Moreover, the partial multiplication is associative:

Corollary 2. Let X be an L-algebra, and x, y, z P X. Then pxyqz � xpyzq holds if both
sides of the equation exist. Furthermore, 1x � x1 � x holds in X.

Proof. We have pxyqz �xpyzq � xy �
�
z �xpyzq

�
� x �

�
y � pz �xpyzqq

�
� x �

�
yz �xpyzq

�
�

x � x � 1 and xpyzq � pxyqz � x �
�
yz � pxyqz

�
� x �

�
y � pz � pxyqzq

�
� x � py � xyq � x � x � 1.

Hence pxyqz � xpyzq follows by (8). Furthermore, x ¤ 1 and 1 � x � x gives x1 � x by
Definition 2.2. Similarly, x ¤ x and x � x � 1 yields 1x � x. l

Let Cyc� be the category of unital cycloids, with maps f : X Ñ Y satisfying fpx �yq �
fpxq � fpyq as morphisms. Since x � x � 1, a morphism f satisfies fp1q � 1. By LAlg we
denote the full subcategory of L-algebras. A subset X of an L-algebra Y is said to be
an L-subalgebra if it is closed under the operation of Y , that is, X carries the L-algebra
structure for which X ãÑ Y is a morphism. An L-subalgebra X is said to be invariant if
y � x P X for all x P X and y P Y . By (6), every ideal is an invariant L-subalgebra. For a
morphism f : X Ñ Y , the image Im f � fpXq is an L-subalgebra of Y .

2.4. Proposition. Every L-algebra morphism f : X Ñ Y is monotone. If x, y P X, and
xy exists in X, then fpxqfpyq exists in Y , and fpxyq � fpxqfpyq.

Proof. Assume that x, y P X. If x ¤ y, then fpxq � fpyq � fpx � yq � fp1q � 1, which
shows that f is monotone. Now assume that xy exists. Then y � xy � x and xy ¤ y.
Hence fpyq � fpxyq � fpy � xyq � fpxq and fpxyq ¤ fpyq. By Definition 2.2, this yields
fpxyq � fpxqfpyq. l

3. Self-similarity

For an L-algebra X, the maps σx : Óx Ñ X are injective. If they are bijective, the
L-algebra is order-isomorphic to each of its downsets, which explains the terminology of
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the following

3.1. Definition. An L-algebra X is said to be self-similar [67] if the maps σx : ÓxÑ X
are bijective for each x P X.

By Definition 2.2, an L-algebra is self-similar if and only if its partial multiplication
is everywhere defined. By Proposition 2.3, a self-similar L-algebra satisfies the equations

x � yx � y (9)

xy � z � x � py � zq (10)

x � yz �
�
pz � xq � y

�
px � zq. (11)

Hence Eq. (10) implies that px � yqx ¤ y, and Eq. (11) yields

y � px � yqx �
�
px � yq � px � yq

�
py � xq � y � x.

By Definition 2.2, this gives
px � yqx � py � xqy. (12)

3.2. Proposition. A self-similar L-algebra is a monoid with an operation � which sat-
isfies Eqs. p9q, p10q, and p12q. Conversely, such a monoid is a self-similar L-algebra.

Proof. It remains to prove the converse. Thus assume that X is a monoid with an
operation � which satisfies Eqs. (9), (10), and (12). Then Eq. (10) and (12) give px � yq �
px � zq � px � yqx � z � py � xqy � z � py � xq � py � zq. Eq. (12) implies (8). Furthermore,
Eq. (9) yields 1 � x � 1 � x1 � x and x � x � x � 1x � 1. By Eqs. (9) and (12), we obtain
x � 1 � x � px � 1qx � x � p1 �xq1 � x �x � 1. Thus X is an L-algebra with a globally defined
multiplication. Whence X is self-similar. l

By [68], Proposition 1, the full subcategory ssL of self-similar L-algebras in LAlg is
reflective, that is, the inclusion functor I : ssL ãÑ LAlg has a left adjoint S : LAlg Ñ ssL.
The components of the unit η : 1 Ñ IS are inclusions ηX : X ãÑ SpXq, and SpXq is called
the self-similar closure of X. By [67], Theorem 3, we have the following characterization
of SpXq:

3.3. Theorem. Let X be an L-subalgebra of a self-similar L-algebra A. Then A is
isomorphic to SpXq if and only if the monoid A is generated by X.

Remark. Note that by Corollary 1 of Proposition 2.3, the L-algebra structure of a self-
similar L-algebra X is determined by the associated monoid structure: y �z is the greatest
x P X with xy ¤ z. By contrast, an arbitrary L-algebra need not be determined by its
partial multiplication:

Example 1. There are three isomorphism types of L-algebras X � t1, x, yu with incom-
parable x, y. However, all existing products are trivial: If xy exists, then y � xy � x and
xy ¤ y, which is impossible.
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By [67], Proposition 4, every self-similar L-algebra A is a ^-semilattice with a ^ b �
pa � bqa which satisfies the equations

a � pb^ cq � pa � bq ^ pa � cq (13)

pa^ bq � c � pa � bq � pa � cq. (14)

3.4. Proposition. Let X be an L-algebra. The following are equivalent:

(a) For y, z P X, the element y � z is the greatest x P X so that xy exists and xy ¤ z.

(b) X is a ^-semilattice such that each L-algebra morphism f : X Ñ Y is ^-preserving.

Proof. (a) ñ (b): By assumption, the product d :� py � zqy exists, and d ¤ z. Thus
y � d � y � z and d ¤ y. We show that d � y ^ z. If x ¤ y, z, then the second equation in
Proposition 2.3 gives x � d �

�
py �xq � py � zq

�
px � yq � px � yq � px � zq � 1. Thus x ¤ d, which

proves d � y ^ z. Now let f : X Ñ Y be a morphism in LAlg. Then Proposition 2.4
gives fpdq �

�
fpyq � fpzq

�
fpyq, and fpdq ¤ fpzq. So the above argument shows that

fpdq � fpyq ^ fpzq.

(b) ñ (a): Let y, z P X be given. Since SpXq is a ^-semilattice, (b) implies that X
is a sub-semilattice of SpXq. Thus Eq. (13) gives y � py ^ zq � py � yq ^ py � zq � y � z. By
Definition 2.2, we obtain y^ z � py � zqy. So Corollary 1 of Proposition 2.3 completes the
proof. l

Example 2. Every Boolean algebra X is an L-algebra with x � y :� x1 _ y, where x1

denotes the complement of x. Moreover, X has a smallest element 0, and x1 � x � 0.

Example 3. The free monoid xxy � txn | n P Nu is a self-similar L-algebra with

xn � xm :�

#
1 for n ¥ m

xm�n for n ¤ m.

By Theorem 3.3, the Boolean L-subalgebra tx, 1u has xxy as its self-similar closure.

Eq. (9)-(10) imply that any self-similar L-algebra A satisfies ac � bc � a � pc � bcq � a � b.
Hence

ac ¤ bc ðñ a ¤ b. (15)

In particular, A is right cancellative. Eq. (12) implies the left Ore condition:

@ a, b D c, d : ca � db.

Hence, for each L-algebra X, the self-similar closure has a group of left fractions GpXq,
with a natural map

qX : X ãÑ SpXq Ñ GpXq. (16)

The group GpXq is said to be the structure group of X (see [67] for a more detailed
description). There are important cases where qX is injective and the partial order of
X extends to a lattice order of GpXq such that (15) holds in GpXq. Then the right
multiplications in GpXq are order automorphisms, which implies that

pa_ bqc � ac_ bc, pa^ bqc � ac^ bc.
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Such a group with a right invariant lattice order is said to be a right ℓ-group [69].

Now we turn our attention to the ideals in self-similar L-algebras. The following
theorem was proved in [68], Corollary 2 of Theorem 1.

3.5. Theorem. Let X be an L-algebra. The maps I ÞÑ SpIq and J ÞÑ J XX establish a
one-to-one correspondence between the ideals I of X and the ideals J of SpXq.

As a consequence, the functor S : LAlgÑ ssL respects short exact sequences:

Corollary. Every ideal I of an L-algebra X gives rise to a commutative diagram

I � ¡ X
p
¡¡ X{I

SpIq
O

X

� ¡ SpXq
O

X

¡¡ SpX{Iq
O

X

with SpX{Iq � SpXq{SpIq.

Proof. Theorem 3.5 shows that the left-hand square is a pullback, which yields the dia-
gram with SpX{Iq replaced by SpXq{SpIq. The induced morphism f : X{I Ñ SpXq{SpIq
is injective. Indeed, if ppxq and ppyq are mapped to the same element of SpXq{SpIq, then
x � y and y � x are in SpIq, hence in I, which yields ppxq � ppyq. By Proposition 3.2,
SpXq{SpIq is self-similar. Thus Theorem 3.3 shows that SpX{Iq � SpXq{SpIq. l

3.6. Proposition. A subset I of a self-similar L-algebra A is an ideal if and only if
1 P I and

x, y P I ðñ xy P I (17)

x P I, a P A ùñ xa � ax, ax � xa P I. (18)

Proof. Assume that I is an ideal of A. If x, y P I, then Eq. (9) gives y � xy � x P I.
Hence (5) shows that xy P I. Conversely, assume that xy P I. Then (9) and (6) imply
that x � y �xy P I. Furthermore, Eq. (10) gives xy � y � x � py � yq � 1 P I. Thus (5) yields
y P I. This proves (17).

Now assume that x P I and a P A. Then (11) and (6) give a �ax �
�
px �aq �a

�
pa �xq P I.

Hence Eq. (10) yields xa � ax � x � pa � axq P I. Furthermore, ax � xa � a � px � xaq �
a �
�
pa � xq � x

�
px � aq �

�
ppx � aq � aq � ppa � xq � xq

��
a � px � aq

�
P I, which proves (18).

Conversely, let 1 P I and (17)-(18) be satisfied. Assume that x, x �y P I. Then Eq. (12)
implies that py � xqy � px � yqx P I. Hence y P I, which yields (5). Now assume that x P I
and a P A. Then x � pa � axq � xa � ax P I. Hence (5) yields a � ax P I, and thus, Eq. (11)
gives

�
px � aq � a

�
pa � xq � a � ax P I. So we obtain px � aq � a P I and a � x P I. Finally,

the above calculation yields
�
ppx � aq � aq � ppa � xq � xq

��
a � px � aq

�
� ax � xa P I. Whence

a � px � aq P I, which completes the proof of (6). Thus I is an ideal. l
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4. The category of L-algebras

In the category of L-algebras, kernels and cokernels behave quite similar to the correspond-
ing notions in more well-known categories. For a morphism f : X Ñ Y of L-algebras, a
kernel in the categorical sense is given by the subobject Ker f :� f�1p1q of X, which is
an ideal of X. Conversely, every ideal I of an L-algebra X gives rise to a congruence (7),
hence to a canonical morphism p : X ↠ X{I onto an L-algebra X{I (see [67], Section 1).

4.1. Proposition. Every L-algebra morphism f : X Ñ Y admits a factorization f : X ↠
Im f ãÑ Y with Im f � X{Ker f .

Proof. For x, y P X, fpxq � fpyq ô fpxq�fpyq � fpyq�fpxq � 1 ô fpx�yq � fpy �xq �
1. Hence fpxq � fpyq if and only if x and y are congruent modulo Ker f . l

Corollary. Let X be an L-algebra. There is an one-to-one correspondence between
ideals of X and surjective morphisms X ↠ Y in LAlg, up to an isomorphism of Y .

Proof. For a surjective morphism p : X ↠ Y , we have Y � X{Ker f . Conversely,
every ideal I of X gives rise to a surjective morphism p : X ↠ X{I. Then x P Ker p ô
x � 1, 1 � x P I ô x P I. l

The category LAlg of L-algebras has a zero object 1 � t1u. Accordingly, a morphism
which factors through 1 is called a zero morphism. A sequence

X
u
↣ Y

v
↠ Z (19)

in LAlg is said to be short exact [68] if v is surjective and u is a kernel of v in the sense
that every morphism f for which vf is a zero morphism factors uniquely through u. In
other words, u coincides with Ker v ãÑ Y , up to an isomorphism X ÝÑ� Ker v. If v is a
split epimorphism, the sequence is said to be split short exact.

4.2. Proposition. For a morphism f : X Ñ Y of L-algebras, the following are equiva-
lent:

(a) f is a monomorphism.

(b) Ker f � 1.

(c) f is injective.

Proof. (a) ñ (b) holds in any pointed category with kernels, and (c) ñ (a) is trivial.

(b) ñ (c): Assume that fpxq � fpyq. Then fpx � yq � fpxq � fpyq � 1 � fpyq � fpxq �
fpy � xq, which yields x � y � y � x � 1. Hence (8) yields x � y. l

Example 4. Let X be a partially ordered set with a greatest element 1. Then

x � y :�

#
1 for x ¤ y

y for x ¦ y
(20)
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makes X into an L-algebra (see [67], Example 1).

Example 5. Epimorphisms of L-algebras need not be surjective. Let X � t1, x, yu be the
partially ordered set with y   x   1 and the L-algebra structure (20). In the self-similar
closure SpXq, we have xy   y. (Indeed, Eq. (10) gives xy � y � x � py � yq � 1, which yields
xy ¤ y. By Eq. (9), xy � y would imply that x � y � xy � y � y � 1.) Since y ¤ x and
x � y � y, Definition 2.2 gives y � yx. By Eq. (9), this yields x � xy � x � xyx � xy. Thus
Y :� t1, x, y, xyu is an L-subalgebra of SpXq, and Proposition 2.4 implies that X ãÑ Y
is an epimorphism in LAlg.

The example also shows that L-algebras do not form a variety: The partition Y �
t1, xu \ tyu \ txyu gives a congruence of Y . So there is a surjection p : Y ↠ Z onto
the cycloid Z � t1, t, zu with 1 ¡ t ¡ z with ppxq � 1, ppyq � t, and ppxyq � z. Since
t � z � z � t � 1, the cycloid Z is not an L-algebra.

Recall that coequalizers of parallel pairs of morphisms are also called regular epimor-
phisms [48, 43]. In the category LAlg, they coincide with the surjective morphisms:

4.3. Proposition. For a morphism f : X Ñ Y of L-algebras, the following are equiva-
lent:

(a) f is a regular epimorphism.

(b) f is a cokernel of a morphism.

(c) f is surjective.

Proof. (a) ñ (b): By assumption, f is the coequalizer of a morphisms g, h : Z Ñ X.
As the set of ideals of X is closed with respect to intersection, there is a smallest ideal
I of X with gpzq � hpzq P I and hpzq � gpzq P I for all z P Z. Hence X ↠ X{I is the
coequalizer of g and h, and thus f is the cokernel of I ãÑ X. The implications (b) ñ (c)
ñ (a) follow by Proposition 4.1. l

The Boolean algebra B :� t0, 1u with 0   1 is a generator of LAlg. Indeed, each
element x of an L-algebra X admits a unique morphism ex : B Ñ X with exp0q � x.
Note that B is projective with respect to regular epimorphisms (=surjections by Proposi-
tion 4.3): For a regular epimorphism p : X ↠ Y , every morphism BÑ Y factors through
p.

4.4. Proposition. There is a free L-algebra LxSy over any set S, and the canonical map
eS : S Ñ LxSy is injective. Moreover, LxSy is isomorphic to the copower BpSq :�

²
sPS B.

Proof. Since L-algebras form a quasivariety [22], there is a free L-algebras LxSy by
[22], Proposition 4.5. To show that the map eS : S Ñ LxSy is injective, consider the

partially ordered set rS :� S \ t1u (disjoint union) with an antichain S and x   1 for all

x P S. We endow rS with the L-algebra structure (20). So the injection i : S ãÑ rS extends

to a morphism f : LxSy Ñ rS with feS � i. Thus eS is injective. Since LxSy � B for a
singleton S � tsu, the universal property yields LxSy � BpSq for arbitrary S. l
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A category is said to be regular [3] if it has finite limits and coequalizers of kernel
pairs, and regular epimorphisms are stable under pullback, that is, in a pullback diagram

X
p
¡ Y

Z
O
f

q
¡¡ T

O
g

where q is a regular epimorphism, p is a regular epimorphism. Every morphism f of a
regular category admits a factorization f � ip into a regular epimorphism p followed by
a monomorphism i.

4.5. Proposition. The category of L-algebras is complete and cocomplete, and regular.

Proof. This follows since LAlg is a quasi-variety. By [1], Theorems 3.22 and 3.24, a
quasi-variety is complete and cocomplete. It is regular by [62], Corollary 4.6. l

5. The logic of L-algebras

An L-algebra X is said to be discrete [69] if x   y implies that y � 1. In other words, the
elements of S1pXq :� X ∖ t1u are pairwise incomparable. By [69], Proposition 18, S1pXq
consists of the atoms of a geometric lattice: For distinct x, y P S1pXq, the connecting line
is tz P S1pXq | x � y ¤ x � zu. In this section, we show that free L-algebras are discrete, a
fact that is closely related to the logic of L-algebras.

Let S be a set of variables. The logic L pSq of L-algebras pX;Ñq generated by S
consists of a single axiom

$
�
pxÑ yq Ñ pxÑ zq

�
Ñ
�
py Ñ xq Ñ py Ñ zq

�
(21)

and the following inference rules, reflecting the properties of ideals:

x, xÑ y $ y (22)

x $ y Ñ x (23)

x $ pxÑ yq Ñ y (24)

x $ y Ñ pxÑ yq. (25)

Thus L pSq can be regarded as a Hilbert style deductive system, but we use it in a similar
fashion like a sequent calculus. For brevity, we use expressions like A,B $ C,D $ E,
which means that using the inference rules, C and D can be derived from A and B, and
E follows by C and D.

Let pT pSq;Ñq be the free magma over S, that is, the set of all implicational terms in
S. To apply the inference rules, the variables can be substituted with any terms in T pSq.
The theory T pSq of L-algebras consists of the axiom (21), with arbitrary terms in T pSq
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inserted for the variables, together with its consequences by the inference rules. Thus
T pSq � T pSq. The axiom (21) can be interpreted as an inference rule with no terms on
the left-hand side. The relation

x � y :ðñ $ xÑ y and $ y Ñ x (26)

is a congruence on T pSq:

5.1. Proposition. The relation p26q is an equivalence relation, and x � y implies that
z Ñ x � z Ñ y and xÑ z � y Ñ z.

Proof. Note first that modus ponens implies the deduction theorem: $ xÑ y implies
x $ y. Indeed, $ x Ñ y gives x $ x, x Ñ y $ y. Assume that x � y. By (23) and (21),
we have x Ñ y $ px Ñ zq Ñ px Ñ yq $ pz Ñ xq Ñ pz Ñ yq. Thus z Ñ x � z Ñ y
follows by symmetry.

Now assume that x � y and y � z. By (23) and (21), we have y Ñ z $ py Ñ xq Ñ
py Ñ zq $ px Ñ yq Ñ px Ñ zq. So (22) yields x Ñ y, y Ñ z $ x Ñ z. By symmetry, it
follows that � is transitive. The symmetry of the relation (26) is trivial. Now (24) and
(25) give 1 $ p1 Ñ yq Ñ y and 1 $ y Ñ p1 Ñ yq for any term 1 P T . Hence 1 Ñ y � y.
So (25) yields 1 $ y Ñ p1 Ñ yq � y Ñ y, which proves the reflexivity.

By (24) and (25), we have x Ñ y $
�
px Ñ yq Ñ px Ñ zq

�
Ñ px Ñ zq and

x Ñ y $ px Ñ zq Ñ
�
px Ñ yq Ñ px Ñ zq

�
. Assume that x � y. Then (21) implies

that x Ñ z � px Ñ yq Ñ px Ñ zq � py Ñ xq Ñ py Ñ zq. By (25), we obtain
y Ñ x $ py Ñ zq Ñ

�
py Ñ xq Ñ py Ñ zq

�
� py Ñ zq Ñ px Ñ zq. Thus x Ñ z � y Ñ z

follows by symmetry. l

Recall that the Lindenbaum algebra [77, 7] of a logical theory is obtained by factor-
ing out the equivalence relation of provable equivalent sentences. For L-algebras, this
equivalence relation is the congruence (26). By Definition 2.1, we obtain:

Corollary. The Lindenbaum algebra LpSq of L pSq is an L-algebra.

Proof. We have already shown that 1 Ñ x � x holds for 1 P T pSq. Furthermore, (23)
implies that 1 $ xÑ 1. Hence xÑ 1 � 1. Furthermore, x � x gives xÑ x � 1. Thus 1
represents a logical unit in the Lindenbaum algebra. By (21), LpSq is an L-algebra. l

Let F pSq be the free unital cycloid over S. Then F pSq{t1u is isomorphic to the free
L-algebra LxSy over S. The following result shows that the logic of L-algebras is complete.

5.2. Proposition. Let p : T pSq ↠ F pSq be the natural extension of S ãÑ F pSq to the
free magma T pSq over S. Then p�1p1q � T pSq.

Proof. By (21)-(25), a simple induction shows that ppT pSqq � 1. Conversely, assume
that ppaq � 1 for some a P T pSq. To show that a P T pSq, we have to verify that the
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equations

1 Ñ a � a, aÑ a � aÑ 1 � 1 (27)

paÑ bq Ñ paÑ cq � pbÑ aq Ñ pbÑ cq (28)

correspond to equivalences (26) in T pSq. By (22), this will imply that any a P T pSq
remains in T pSq if a subterm of a is changed by one of the equations (27) and (28). Now
(21) shows that px Ñ yq Ñ px Ñ zq � py Ñ xq Ñ py Ñ zq. By Proposition 5.1, x � x
holds for all x P T pSq. Hence x Ñ x � 1. Furthermore, (24) and (25) give 1 Ñ x � x,
and (23) yields xÑ 1 � 1. l

5.3. Theorem. The free unital cycloid F pSq over a set S is a discrete L-algebra.

Proof. Since S Ñ LxSy is a composed map S Ñ F pSq↠ LxSy, Proposition 4.4 implies
that the canonical map S Ñ F pSq is injective. As an intermediate step toward F pSq, let
F0pSq be the free magma generated by S \ t1u modulo the equations (27), that is, the
free system pX;Ñq with a logical unit 1. Note first that by successive application of the
rules 1 Ñ x $ x and xÑ x $ 1, and xÑ 1 $ 1, any term a P F0pSq can be transformed
into a term νpaq of shortest length. To see this, it is convenient to represent the terms of
F0pSq by labelled binary trees, e. g.,

x y

y Ñ pxÑ yq

y xÑ y
??

??
?

��
��

??
??

??

��
��
��

Thus any a P F0pSq corresponds to a binary tree where the leaves are labelled with
elements of S \t1u. Using Eqs. (27), the labels 1 of any a P F0pSq∖ t1u can be removed,
and it is easily seen that this process leads to a unique normal form νpaq of a which does
not contain 1 or bÑ b as a subterm. We call a P F0pSq reduced if νpaq � a.

Next we show that the left-hand side of Eq. (28), with reduced a, b, c P F0pSq, is
reduced if and only if the right-hand side is reduced. Assume that pa Ñ bq Ñ pa Ñ cq is
reduced. Then 1 R ta, b, cu and b � a, and b � c since pa Ñ bq � pa Ñ cq. Thus b Ñ a
and b Ñ c are reduced. In particular, b Ñ c � 1. If b Ñ a � b Ñ c, then a � c, which
yields aÑ c � 1, a contradiction. So the right-hand side of Eq. (28) is reduced.

Let q : F0pSq ↠ F pSq be the natural morphism which extends the embedding S ãÑ
F pSq to F0pSq. We define a displacement of a reduced term a P F0pSq to be a modification
of a that results from a finite sequence of replacements of subterms px Ñ yq Ñ px Ñ zq
by py Ñ xq Ñ py Ñ zq. For example, the term�

pxÑ yq Ñ pxÑ zq
�
Ñ
�
py Ñ xq Ñ py Ñ tq

�
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admits the following displacements (for reasons of space, we represent arrows by dots):

ppx.yq.px.zqq.ppy.xq.py.tqq

ppx.yq.px.zqq.ppx.yq.px.tqq ppy.xq.py.zqq.ppy.xq.py.tqq

ppx.zq.px.yqq.ppx.zq.px.tqq ppy.xq.py.zqq.ppx.yq.px.tqq ppy.zq.py.xqq.ppy.zq.py.tqq

ppx.zq.px.yqq.ppz.xq.pz.tqq ppz.xq.pz.yqq.ppx.zq.px.tqq ppz.yq.pz.xqq.ppy.zq.py.tqq ppy.zq.py.xqq.ppz.yq.pz.tqq

ppz.xq.pz.yqq.ppz.xq.pz.tqq ppz.yq.pz.xqq.ppz.yq.pz.tqq

nnn
nnn

nnn
nn

PPP
PPP

PPP
PP

lll
lll

lll
lll

PPP
PPP

PPP
PP

nnn
nnn

nnn
nn

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

lll
lll

lll
lll

RRR
RRR

RRR
RRR

lll
lll

lll
lll

We call a term a P F0pSq fully reduced if all displacements of a are reduced. So there
is a fully reduced term in the inverse image q�1paq of any a P F pSq.

For 1 P ta, b, cu, Eq. (28) follows by Eqs. (27). If a � b, both sides of Eq. (28) are
equal, and for a � c, both sides are 1, which again follows by Eqs. (27). If a Ñ b and
a Ñ c are reduced, a Ñ b � a Ñ c implies that b � c. Thus if for given a, b, c P F0pSq,
Eq. (28) does not follow by Eqs. (27), both sides of the equation must be reduced.

Now we show that a Ñ b � 1 in F pSq implies that a � b or b � 1. Suppose that
a Ñ b � 1 with a � b and b � 1. Then a � 1, and there are fully reduced a0, b0 P F0pSq
with qpa0q � a and qpb0q � b. Since a Ñ b � 1, there is a sequence of displacements
via Eq. (28) transforming a0 Ñ b0 into 1. As a � b, the terms a0 and b0 can be chosen
as a0 � x Ñ y and b0 � x Ñ z, such that the first step of this transformation changes
a0 Ñ b0 into py Ñ xq Ñ py Ñ zq. By induction, qpy Ñ xq � qpy Ñ zq or qpy Ñ zq � 1.
But qpy Ñ zq � 1 would give qpyq � qpzq or qpzq � 1, which is impossible. Now the
above diagram shows that qpy Ñ xq � qpy Ñ zq is not possible unless qpxq � qpzq. Thus
b � qpx Ñ zq � 1, a contradiction. So the implication a Ñ b � 1 ùñ a � b or b � 1
holds in F pSq, which proves that F pSq is a discrete L-algebra. l

Corollary. The free L-algebra F xSy over a set S is discrete.

6. The exact completion of LAlg

Regular categories C admit a calculus of relations [36, 51, 76, 17]. A relation in C is
a monomorphism R Ñ A � B in C . It can be viewed as a morphism R : A Ñ B in
the category RelpC q of relations in C . Its identity morphisms are

�
1A
1A

�
: A Ñ A � A for

each object A of C . A morphism in C is a relation given by its graph. Thus C is a
subcategory of RelpC q. By definition, a relation R : A Ñ B is given by a pair of jointly

monic morphisms A
p
Ð R

q
Ñ B. If p and q are interchanged, R : A Ñ B turns into its

opposite relation R�. In RelpC q the relation A
p
Ð R

q
Ñ B is equal to qp�. The morphism

sets HompA,Bq of RelpC q are partially ordered such that composition is functorial. In
other words, RelpC q is a locally posetal bicategory [4]. A relation R : A Ñ B in RelpC q
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belongs to C if and only if 1A ¤ R�R and RR� ¤ 1B. A morphism f : A Ñ B in C
is monic if and only if f �f � 1A, and a regular epimorphism if and only if ff � � 1B.
For calculations in RelpC q it is useful to note that the equation ab� � c�d holds for any
pullback

A
a
¡ B

C
O
b

d
¡ D
O
c

in C . For example, this shows that the difference kernel of a morphism f : A Ñ B in
C is the relation E :� f �f , which is an equivalence relation in RelpC q, a self-adjoint
idempotent E ¥ 1A. Let E pC q be the set of these idempotents. If E P E pC q splits, that
is, E � QP with PQ � 1 for some P,Q P RelpC q, then Q � P � by [33], 2.162. Hence
P P C , and E is its difference kernel. Conversely, the difference kernel f �f of a morphism
f P C is a splitting idempotent. Indeed, f � ip with a monomorphism i and a regular
epimorphism p. Hence pp� � 1 and i�i � 1, which yields f �f � p�i�ip � p�p. Thus
E P E pC q splits if and only if E is a kernel pair. For C � LAlg it is easily checked that
an equivalence relation R ãÑ X �X is the same as a congruence relation of X, that is, a
set-theoretic equivalence relation � such that x � x1 and y � y1 implies that x � y � x1 � y1.

Example 6. A category C is said to be Barr-exact [3] if it is regular and every equivalence
relation is a kernel pair, that is, every idempotent E P E pC q splits. Since unital cycloids
form a variety, Cyc� is Barr-exact by Lawvere’s theorem [50, 62]. Moreover, Cyc� is
monadic over the category Set of sets by [80], Proposition 3.2. The L-algebra Y �
t1, x, y, xyu in Example 5 has a congruence relation � given by the partition Y � t1, xu\
tyu\txyu, but the unital cycloid Y { � is not an L-algebra. So the idempotent in E pLAlgq
associated with � does not split. Hence LAlg is not Barr-exact.

Any regular category C embeds into a Barr-exact category Cex, the exact completion
[51, 33, 19, 18] of C , which can be obtained as follows. By splitting the idempotents in
E pC q, we get a full subcategory K of of RelpC q with object class E pC q and morphisms
R : E Ñ F given by R P RelpC q with R � RE � FR. Then Cex is the subcategory of
maps in K , that is, morphisms R : E Ñ F with E ¤ R�R and RR� ¤ F .

6.1. Theorem. The exact completion of LAlg is Cyc�.

Proof. Let E � X � X be an equivalence relation on an L-algebra X. Thus E
determines a congruence relation on X, and the congruence classes form a unital cycloid
X. So we have an exact diagram

E ¡
¡ X

p
¡¡ X.

Now let F be an equivalence relation on an L-algebra Y with exact sequence

F ¡
¡ Y

q
¡¡ Y .

Then a morphism R : E Ñ F in LAlgex gives rise to a relation f : X Ñ Y with f :�
qRp�. Hence 1 � pp� � pEp� ¤ pR�Rp� ¤ pR�q�qRp� � f �f and ff � � qRp�pR�q� �
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qRER�q� � qRR�q� ¤ qFq� � qq� ¤ 1. Thus f is a morphism of unital cycloids.
Furthermore, R is determined by f since R � FRE � q�qRp�p � q�fp.

Conversely, let f : X Ñ Y be a morphism in Cyc�. Define R :� q�fp. Then RE �
R and FR � F �q�fp � pqF q�fp � q�fp � R. Furthermore, E � p�p ¤ p�f �fp �
p�f �qq�fp � R�R, and RR� � q�fpp�f �q � q�ff �q ¤ q�q � F . Thus R is a morphism
R : E Ñ F in LAlgex. Furthermore, f � qq�fpp� � qRp�. So we have a bijection R ÞÑ f
between morphisms R : E Ñ F in LAlgex and morphisms f : X Ñ Y in Cyc�. Hence
LAlgex is a full subcategory of Cyc�. Each unital cycloid Y admits a regular epimorphism
p : X ↠ Y from a free unital cycloid X onto Y . By Theorem 5.3, X is an L-algebra. The
difference kernel E Ñ X of p is an equivalence relation E on X, and p is its coequalizer.
Whence LAlgex is equivalent to Cyc�.

Remark. Note that the regular category LAlg can be retrieved from its exact completion
Cyc�: For a unital cycloid X, the ideal t1u determines a congruence (7) on X, which leads
to an L-algebra X � X{ �. If the operation of X is interpreted as logical implication, X
is the Lindenbaum algebra [7] of X.

7. Semidirect products beyond protomodularity

Based on the notion of protomodularity [8], a strengthening of the concept of Barr-exact
category was introduced by Janelidze, Márki, and Tholen [43]. They call a category semi-
abelian if it is Barr-exact and protomodular, with finite coproducts and a zero object. For
an object B of a category C with pullbacks, the objects of the category PtC pBq of points
are triples pE, p, sq with p : E Ñ B and s : B Ñ E satisfying ps � 1B. A morphism
pE, p, sq Ñ pF, q, tq in PtC pBq is given by a morphisms f : E Ñ F in C with fs � t and
qf � p. Then C is said to be protomodular if for each morphism v : C Ñ B in C , the
pullback functor v� : PtC pBq Ñ PtC pCq reflects isomorphisms. If C has pullbacks and a
zero object, protomodularity is equivalent to the Split Short Five Lemma [53, 43], which
states that in a commutative diagram

X ¡ ¡ Y ¡¡ Z

X

wwww
¡ ¡ T

O
f

¡¡ Z

wwww
with split short exact rows the morphism f is invertible. For varieties, a slightly simpler
criterion is available [12]. The following example shows that neither LAlg nor Cyc� is
protomodular.

Example 7. Let Y � t1, x, y, xyu be the L-algebra of Example 5. Thus 1 ¡ x ¡ y ¡ xy,
and X :� t1, x, yu is an L-subalgebra. Furthermore, I :� t1, xu is an ideal of Y . So we
have a commutative diagram

I � ¡ X
p
¡¡ B

I

wwww
� ¡ Y

O

X

q
¡¡ B

wwww
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with split short exact rows, which shows that LAlg and Cyc� are not protomodular.

Since SpXq � SpY q, Example 7 does not provide a counterexample to protomodularity
of ssL just by applying the functor S : LAlgÑ ssL and Theorem 3.5 (Corollary).

Example 8. Let X � t1, x, yu be the L-algebra of Example 7. In Example 5, we have
shown that yx � y holds in SpXq. Thus, each element of SpXq is of the form xiyj with
i, j P N. To show that these elements are all distinct, assume that xiyj � xkyℓ. If j � ℓ,
then xi � xk, since SpXq is right cancellative. Hence i � k. Otherwise, assume that
j   ℓ. Then Eq. (11) gives xi ¤ yj � xkyℓ �

�
pyℓ � yjq � xk

�
pyj � yℓq � xkyℓ�j. Hence

1 � xi � xkyℓ�j �
�
pyℓ�j � xiq � xk

�
pxi � yℓ�jq ¤ xi � yℓ�j, and thus xi ¤ yℓ�j ¤ y. On the

other hand, using Eq. (11), y ¤ xi follows by induction. So we obtain xi � y for some
i ¡ 0. Hence y2 � yxi � y, and thus y � 1, a contradiction. So the xiyj are all distinct.
Using Eqs. (10)-(11), we obtain

xiyj � xkyℓ :�

$'&'%
1 for j ¡ ℓ or pj � ℓ and i ¥ kq

xk�i for j � ℓ and i   k

xkyℓ�j for j   ℓ.

Thus (2) gives a linear (lexicographic) order of SpXq.

Now it is easily checked that x ÞÑ x and y ÞÑ xy defines an L-algebra isomorphism
of SpXq onto the L-subalgebra A :� SpXq ∖ tyn | n ¡ 0u. By Proposition 3.6, xxy �
txn | n P Nu is an ideal of A and of SpXq, with A{xxy � xxyy � txyn | n ¡ 0u Y t1u �
xyy � SpXq{xxy. So the variety ssL of self-similar L-algebras is not protomodular.

A slight weakening of protomodularity is the Mal’cev property (see [9], Proposition 17).
A regular category C is said to be a Mal’cev category [17] if every reflexive relation
R Ñ X �X in C is effective. The following example shows that LAlg is not a Mal’cev
category.

Example 9. Let X � t1, x, yu be the L-algebra of Example 7. Consider the L-subalgebra
R :� pX �Xq∖ tpy, xqu of X �X. The partial order of R is a lattice:

py, yq

px, yq

p1, yq px, xq py, 1q

p1, xq px, 1q

p1, 1q

��
�� ??

??

��
�� ??

??
��
�� ??

??

??
??

��
��

��
��
��
��
��
��

??
??

Thus R is a reflexive relation in LAlg which is not symmetric. Hence LAlg is not a
Mal’cev category.

Another concept related to protomodularity is the existence of semidirect products [11],
which means that for morphisms v : C Ñ B, the pullback functor v� : PtC pBq Ñ PtC pCq is
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monadic. A Barr-exact category C has semidirect products if and only if C has pushouts
of split monomorphisms and is protomodular. Thus LAlg has no semidirect products in
the sense of [11]. Nevertheless, semidirect products of L-algebras have been constructed
in a very natural way [68], while the categorical concept of semidirect product [11] does
not apply here. The reason is that the notion of split short exact sequence is too weak in
the category of L-algebras.

7.1. Definition. We say that a short exact sequence X
u
↣ Y

v
↠ Z strongly splits

if it admits a strong section, that is, a morphism s : Z Ñ Y with vs � 1Z such that
y � spzq � spvpyq � zq holds for y P Y and z P Z.

The condition y � spzq � spvpyq � zq says that spZq is an invariant L-subalgebra of Y .
Indeed, y � spzq � spz0q implies that z0 � vspz0q � vpy � spzqq � vpyq � z. In particular, it
yields y � svpyq � 1, that is,

y ¤ svpyq (29)

for all y P Y . So the short exact sequence (19) strongly splits in the sense of Definition 4 of
[68]. The converse holds for KL-algebras [67], that is, L-algebras satisfying the inequality

y ¤ x � y, (30)

which have been studied in [68]. Indeed, (29) and (30) give spvpyq � zq � svpyq � spzq ¤�
svpyq � y

�
�
�
svpyq � spzq

�
� py � svpyqq � py � spzqq � y � spzq ¤ svpy � spzqq � spvpyq � zq.

Using the partial multiplication of L-algebras, we define semidirect products as follows:

7.2. Definition. Let X be an L-algebra with an ideal I and an invariant L-subalgebra U .
We say that X is a semidirect product of I and U if IXU � t1u and X � txu|x P I, u P Uu.

Every semidirect product X of I and U gives rise to a split short exact sequence

I ãÑ X
p
↠ U (31)

with ppxuq � u. Indeed, we have

7.3. Proposition. Let X be an L-algebra with an ideal I and an L-subalgebra U . If X
is a semidirect product of I and U , each element of X has a unique expression xu with
x P I and u P U . The short exact sequence p31q strongly splits.

Proof. Assume that xu � yv with x, y P I and u, v P U . By Eq. (10), this implies that
xu ¤ v and x ¤ u � v. Hence u � v P I XU � t1u, and thus u ¤ v. By symmetry, we obtain
u � v. By Definition 2.2, this implies that x � u � xu � v � yv � y. In particular, the map
p in (31) is well defined.

For x P I and u P U , we have x � u � v for some v P U . As above, this yields u ¤ v.
On the other hand, (6) implies that v � u � px � uq � u P I X U � t1u. Thus v � u, that is,

x � u � u. (32)
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Now Eq. (11) yields xu�yv �
�
pv �xuq�y

�
pxu�vq. Hence ppxu�yvq � xu�v � x�pu�vq � u�v,

which shows that p is an L-algebra morphism with kernel I.

To show that the short exact sequence (31) strongly splits, we have to verify that
xu � v � u � v for x P I and u, v P U . This follows by Eqs. (10) and (32). l

By Proposition 7.3, the natural map I �U Ñ X into a semidirect product X is bijec-
tive. Therefore, we write I�U for a semidirect product X of I and U . The following result
exhibits a connection between strongly split short exact sequences, semidirect products,
and the Short Five lemma:

7.4. Theorem. Let I ãÑ X
p
↠ U be a short exact sequence in LAlg with a strong section

s : U Ñ X. There exists a semidirect product rX � I � spUq with an L-subalgebra X such
that the diagram

I � ¡ rX q
¡¡ U

I

wwwwww
� ¡ X

Y

N

p
¡¡ U

wwwwww (33)

commutes, and sq is the projection of rX onto spUq. The L-algebra rX is uniquely deter-
mined, up to isomorphism.

Proof. Assume that there exists a commutative diagram (33) with a semidirect productrX � I� spUq. By Proposition 7.3, the map px, uq ÞÑ xspuq gives a bijection I�U ÝÑ� rX.
For x, y P I and u, v P U , Eqs. (10) and (11) give xspuq � yspvq � x �

�
spuq � yspvq

�
�

x � pspv � uq � yqspu � vq �
�
pspu � vq � xq � pspv � uq � yq

��
x � spu � vq

�
. Since x � spu � vq � spu � vq

by Eq. (32), we obtain

xspuq � yspvq �
�
pspu � vq � xq � pspv � uq � yq

�
spu � vq.

So the L-algebra rX is unique, up to isomorphism. Therefore, we define rX :� I � U with

px, uq � py, vq :�
�
pspu � vq � xq � pspv � uq � yq, u � v

�
. (34)

Since x � spuq � spuq holds for x P I and u P U , we have spuq � px � yq � px � spuqq � px � yq �
pspuq � xq � pspuq � yq for x, y P I. Thus

spuq � px � yq �
�
spuq � x

�
�
�
spuq � y

�
holds for x, y P I and u P U . So we obtain�

px, uq � py, vq
�
�
�
px, uq � pz, wq

�
�
�
A �B, pu � vq � pu � wq

�



THE CATEGORY OF L-ALGEBRAS 617

with

A � sppu � vq � pu � wqq �
�
pspu � vq � xq � pspv � uq � yq

�
�
�
sppu � vq � pu � wqq � pspu � vq � xq

�
�
�
sppu � vq � pu � wqq � pspv � uq � yq

�
�
�
sppu � vq � pu � wqq � pspu � vq � xq

�
�
�
sppv � uq � pv � wqq � pspv � uq � yq

�
B � sppu � wq � pu � vqq �

�
pspu � wq � xq � pspw � uq � zq

�
�
�
sppu � wq � pu � vqq � pspu � wq � xq

�
�
�
sppu � wq � pu � vqq � pspw � uq � zq

�
�
�
sppu � vq � pu � wqq � pspu � vq � xq

�
�
�
sppw � uq � pw � vqq � pspw � uq � zq

�
.

By Eq. (3), A � B is symmetric in px, uq and py, vq, which shows that rX satisfies Eq. (3).
By Eq. (34), p1, 1q is a logical unit. Furthermore, px, uq � py, vq � p1, 1q is equivalent to

u ¤ v and x ¤ spv � uq � y. So the implication (8) holds in rX, which proves that rX is an
L-algebra.

Now we define a map f : X Ñ rX with fpxq :�
�
sppxq �x, ppxq

�
. Assume that x, y P X.

Then ppsppxq � xq � 1 implies that sppxq � x P I. Since s is a strong section, we have

x � spuq � spuq

for x P I and u P U . With (29) and Eq. (3), this yields

fpxq � fpyq �
�
psppx � yq � psppxq � xqq � psppy � xq � psppyq � yqq, ppxq � ppyq

�
�
�
psppx � yq � psppxq � xqq � psppx � yq � psppxq � yqq, ppx � yq

�
�
�
ppsppxq � xq � sppx � yqq � ppsppxq � xq � psppxq � yqq, ppx � yq

�
�
�
sppx � yq � ppx � sppxqq � px � yqq, ppx � yq

�
�
�
sppx � yq � p1 � px � yqq, ppx � yq

�
�
�
sppx � yq � px � yq, ppx � yq

�
� fpx � yq.

Thus, f is an L-algebra morphism. If fpxq ¤ fpyq, then sppx � yq � px � yq � 1 and
ppx � yq � 1. Together with (29), this yields x � y � sppx � yq � 1. Thus f is injective, and

f |I : I ãÑ rX gives the embedding x ÞÑ px, 1q. By Eq. (34), we have p1, uq � px, uq � px, 1q

and px, uq � p1, uq � p1, 1q. So Definition 2.2 gives px, uq � px, 1qp1, uq for all px, uq P rX.

Furthermore, u ÞÑ p1, uq makes U into an L-subalgebra of rX, with px, uq �p1, vq � p1, u �vq,

which shows that U is invariant. Thus rX is a semidirect product of I and spUq, which
fits into a commutative diagram (33). l

Remarks. 1. Besides the quasi-variety of L-algebras, there are important varieties
with semidirect products which are not covered by the categorical approach of [11]. For
example, the category of monoids or monoids with operations [57] is not protomodular,
and thus has no semidirect products in the sense of [11]. To remedy, the categorical
concept of semidirect product was generalized [58] by considering regular points (also
called strong points [13])

K ¡
i

¡ E
p

¡¡
 

s
  B

for which
�
i
s

�
: K > B Ñ E is a regular epimorphism. This led to the concept of S-

protomodular category [13], where S is a pullback-stable class of regular points. Note that
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semidirect products I � U of L-algebras do not fit into this pattern since I Y U is an
L-subalgebra of I �U . So the corresponding point is not regular, unless I or U is trivial.

2. By [68], Definition 5, a semidirect product I�U in LAlg is given by an action of U
on I, that is, a map ϱ : U Ñ EndpIq which satisfies ϱp1q � 1 and ϱpu �vqϱpuq � ϱpv �uqϱpvq.
For a semidirect product I � U , the corresponding action is given by ϱpuqpxq :� u � x.
Eq. (34) shows that the action determines the structure of I � U . By [74], Corollary 1
of Proposition 3, the products a � ux with u P U and x P I exist in I � U and are
meets a � u ^ x; and by [74], Corollary 2 of Proposition 3, each a P I � U has a unique
representation a � u^ x with u P U and x P I if and only if ϱpuq P AutpIq for all u P U .

3. An anonymous referee pointed out that semidirect products of L-algebras satisfy
the Schreier condition for monoids, introduced by Rédei [64], with respect to the partial
multiplication in an L-algebra. Indeed, Proposition 7.3 shows that in a semidirect product
of L-algebras related to a short exact sequence (31), every fibre p�1puq contains a greatest
element u (the “generator” with respect to the Schreier condition) such that each element
of p�1puq is of the form xu with a unique x P I.

8. Ideals of L-algebras

Let C be a pointed category, i. e. with a zero object 0. A monomorphism f P C is said
to be normal [60] if f is a kernel of some g P C , that is, the equalizer of g and a zero
morphism. Similarly, an epimorphism is said to be normal if it is a normal monomorphism
in C op. The concept of normal subobject or quotient object is defined analogously. For
C � LAlg, the normal subobjects of an L-algebra X coincide with the ideals of X, and
the normal quotient objects of X are of the form X{I for some ideal I of X.

A category C is said to be normal [41] if C is pointed and regular such that every
regular epimorphism is normal. By Proposition 4.3, LAlg is a normal category. Note
that the dual statement is false: An equalizer in LAlg need not be a kernel. For example,
the equalizer of the two projections B2 ↠ B is t0, 1u � B2, which is not an ideal.

In the context of universal algebra, Ursini [79] introduced the concept of subtractive
variety. More generally, a pointed category C with finite limits is said to be subtractive [40]
if every reflexive relation r : RÑ X �X in C for which

�
1
0

�
: X Ñ X �X factors through

r, the morphism
�
0
1

�
: X Ñ X � X also factors through r. Janelidze [41] characterized

subtractive resp. protomodular categories by three versions of the 3� 3 lemma. Let

A1 ¡ ¡ B1 ¡¡ C1

A2

O

O

¡ ¡ B2

O

O

¡¡ C2

O

O

A3

OO
¡ ¡ B3

OO
¡¡ C3

OO
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be a commutative diagram in a pointed regular category C with short exact columns
and two short exact rows. For the remaining row (let us call it the target row) it is only
assumed that the composed morphism is zero. The 3 � 3 lemma then states that the

target row A
a
↣ B

b
↠ C is short exact, that is, a is a kernel of b, and b is cokernel of a. If

the target row is the first (second, third) one, we speak of the lower (middle, upper) 3� 3
lemma. By [41], Theorem 5.3, C is protomodular if and only if it satisfies the middle
3 � 3 lemma. By [41], Theorem 5.4, a normal category C is subtractive if and only if it
satisfies the upper, or equivalently, the lower 3� 3 lemma.

8.1. Proposition. The category LAlg is subtractive and normal.

Proof. The normality of LAlg follows by Proposition 4.3. Let r : R ãÑ X � X be
a reflexive relation of L-algebras such that

�
1
0

�
: X Ñ X � X factors through r. Then

px, xq P R and px, 1q P R for all x P X. Hence p1, xq � px, 1q � px, xq P R, and thus�
0
1

�
: X Ñ X �X factors through r. l

Corollary. The category ssL of self-similar L-algebras is a subtractive normal variety.

Proof. Let p : X ↠ Y be a regular epimorphism in LAlg with X self-similar. By the
corollary of Theorem 3.5, Y is self-similar. Hence p is a cokernel in ssL, and thus ssL is
a normal variety. Since LAlg is subtractive, the full subcategory ssL is subtractive. l

Remark. The variety Cyc� is subtractive, but not normal. Let Y � t1, x, y, xyu be the
L-algebra of Example 5. The ideal I � t1, xu gives rise to a congruence relation with
1 � x and y � xy. Its coequalizer is not a cokernel.

Gumm and Ursini ([38], Corollary 1.9) characterized subtractive normal varieties as
pointed varieties with “una buona teoria degli ideali” [78]. In [38], these varieties have been
called ideal determined. More generally, a normal category C is said to be ideal determined
[45] if each regular epimorphism maps normal subobjects to normal subobjects. Note that
a monomorphism j : J Ñ Y in a pointed regular category C is said to be an ideal [44, 37]
if there is a commutative diagram

I
q
¡¡ J

X
O
i

p
¡¡ Y

O
j

with regular epimorphisms p, q and a normal monomorphism i. Thus, a normal category
is ideal determined if and only if its ideals are normal monomorphisms. The following
result shows that LAlg is ideal determined.

8.2. Proposition. Let f : X Ñ Y be a morphism of L-algebras. The inverse image
f�1pJq of an ideal J of Y is an ideal of X. If f is surjective, ideals of X are mapped to
ideals of Y , and fpI X Jq � fpIq X fpJq for ideals I, J of X.
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Proof. The proof of the first statement is straightforward. Thus, let f be surjective.
We have to verify (5)-(6) for fpIq. The implication (6) being obvious, assume that x, y P X
with fpxq P fpIq and fpxq � fpyq P fpIq. So we can assume that x P I, and there is an
element z P I with fpx � yq � fpzq. Since t :� z � px � yq � z � y modulo I, we have t � y P I.
Hence fptq � fpzq � fpx � yq � 1 and fpyq � fptq � fpyq � fpt � yq P fpIq. Thus fpIq is an
ideal of Y .

Now let I and J be ideals of X. Then fpIXJq � fpIqXfpJq. Conversely, every element
of fpIqXfpJq is of the form fpxq � fpyq with x P I and y P J . Hence z :� px �yq�y P IXJ
and fpx � yq � fpxq � fpyq � 1. Thus fpzq � fpx � yq � fpyq � 1 � fpyq � fpyq, which shows
that fpIq X fpJq � fpI X Jq. l

Corollary 1. The normal category LAlg is ideal determined. Up to isomorphism, the
categorical ideals I ãÑ X in LAlg [44] coincide with the normal monomorphisms I Ñ X.

Corollary 1 provides a negative answer to Question 4.1 of [45] which askes whether
ideal determined categories are Barr-exact.

Corollary 2. The normal variety ssL is ideal determined.

Proof. This follows by the corollary of Theorem 3.5. l

Corollary 3. The lattice of ideals of an L-algebra X is distributive.

Proof. Let I, J,K be ideals of X. Consider the canonical morphism f : X ↠ X{K.
Then f�1fpIq is an ideal of X with IYK � f�1fpIq. So the ideal I_K generated by IYK
is contained in f�1fpIq. The canonical morphism p : X ↠ X{pI _Kq factors through f .
Hence p � gf for some morphism g : X{K Ñ X{pI _ Kq. Thus ppf�1fpIqq � gfpIq �
ppIq � t1u, which proves that f�1fpIq � I _ K. Similarly, f�1fpJq � J _ K. Hence
pI_KqXpJ_Kq � f�1fpIqXf�1fpJq � f�1

�
fpIqXfpJq

�
� f�1fpIXJq � pIXJq_K,

and thus pI X Jq _K � pI _Kq X pJ _Kq. l

Recall that a morphism p : E Ñ B in a regular category C is said to be an effective
descent morphism [5, 42, 31] if the pullback functor p� : C {B Ñ C {E is monadic. Let
RegpC q be the category of regular epimorphisms, with commutative squares as morphisms.
If RegpC q is regular, every regular epimorphism in C is an effective descent morphism
([31], Theorem 2.3). If, in addition, C is finitely cocomplete, every regular epimorphism
in RegpC q is an effective descent morphism ([31], Corollary 2.4).

8.3. Proposition. In the category LAlg of L-algebras, every regular epimorphism is an
effective descent morphism.

Proof. Since C :� LAlg is pointed and ideal-determined, RegpC q is a regular category
(see [31], Section 3.2). Hence every regular epimorphism in C or RegpC q is an effective
descent morphism. l
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