
Theory and Applications of Categories, Vol. 39, No. 22, 2023, pp. 625–666.

FIRM HOMOMORPHISMS OF RINGS AND SEMIGROUPS

LEANDRO MARÍN AND VALDIS LAAN

Abstract. In this paper we define firm homomorphisms between rings without iden-
tity in such a way that the category of rings with identity will become a full subcategory
of the category of firm rings with firm homomorphisms as morphisms. We prove that
firm homomorphisms are in one-to-one correspondence with pairs of compatible con-
crete functors between certain module categories. This correspondence is given by the
restriction of scalars. We also prove the semigroup theoretic analogues of these results
and give a list of examples of firm homomorphisms.

1. Introduction

If R and S are rings with identity, the definition of a ring homomorphism f : R // S
includes the condition f(1R) = 1S. Let Ring be the category of rings with identity with
their homomorphisms.

If R and S are nonunital rings, then we cannot include the condition f(1R) = 1S
in the definition of a homomorphism, so we consider ring homomorphisms without that
extra condition. This makes Ring a non-full subcategory of the category Rng of all rings.
One could ask: is it possible to consider some notion of ring homomorphisms in such a
way that the category Ring will become a full subcategory of the category of rings with
those homomorphisms as morphisms? In this paper we will define firm homomorphisms
of rings and show that Ring is a full subcategory of the category of firm rings with firm
homomorphisms as morphisms. A similar problem can be considered for the category of
monoids and the category of semigroups. We will also show that the category of monoids
with monoid homomorphisms is a full subcategory of the category of firm semigroups with
firm homomorphisms as morphisms.

We will study firm homomomorphisms of rings and semigroups in detail. In our
main theorem (Theorem 8.1) we will prove that firm homomorphisms between firm rings
are in one-to-one correspondence with the pairs of compatible concrete functors between
certain module categories. Moreover, those concrete functors will be restriction of scalars
functors induced by firm homomorphisms. We also formulate and prove a parallel result
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for semigroups (Theorem 14.2). The proofs for rings and semigroups are often similar,
but still at some points different techniques are required.

We will use the terminology of concrete categories and concrete functors given in [1,
Definition 5.1] and [1, Definition 5.9].

1.1. Definition. A concrete category over a category X is a pair (A, U) where A is
a category and U : A // X is a faithful functor.

1.2. Definition. Let (A, U) and (B, V ) be concrete categories over a category X . A
functor F : A // B is a concrete functor if U = V ◦ F .

In this paper we consider different subcategories of the category of all right (or left)
modules over a ring R as concrete categories over the category Ab of abelian groups
together with a forgetful (or underlying) functor to Ab, which takes each R-module to
its underlying abelian group and leaves morphisms unchanged. Thus applying a concrete
functor to a module MR means defining a new multiplication by the elements of a ring S
on the abelian group M . The R-multiplication preserving mappings must also preserve
the S-multiplication, because concrete functors must map morphisms identically. In the
semigroup case we always consider categories of acts as concrete categories over Set. A
typical example of a concrete functor is the restriction of scalars functor, which can be
considered both in the case of rings and in the case of semigroups.

Concrete functors between categories of modules over unital rings were considered
already in [16], where the term vergessender Funktor was used. We also point out that
concrete functors between the categories of firm modules or acts appear naturally in
Morita theory. In the ring case, concrete equivalence functors between different module
categories have been used in [5] and [6], also in [4] (to prove Proposition 7). In the
semigroup case, concrete functors are used to prove (for example) Theorem 3.2 in [18].

2. Terminology and notation

In this paper, by a ring we mean an associative ring. The construction of tensor product of
modules over a ring is well known. We will recall briefly the construction of tensor product
of acts over semigroups. If S is a semigroup, MS is a right S-act and SN is a left S-act,
then the tensor product M ⊗SN is the quotient set of M ×N by the smallest equivalence
relation containing the set {((ms, n), (m, sn)) ∈ (M × N)2 | m ∈ M,n ∈ N, s ∈ S} (cf.
[8, Construction 2.5.4]). The equivalence class of a pair (m,n) is denoted by m⊗ n.

2.1. Definition. Let R be a ring (semigroup). A right R-module (resp. a right R-act)
MR is called

1. closed if the mapping

λM : M // HomR(R,M), m 7→ λM(m) : r 7→ mr

is bijective,
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2. firm if the mapping

µM : M ⊗R R //M, m⊗ r 7→ mr

is bijective (throughout this paper we will write m⊗ r instead of m⊗R r),

3. unitary if the mapping µM is surjective, i.e. M = MR. (Note that MR has a little
bit different meaning in the case of modules and acts. In the latter case it consists
of products mr while in the former case of all finite sums of such products. Also,
tensor products of modules and acts are constructed in a different way.)

Clearly, every firm module or act is unitary, but the converse is not true in general.
However, the converse is true if the ring or the semigroup has the identity element.

The terms ‘firm’ and ‘closed’ have been introduced by Quillen in [17] for modules over
nonunital rings.

2.2. Definition. A ring (semigroup) R is called firm if the mapping

µR : R⊗R R //R, r ⊗ r′ 7→ rr′

is bijective.

Every unital ring and every monoid is firm. Moreover, every ring or semigroup with
local units is firm.

If R is a ring and S is a semigroup, then we will use the following categories (with the
usual homomorphisms as morphisms):

MODR — the category of all right R-modules,
ModR — the category of unitary right R-modules,
DModR — the category of firm right R-modules,
CModR — the category of closed right R-modules,
Ab — the category of abelian groups,
Ring — the category of unital rings,
ActS — the category of all right S-acts,
UActS — the category of unitary right S-acts,
FActS — the category of firm right S-acts,
CActS — the category of closed right S-acts,
Set — the category of sets,
Mon — the category of monoids.

For the categories of left modules or acts we will write RMOD, SAct etc.
The categories DModR and CModR need not coincide.

2.3. Example. [Firm module which is not closed] Any firm ring R without an identity
element (for example the ring of infinite matrices with only a finite number of nonzero
entries over a field K) is a firm right module but it is not closed because HomR(R,R) 6∼= R.



628 LEANDRO MARÍN AND VALDIS LAAN

2.4. Example. [Closed module which is not firm] Let R be a firm ring without an identity
element. Then the rightR-moduleMR := HomR(RRR, RR) is closed by Proposition 5.1(1).
To prove that it is not firm, consider the diagram

HomR(RRR, RR)⊗R HomR(RRR, RR) ,

R

µM

eval λR

which can be seen to commute by direct verification. Since R is firm, the map eval is
bijective (as we will explain in the beginning of Section 5). Now if MR was firm, the map
µM , and therefore λR as well, would be bijections. But we saw in Example 2.3 that λR
cannot be bijective, so MR cannot be firm.

Similar examples will show that the categories FActS and CActS need not coincide for
a semigroup S. But we can also provide examples that are different from those.

2.5. Example. Let S be a right zero semigroup (i.e. a semigroup satisfying the identity
xy = y) with at least two elements and let ΘS be a one-element right S-act. Then
λΘ : Θ // HomS(S,Θ) is clearly bijective and hence ΘS is closed. It can be shown that
ΘS is not firm. Conversely, [9, Example 2.8] provides a semigroup S such that the left
act SS is firm, but not closed. Dually firm right acts exist which are not closed.

Let f : R //S be a ring homomorphism. Any right S-module M can be turned into a
right R-module with the multiplication given by mr := mf(r). This construction gives a
functor f ∗ : MODS

//MODR such that an S-module M goes to the same abelian group,
but endowed with a new multiplication by the elements of R. On homomorphisms the
functor f ∗ acts identically. This functor is called the restriction of scalars functor
induced by f . We will use the notation ∗f for the restriction of scalars functor between
categories of left modules.

3. Unital rings, homomorphisms and categories

Let R and S be unital rings with identity elements 1R and 1S, respectively. In this section,
we are going to see that a ring homomorphism f : R //S that preserves the identity (i.e.
f(1R) = 1S) induces some relations between the categories of unitary modules. (Note that
a module MR is unitary if and only if m1R = m for every m ∈ M .) The generalization
of the concept of ring homomorphism for rings without identity will be done using these
categorical properties in the following section.

The following result is known (see [16, Satz 3.1]).

3.1. Proposition. Given rings with identity R and S, there is a bijection between the
following sets.

1. The concrete functors ModS //ModR.
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2. The concrete functors SMod //
RMod.

3. The unital ring homomorphisms f : R // S.

The bijection is given by the restriction of the scalars f 7→ f ∗.

3.2. Remark. The unital ring homomorphisms R // S clearly form a set. For the class
of concrete functors ModS //ModR this is not automatically clear from the beginning,
but since this class is in a one-to-one correspondence with a set, it will also be a set.

3.3. Remark. Similarly to Proposition 3.1 one can prove that if R and S are monoids,
then concrete functors UActS // UActR are in one-to-one correspondence with monoid
homomorphisms f : R // S.

Given a unital ring homomorphism f : R // S, the restriction of scalars functor
f ∗ : ModS //ModR has two adjoints

f! : ModR //ModS, f∗ : ModR //ModS.

The adjoints relations are f! a f ∗ a f∗. The explicit definitions of the functors for rings
with identity are the following:

f!(MR) = M ⊗R S, f∗(MR) = HomR(SR,MR).

The natural isomorphism induced by the adjunction f ∗ a f∗ is

γMN : HomR(f ∗(M), N) // HomS(M,HomR(SR, NS)), γMN(α)(m)(s) = α(ms),

and the adjunction f! a f ∗ is given by the natural isomorphism

δNM : HomS(N ⊗R S,M) // HomR(N, f ∗(M)), δNM(β)(n) = β(n⊗ 1S).

These two adjoints of the functor of restriction of scalars will be the ones that let us
give the definition of firm homomorphism of rings.

4. Firm homomorphisms of rings

In this section R and S will be firm rings. We will consider a ring homomorphsim R //S
(a map preserving addition and multiplication). The objective is to find the conditions
on this map so that it could be considered a morphism in the category whose objects are
the firm rings. We cannot impose the condition that 1R maps to 1S because the rings are
not unital, but the new definition that we will introduce in this section, applied to unital
rings, will extend the usual definition.

In order to simplify the notation, we will sometimes denote the ring homomorphism
as ˙ : R // S, so the image of an element r ∈ R will be ṙ. In this way, the R-structure
induced by this homomorphism on S-modules will be rm = ṙm for any left S-module
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SM , all m ∈ M and r ∈ R (and a similar structure for right S-modules). This notation
is not the usual one, but it is convenient because we only consider one homomorphism
R // S and it simplifies the use of parentheses. We will write module homomorphisms
on the opposite side of scalars. In the case of bimorphisms, we will write them on one
side or the other, depending on the structure that we are considering.

4.1. Definition. Let R and S be firm rings and ˙ : R // S be a ring homomorphism.
We will say that

1. it is a right firm ring homomorphism if S considered as a right R-module is
firm (i.e. the map µS : S ⊗R R // S given by µS(s⊗ r) = sṙ is bijective);

2. it is a left firm ring homomorphism if S considered as a left R-module is firm;

3. it is a firm ring homomorphism if it is a right and left firm ring homomorphism.

There exist right firm homomorphisms which are not left firm (and vice versa). One
such homomorphism is constructed in Example 16.8.

4.2. Remark. Unital ring homomorphisms are (left and right) firm ring homomorphisms.
To see this, suppose that ˙ : R // S is a unital ring homomorphism. Then µS(s⊗ 1R) =
s1̇R = s1S = s for every s ∈ S, so µS is surjective. Suppose that µS(

∑
i si ⊗ ri) = 0, i.e.∑

i siṙi = 0. Then ∑
i

si ⊗ ri =
∑
i

si ⊗ ri1R =
∑
i

siṙi ⊗ 1R = 0⊗ 1R

in S ⊗R R, showing that the kernel of µS is trivial. Hence µS is bijective and ˙ is right
firm. Similarly it follows that ˙ is left firm.

We will give more examples of firm homomorphisms in Section 10.

4.3. Proposition. If R is a unital ring, S is a firm ring and ˙ : R // S is a firm ring
homomorphism, then S is unital and 1̇R = 1S.

Proof. Denoting e = 1̇R we have to prove that e is the identity of S. Let s ∈ S. Since
the ring homomorphism is right firm, we can find elements si ∈ S and ri ∈ R such that
s =

∑
i siṙi, so we have

se =
∑
i

siṙie =
∑
i

siṙi1̇R =
∑
i

si

·

ri1R =
∑
i

siṙi = s.

Using that the ring homomorphism is left firm, we can prove that es = s, so e is the
identity of S and the ring homomorphism preserves identity.
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If we consider only unital rings, then left or right firm ring homomorphisms preserve
identity (i.e. we only have to check on one side).

4.4. Proposition. If R and S are unital rings and ˙ : R // S is a map preserving
addition and multiplication, then the following conditions are equivalent:

1. it is a right firm ring homomorphism.

2. it is a unital ring homomorphism.

3. it is a left firm ring homomorphism.

Proof. Unital ring homomorphisms are right and left firm due to Remark 4.2. Suppose
now that ˙ is right firm, then using the surjectivity of µS we can find si ∈ S and ri ∈ R
such that 1S = µS(

∑
i si ⊗ ri) =

∑
i siṙi, so we have

1̇R = 1S 1̇R = (
∑
i

siṙi)1̇R =
∑
i

si(ṙi1̇R) =
∑
i

si

·

ri1R =
∑
i

siṙi = 1S.

Thus (1) and (2) are equivalent. The equivalence between (3) and (2) is symmetric.

5. Functors between module categories

When R is a firm ring (that will be our case), the categories CModR and DModR are
equivalent via the canonical functors

−⊗R R : CModR // DModR and HomR(R,−) : DModR // CModR

([5, Theorem 15]). These equivalence functors induce the right R-module isomorphisms
ηM and εM , given by

ηM(m)(r) = m⊗ r and εM(α⊗ r) = α(r),

such that the following diagrams are commutative:

MR ∈ CModR

MR HomR(RR,MR)

M ⊗R R HomR(RR,M ⊗R R)

ηM

λM

λM⊗RR

µM HomR(R,µM )

MR ∈ DModR M ⊗R R MR

HomR(RR,MR)⊗R R HomR(RR,MR).

εM

µM

µHomR(RR,MR)

λM ⊗R λM
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These properties are true also on the other side because the condition of being firm is
symmetric.

Note that η : 1CModR ⇒ HomR(RR,−) ◦ (− ⊗ R) and ε : (− ⊗ R) ◦ HomR(RR,−) ⇒
1DModR are the unit and counit of the adjunction − ⊗ R a HomR(RR,−), respectively.
Also, λ : 1MODR

⇒ HomR(RR,−) and µ : −⊗R R⇒ 1MODR
are natural transformations.

In some cases, a module MS will be considered with the induced R-structure, in that
case we will use the notation µM and λM for the R-structure and µ′M and λ′M for the
S-structure.

Suppose that SXR is an (S,R)-bimodule and MR is an R-module. The abelian group
HomR(XR,MR) is a right S-module with the S-multiplication

(gs)(x) = g(sx), (1)

g ∈ HomR(XR,MR), s ∈ S, x ∈ X.

5.1. Proposition. Let R and S be firm rings and f : R // S, r 7→ ṙ, a ring homomor-
phism. Then

1. HomR(SR,−) is a functor from MODR to CModS;

2. HomR(RS,−) is a functor from RMOD to SCMod;

3. −⊗R S is a functor from MODR to DModS;

4. S ⊗R − is a functor from RMOD to SDMod.

Proof. The conditions 2 and 4 are the symmetric conditions to 1 and 3, thus we will
prove only 1 and 3.

Since S is firm, the map µS : S ⊗S S // S, s ⊗ s′ 7→ ss′, is an isomorphism of right
S-modules. Applying the contravariant functor HomR(−,MR) ◦ f ∗ : MODS

//MODR we
see that the map

− ◦ µS : HomR(SR,MR) // HomR(S ⊗S SR,MR)

is an isomorphism for every right R-module MR. Due to the tensor-hom adjunction we
have the bijection

σ : HomR(S ⊗S SR,MR) // HomS(SS,HomR(SR,MR)), h 7→ (s 7→ (s′ 7→ h(s⊗ s′))).

The composite bijection σ ◦ (− ◦ µS) is λHomR(SR,MR), because

(σ ◦ (− ◦ µS))(g)(s)(s′) = σ(g ◦ µS)(s)(s′) (def. of − ◦ µS)

= (g ◦ µS)(s⊗ s′) (def. of σ)

= g(ss′) (def. of µ)

= (gs)(s′) (by (1))

= λHomR(SR,MR)(g)(s)(s′) (def. of λHomR(SR,MR))
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for all s, s′ ∈ S and g ∈ HomR(SR,MR). Hence HomR(SR,MR) ∈ CModS. We also have
N ⊗R S ∈ DModS for every right R-act NR, because the composite bijection

(N ⊗R S)⊗S S //N ⊗R (S ⊗S S) //N ⊗R S, (n⊗ s)⊗ s′ 7→ n⊗ (s⊗ s′) 7→ n⊗ ss′

is precisely µN⊗RS. The rest of the proof is straightforward.

5.2. Corollary. If R is a firm ring and MR ∈ MODR, then HomR(RR,MR) ∈ CModR
and M ⊗R R ∈ DModR.

Proof. We apply Proposition 5.1 for the ring homomorphism idR : R //R.

We will study the firm homomorphisms in more detail, but we will use the definition
of firm ring homomorphisms on one side given in Definition 4.1 to prove some results that
will be symmetrical on the other side.

5.3. Proposition. Let R and S be firm rings and f : R // S, r 7→ ṙ, a right firm ring
homomorphism. Then

1. the map µS : S ⊗R R // S is not only a right R-isomorphism, but also a left
S-isomorphism;

2. HomS(SSR,−) is a functor from SMOD to RCMod;

3. −⊗S SR is a functor from MODS to DModR;

4. the functors f ∗,−⊗S SR : DModS // DModR are naturally isomorphic.

Proof.

1. The map µS is bijective because SR is in DModR, therefore we only need to prove
that it is a left S-homomorphism. If s, t ∈ S and r ∈ R, then we have

(t(s⊗ r))µS = (ts⊗ r)µS (left S-structure of S ⊗R R)

= (ts)ṙ (def. of µS)

= t(sṙ) (associativity of multiplication in S)

= t(s⊗ r)µS. (def. of µS)

2. Let SM be any left S-module. Then

HomS(SSR, SM) ∼= HomS(SSR ⊗RR, SM) (SSR is right firm)
∼= HomR(RRR,HomS(SSR, SM)) (tensor-hom adjunction)

as left R-modules. The last module is closed by Proposition 5.1(2), hence also
HomS(SSR, SM) is in RCMod.
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3. Let MS be in MODS. Since µS : S ⊗R R // S is a left S-isomorphism, we have the
composite bijection

(M ⊗S S)⊗R R //M ⊗S (S ⊗R R) //M ⊗S S,
(m⊗ s)⊗ r 7→ m⊗ (s⊗ r) 7→ m⊗ sṙ = (m⊗ s)r

which takes (m ⊗ s) ⊗ r to m ⊗ sṙ = (m ⊗ s)r, which is precisely µM⊗SSR
. Thus

M ⊗S SR ∈ DModR. The rest is again straightforward.

4. If MS ∈ DModS, then the mapping µ′M : M ⊗S S //M , m⊗ s 7→ ms, is bijective.
It is an isomorphism of right R-modules, because

µ′M((m⊗ s)r) = µ′M(m⊗ sṙ) = m(sṙ) = (ms)ṙ = µ′M(m⊗ s)r

for every m ∈M , s ∈ S and r ∈ R. Since M ⊗S SR ∈ DModR, also f ∗(MS) = MR ∈
DModR, so we can consider f ∗ as a functor DModS // DModR. It is easy to check
that µ′ is natural in M . Therefore f ∗ and −⊗S SR are naturally isomorphic.

The next proposition will give two necessary and sufficient conditions for a ring ho-
momorphism to be right firm in terms of certain properties of the restriction of scalars
functors.

5.4. Proposition. Let R and S be firm rings and f : R // S, r 7→ ṙ, a ring homomor-
phism. The following conditions are equivalent.

1. f : R // S is a right firm ring homomorphism.

2. For every SM ∈ SCMod, ∗f(SM) ∈ RCMod, so the restriction of scalars is a concrete
functor from SCMod to RCMod.

3. For every MS ∈ DModS, f ∗(MS) ∈ DModR, so the restriction of scalars is a concrete
functor from DModS to DModR.

Proof. (1 ⇒ 2). Let SM be in SCMod, that is, λ′M : SM // HomS(SS, SM) is a left
S-isomorphism. Applying the restriction of scalars functor ∗f : SMOD //

RMOD we see
that λ′M : RM // HomS(SSR, SM) is a left R-isomorphism, and so is HomR(RR, λ

′
M).

Moreover, the diagram

RM HomR(RR, RM)

HomS(SSR, SM) HomR(RR,HomS(SSR, SM))
λHomS(SSR,SM)

λ′M HomR(RR, λ
′
M )

λM
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in RMod commutes, because λ : 1
RAct ⇒ HomR(RR,−) is a natural transformation. The

lower arrow is bijective because of Proposition 5.3(2) (as HomS(SSR, SM) ∈ RCMod), so
the upper arrow λM must also be bijective and therefore RM = ∗f(SM) is in RCMod.

(2 ⇒ 1). Consider the functor HomZ(−,Q/Z). This is the construction of the char-
acter module and it is known that it reflects and preserves isomorphisms. For any firm
module M , HomZ(M,Q/Z) is closed. We are going to prove that µS : S⊗RR //S is an
isomophism, proving that

HomZ(µS,Q/Z) : HomZ(S,Q/Z) // HomZ(S ⊗R R,Q/Z)

is bijective. But this is true because this map is the composition of

HomZ(S,Q/Z) // HomR(R,HomZ(S,Q/Z)) // HomZ(S ⊗R R,Q/Z)

and the second one is bijective due to the hom-tensor adjunction and the first one is
bijective because HomZ(S,Q/Z) is a closed module.

(1⇒ 3). Let MS be in DModS. Since µ : −⊗RR⇒ 1DModR is a natural transformation,
the square

M ⊗S S ⊗R R M ⊗S S

M ⊗R R M
µM

µ′M ⊗R µ′M

µM⊗S

commutes. The vertical arrows are bijective because MS is firm. The upper arrow is
bijective because of Proposition 5.3(3) (as M ⊗S SR ∈ DModR), so the lower arrow µM is
also a bijection and therefore MR is in DModR.

(3⇒ 1). If we apply (3) to the ring S which is a firm right S-module, we get that SR
is in DModR and therefore the ring homomophism is right firm.

6. Compatibility conditions

In this section we introduce compatibility conditions for pairs of concrete functors be-
tween categories of firm and closed modules and prove some connections between these
conditions. We will recall the following well-known result about composing natural trans-
formations.

6.1. Proposition. [1, Exercise 6A] Consider the diagram

A B C
F

G

α

H

K

β
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of functors and natural transformations. Then βG ◦Hα = Kα ◦ βF , i.e. the square

HF HG

KF KG.

Hα

βF βG

Kα

β∗α

commutes. The natural transformation βG◦Hα = Kα◦βF is denoted by β ∗α and called
the horisontal composition of α and β.

Let R and S be firm rings. We abbreviate

H := HomR(R,−), H ′ := HomS(S,−), T := −⊗R, T ′ := −⊗ S.
Then T a H : DModR // CModR and T ′ a H ′ : DModS // CModS. We denote the units
and counits of these adjunctions as follows:

η : 1CModR ⇒ HT, ε : TH ⇒ 1DModR , η′ : 1CModS ⇒ H ′T ′, ε′ : T ′H ′ ⇒ 1DModS .

As observed in the beginning of Section 5, all these natural transformations are actually
natural isomorphisms. The triangle identities for the adjunction T a H are

1T = εT ◦ Tη,
1H = Hε ◦ ηH,

and similar identities hold for the adjunction T ′ a H ′.
Consider a pair

F : DModS // DModR and G : CModS // CModR

of concrete functors such that there exist natural transformations

ζ : GH ′ ⇒ HF and ξ : TG⇒ FT ′.

CModS DModS

CModT DModR

HomS(S,−)

HomR(R,−)

FG
ζ

CModS DModS

CModR DModR

−⊗S

FG

−⊗R

ξ

We introduce the following compatibility conditions.

C1. ζM ◦ λ′M = λF (M) for every MS ∈ DModS,

C2. µ′M ◦ ξM = µG(M) for every MS ∈ CModS,

C3. εF ◦ Tζ = Fε′ ◦ ξH ′,

C4. Hξ ◦ ηG = ζT ′ ◦Gη′.

The following three results can be proved using Proposition 6.1 and the mates corre-
spondence of natural transformations. In particular, Condition C3 (equivalently condition
C4) states precisely that the natural transformations ζ and ξ are mates (in the sense of
being in the roles of µ and λ in [7, Proposition 2.1]; cf. also [13, page 100]).
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6.2. Proposition. Conditions C3 and C4 are equivalent.

6.3. Proposition. Assume that C4 (or, equivalently, C3) holds and ζ, ξ are natural
isomorphisms. Then C1 and C2 are equivalent.

6.4. Lemma. Suppose that C3 holds and ξ is a natural isomorphism. Then also ζ is a
natural isomorphism.

6.5. Definition. Let R, S,H,H ′, T, T ′, η, η′, ε,ε′ be as above and let F :DModS //DModR
and G : CModS // CModR be concrete functors. We say that F,G is a pair of com-
patible concrete functors, if there exist natural isomorphisms ζ : GH ′ ⇒ HF and
ξ : TG⇒ FT ′ such that the conditions C1–C4 are satisfied.

7. Compatibility for restrictions of scalars

If f : R // S is a firm ring homomoprphism between firm rings, then by Proposition 5.4
and its dual the restriction of scalars funtor f ∗ : MODS

//MODR restricts to functors

f+ : DModS // DModR and f× : CModS // CModR.

In this section we will show that f+, f× is a pair of compatible concrete functors.

7.1. Proposition. [Compatibility C1] Let R and S be firm rings. Suppose f : R // S,
r 7→ ṙ, is a left firm homomorphism of rings and let MS be in MODS. Then, in the
category CModR, we have a right R-homomorphism

ζM : HomS(RSS,MS) // HomR(RRR,MR),

natural in M , such that the following diagram is commutative:

M.

HomR(RRR,MR)HomS(RSS,MS)
ζM

λMλ′M

Furthermore, if we apply this construction to MS = SS, we get

ζS : HomS(SS, SS) // HomR(RR, SR)

and ζS(idS) is precisely the ring homomorphism f .
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Proof. Using the dual of Proposition 5.3(2) for the homomorphisms f and idR we
know that the modules HomS(RSS,MS) and HomR(RRR,MR) are in CModR. Let α ∈
HomS(RSS,MS). We define a map ζM(α) : R //M by

ζM(α)(r) = α(ṙ). (2)

With this definition, the last claim of the proposition is trivial because ζS(idS)(r) =
idS(ṙ) = f(r) for all r ∈ R. Also, the triangle is commutative because, for every m ∈ M
and r ∈ R,

(ζM ◦ λ′M)(m)(r) = ζM(λ′M(m))(r) = λ′M(m)(ṙ) = mṙ = mr = λM(m)(r).

We have to check several properties of ζM .

1. ζM(α) is a right R-homomorphism. For every u, r ∈ R,

ζM(α)(ru) = α(
·
ru) = α(ṙu̇) = α(ṙ)u̇ = ζM(α)(r)u.

2. ζM is a right R-homomorphism. For every α ∈ HomS(RSS,MS), r, u ∈ R we have

ζM(αr)(u) = (αr)(u̇) (def. of ζM)

= α(ṙu̇) (R-structure of HomS(RSS,MS))

= α(
·
ru) (˙ preserves multiplication)

= ζM(α)(ru) (def. of ζM)

= (ζM(α)r)(u). (right R-structure of HomR(RRR,MR))

This proves that ζM(αr) = ζM(α)r for all r ∈ R and all α ∈ HomS(RSS,MS).

3. ζM is natural in M . Let k : MS
//NS be a morphism in MODS. The square

HomR(RRR, NR)

HomR(RRR,MR)

HomS(RSS, NS)

HomS(RSS,MS)

ζN

ζM

HomR(R, k)HomS(S, k)

commutes, because, for every α ∈ HomS(RSS,MS) and r ∈ R, we have

HomR(R, k)(ζM(α))(r) = (k ◦ ζM(α))(r) (def. of HomR(RRR,−))

= k(ζM(α)(r)) (composition of maps)

= k(α(ṙ)) (def. of ζM(α))

= ζN(kα)(r) (def. of ζN(kα))

= ζN(HomS(S, k)(α))(r). (def. of HomS(S,−))
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7.2. Proposition. [Compatibility C2] Let ˙ : R //S be a right firm ring homomorphism
between firm rings and let MS ∈ MODS. Then we have a right R-homomorphism in the
category DModR, ξM : M ⊗RR //M ⊗S S, natural in M such that the following diagram
is commutative:

MR = MS

M ⊗R R M ⊗S S.
ξM

µM µ′M

Furthermore, if we apply this construction to M = HomS(SS, SS) and we use the canonical
isomorphism ε′S : HomS(SS, SS) ⊗S S // SS, then we have ε′S(ξHomS(SS ,SS)(idS ⊗ r)) = ṙ
for all r ∈ R.

Proof. By Proposition 5.3, M⊗SS ∈ DModR, and due to Corollary 5.2 we haveM⊗RR ∈
DModR. The definition of ξM : M ⊗R R //M ⊗S S is

ξM(m⊗ r) = m⊗ ṙ.

To see that ξM is well defined we note that the mapping

ξM : M ×R //M ⊗S S, (m, r) 7→ m⊗ ṙ

is R-balanced, because

ξM(m,ur) = m⊗
·
ur = m⊗ u̇ṙ = mu̇⊗ ṙ = mu⊗ ṙ = ξM(mu, r)

for all m ∈ M and u, r ∈ R. For any r ∈ R we have ṙ ∈ S = SR, so we can find si ∈ S
and ri ∈ R such that ṙ =

∑
i siṙi. We have

ε′S(ξHomS(SS ,SS)(idS ⊗ r)) = ε′S(idS ⊗ ṙ) (def. of ξHomS(SS ,SS))

= ε′S(idS ⊗ Σisiṙi) (expansion of ṙ)

= ε′S(ΣiidSsi ⊗ ṙi) (HomS(SS, SS)⊗S S is S-balanced)

= Σi(idSsi)(ṙi) (def. of ε′S)

= idS(Σisiṙi) (S-structure of HomS(SS, SS))

= idS(ṙ) = ṙ. (expansion of ṙ)

This proves the last claim. We still need to check several properties of ξ.

1. The diagram is commutative because, for every m ∈M and r ∈ R,

(µ′M ◦ ξM)(m⊗ r) = µ′M(ξM(m⊗ r)) = µ′M(m⊗ ṙ) = mṙ = µM(m⊗ r).
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2. ξM is a right R-homomorphism. For any m ∈M , r, u ∈ R we have

ξM((m⊗ r)u) = ξM(m⊗ ru) (right R-module structure of M ⊗R R)

= m⊗
·
ru (def. of ξM)

= m⊗ ṙu̇ (˙ preserves multiplication)

= (m⊗ ṙ)u̇ (right S-module structure of M ⊗S S)

= (m⊗ ṙ)u (right R-module structure of M ⊗S S)

= ξM(m⊗ r)u. (def. of ξM)

The rest of the proof is straightforward.

3. ξ is natural in M . Let k : MS
// NS be a right S-homomorphism. This is also a

right R-homomorphism and we can consider the following diagram:

N ⊗R R

M ⊗R R

N ⊗S S

M ⊗S S

ξN

ξM

k ⊗R k ⊗ S

.

To see that it commutes, we observe that, for all m ∈M and all r ∈ R,

((k ⊗ S) ◦ ξM)(m⊗ r) = (k ⊗ S)(m⊗ ṙ) (def. of ξM)

= k(m)⊗ ṙ (def. of −⊗ S over morphisms)

= ξN(k(m)⊗ r) (def. of ξN)

= (ξN ◦ (k ⊗R))(m⊗ r). (def. of −⊗R over morphisms)

All the results that we have proved for right firm ring homomorphisms are true for
left firm ring homomorphisms changing the sides on each one of the categories considered.
If we have both conditions, i.e. we have a firm ring homomorphism, then restriction of
scalars provides concrete functors CModS //CModR and DModS //DModR, but we also
have the category equivalences CModR // DModR and CModS // DModS. The next
proposition will show that in the case of a (left and right) firm ring homomorphism, the
concrete functors and the category equivalences are compatible.

7.3. Proposition. [Compatibility C3] Let ˙ : R //S be a firm homomorphism between
firm rings. Then, for any MS ∈ DModS, the following diagram of R-homomorphisms is
commutative:
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HomS(SS,MS)⊗R R HomS(SS,MS)⊗S S

HomR(RR,MR)⊗R R M

ξHomS(SS ,MS)

ζM ⊗R

εM

ε′M

.

Hence εf+ ◦ Tζ = f+ε′ ◦ ξH ′.

Proof. If α ∈ HomS(SS,MS) and r ∈ R, then

ε′M(ξHomS(SS ,MS)(α⊗ r)) = ε′M(α⊗ ṙ) (def. of ξHomS(SS ,MS))

= α(ṙ) (def. of ε′M)

= ζM(α)(r) (def. of ζM)

= εM(ζM(α)⊗ r) (def. of εM)

= εM((ζM ⊗R)(α⊗ r)). (def. of −⊗R over morphisms)

7.4. Proposition. The natural transformations ξ : Tf× ⇒ f+T ′ and ζ : f×H ′ ⇒ Hf+

defined in the previous propositions are natural isomorphisms.

Proof. We will prove that ξM is bijective for every MS. Then ζ is a natural isomorphism
because of Lemma 6.4.

First we verify that ξM is surjective. For all m ∈M and s ∈ S we can write s =
∑

i siṙi
because SR is firm and in particular SR = S. So we have

m⊗ s = m⊗
∑
i

siṙi =
∑
i

m⊗ siṙi =
∑
i

msi ⊗ ṙi = ξM

(∑
i

msi ⊗ ri

)

in M⊗S S. This proves that all m⊗s are in Im(ξM). Since they are generators of M⊗S S,
we conclude that ξM is surjective.

Now we show that ξM is injective. Using that µ′MξM = µM , we know that Ker(ξM) ⊆
Ker(µM). But Ker(µM)R = 0, so we have Ker(ξM)R = 0. The kernel of a surjective homo-
morphism between firm modules is unitary (by [15, Proposition 10]), so 0 = Ker(ξM)R =
Ker(ξM).

8. Main theorem for rings

Now we can prove our main theorem.
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8.1. Theorem. Given firm rings R and S, there is a bijection between the following sets:

1. The pairs of compatible concrete functors

F : DModS // DModR and G : CModS // CModR.

2. The pairs of compatible concrete functors

F : SDMod //
RDMod and G : SCMod //

RCMod.

3. The (left and right) firm ring homomorphisms R // S.

The bijection is given by the restriction of scalars.

Proof. Condition (3) is symmetric, therefore we only need to see the bijection between
(1) and (3). Given a firm ring homorphism f : R //S, the restriction of scalars provides
the functors f+ : DModS // DModR and f× : CModS // CModR such that they form a
compatible pair. The required natural transformations ζ and ξ for this pair are constructed
in Proposition 7.1 and Proposition 7.2, respectively. Conditions C1–C3 are satisfied by
Proposition 7.1, Proposition 7.2 and Proposition 7.3, respectively. Condition C4 follows
from Proposition 6.2. Thus each firm homomorphism induces a pair of concrete functors.

Suppose now that we have a pair of compatible concrete functors F : DModS //DModR
and G : CModS // CModR. We are going to make the proof in several steps.

1. If we apply condition C3 to the firm module SS, idS ∈ HomS(SS, SS) and r ∈ R,
then we obtain that

ε′S(ξHomS(SS ,SS)(idS ⊗ r)) = εS((ζS ⊗R)(idS ⊗ r)) = ζS(idS)(r).

This common value will be called f(r) and the mapping f := ζS(idS) : R // S,
which is actually a right R-homomorphism, will be the candidate to be the ring
homomorphism.

2. For every MS ∈ DModS, m ∈M and r ∈ R, we are going to prove that mr = mf(r).
(Here mr is the product of m and r in the right R-module F (MS).)

Consider the S-homomorphism, λ′M(m) : SS //MS given by λ′M(m)(s) = ms and
the commutative diagram induced by the naturality of ε′ and ξ:

MS.

HomS(SS,MS)⊗S S

G(HomS(SS,MS))⊗R R

SS

HomS(SS, SS)⊗S S

G(HomS(SS, SS))⊗R R

ξHomS(SS ,SS) ξHomS(SS ,MS)

λ′M (m)

ε′Mε′S

HomS(S, λ′M (m))⊗R

HomS(S, λ′M (m))⊗ S
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We calculate:

mf(r) = λ′M(m)(f(r)) (def. of λ′M(m))

= λ′M(m)(ε′S(ξHomS(SS ,SS)(idS ⊗ r))) (def. of f(r))

= ε′M(ξHomS(SS ,MS)(λ
′
M(m)⊗ r)) (comm. of the diagram above)

= εM((ζM ⊗R)(λ′M(m)⊗ r)) (condition C3)

= εM(ζM(λ′M(m))⊗ r) (def. of ζM ⊗R)

= ζM(λ′M(m))(r) (def. of τM)

= λF (M)(m)(r) (condition C1)

= mr. (def. of λF (M)(m))

3. For every MS ∈ CModS, m ∈M and r ∈ R, we are going to prove that mr = mf(r).
(Here mr is the product of m and r in the right R-module G(MS).)

Consider the canonical S-isomorphism η′M : M // HomS(S,M ⊗S S) given by
η′M(m)(s) = m⊗ s. Applying the naturality of ζ to η′M(m) : SS //M ⊗S S we have
the following commutative diagram:

HomR(R,F (S)) HomR(R,F (M ⊗S S)).

HomS(S, S) HomS(S,M ⊗S S)

ζS

HomS(S, η′M (m))

HomR(R, η′M (m))

ζM⊗SS

The commuativity of this diagram over the element idS ∈ HomS(S, S) gives

ζM⊗SS(η′M(m)) = η′M(m) ◦ ζS(idS) = η′M(m) ◦ f (3)

because of the definition of f made in step 1. From condition C4 we conclude that
ζM⊗SS ◦G(η′M) = HomR(R, ξM) ◦ ηG(M). Then we have

mf(r) = µ′M(m⊗ f(r)) (def. of µ′M)

= µ′M(η′M(m)(f(r))) (def. of η′M(m))

= µ′M(ζM⊗SS(η′M(m))(r)) (by (3))

= µ′M(HomR(R, ξM)(ηG(M)(m))(r)) (condition C4)

= µ′M(ξM(ηG(M)(m)(r))) (def. of HomR(R, ξM))

= µ′M(ξM(m⊗ r)) (def. of ηM)

= µG(M)(m⊗r) (condition C2)

= mr. (def. of µG(M))
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4. f is a ring homomorphism. For all r, r′ ∈ R we have

f(r + r′) = f(r) + f(r′), (f = ζS(idS) is a right R-homomorphism)

f(rr′) = f(r)r′ (f = ζS(idS) is a right R-homomorphism)

= f(r)f(r′). (step 2 applied to SS ∈ DModS)

5. f is a left and right firm ring homomorphism. We have seen in steps 2 and 3 that the
functors F and G are the restriction of scalars functors of the ring homomorphism
f , hence Proposition 5.4 (and its symmetric) say that f is a left and right firm ring
homomorphism.

Finally we will prove the one-to-one correspondence. Denote the set in (1) by X and
the set in (3) by Y . Let (F,G) be a pair of compatible concrete functors. By X // Y
it is mapped to the ring homomorphism f = ζS(idS). Since F and G are the restriction
of scalars funtors induced by f , we receive back the pair (F,G) with the map Y // X.
Thus the composite X // Y //X is the identity map.

We prove that also the composite Y //X //Y is the identity map. Let f : R //S be a
firm ring homomorphism in Y . It is mapped to a pair (f+, f×) of compatible restrictions
of f ∗ : MODS

// MODR. This pair is mapped to a firm semigroup homomorphism
g := ζS(idS). We need to show that f = g. Take r ∈ R. Since R is a firm ring, there exist
ri, r

′
i ∈ R such that r =

∑
i rir

′
i. Then

f(r) = f(
∑
i

rir
′
i) (r =

∑
i rir

′
i)

=
∑
i

idS(f(ri)f(r′i)) (f is a ring homomorphism)

=
∑
i

(idS · f(ri))(f(r′i)) (right S-structure of HomS(SS, SS))

=
∑
i

(idS · ri)(f(r′i)) (right R-structure of HomS(SS, SS))

=
∑
i

ζS(idS · ri)(r′i) (def of ζS)

=
∑
i

(ζS(idS)ri)(r
′
i) (ζS is an R-homomorphism)

=
∑
i

ζS(idS)(rir
′
i) (R-structure of HomR(RR, SR))

= ζS(idS)(
∑
i

rir
′
i) (ζS(idS) is a ring homomorphism)

= g(r). (g = ζS(idS), r =
∑

i rir
′
i)
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9. The category of firm rings

It turns out that firm homomorphisms compose.

9.1. Lemma. The composition of right (left) firm ring homomorphisms is a right (left)
firm ring homomorphism.

Proof. Let f : R // S and g : S // T be right firm ring homomorphisms. The
composition g ◦ f is a ring homomorphism. By Proposition 5.3,

MT ∈ DModT =⇒ g∗(MT ) ∈ DModS =⇒ (f ∗ ◦ g∗)(MT ) = f ∗(g∗(MT )) ∈ DModR.

But f ∗ ◦ g∗ = (g ◦ f)∗, so the implication 3 ⇒ 1 in Proposition 5.3 yields that g ◦ f is a
right firm homomorphism. Using a symmetric argument, we get the result on the left.

Clearly, if R is a firm ring, then idR is a firm homomorphism. This allows us to give
the following definition.

9.2. Definition. The category FRng will be the category of firm rings with firm ring
homomorphisms as morphisms.

9.3. Theorem. The category Ring of unital rings and unital ring homomorphisms is a
full subcategory of the category FRng of firm rings and firm ring homomorphisms. Fur-
thermore, if R is a unital ring and S is a firm ring, then FRng(R, S) 6= ∅ implies S ∈ Ring
and FRng(R, S) = Ring(R, S).

Proof. The category is a full subcategory due to Remark 4.2 and Proposition 4.4. The
last claim is Proposition 4.3.

9.4. Proposition. Let S be a firm ring. Then FRng(Z, S) 6= 0 if and only if S is a
unital ring.

Proof. If S is unital, the map n 7→ n1S is an unital ring homomorphism. Hence it is
firm by Remark 4.2. The converse is true because of Theorem 9.3.

This proposition allows us clarify the role of the compatibility conditions in Theo-
rem 8.1. For any firm ring S, taking R = Z we have the forgetful functors

U : DModS // Ab = ModZ = DModZ and V : CModS // Ab = ModZ = CModZ.

If these functors were always compatible, this would be a contradiction between Proposi-
tion 9.4 and Theorem 8.1. To see this, suppose U and V are compatible, then for any firm
module MS ∈ DModS and any closed module NS ∈ CModS, the compatibility conditions
C1 and C2 provide bijections ζM and ξN such that ζM ◦ λ′M = λM and µ′N ◦ ξN = µN ,
but in this case λM : M //HomZ(Z,M) and µN : N ⊗ZZ //N are bijections, therefore
λ′M and µ′M should be bijections. This proves that in this case firm and closed S-modules
are the same, therefore End(S) = End(S)⊗S S = S, so S is unital.
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9.5. Proposition. 0 is a terminal object in the category FRng.

Proof. For any firm ring R, the constant map 0 : R // 0 is firm because 0⊗R R = 0 =
R⊗R 0, so FRng(R, 0) = {0}.

10. Examples of firm homomorphisms of rings

We have already proved that the category Ring is a full subcategory of FRng, but we are
going to see some extra properties and examples of firm homomorphisms.

10.1. Example. Let I 6= R be a two-sided ideal of R. Then the inclusion j : I // R is
not a firm ring homomorphism.

Proof. If it were the case, R = RI ⊆ I, so R = I.

10.2. Proposition. Let R be a firm ring, I a two-sided ideal of R such that R/I is firm,
then the projection p : R //R/I is a firm homomorphism.

A ring R is said to have local units ([2]) if for every finite subset {r1, . . . , rn} ⊆ R
there exists an idempotent e ∈ R such that eri = rie = ri for every i ∈ {1, . . . , n}. Every
ring with local units is firm.

10.3. Proposition. Let R be a ring with local units and S a firm ring with a firm ring
homomorphism f : R // S. Then S is a ring with local units and its local units are the
images of the local units of R.

Proof. Let s1, . . . , sn ∈ S. Since f is firm, for every i ∈ {1, . . . , n}, there exist
s′ji , s

′′
ki
∈ S, r′ji , r

′′
ki
∈ R such that si =

∑
ji
s′jif(r′ji) =

∑
ki
f(r′′ki)s

′′
ki

. Also, there exists an
idempotent e ∈ R such that r′jie = r′ji and er′′ki = r′′ki for every ji, ki. Hence

si =
∑
ji

s′jif(r′ji)f(e) = sif(e), si =
∑
ki

f(e)f(r′′ki)s
′′
ki

= f(e)si.

10.4. Proposition. Let R be a ring with enough idempotents and f : R // S be a firm
ring homomorphism. Then S is a ring with enough idempotents.

Proof. As R is a ring with enough idempotents, we can find a set {ei : i ∈ I} of
orthogonal idempotents of R such that α :

∐
i∈I Rei

// R given by (riei)i∈I 7→
∑

i∈I riei
and β :

∐
i∈I eiR

//R given by (eiri)i∈I 7→
∑

i∈I eiri are isomorphisms.
Using the fact that the tensor functor preserves coproducts and that f is a firm ring

homomorphism, we get the isomorphisms∐
i∈I

S ⊗R Rei // S ⊗R
∐
i∈I

Rei // S ⊗R R // S,

∐
i∈I

eiR⊗R S //
∐
i∈I

eiR⊗R S //R⊗R S // S,



FIRM HOMOMORPHISMS OF RINGS AND SEMIGROUPS 647

and the images of each one of the blocks S ⊗R Rei and eiR ⊗R S in S are Sf(ei) and
f(ei)S. This proves that the set {f(ei) : i ∈ I} is a set of orthogonal idempotents for S.

For a nonempty set I and a ring R, let MF
I (R) be the ring of matrices with indices in

I and entries in R such that the number of nonzero entries is finite. If I is an infinite set,
then MF

I (R) is a nonunital ring, but it has local units.

10.5. Proposition. Let f : R // S be a homomorphism of unital rings and I be a
nonempty set. The map f : MF

I (R) //MF
I (S) which applies f to all entries of a matrix

is a firm ring homomorphism.

Proof. For every finite set of matrices X1, . . . , Xn ∈ MF
I (S) there exists a matrix E ∈

MF
I (S) such that XiE = Xi for all i ∈ {1, . . . , n}. It has finitely many diagonal entries

1S and zeroes elsewhere. Since f(1R) = 1S, E = f(E ′) for a similar matrix E ′ ∈MF
I (R).

Now it is clear that µ is surjective.
Suppose that

∑n
k=1 Ykf(Xk) = 0, where Xk ∈ MF

I (R) and Yk ∈ MF
I (S). Let E be as

above. Then∑
k

Yk ⊗Xk =
∑
k

Yk ⊗XkE =
∑
k

Ykf(Xk)⊗ E = 0⊗ E = 0.

We have shown that kerµ = 0, so µ is bijective and f is a firm homomorphism.

11. Firm homomorphisms of semigroups

Now we start considering the case of semigroups. From now on, R and S will stand
for semigroups and f : R // S will be a semigroup homomorphism, unless otherwise
stated. To shorten the notation, we often write ṙ instead of f(r). Sometimes we will
write · : R // S instead of f : R // S.

Similarly to the case of rings, we have the (concrete) restriction of scalars functor

f ∗ : ActS // ActR, AS 7→ AR,

where the R-action on the set A is defined by ar := af(s). Dually we also have a restriction
of scalars functor ∗f : SAct //

RAct.

11.1. Definition. We call a semigroup homomorphism f : R // S right firm if the
act SR = f ∗(SS) is firm. Left firm homomorphisms are defined dually. A semigroup
homomorphism is called firm if it is both right firm and left firm.

We will give a list of examples of (right) firm semigroup homomorphisms in our final
section. Immediately from the definition we have the following result.
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11.2. Lemma. A semigroup homomorphism f : R // S, r 7→ ṙ, is right firm if and only
if S = Sf(R) and, for all s, t ∈ S and r, p ∈ R,

sṙ = tṗ =⇒ s⊗ r = t⊗ p in S ⊗R R.

The equality S = Sf(R) means precisely that SR is a unitary act.
Our aim is to prove the semigroup theoretic analogue of Theorem 8.1. For that we need

the compatibility conditions C1–C4. We define them precisely as for rings in Section 6,
just replacing DModR by FActR and CModR by CActR. The proofs of Section 6 will go
through for semigroups without any change.

To prove Proposition 12.4 (the analogue of Proposition 5.4), we will need the notion of
a character act and some lemmas about character acts. Let 2 = {0, 1} be a two element
set. For a right S-act AS we can consider the set 2A = {g | g : A // 2 is a map} as a left
S-act with the action

(sg)(a) := g(as), (4)

s ∈ S, a ∈ A. This act is called a character act of A (cf. [8, Definition 3.12.3]).
This construction gives a contravariant functor ActS //

SAct, which takes a morphism
h : AS //BS to a morphism −◦h : 2B //2A. We call this functor a character functor.

11.3. Lemma. For every semigroup S, the character functor ActS //
SAct reflects iso-

morphisms.

Proof. Let h : AS //BS be a morphism in ActS. First we prove that if −◦h is surjective,
then h is injective. (In fact, this part of the proof is essentially the same as the proof of [8,
Proposition 3.12.4(2)].) Suppose that h(a) = h(a′), where a, a′ ∈ A, but a 6= a′. Choose
a map g : A // 2 such that g(a) 6= g(a′). Then there exists a map k : B // 2 such that
k ◦ h = g. Therefore g(a) = k(h(a)) = k(h(a′)) = g(a′), a contradiction.

We will also prove that if − ◦ h is injective, then h is surjective. Suppose that h is
not surjective, i.e. there exists an element b0 ∈ B \ h(A). Define a map k1 : B // 2 by
k1(b) = 1 for every b ∈ B, and a map k2 : B // 2 by

k2(b) =

{
1, if b ∈ h(A),
0, if b 6∈ h(A).

Then k1 6= k2, but k1 ◦ h = k2 ◦ h. Thus − ◦ h is not injective, a contradiction.

11.4. Lemma. For every firm semigroup S, 2S ∈ SCAct.

Proof. To avoid confusion, in this proof we will write all maps to the left of their
arguments. We need to prove that the map λ2S : 2S // HomS(SS,2

S) defined by

λ2S(g)(s)(s′) := (sg)(s′) = g(s′s),

g ∈ 2S, s, s′ ∈ S, is bijective. Consider the composite

2S
−◦µS−−−→ 2S⊗SS = Set(S ⊗S S,2)

σ−→ HomS(SS, Set(SS,2)) = HomS(SS,2
S),
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where Set(A,B) denotes the set of all mappings A //B and σ is defined by

σ(h)(s)(s′) := h(s′ ⊗ s),

h ∈ Set(S ⊗S S,2), s, s′ ∈ S. Since

(σ ◦ (− ◦ µS))(g)(s)(s′) = σ(g ◦ µS)(s)(s′) = (g ◦ µS)(s′ ⊗ s) = g(s′s) = λ2S(g)(s)(s′),

we see that σ ◦ (−◦µS) = λ2S . Now −◦µS is an isomorphism, because µS : S⊗S S //S
is an isomorphism, and σ is bijective because of the tensor-hom adjunction

S ⊗S − a Set(SS,−) : Set //
SAct.

Consequently, λ2S is bijective.

Recall that a category is called balanced if all bimorphisms are isomorphisms (see [1,
Definition 7.49]). A semigroup is called factorisable if S = S2.

11.5. Lemma. If S is a factorisable semigroup, then the category FActS is balanced.

Proof. Let S be a factorisable semigroup. We know that S ⊗ S is a firm semigroup by
[10, Theorem 2.6]. According to [10, Proposition 4.9], the categories FActS and FActS⊗S
are equivalent. Thus it suffices to prove that FActS⊗S is balanced.

Take a bimorphism h in FActS⊗S. By [11, Theorem 2.10], h is an extremal monomor-
phism. Since it is also an epimorphism and h = id◦h, it must be an isomorphism, proving
that FActS⊗S is balanced.

Recalling that epimorphisms in the category FActS are precisely surjective morphisms
([11, Corollary 1.4]), we can say that surjective monomorphisms must be bijective.

11.6. Lemma. [9, Proposition 3.9] Let S be a firm semigroup and MS a right S-act. Then

1. MS ∈ FActS if and only if the right S-act homomorphism

ε′M : HomS(SS,MS)⊗S S //M, α⊗ s 7→ α(s)

is bijective;

2. MS ∈ CActS if and only if the right S-act homomorphism

η′M : M // HomS(SS,M ⊗S S), m 7→ (s 7→ m⊗ s)

is bijective.
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12. Functors between act categories

In this section we study functors between different categories of acts. These results will
be parallel to those in Section 5.

If SXR is an (S,R)-biact and MR is a right R-act, then the hom-set HomR(XR,MR)
is a right S-act with the action

(gs)(x) = g(sx), (5)

g ∈ HomR(XR,MR), s ∈ S, x ∈ X. If f : R // S is a semigroup homomorphism, then
we have a natural (S,R)-biact SSR.

12.1. Proposition. Let R and S be firm semigroups and ˙ : R //S a semigroup homo-
morphism. Then

1. HomR(SR,−) is a functor from ActR to CActS;

2. HomR(RS,−) is a functor from RAct to SCAct;

3. −⊗R S is a functor from ActR to FActS;

4. S ⊗R − is a functor from RAct to SFAct.

Proof. The conditions 2 and 4 are the symmetric conditions to 1 and 3, thus we will
prove only 1 and 3.

Since S is firm, the map µS : S ⊗S S // S, s ⊗ s′ 7→ ss′, is an isomorphism of right
S-acts. Applying the hom-functor HomR(−,MR) we see that the map

− ◦ µS : HomR(SR,MR) // HomR(S ⊗S SR,MR)

is an isomorphism for every right R-act MR. Due to the tensor-hom adjunction we have
the bijection

σ : HomR(S ⊗S SR,MR) // HomS(SS,HomR(SR,MR)), h 7→ (s 7→ (s′ 7→ h(s⊗ s′))).

The composite bijection σ ◦ (− ◦ µS) is λHomR(SR,MR), because

(σ ◦ (− ◦ µS))(g)(s)(s′) = σ(g ◦ µS)(s)(s′) (def. of − ◦ µS)

= (g ◦ µS)(s⊗ s′) (def. of σ)

= g(ss′) (def. of µ)

= (gs)(s′) (by (5))

= λHomR(SR,MR)(g)(s)(s′) (def. of λHomR(SR,MR))

for all s, s′ ∈ S and g ∈ HomR(SR,MR). Hence HomR(SR,MR) ∈ CActS. We also have
N ⊗R S ∈ FActS for every right R-act NR, because the composite bijection

(N ⊗R S)⊗S S //N ⊗R (S ⊗S S) //N ⊗R S, (n⊗ s)⊗ s′ 7→ n⊗ (s⊗ s′) 7→ n⊗ ss′

is precisely µN⊗RS. The rest of the proof is straightforward.



FIRM HOMOMORPHISMS OF RINGS AND SEMIGROUPS 651

12.2. Corollary. If R is a firm semigroup and MR ∈ ActR, then HomR(RR,MR) ∈
CActR and M ⊗R R ∈ FActR.

Proof. We apply Proposition 12.1 for the homomorphism idR : R //R.

Let SAR be an (S,R)-biact and SM be a left S-act. We will write the elements of the
hom-set HomS(SAR, SM) to the right of their arguments and equip this set with the left
R-action

(a)(rα) = (ar)α, (6)

α ∈ HomS(SAR, SM), a ∈ A, r ∈ R. The following result is an analogue of Proposition 5.3.

12.3. Proposition. Let R and S be firm semigroups and f : R // S, r 7→ ṙ, a right
firm semigroup homomorphism. Then

1. the map µS : S ⊗R R // S is not only a right R-isomorphism, but also a left
S-isomorphism;

2. HomS(SSR,−) is a functor from SAct to RCAct;

3. −⊗S SR is a functor from ActS to FActR;

4. the functors f ∗, −⊗S SR : FActS // FActR are naturally isomorphic.

Proof.

1. The map µS is bijective because SR is in FActR, therefore we only need to prove
that it is a left S-homomorphism. If s, t ∈ S and r ∈ R, then we have

(t(s⊗ r))µS = (ts⊗ r)µS (left S-action of S ⊗R R)

= (ts)ṙ (def. of µS)

= t(sṙ) (associativity of multiplication in S)

= t(s⊗ r)µS. (def. of µS)

2. Let SM be any left S-act. Then

HomS(SSR, SM) ∼= HomS(SSR ⊗RR, SM) (SSR is right firm)
∼= HomR(RRR,HomS(SSR, SM)) (tensor-hom adjunction)

as left R-acts. The last act is closed by Proposition 12.1(2), hence also the left R-act
HomS(SSR, SM) is in RCAct.

3. Let MS be in ActS. Since µS : S ⊗R R // S is a left S-isomorphism, we have the
composite bijection

(M ⊗S S)⊗R R //M ⊗S (S ⊗R R) //M ⊗S S,
(m⊗ s)⊗ r 7→ m⊗ (s⊗ r) 7→ m⊗ sr = (m⊗ s)r
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mapping (m ⊗ s) ⊗ r to m ⊗ sr = (m ⊗ s)r, which is precisely µM⊗SS. Thus
M ⊗S SR ∈ FActR.

4. If MS ∈ FActS, then the mapping µ′M : M ⊗S S //M , m⊗ s 7→ ms, is bijective. It
is an isomorphism of right R-acts, because

µ′M((m⊗ s)r) = µ′M(m⊗ sṙ) = m(sṙ) = (ms)ṙ = µ′M(m⊗ s)r

for every m ∈M , s ∈ S and r ∈ R. It is easy to check that µ′ is natural in M .

In the following proposition, using the restriction of action we can consider an S-
act AS also as an R-act AR. We will make a convention to write µA for the mapping
µAR

: A ⊗R R // A and µ′A for the mapping µAS
: A ⊗S S // AS. In particular,

µS : S ⊗R R // S and µ′S : S ⊗S S // S. A similar convention is used for the mappings
λA and λ′A. The next proposition will give two necessary and sufficient conditions for a
semigroup homomorphism to be right firm in terms of restricting certain restriction of
scalars functors.

12.4. Proposition. Let R and S be firm semigroups and f : R //S, r 7→ ṙ, a semigroup
homomorphism. The following conditions are equivalent.

1. f : R // S is a right firm semigroup homomorphism.

2. For every SM ∈ SCAct,
∗f(SM) ∈ RCAct, so the restriction of scalars is a concrete

functor from SCAct to RCAct.

3. For every MS ∈ FActS, f ∗(MS) ∈ FActR, so the restriction of scalars is a concrete
functor from FActS to FActR.

Proof. (1 ⇒ 2). Let SM be in SCAct, that is, λ′M : SM // HomS(SS, SM) is a left
S-isomorphism. Applying the restriction of scalars functor ∗f : SAct //

RAct we see
that λ′M : RM // HomS(SSR, SM) is a left R-isomorphism, and so is HomR(RR, λ

′
M).

Moreover, the diagram

RM HomR(RR, RM)

HomS(SSR, SM) HomR(RR,HomS(SSR, SM))
λHomS(SSR,SM)

λ′M HomR(RR, λ
′
M )

λM

in RAct commutes, because λ : 1
RAct ⇒ HomR(RR,−) is a natural transformation. The

lower arrow is bijective because of Proposition 12.3(2) (since HomS(SSR, SM) ∈ RCAct),
so the upper arrow λM must also be bijective and therefore RM is in RCAct.
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(2 ⇒ 1). We consider the character act 2S as a left S-act, which is closed by
Lemma 11.4. We need to prove that µS : S ⊗R R // S is bijective. By Lemma 11.3
it suffices to show that the mapping

− ◦ µS : 2S // 2S⊗RR

is bijective. Note that this mapping is the composite

R

(
2S
) λ

2S−−→ HomR(RR,2
S) = HomR(RR, Set(SR,2))

τ−→ Set(S ⊗R R,2) = 2S⊗RR,

where τ is defined by
τ(h)(s⊗ r) = h(r)(s)

for all h : RR // Set(SR,2), s ∈ S, r ∈ R. Indeed, for every g ∈ 2S, s ∈ S and r ∈ R, we
compute

(τ ◦ λ2S)(g)(s⊗ r) = τ(λ2S(g))(s⊗ r) (composition of maps)

= λ2S(g)(r)(s) (def. of τ)

= (rg)(s) (def. of λ2S)

= (ṙg)(s) (left R-action of 2S)

= g(sṙ) (by (4))

= g(sr) (right R-action of SR)

= (g ◦ µS)(s⊗ r), (def. of µS)

so τ ◦ λ2S = − ◦ µS. By the assumption, 2S ∈ RCAct, and hence λ2S is bijective. The
mapping τ is bijective because of the adjunction

S ⊗R − a Set(SR,−) : Set //
RAct.

It follows that − ◦ µS is bijective, as needed.
(1⇒ 3). Let MS be in FActS. Since µ : −⊗R R ⇒ 1ActR is a natural transformation,

the square

M ⊗S S ⊗R R M ⊗S S

M ⊗R R M
µM

µ′M ⊗R µ′M

µM⊗S

commutes. The vertical arrows are bijective because µ′M is a bijection. The upper arrow
is bijective because of Proposition 12.3(3) (M ⊗S SR ∈ FActR), so the lower arrow µM is
also a bijection and therefore MR is in FActR.

(3⇒ 1). If we apply condition 3 to the semigroup S that is a firm right S-act, we get
that SR is in FActR and therefore the homomophism f is right firm.
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As an application of this proposition we point out the following. Suppose that J is
a firm ideal of a firm semigroup S such that the inclusion mapping j : J // S is right
firm. Proposition 12.4 asserts that the restriction of scalars functor j∗ preserves firmness.
By [18, Theorem 3.1], the categories FActS and FActJ are equivalent. In other words: the
semigroups S and J are Morita equivalent.

13. Compatibility conditions for semigroups

If f : R // S is a firm semigroup homomoprphism between firm semigroups, then by
Proposition 12.4 and its dual the restriction of scalars funtor f ∗ : ActS // ActR restricts
to functors

f+ : FActS // FActR and f× : CActS // CActR.

In this section we will show that (f+, f×) is a pair of compatible concrete functors.

13.1. Proposition. [Compatibility C1] Let R and S be firm semigroups. Suppose that
f : R // S, r 7→ ṙ, is a left firm semigroup homomorphism and let MS be in ActS. Then,
in the category CActR, we have a right R-homomorphism

ζM : HomS(RSS,MS) // HomR(RRR,MR),

natural in M , such that the following diagram is commutative:

M.

HomR(RRR,MR)HomS(RSS,MS)
ζM

λMλ′M

Furthermore, if we apply this construction to MS = SS, we get

ζS : HomS(SS, SS) // HomR(RR, SR)

and ζS(idS) is precisely the semigroup homomorphism f .

Proof. Using the dual of Proposition 12.3(2) we know that the acts HomS(RSS,MS) and
HomR(RRR,MR) are in CActR.

Let α ∈ HomS(RSS,MS). We define a map ζM(α) : R //M by

ζM(α)(r) = α(ṙ). (7)

With this definition, the last claim of the proposition is trivial because ζS(idS)(r) =
idS(ṙ) = f(r) for all r ∈ R. Also, the triangle is commutative because, for every m ∈ M
and r ∈ R,

(ζM ◦ λ′M)(m)(r) = ζM(λ′M(m))(r) = λ′M(m)(ṙ) = mṙ = mr = λM(m)(r).

We still have to check the following properties of ζM .
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1. ζM(α) is a right R-homomorphism. For every u, r ∈ R,

ζM(α)(ru) = α(
·
ru) = α(ṙu̇) = α(ṙ)u̇ = ζM(α)(r)u.

2. ζM is a right R-homomorphism. For every α ∈ HomS(RSS,MS), r, u ∈ R we have

ζM(αr)(u) = (αr)(u̇) (def. of ζM)

= α(ṙu̇) (R-action of HomS(RSS,MS))

= α(
·
ru) (˙ preserves multiplication)

= ζM(α)(ru) (def. of ζM)

= (ζM(α)r)(u). (right R-action of HomR(RRR,MR))

This proves that ζM(αr) = ζM(α)r for all r ∈ R and all α ∈ HomS(RSS,MS).

3. ζM is natural in M . Let k : MS
// NS be a morphism in ActS. For every α ∈

HomS(RSS,MS) and r ∈ R we have

HomR(RRR, k)(ζM(α))(r) = (k ◦ ζM(α))(r) (def. of HomR(RRR,−))

= k(ζM(α)(r)) (composition of maps)

= k(α(ṙ)) (def. of ζM(α))

= ζN(kα)(r) (def. of ζN(kα))

= ζN(HomS(RSS, k)(α))(r). (def. of HomS(RSS,−))

13.2. Proposition. [Compatibility C2] Let ˙ : R // S be a right firm semigroup ho-
momorphism between firm semigroups and let MS ∈ ActS. Then we have a right R-
isomorphism ξM : M ⊗R R //M ⊗S S natural in M such that the following diagram is
commutative:

M

M ⊗R R M ⊗S S.
ξM

µM µ′M

Proof. By Corollary 12.2 and Proposition 12.3(3), respectively, we know that M ⊗R R
and M ⊗S S are in FActR. We define ξM : M ⊗R R //M ⊗S S by

ξM(m⊗ r) = m⊗ ṙ.
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To see that ξM is well defined we note that the mapping

ξM : M ×R //M ⊗S S, (m, r) 7→ m⊗ ṙ
is R-balanced, because

ξM(m,ur) = m⊗
·
ur = m⊗ u̇ṙ = mu̇⊗ ṙ = mu⊗ ṙ = ξM(mu, r)

for all m ∈ M and u, r ∈ R. The triangle is commutative because, for every m ∈ M and
r ∈ R,

(µ′M ◦ ξM)(m⊗ r) = µ′M(m⊗ ṙ) = mṙ = mr = µM(m⊗ r).
We still have to check the following properties of ξM .

1. ξM is a right R-homomorphism. For any m ∈M and r, u ∈ R we have

ξM((m⊗ r)u) = ξM(m⊗ ru) (right R-action of M ⊗R R)

= m⊗
·
ru (def. of ξM)

= m⊗ ṙu̇ (˙ preserves multiplication)

= (m⊗ ṙ)u̇ (right S-action of M ⊗S S)

= (m⊗ ṙ)u (right R-action of M ⊗S S)

= ξM(m⊗ r)u. (def. of ξM)

2. ξ is natural in M . If k : MS
// NS is a morphism in ActS and m ⊗ r ∈ M ⊗R R,

then

((k ⊗ idS) ◦ ξM)(m⊗ r) = (k ⊗ idS)(m⊗ ṙ) = k(m)⊗ ṙ = ξN(k(m)⊗ r)
= (ξN ◦ (k ⊗ idR))(m⊗ r).

Alternatively, Proposition 13.2 could be formulated as follows: if R and S are firm
semigroups and f : R // S is a right firm homomorphism, then the functor − ⊗S SR :
ActS // FActR is naturally isomorphic to the composite functor

ActS
f∗−−→ ActR

−⊗RR−−−−→ FActR.

13.3. Proposition. [Compatibility C3] Let ˙ : R // S be a firm semigroup homomor-
phism between firm semigroups. Then, for any MS ∈ FActS, the following diagram of
R-homomorphisms is commutative:

HomS(SS,MS)⊗R R HomS(SS,MS)⊗S S

HomR(RR,MR)⊗R R M

ξHomS(SS ,MS)

ζM ⊗R

εM

ε′M

.

Hence εf+ ◦ Tζ = f+ε′ ◦ ξH ′.



FIRM HOMOMORPHISMS OF RINGS AND SEMIGROUPS 657

Proof. Note that εM is defined by εM(β ⊗ r) = β(r), and ε′M is defined in Lemma 11.6.
Let α ∈ HomS(SS,MS) and r ∈ R. Then we have

ε′M(ξHomS(SS ,MS)(α⊗ r)) = ε′M(α⊗ ṙ) (def. of ξHomS(SS ,MS))

= α(ṙ) (def. of ε′M)

= ζM(α)(r) (def. of ζM)

= εM(ζM(α)⊗ r) (def. of εM)

= εM((ζM ⊗R)(α⊗ r)). (def. of −⊗R over morphisms)

13.4. Proposition. The natural transformations ξ : Tf× ⇒ f+T ′ and ζ : f×H ′ ⇒ Hf+

defined in the previous propositions are natural isomorphisms.

Proof. We will prove that ξM is bijective for every MS. For all m ∈M and s ∈ S we can
write s = s′ṙ for some s′ ∈ S and r ∈ R, because SR is firm and in particular SR = S.
So, in M ⊗S S, we have

m⊗ s = m⊗ s′ṙ = ms′ ⊗ ṙ = ξM (ms′ ⊗ r) .
This proves that ξM is surjective.

Suppose that ξM(m1 ⊗ r1) = ξM(m2 ⊗ r2), where m1,m2 ∈ M and r1, r2 ∈ R. Then
m1⊗ ṙ1 = m2⊗ ṙ2 in M ⊗S S. Applying the mapping µ′M we obtain m1ṙ1 = m2ṙ2 in MS.
Then, for every r ∈ R,

(m1 ⊗ r1)r = m1 ⊗ r1r = m1ṙ1 ⊗ r = m2ṙ2 ⊗ r = m2 ⊗ r2r = (m2 ⊗ r2)r

in M ⊗R R. By [11, Theorem 2.10], ξM is a monomorphism in FActR. As a surjective
monomorphism, it must be an isomorphism due to Lemma 11.5.

Finally, ζ is a natural isomorphism because of the semigroup theoretic analogue of
Lemma 6.4.

14. Main theorem for semigroups

We define pairs of compatible concrete functors similarly to the case of rings and we prove
that they are in one-to-one correspondence with firm homomorphisms.

14.1. Definition. Let R and S be firm semigroups. A pair of compatible concrete
functors is a pair of concrete functors

F : FActS // FActR and G : CActS // CActR

which satisfies compatibility conditions C1–C4.

Recall that if MS is a right S-act, then HomS(SS,MS) is a right S-act with the action

(hs)(t) := h(st), (8)

h ∈ HomS(SS,MS), s, t ∈ S. Also HomR(RR, F (M)R) is a right R-act with a similarly
defined action. The main theorem for semigroups is the following.
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14.2. Theorem. Given firm semigroups R and S, there is a bijection between the fol-
lowing sets:

1. The pairs of compatible concrete functors

F : FActS // FActR and G : CActS // CActR.

2. The pairs of compatible concrete functors

F : SFAct //
RFAct and G : SCAct //

RCAct.

3. The firm semigroup homomorphisms R // S.

The bijection is given by the restriction of scalars.

Proof. The condition (3) is symmetric, therefore we only need to see the bijection be-
tween (1) and (3). Let f : R // S be a firm semigroup homomorphism. By Proposi-
tion 12.4, we have a concrete functor f+ : FActS // FActR and by its dual we have a
concrete functor f× : CActS // CActR. The compatibility conditions have been verified
in our previous propositions.

Conversely, suppose we have a pair of compatible concrete functors F : FActS //FActR
and G : CActS // CActR. We will give the proof in several steps.

1. If we apply the compatibility condition C3 to the firm act SS, idS ∈ HomS(SS, SS)
and r ∈ R, then we obtain that

τ ′S(ξHomS(SS ,SS)(idS ⊗ r)) = τS((ζS ⊗R)(idS ⊗ r)) = ζS(idS)(r).

(Observe that idS = G(idS), τ ′S = F (τ ′S) and SR = F (S)R, because F and G
are concrete functors.) This common value will be called f(r) and the mapping
f := ζS(idS) : R // S (which is actually a right R-homomorphism) will be the
candidate to be the firm semigroup homomorphism.

2. For every MS ∈ FActS, m ∈M and r ∈ R, we are going to prove that mr = mf(r).

Consider the S-homomorphism λ′M(m) : SS //MS given by λ′M(m)(s) = ms and
the commutative diagram induced by the naturality of ε′ and ξ:

MS.

HomS(SS,MS)⊗S S

G(HomS(SS,MS))⊗R R

SS

HomS(SS, SS)⊗S S

G(HomS(SS, SS))⊗R R

ξHomS(SS ,SS) ξHomS(SS ,MS)

λ′M (m)

ε′Mε′S

HomS(S, λ′M (m))⊗R

HomS(S, λ′M (m))⊗ S
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We calculate:

mf(r) = λ′M(m)(f(r)) (def. of λ′M(m))

= λ′M(m)(ε′S(ξHomS(SS ,SS)(idS ⊗ r))) (def. of f(r))

= ε′M(ξHomS(SS ,MS)(λ
′
M(m)⊗ r)) (comm. of the diagram above)

= εM((ζM ⊗R)(λ′M(m)⊗ r)) (condition C3)

= εM(ζM(λ′M(m))⊗ r) (def. of ζM ⊗R)

= ζM(λ′M(m))(r) (def. of εM)

= λF (M)(m)(r) (condition C1)

= mr. (def. of λF (M)(m))

3. For every MS ∈ CActS, m ∈M and r ∈ R, we are going to prove that mr = mf(r).

Consider the canonical S-isomorphism η′M : M // HomS(S,M ⊗S S) given by
η′M(m)(s) = m ⊗ s. Applying the naturality of ζ to the morphism η′M(m) :
SS //M ⊗S S in FActS we obtain the commutative diagram

HomR(R,F (S)) HomR(R,F (M ⊗S S))

HomS(S, S) HomS(S,M ⊗S S)

ζS

HomS(S, η′M (m))

HomR(R, η′M (m))

ζM⊗SS

.

The commuativity of this diagram over the element idS ∈ HomS(S, S) gives

ζM⊗SS(η′M(m)) = η′M(m) ◦ ζS(idS) = η′M(m) ◦ f (9)

because of the definition of f made in step 1. From condition C4 we know that
ζM⊗SS ◦G(η′M) = HomR(R, ξM) ◦ ηG(M). Then we have

mf(r) = µ′M(m⊗ f(r)) (def. of µ′M)

= µ′M(η′M(m)(f(r))) (def. of η′M(m))

= µ′M(ζM⊗SS(η′M(m))(r)) (by (9))

= µ′M(HomR(R, ξM)(ηG(M)(m))(r)) (condition C4)

= µ′M(ξM(ηG(M)(m)(r))) (def. of HomR(R, ξM))

= µ′M(ξM(m⊗ r)) (def. of ηM)

= µG(M)(m⊗ r) (condition C2)

= mr. (def. of µG(M))
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4. f is a semigroup homomorphism. For all r, r′ ∈ R we have

f(rr′) = f(r)r′ (f = ζS(idS) is a right R-homomorphism)

= f(r)f(r′). (step 2 applied to SS ∈ FActS)

5. f is a firm semigroup homomorphism. We have seen in steps 2 and 3 that the
functors F : FActS // FActR and G : CActS // CActR are the restriction of scalars
functors of the semigroup homomorphism f . Hence Proposition 12.4 and its left-
right dual version say that f is a left and right firm semigroup homomorphism.

Finally we prove the one-to-one correspondence. Denote the set in (1) by X and the
set in (3) by Y . Let (F,G) be a pair of compatible concrete functors. By X // Y it is
mapped to the semigroup homomorphism f = ζS(idS). Since F and G are the restriction
of scalars funtors induced by f , we receive back the pair (F,G) with the map Y // X.
Thus the composite X // Y //X is the identity map.

We prove that also the composite Y //X // Y is the identity map. Let f : R // S
be a firm semigroup homomorphism in Y . It is mapped to a pair (F,G) of compatible
restrictions of f ∗ : ActS //ActR. This pair is mapped to a firm semigroup homomorphism
g := ζS(idS). We need to show that f = g. Take r ∈ R and factorise it as r = r1r2 where
r1, r2 ∈ R. (Since R is firm, it is also factorisable.) Then

f(r) = f(r1r2) (r = r1r2)

= idS(f(r1)f(r2)) (f is a semigroup homomorphism)

= (idS · f(r1))(f(r2)) (by (8))

= (idS · r1)(f(r2)) (right R-action of HomS(SS, SS))

= ζS(idS · r1)(r2) (by (7))

= (ζS(idS)r1)(r2) (ζ is an R-homomorphism)

= ζS(idS)(r1r2) (R-action of HomR(RR, SR))

= g(r). (g = ζS(idS), r = r1r2)

15. The category of firm semigroups

Obviously, the identity morphism idS of a semigroup S is right firm (or firm) if and only if
S is firm. To obtain a category, we must show that right firm homomorphisms compose.

15.1. Lemma. The composition of right (left) firm semigroup homomorphisms between
firm semigroups is a right (left) firm semigroup homomorphism.
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Proof. Let f : R // S and g : S // T be right firm semigroup homomorphisms. The
composition g ◦ f : R // T is a semigroup homomorphism. By Proposition 12.3,

MT ∈ FActT =⇒ g∗(MT ) ∈ FActS =⇒ (f ∗ ◦ g∗)(MT ) = f ∗(g∗(MT )) ∈ FActR.

But f ∗ ◦ g∗ = (g ◦ f)∗, so the implication 3 ⇒ 1 in Proposition 12.3 yields that g ◦ f is a
right firm homomorphism. Using a symmetric argument, we get the result on the left.

This lemma means that we may consider a category, where objects are all firm semi-
groups and morphisms are right firm (or left firm, or firm) homomorphisms. This category
will be considered in the next theorem.

15.2. Theorem. The category of monoids (with monoid homomorphisms) is a full sub-
category of the category of firm semigroups with right firm semigroup homomorphisms.

Proof. Suppose that R and S are monoids and f : R //S is a monoid homomorphism.
Then, clearly, S = Sf(R), and sf(r) = s′f(r′) implies

s⊗ r = sr ⊗ 1R = sf(r)⊗ 1R = s′f(r′)⊗ 1R = s′r′ ⊗ 1R = s′ ⊗ r′

in S⊗RR for all s, s′ ∈ S and r, r′ ∈ R. By Lemma 11.2, f is a right firm homomorphism.
Thus the category of monoids is a subcategory of the category of firm semigroups.

To prove that it is a full subcategory, consider monoids R and S and a right firm
semigroup homomorphism f : R // S. We have to check that f(1R) = 1S. In order
to prove that, notice that 1S ∈ S = Sf(R), so there exist r ∈ R and s ∈ S such that
1S = sf(r). Therefore we have

1S = sf(r) = sf(r1R) = sf(r)f(1R) = 1Sf(1R) = f(1R).

Different sources define a reflective subcategory A of a category B in different ways.
Some of them (like [3, Definition 3.5.2]) require A to be a full subcategory of B, some
(like [13, page 91] or [1, Definition 4.16]) do not. In our situation we obtain a reflective
subcategory which is full.

15.3. Corollary. The category of firm semigroups with right firm semigroup homomor-
phisms is a full reflective subcategory of Mon.

Proof. For every firm semigroup R we can consider the monoid R1 with externally
adjoined identity 1 and the inclusion mapping ι : R // R1. If f : R // S is a right firm
semigroup homomorphism, then putting g(1) := 1S and g(r) := f(r) for every r ∈ R
we obtain a monoid homomorphism g : R1 // S, which is right firm by Theorem 15.2.
Clearly gι = f and g is unique with this property.
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16. Examples of firm homomorphisms

In this section we will give some examples of firm homomorphisms between semigroups.
We will use Lemma 11.2 for checking right firmness.

16.1. Example. Every bijective semigroup homomorphism f : R // S between firm
semigroups is firm.

Due to surjectivity, S = SS = Sf(R). Now suppose that sf(r) = s′f(r′), where
s, s′ ∈ S and r, r′ ∈ R. Using surjectivity, we can find r1, r2 ∈ R such that s = f(r1)
and s′ = f(r2). Since f is a semigroup homomorphism, we have f(r1r) = f(r2r

′), and
injectivity of f yields r1r = r2r

′. Using that R is firm, we conclude that r1 ⊗ r = r2 ⊗ r′
in R ⊗R R. Applying the mapping f ⊗ R : R ⊗R R // S ⊗R R we obtain the equality
f(r1)⊗ r = f(r2)⊗ r′ in S ⊗R R, which is precisely s⊗ r = s′ ⊗ r′, as needed. Thus f is
right firm. A dual argument shows that it is left firm.

16.2. Example. Consider the semigroup S = (Z,+) and its subsemigroup R = N =
{1, 2, . . .}. It is shown in [18, Example 3.1] that the act ZN (with the action (a, n) 7→ a+n)
is firm. Therefore the inclusion mapping f : N //Z is a firm semigroup homomorphism.

16.3. Example. If R is a monoid which is a subsemigroup of a semigroup S and S = SR,
then the inclusion mapping f : R // S is right firm. Indeed,

sr = s′r′ =⇒ s⊗ r = sr ⊗ 1R = s′r′ ⊗ 1R = s′ ⊗ r′

in S ⊗R R.
For example, if R is any monoid and T is any semigroup, then we obtain a semigroup

with such properties if we take S := T tR, define

rt = tr := t

for all r ∈ R, t ∈ T , and preserve the multiplication of R and T .

16.4. Example. Let R be a semigroup with common weak right local units, i.e.

(∀r, r′ ∈ R)(∃u ∈ R)(r = ru and r′ = r′u).

(For example, (Z,min) is such a semigroup.) Then every surjective homomorphism f :
R // S is right firm. Since R is factorisable, also S is factorisable, and hence S = SS =
Sf(R). If sf(r) = s′f(r′) and u is as above, then

s⊗ r = s⊗ ru = sf(r)⊗ u = s′f(r′)⊗ u = s′ ⊗ r′u = s′ ⊗ r′

in S ⊗R R.

16.5. Example. Let S = ({2, 3, 4, . . .}, ·) and let R = S2 be the subsemigroup of positive
composite numbers. Since 2 ∈ S \ SR, we have S 6= SR and the inclusion mapping
f : R // S is not firm.

The next proposition allows to produce firm semigroup homomorphisms from a monoid
homomorphism. It is a semigroup theoretic version of Proposition 10.5.
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16.6. Proposition. Let f : R // S be a monoid homomorphism. Take some nonempty
sets I,Λ and consider the semigroup R = I ×R× Λ with the multiplication

(i, r, λ)(i′, r′, λ′) = (i, rr′, λ′).

and a similar semigroup S = I × S × Λ. The mapping

f : R // S, (i, r, λ) 7→ (i, f(r), λ)

is a firm semigroup homomorphism.

Proof. Note that R and S are Rees matrix semigroups whose sandwich matrix has the
identity element of a corresponding monoid at each position.

Now S = Sf(R), because, for every (i, s, λ) ∈ S,

(i, s, λ) = (i, s1S, λ) = (i, s, λ)(i, 1S, λ) = (i, s, λ)f(i, 1R, λ).

To prove that µS
R

is injective, we suppose that (i, s, λ)f(j, r, κ) = (i′, s′, λ′)f(j′, r′, κ′),

i.e. (i, sf(r), κ) = (i′, s′f(r′), κ′). Then i = i′, κ = κ′ and sf(r) = s′f(r′). In S ⊗R R we
compute:

(i, s, λ)⊗ (j, r, κ) = (i, s, λ)⊗ (j, r, κ)(i, 1R, κ)

= (i, s, λ)(j, f(r), κ)⊗ (i, 1R, κ)

= (i, sf(r), κ)⊗ (i, 1R, κ)

= (i′, s′f(r′), κ′)⊗ (i, 1R, κ
′)

= (i′, s′, λ′)(j′, f(r′), κ′)⊗ (i, 1R, κ
′)

= (i′, s′, λ′)⊗ (j′, f(r′), κ′)(i, 1R, κ
′)

= (i′, s′, λ′)⊗ (j′, r′, κ′).

Observe that if either I or Λ has more than one element, then R and S are not monoids.

16.7. Example. Let R be a left zero semigroup (i.e. a semigroup satisfying the identity
xy = x). Consider the semigroup S := R0 obtained from R by adjoining an external zero
0. We will prove that the inclusion mapping f : R // S is right firm.

The equality S = SR is rather clear. Suppose that sr = s′r′, where s, s′ ∈ S and
r, r′ ∈ R. We have three possibilities.

1. If s ∈ R, then also s′ ∈ R and, moreover, s = s′. Hence, in S ⊗R R,

s⊗ r = ss⊗ r = s⊗ sr = s⊗ s′r′ = ss′ ⊗ r′ = s′s′ ⊗ r′ = s′ ⊗ r′.

2. If s′ ∈ R, then a similar argument works.
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3. If s, s′ 6∈ R, then s = s′ = 0 and in S ⊗R R we have

0⊗ r = 0r ⊗ r = 0⊗ rr = 0⊗ rr′ = 0r ⊗ r′ = 0⊗ r′.

Therefore f is right firm.
We will also show that f is not left firm if R contains at least two different elements

r and r′. We have the equality r0 = r′0. Suppose that r ⊗ 0 = r′ ⊗ 0 in R⊗R S. Then

r = r1u1 u10 = v1s1

r1v1 = r2u2 u2s1 = v2s2

. . . . . .
rnvn = r′un+1 un+1sn = 0

for some ri ∈ R, si ∈ S and ui, vi ∈ R1. Since R is a left zero semigroup, we conclude
that r = r1 = r2 = . . . = rn = r′, a contradiction. Therefore f is not left firm.

With the help of Example 16.7 we can construct examples of right firm ring homo-
morphisms that are not left firm.

16.8. Example. Consider the two element left zero semigroup R = {r1, r2}, that is,
r1r1 = r1r2 = r1 and r2r2 = r2r1 = r2. It is the same semigroup that we have in
Example 16.3. Let the semigroup S = R0 be obtained from R by adjoining an external
zero 0. Consider the inclusion mapping f : Z[R] // Z[S] of semigroup rings. We will
prove that f is right firm. If a1r1 + a2r2 + a30 ∈ Z[S] (a1, a2, a3 ∈ Z), then

a1r1 + a2r2 + a30 = a1r1r1 + a2r2r1 + a30r1 = (a1r1 + a2r2 + a30)r1,

proving that Z[S] = Z[S] ·Z[R]. Suppose that
∑

i xiyi = 0 in the module Z[S]Z[R], where
xi ∈ Z[S] and yi ∈ Z[R]. Then∑

i

(xi ⊗ yi) =
∑
i

(xi ⊗ yir1) =
∑
i

(xiyi ⊗ r1) =
∑
i

(xiyi)⊗ r1 = 0⊗ r1 = 0

in the tensor product Z[S]⊗Z[R] Z[R]. Thus f is a right firm homomorphism of rings.
We will prove that f is not left firm by showing that the mapping

ν : Z[R]⊗Z[R] Z[S] // Z[S], y ⊗ x 7→ yx

is not injective. Note that ν(1r1⊗ 10) = (1r1)(10) = 10 = (1r2)(10) = ν(1r2⊗ 10) in the
left module Z[R]Z[S]. It suffices to show that 1r1 ⊗ 10 6= 1r2 ⊗ 10 in the tensor product
Z[R]⊗Z[R] Z[S].

To this end we consider the tensor product R⊗R S of the R-acts RR and RS and the
free abelian group Z(R⊗RS) on the set R ⊗R S. A straightforward verification shows that
the mapping

φ : Z[R]× Z[S] // Z(R⊗RS) ,

(∑
i

airi,
∑
j

bjsj

)
7→
∑
i,j

aibj(ri ⊗ sj)
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is Z[R]-balanced. By the universal property of the tensor product there exists an abelian
group homomorphism φ : Z[R] ⊗Z[R] Z[S] // Z(R⊗RS) such that φ(y ⊗ x) = φ(y, x) for
every y ∈ Z[R] and x ∈ Z[S]. In particular,

φ(1r1 ⊗ 10) = φ(1r1, 10) = r1 ⊗ 0 6= r2 ⊗ 0 = φ(1r2, 10) = φ(1r2 ⊗ 10)

where the inequality is shown in Example 16.7. Hence the needed inequality 1r1 ⊗ 10 6=
1r2 ⊗ 10 follows.
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[5] J.L. Garćıa, L. Maŕın, Some properties of tensor-idempotent rings, Contemp. Math. 259 (2000),
223–235.
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[18] Ü. Reimaa, V. Laan, L. Tart, Morita equivalence of finite semigroups, Semigroup Forum 102
(2021), 842–860.

Faculty of Computer Science, University of Murcia
Murcia, Spain

Institute of Mathematics and Statistics, University of Tartu
Tartu, Estonia

Email: leandro@um.es
valdis.laan@ut.ee

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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