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SYMMETRIES OF DATA SETS AND FUNCTORIALITY OF
PERSISTENT HOMOLOGY

WOJCIECH CHACHOLSKI, ALESSANDRO DE GREGORIO, NICOLA QUERCIOLI
AND FRANCESCA TOMBARI

ABSTRACT. The aim of this article is to describe a new perspective on functoriality
of persistent homology and explain its intrinsic symmetry that is often overlooked. A
data set for us is a finite collection of functions, called measurements, with a finite do-
main. Such a data set might contain internal symmetries which are effectively captured
by the action of a set of the domain endomorphisms. Different choices of the set of
endomorphisms encode different symmetries of the data set. We describe various cate-
gory structures on such enriched data sets and prove some of their properties such as
decompositions and morphism formations. We also describe a data structure, based on
coloured directed graphs, which is convenient to encode the mentioned enrichment. We
show that persistent homology preserves only some aspects of these collection of enriched
data sets however not all. In other words persistent homology is not a functor on the
entire category of enriched data sets. Nevertheless we show that persistent homology
is functorial locally. We use the concept of set equivariant operator (SEO) to capture
some of the information missed by persistent homology. Moreover, we provide examples
and give ways to construct such SEOs.

1. Introduction

In this article we give an answer to the question: what is persistent homology a functor
of?

We consider data sets given by finite sets of functions on a finite set X with real values.
There are several important consequences of data sets having this form. For example, they
endow X with a pseudometric, enabling us to extract non-trivial homological information
in form of persistent homology, one of the key invariants studied in Topological Data
Analysis. A single measurement does not contain any higher non-trivial homological
information. Sets of measurements, however, do. Thus it is essential that measurements,
on a given set X, are grouped together to form various data sets. In this case persistent
homology becomes a non-expansive (Lipschitz continuous with Lipschitz constant less or
equal to 1) function PHY : ® — Tame([0,00) x R, Vect), assigning to each measurement
in the data set ® a tame vector space parametrized by [0,00) x R. It is important to
notice that the choice of a set of measurements on X affects the pseudometric defined on
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it. One can use this fact to change the metric on X in order to extract more meaningful
information from persistent homology. For example consider X to be a finite sample of
points on a circle. If ® consists of only one function given by the x—coordinate, then
the persistent homology of this measurement is trivial in degrees greater than 0. If we
enlarge the data set by adding to the z—coordinate the function given by precomposing x
with rotation by 90 degrees, then the persistent homology of the function x with respect
to this bigger data set gains a non-trivial homology in degree 1. This illustrates how our
knowledge of an object is affected by the number and the type of measurements done
on it. Furthermore in this example we gain additional information by enlarging the set
of measurements through the action of some of the endomorphisms of X on the existing
measurements. We can then take advantage of these actions to inject geometrical features
of our choice on a given data set. For exhibiting and extracting interesting homological
features of data sets, such actions are therefore important.

A data set ® is naturally equipped with an action of the monoid of its operations
Endg(X), which are endomorphisms of X preserving ® by composition on the right. We
introduce the notion of Grothendieck graph to encode this action and represent it as graph.
Persistent homology turns out to be a functor indexed by this graph, rather than simply a
function. Thus not only persistent homology can be assigned to individual measurements
in a data set, but operations can be used to compare persistent homologies of different sets
of measurements. That is what we call local functorial properties of persistent homology.

Persistent homology also has certain global functorial properties. There are various
ways of representing data in the form of sets of measurements. We might choose different
units or different parametrizations of the domain of the admissible measurements, or
we might need to focus only on certain operations, such as rotations. Furthermore, the
same measurements might be part of different data sets. These are some of the reasons
why it is essential to be able to compare data sets equipped with different structures.
Thus, instead of studying a data set by itself, we introduce the notion of perception pair
encoding intrinsic symmetries of the data set as action of a subset M C Endg(X). A
SEO (set equivariant operator) between two perception pairs (®, M) and (¥, N) is a pair
(a, T') consisting of a map T': M — N and an equivariant (with respect to T') function
a: $ — WU. The use of this kind of operators for the comparison of perception pairs of
data sets has been inspired by [2, 1] , where GENEOs (Group Equivariant Non-Expansive
Operators) are introduced and used for applications to neural networks. The novelty in
our approach is to study equivariance with respect to a set, instead of a group. This
weakening of hypothesis is supported by this need in applications. In fact, the set of
operations that one might want to perform on a data set likely does not form a group in
general; think, for example, about a figure that can be rotated only up to a certain angle
in order not to change its interpretation. As a first step towards the understanding of
such set equivariant operators, we illustrate some cardinal examples and show techniques
to construct them, starting from a collection of generators.

Parallely, SEOs play a fundamental role in describing the functoriality of persistent
homology. In particular, if a SEO is geometric, then there is a comparison map between
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persistent homologies of the perception pairs connected by the SEO. However, if a SEO
is not geometric, such as the change of units SEO, there is no direct comparison of per-
sistent homologies of the involved perception pairs. Such SEOs therefore exhibit diverse
homological features of data sets enhancing the analysis. This suggests complementarity
of such operators and persistent homology for a geometric analysis of a data set. Con-
sider the change of unit as an example. If we think about measurements as real-valued
functions, the change of unit, in general, is the SEO obtained by composing them with
a given real valued function defined on the real numbers. Multiplication by —1 is an
example of such SEO. It has the effect of turning the sub-level sets persistent homology
of a measurement into its super-level sets persistent homology, leading, in general, to a
completely different information about the data set. The outcome consists of two different
points of view on the same object, that are not functorially comparable, but together may
enhance the accuracy of the analysis of the object of interest.

2. Data sets

In this article, a data set is given by a finite set of real valued functions on a finite set X,
also called measurements:

d={p: X >R|i=1---,m}

The domain of the data set &, dom(®), is the set X, which is the domain of all the
functions in ®. Without additional hypothesis, the collection of such data sets is just a
subcategory of the category of sets. Our purpose is to add more intricate, but meaningful,
structure to this setting based on the metric that the measurements of the data set induce
on the set X.

In this most primitive landscape, however, we can already perform products and co-
products. Let ¢: X — R and ¢: Y — R be functions. Define ¢ +1: X [[Y — R to be
the function that maps z in X to ¢(x) and y in Y to ¢(y). The coproduct of two data
sets ® and ¥, denoted by ® [[ ¥, is defined to be the data set given by the measurements
{0+0|dpedU{0+¢ | € ¥} on X][[Y. Their product, denoted by ® x U, is
defined to be the data set given by the measurements {¢ + ¢ | ¢ € ® and ¢ € ¥} on
X]JY. The functions:

&) )\)Ké\/\O
IR
Yy
% -

satisfy the following universal properties, which justify the names coproduct and product:

e for any data set II, and any two functions a: ® — Il and : ¥ — II, there is a
unique function p: ® [[ ¥ — II for which ping = a and ping = 5;
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e for any data set II, and any two functions a: I — & and §: II — W, there is a
unique function p: II — ® x ¥ for which prypu = o and pryp = S.

Let f: R — R be a function. By composing with f, a data set ® is transformed into
a new data set f® := {f¢ | ¢ € ®}. This operation is called change of units along
f. The symbol f—: & — f® denotes the function mapping ¢ to f¢. As the following
example shows, f— may not be a functor. Let f: R — Rmap {r € R|r <0} to —1 and
{re R |r>0}tol. Consider X = {z1,22}, two data sets {1,2} and {—1,1} given by
the constant functions —1,1,2: X — R, and a function a: {1,2} — {—1,1} mapping 1
to —1 and 2 to 1. Then f{1,2} = {1} and f—: {—1,1} — f{—1,1} is the identity. Thus
there is no function 5: f{1,2} — f{—1,1} making the following diagram commutative:

1,2y —— r{1,2} = {1}

ol T

(—1,1} 2% 11 ={-1,1}

Consequently, the association f— is not a functor. If f is invertible, then f—: & — f® is
a bijection whose inverse is given by f~!—. Thus, f— is a functor and 8 = (f—)a(f~'-).
Changing the units along any function preserves products and coproducts i.e., f(®]] V)
is isomorphic to f(®)[] f(¥), and f(P x V) is isomorphic to f(P) x f(¥). A similar
reasoning is used in [7] to study brain data, in order to obtain results that are invariant
under transformations given by change of units with invertible functions, and in [8] to
study metric spaces that are isometric up to a rescaling of the distance functions.

Let ® be a data set with domain X. By composing a function f: Y — X with the
measurements in ¢, we obtain a new data set ®f = {¢f | ¢ € ¢} with domain Y.
This operation is called domain change along f. The symbol —f: & — ®f denotes the
function that maps ¢ to ¢f. Let fi: Z1 — X and fy: Z3 — Y be two functions. Their
coproduct is f1 [[ fo: Z1[[Z2 — X ]]Y. For any datasets ® and ¥ with dom(®) = X
and dom (V) =Y, the following equalities hold:

@J[wA]] R =2A]] Vs (@ x U)(fi [ fo) = ©fy x Ufo.

3. Metrics and persistent homology

We can think about a data set ® as a subset ® € RXI. Via this inclusion ® inherits
a metric induced by the infinity norm |[v||ec = max{|v;|} on Rl We use the symbol
| — ]| to denote the distance between ¢ and ¢ in ®. The considered data sets are
not just sets anymore but metric spaces. Therefore non-expansive (1-Lipschitz) functions
between data sets play a special role. For example, let f: R — R be a function. If f is
non-expansive, then so is the change of units along f, f—: ® — f®, that maps ¢ to fo¢.
The domain change —h: ® — ®h is non-expansive along any h. Non-expansiveness is an
important assumption to prove some stability results in [2] and it is also reasonable in
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applications, since it is important that these functions between data sets do not alter the
information too much.

By taking all the measurements of ®, we obtain a function [¢1---¢p]: X — R™.
Via this function, X inherits a pseudometric dg induced by the infinity norm on R™.
Explicitly, de(z,y) := maxi<i<m|di(z) — ¢;(y)|. This metric plays a fundamental role as
it permits us to extract persistent homologies (see [3, 6]). In this article, the persistent
homology of a data set ® with coefficients in a field and in a given degree d assigns a
vector space PHJ (¢),., to each measurement ¢ in ®, for every (r,s) in [0,00) x R, and it
is defined as:

PHS(¢),.s := Hy (VR,(¢ < 5,dg)) , where:

o ¢ <s5:= ¢ (—00,s];

e VR, (¢ < s,dg) is the Vietoris-Rips complex whose simplices are given by the
subsets 0 C (¢ < s) of diameter not exceeding r with respect to de;

e H, is the homology in degree d with coefficients in a given field.

If s < andr <7/, then (¢ < s) C (¢ < &) and therefore VR, (¢ < s) C VR (¢ < &).
The linear function induced on homology by this inclusion is denoted by:

PH?(QS)(T,S)g(r’,s’) : PH?(qb)r,s — PH?(QS)T/,S"

These functions form a functor PHJ (¢) indexed by the poset [0, 00) x R with values in the
category of vector spaces. Since X is finite, PHJ(¢) is tame (see [11]). This means that
the values of PHJ(¢) are finite dimensional, and there are two finite sequences 0 = ry <
7L< <7pin [0,00) and 8o < §; < --- < §; = oo in R such that PHJ (¢), restricted to
subposets of the form [r;, r;11) x (—00, s9) C [0,00) xR and [r;,7;41) X [s;, 5;41) C [0, 00) X
R, is constant. The category of such functors is denoted by Tame([0, c0) x R, Vect). Thus
a data set ® leads to a function assigning to each measurement ¢ its persistent homology
in a given degree:
PHS: & — Tame([0, 00) x R, Vect).

Next, we recall a definition of the interleaving metric in the direction of the vector
(0,1) on Tame([0,00) x R, Vect) (see [9]). Let P and @ be in Tame([0, 00) x R, Vect).

e P and () are e-interleaved if, for all (r, s) in [0,00) x R, there are linear functions
frisi Prs = Qrsye and g, 50 Qs — P, 54+ making the following diagram commute

P(r,s)<(r,s+25)

PT75 > r,s+2¢
QT,V \r,: gr,s+e w+25
Qr,s—e > Qr,s—i—e > Qr,s+3£

Q(r,s—e)<(r,s+2) Q(r,s+2)<(r,s+3¢)

e d(P,Q) :=inf{e € [0,00) | P and @ are e-interleaved}.

The function P, Q — dw(P, Q) is an extended (oo is allowed) metric on the set Tame([0, 00)
xR, Vect) called interleaving metric in the direction of the vector (0, 1).
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3.1. PROPOSITION. The function PHS: ® — Tame([0,00) x R, Vect) is non-expansive
if the set ® is equipped with the metric ||¢ — V|« and the set Tame([0,00) x R, Vect) is
equipped with the interleaving metric in the direction of the vector (0,1).

PROOF. Let ¢,¢: X — R be measurements in ® and € = ||¢ — ¥||~. For every s in R,
the sublevel set ¢ < s is a subset of 1) < s+ ¢, and ¥ < s is a subset of ¢ < s+ . This
translates into the inclusions

VR, (¢ < s,dp) C VR (¥ < s+¢e,dp) VR, (¥ <s,dp) C VR (¢ < s+ ¢,dop)
leading to the functions:

for: PHY(®)rs = PHZ()rspe  Gor: PHG ()5 — PHG ()54

These functions provide a e-interleaving between PHF(¢) and PHJ (<), implying ||¢ —
V]l > duo(PHZ (6), PHG (1)) .

A measurement ¢: X — R can be part of many data sets and its persistent homology
depends on what data set this function is part of. The reason for this is that persistent
homology depends on the metric dg, but the metric, in our setting, depends on the data
set. For example, let X = {1, 29, 23,24} and ¢,1: X — R be measurements defined as

follows:
P(x1) = -1 ¢(x2) =(x3) =0 ¢(xy) =1
Plxs) = =1 (x1) = (xa) =0 P(22) =1
The measurement ¢ is part of two data sets & = {¢} and ¥ = {¢,¢}. The induced

pseudometrics dg and dg on X can be depicted by the following diagrams where the
continuous, dashed, and dotted lines indicate distance 0, 1 and 2 respectively:

In this case PHY(¢),., = 0 for all 7 and s, however:

dimPHY (¢),., =

)

1 Hl1<sandl<r<?2
0 otherwise

To understand persistent homology, it is therefore paramount to understand how it
changes when data sets change and here functoriality plays an essential role.

We now consider an example of function a between data sets given by precomposing
with some function f. This may, for example, model the reduction of resolution of images
in a data set. In this case, the number of pixels is reduced and the domain of the
measurement of the data set changes. Hence, a precomposition with a function from the
new domain to the old domain is considered to form the new data set. Let ® and ¥ be
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data sets consisting of measurements on X and Y respectively. A function a: & — W is
called geometric if there is a function f: Y — X, called a realization of «, making the
following diagram commute for every ¢ in ®:

Y _ a9
fl R
X 4

For example, —f: ® — ®f is geometric, as it is realized by f.

The commutativity of the triangle above has two consequences. First, f is non-
expansive with respect to the pseudometrics dg on X and dgy on Y. Second, for s in
R and ¢ in @, the subset (a(¢) < s) C Y is mapped via f into (¢ < s) C X, i.e., the
following diagram commutes

(@) <s ——= Y _a@)
fl ™~ R
< /

) — X ¢

~

V)

The realization f induces therefore a map of Vietoris-Rips complexes and their homologies:

frs: VR (a(9) < s,dy) — VR,(¢ < s,ds);

PHC\?(O‘(@)T,S PH;{l)((b)r,s
[ [
Hy (VR (a(¢) < s, dy)) —2Y) o g (VR (6 < 5, da)) .

If f,f:Y — X are two realizations of a, then for y in Y, de(f(y), f'(y)) = 0, hence
they are points of the same simplex in the Vietoris-Rips complex, implying that f, ; and
».s are homotopic for all r and s. Consequently, Hy(f,s) = Hy(f;,). The linear function
Hy(f.s) depends therefore only on « and it is independent on the choice of its realization
f. We denote this function by

PHG(¢)rs: PH:?@‘(@)T,S — PHS(gb)m.

These functions are natural in 7 and s and induce a morphism in the category Tame([0, co) x
R, Vect) between persistent homologies:

PH{(¢): PHy (a(¢)) — PH7 (9).

Ifa: ® — Vand §8: ¥ — = are geometric functions realized by f: Y — X and g: Z —
Y, then the composition fa: & — = is also geometric, and realized by the composition



674 CHACHOLSKI, DE GREGORIO, QUERCIOLI AND TOMBARI

fg: Z — X. Consequently, for every measurement ¢ in P, PHS“(d)) = PHg(qﬁ)PHg(a(@),
assuring the commutativity of the diagram

PHY (a(¢)) PHY (¢)
O

PHZ (Ba(9)) PH (a(9)) PH{ ()

PHS (¢)

For any a: & — W, taking persistent homology leads to two functions on :

y Tame([0, 00) x R, Vect)

P
& PHY
U —= Tame(]0,00) x R, Vect)

These functions rarely coincide. However, when « is geometric, we can use the morphisms
PHY(¢): PHJ (a(¢)) — PHS(¢) to compare the values of these two functions on ®. For
non-geometric «, we are not equipped with such comparison morphisms and there is no
reason for such a comparison to even exist. For example, consider the change of unit
along the function f: R — R, f(z) := —2z. Then f—: ® — f& is an isomorphism. In
this case

PHS (¢),s = Hy (VR,(¢ < s,ds)) | (f=)PH]®(¢) = Hy (VR (¢ > —5,da)).

Thus PHY encodes information about sub-level sets of the measurements in ® and ( —)PHZ;@
encodes information about super-level sets of the measurements. These persistent homolo-
gies encode therefore complementary information, analogously to the so called extended
persistence (see [4, 10]).

One example of comparison of persistent homology given by a SEO is the following.
Let X = {x1,29,23} and Y = X U {z4} be two sets. Consider the sets of functions
O = {¢1(x;) =1, p2(x;) = o(i)} and ¥ = {1 (x;) = i, 9%9(x;) = (i)}, respectively with
domains X and Y, where o is the transposition (2 3). Note that M = Endg = {idx, px }
and N = Endy = {idy, py }, where both px and py switch x5 and x3. Consider f: Y — X
where f(z1) = f(z4) = x1, f(x;) = 2y, for i = 2,3. The pair (o, T): (&, M) — (¥, N),
such that a(¢;) = ¢;f = 1; and T(idyx) = idy, T(px) = py, is a GEO. Since « is
geometric, there are induced morphisms in persistent homology. One of these morphisms,
PHS (¢1)rs: PH;I’(a(gbl))m — PH§(¢1)T,5, for example, is the identity for s < 4 for both
d =0 and d =1, and it is the map induced by f, for s > 4:

Kt —— K? y K y K
I
y K

K} —— K? y K

where the rows are the homologies in degree 0 for » = 0,1,2,3, and the vertical maps
are all the identity, except for the first one which is the matrix whose first three columns
form the 3 x 3 identity matrix and the last one is [1 0 0]7.
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4. Actions

To describe symmetries of a data set ® with domain X, we consider operations on X that
convert measurements into measurements. By definition a ®-operation is a function
g: X — X such that, for every measurement ¢ in ®, the composition ¢g also belongs to
®. If g: X — X is such an operation, then, for all ¢ and ¢ in P,

If = Vlloo = maxgex[d(z) — (2)] 2 Maxseim(g)|d(z) = ()| = [log — Vglloo.

Thus the function —g: & — & that maps ¢ to ¢g is non-expansive.

The composition of ®-operations is again a ®-operation, and the identity function idx
is also a ®-operation. In this way the set of ®-operations with the composition becomes
a unitary monoid, called the structure monoid of ¢, and denoted by:

Ende(X) ={g: X — X | ¢g € ® for every ¢ € &} C End(X).

A ®-operation ¢ is invertible if there is a ®-operation h such that gh = hg = idx. Since
® is finite, a P-operation is invertible if and only if it is a bijection. The collection of
invertible ®-operations is denoted by

Aute(X) ={g: X — X | g is a bijection, and ¢g € ® for every ¢ € ®}.

With the composition operation, Aute(X) becomes a group for which the inclusion
Aute(X) C Ende(X) is a monoid homomorphism.
From now on a data set ® will be equipped with an associative right action of the
monoid Ende(X):
® x Ende(X) = @,  (0,9) — o¢g.

A perception pair of ® is a choice of a subset M C Endg(X) (not necessarily a sub-
monoid) encoding the symmetries of the data set ® induced by this action. A perception
pair, or M-perception pair or M-action, is thus denoted by a pair (®,M). The pair
(¢, Ende (X)) is an example of a perception pair called universal. Every choice of an M-
action on ® encodes certain symmetries of ®. Different choices of M can encode different
symmetries of the data set. This flexibility is important in applications. For example,
consider a data set ® of images representing the digits 6, 8 and 9. Particularly, ® can
be thought of as a subset of MNIST. The identity and the rotation by 180 degrees are
admissible transformations of the domain because they associate an object of the data set
to another one in the same data set.

A perception pair (®, M) is called a monoid perception pair if M C Endg is a
submonoid, containing the identity element. If (®, M) is a perception pair, we use the
symbol (®,(M)) to denote the monoid perception pair where (M) C Endg(X) is the
submonoid generated by M. If a submonoid M C Endg(X) is also a group, then (®, M)
is called a group perception pair. The perception pair (P, Aute (X)) is an example of
a group perception pair called universal. A perception pair (¢, M) for which any element
g in M is a bijection is called group-like perception pair. For group like perception
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pairs (®, M) the finiteness of X implies that the monoid (M) is in fact a subgroup of
Aute(X). Thus any group-like perception pair (®, M) leads to a group perception pair
(@, (M)

Let (®, M) be a perception pair. For a subset Q C ®, the symbol QM denotes the
set of all measurements in ® which either belong to 2 or are of the form wgy - - - g, for
some w in §2 and some sequence of elements ¢;,...gx in M. If QM = &, then () is said
to generate the perception pair (®, M). In the case (¥, M) is a monoid perception pair,
then any element in QM is of the form wg for some w in 2 and ¢g in M. Note that
QM = Q(M) for every perception pair (¢, M).

If ¢ belongs to oM := {¢} M, then 1) is said to be a deformation of ¢. If (&, M)
is a group perception pair, then the relation of being a deformation is an equivalence
relation. For a general perception pair, however, being a deformation can fail to be even a
symmetric relation. Two measurements in ® are said to be connected if they are related
by the equivalence relation generated by the relation of being a deformation: ¢ and ¥
are connected if either ¢ is a deformation of ¢ or v is a deformation of ¢. The symbol
®/M denotes the partition of ® induced by this equivalence relation generated by the
deformation of the elements of ®. We refer to ®/M as the quotient of the perception
pair (®, M). The partitions ®/M and ®/(M) coincide. If (P, M) is a group perception
pair, then ®/M coincide with the orbit partition of the usual group action of M on &.
Let (®, M) be a perception pair. For a measurement 1 in @, the symbol [¢)] denotes the
equivalence class in ®/M containing v. Explicitly, [¢] is the subset of ® consisting of all
the measurements connected to .

A perception pair (®, M) is called transitive if all the elements in ® are connected
to each other. For example, let M be a submonoid of End(X). For a given function
¢: X — R, define a data set ¢M = {¢pg | ¢ € M} to consist of all functions of the
form x — ¢(g(z)) for all g in M. Then every g: X — X in M is a ¢ M-operation. The
obtained perception pair (¢M, M) is transitive. Any transitive group perception pair is
of such form. For all measurements ¢ in any perception pair (®, M), the perception pair
([¢], M), with M C Endp(X), is transitive. Any transitive perception pair is of this
form.

Let (®, M) be an perception pair. A subset 2 C ® is called independent if no
element in  is a deformation of any other element in €2, explicitly: w & w'M for all
w#w in Q.

A basis of (¢, M) is an independent subset 2 C ® such that QM = & (Q generates
(@, 1)),

Two measurements ¢ and ¢ are called indistinguishable if i) is a deformation of
¢ and ¢ is a deformation of 1. If (&, M) is a group perception pair, then ¢) and ¢ are
indistinguishable if and only if ¥ = ¢g for some ¢ in M, i.e., if ¢ is a deformation of ¢.

4.1. PROPOSITION.

1. Fvery perception pair has a basis.
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2. Let 2,8 C @ be two bases of an perception pair (O, M). Then there is a bijection
o: Q — Q such that w and o(w) are indistingishable for every w in €.

PrROOF. (1): Let (®,M) be a perception pair. Choose 2 C ® to be an independent
subset for which QM is maximal. The existence of €0 is guaranteed by the finiteness of
®. We claim that QM = & and hence (2 is a basis. If this is not the case, consider ¢ in
O\ QM. Define ' ={p}U{w e Q| w & {Y}M}. Then Q'M contains €2 and hence QM.
It also contains 1. Since ' is independent, we get a contradiction to the maximality of
QM , and thus the claim holds.

(2): Let w be in Q. Since QM = & = Q'M, there is w’ in Q' such that w € W' M. Let
wy in Q be such that w' € wiM. Then w € W' M C w;M, and hence w = w; by the
independence of 2. The desired bijection is then given by w — ', n

According to Proposition 4.1, any two bases of a perception pair have the same number
of elements. We define the dimension of a perception pair to be the cardinality of its
bases. For example, a transitive group perception pair has dimension 1. In fact for a
transitive group perception pair any single measurement forms a basis. More generally,
the dimension of a group perception pair (®, M) equals the cardinality of ®/M. In this
case  C @ is a basis if and only if, for every equivalence class [¢] in /M, the intersection
QN [¢] has only one element. Since being a basis depends only on the monoid (M), the
dimension of a group-like perception pair (®, M) equals also the cardinality of /M, and
similarly a subset Q2 C ® is a basis if and only if, for every equivalence class [¢] in the
partition ® /M, the intersection 2N [¢)] has only one element.

The dimension of a transitive monoid perception pair can be bigger than 1. For exam-
ple, let X = {x1, x5, 23} and consider functions ¢, @9, d3: X — R and g1, ¢92,93: X — X
defined as follows:

¢1(9€1) =2 ¢2(331) =2 ¢3($1) =1 91(1’1) = T2 92(351) = T2 93(351) =1
G1(w2) = 2 | do(22) = 2 | ¢3(22) = 2 | g1(72) = 22 | g2(72) = T2 | g3(T2) = 2
P1(z3) = 3 | Pa(w3) = 2 | ¢3(w3) =2 | gi(x3) = 23 | ga(3) = 22 | g3(w3) = 22

The compositions ¢;g; and ¢;g; are described by the following tables:

g1 | 92| 93 g1 | 92| g3
9191|9292 O1| Q1| P2 | P2
92192 | 92 | 92 Q2 | P2 | P2 | P2
93| 92| 92|93 O3 | Q2| P2 | O3

Thus the functions g, g2, and g3 are ® := {¢1, P2, ¢3}-operations. Furthermore the
subset M := {id, g1, 92,93} C Ende(X) is a submonoid. The perception pair (®, M) is
a transitive monoid perception pair. Since the set {¢1, ¢3} is independent and generates
(®, M), it is a basis. Thus (®, M) is an example of a transitive monoid perception pair
of dimension 2.
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5. Perception space

To compare perception pairs of various data sets we are going to use SEOs (set equiv-
ariant operators). A SEO from a perception pair (®, M) to another (¥, N), denoted as
(o, T): (P, M) — (¥, N), is a pair of functions (a: & — ¥, T: M — N) for which the
following diagram commutes:

d x M — & x Endg(X) 2% ¢

x| la

U x N —— U x Endg(Y) 2%

Explicitly, for ¢ in ® and g in M, it holds a(¢g) = a(¢)T(g). This implies that, for ¢ in
® and a sequence ¢y,..., g, in M,

a(ogr - gr) = a(@)T(g1) - - T(gr)-

Be, however, aware that, in general, there may not be a homomorphism 7': (M) — (N)
of monoids which extends T': M — N and makes the following diagram commute

O XM —— & x (M) —— & x Endg(X) 28

o
va| ol J
v

Ux N e—s Ux(N) —— U x Endg(Y) 280

A SEO between monoid perception pairs («,T): (®, M) — (¥, N) is called a MEO
(monoid equivariant operators) if T: M — N is a monoid homomorphism. A MEO
between group perception pairs is also called a GEO (group equivariant operators).

Let (ag, Tp): (Po, My) — (P1, My) and (v, T1): (P1, My) — (Pg, Ms) be SEOs. Then
the compositions (ajag, 717p) form a SEO. Furthermore, (idg,idys): (®, M) — (P, M) is
also a SEO. The composition of SEOs is an associative operation and defines a category
structure on the collection of perception pairs with SEOs as morphisms. This category is
called perception space.

A SEO (o, T): (&, M) — (¥, N) is an isomorphism if and only if both of the functions
a and T are bijections. Isomorphisms preserve independence and being a basis:

5.1. PROPOSITION. If (a, T): (®, M) — (¥, N) is an isomorphism, then a subset Q C ®
is independent or a basis if and only if its image () C U is independent or a basis.

PROOF. Assume « and T are bijections. This assumption imply that ¢, belongs to ¢, M if
and only if a(¢;) belongs to a(¢2)N. It follows that two elements in ® are (in)dependent
if and only if their images via « are (in)dependent in W. By the same argument, QM = @
if and only a(Q)T' (M) = a(P). "
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According to Proposition 5.1 two isomorphic perception pairs have the same dimen-
sion.

The universal perception pairs (®, Endg (X)) and (P, Aute(X)) are special in the
perception space. For any (®, M), the pair (id,i: M < Endg(X)) defines a SEO
(b, M) — (P,Ends(X)) called canonical. If (®, M) is a group perception pair, then
the pair (id,i: M — Aut,(X)) defines a GEO (®, M) — (@, Aut, (X)) also called canon-
ical.

The rest of this section is devoted to present three ways of constructing SEOs.

Change of units. Choose a function f: R — R. For any perception pair (&, M),
consider the data set f® (see Section 2). If g is a ®-operation, then it is also a f®-
operation. Thus there is an inclusion Ende(X) C Ende(X), which is an equality if f is
invertible, therefore we have a perception pair (f®, M). If (®, M) is a monoid or a group
perception pair, then so is (f®, M). The pair (f—,idy): (®, M) — (f®, M) is a SEO
called the change of units along f.

Assume now that f is invertible. If (o, T): (&, M) — (¥, N) is a SEO, then the pair of
functions ((f—)a(f~'=),T) forms a SEO between (f®, M) and (f¥, N). The assignment
C(f): (a,T) = ((f=)a(f'=),T) is a functor from the perception space to itself which
is also called change of units along f. It is an equivalence of categories. Indeed,

CHC( (@, M))
CAHCH (e, 1))

CNS 1<I> M) = (@, M)
CHF =)alf=),T))
(f=)=)a(f=)(f71=), T) = (o, T),

and the same holds for C(f~')C(f). The SEOs (f—,idy): (@, M) — (f®, M), for all
perception pairs (®, M), form a natural transformation between the identity functor on
the perception space and the change of units along f functor.

Domain change. Let (¢, M) and (¥, N) be perception pairs of data sets consisting
of measurements on X and Y respectively. A SEO («,T): (&, M) — (¥, N) is called
geometric if there is a function f: Y — X, called a realization of («,T'), making the
following diagram commute for every ¢ in ® and g in M

For example, let (®, M) be a perception pair of a data set consisting of measurements
on X. Then the SEO (idg,idps): (&, M) — (P, M) is geometric. The identity function
idx: X — X is one of its realizations.

Let Y C X have the following property: ¢(y) belongs to Y for all y in Y and ¢ in
M. Consider the data set ®|y given by the domain change along the inclusion Y C X.
The restriction of g to Y is a ®|y-operation for every g in M. We use the symbol
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Ty : M — Endg, (Y) to denote the function that maps g in M to the restriction of g to
Y. The perception pair (®|y, Ty (M)) is called the restriction of (®, M) to the subset
Y. The pair (& — ®|y,Ty) forms a geometric SEO. The inclusion iy : Y < X is one of
its realizations.

Let f: Y — X be a bijection. Consider the data set ® f. For any g in M, the function
flgf: Y =Y is a @ f-operation. Define T: M — Endg(Y) to map g in M to f~gf.
The perception pair (®f,T(M)) is called the domain change of (®, M) along f. The pair
(—f:® — &f,T) forms a geometric SEO and f: Y — X is one of its realizations.

Extending from a basis. SEOs can be effectively constructed using bases.

5.2. PROPOSITION. Let (&, M) and (¥, N) be perception pairs and 2 be a basis of (P, M).
Then two SEOs (a,T), (!, T"): (P, M) — (¥, N) are equal if and only if T = T and
a(w) = o (w) for any w in .

PROOF. The only non trivial thing to prove in the statement of the proposition is that
a = o when their restrictions to €2 are equal. Assume T'=T" and a(w) = o/(w) for any
w in €. Since 2 generates (®, M), any element in ® is of the form ¢ = wg; - - - g for some
w in  and a sequence of elements gi,...,gr in M. The assumption and the fact that
(a,T) and (o, T) are SEOs imply:

a(¢) = alwgr - gk) = w(w)T(g1) - T(gx) =

= (w)T(g1) -+ T(gr) = &/ (wg1 -~ gr) = ().
Consequently a = o/. n

According to Proposition 5.2, a SEO is determined by what it does on a basis of the
domain. This is analogous to a linear map between vector spaces being determined by its
values on a basis. However, unlike linear maps, we cannot freely map elements of a basis
of a perception pair to obtain a SEO, but we need to respect certain additional relations.
If (&, M) is a perception pair, a relation between measurements ¢ and ¢ in ® is a pair
of sequences ((g1, ..., 9x), (h1,...,Rh)) of elements in M for which ¢g; - - - gr. = vhy - - - Iy.

5.3. PROPOSITION. Let (®, M) and (U, N) be perception pairs, Q2 be a basis of (P, M),
and a: Q — VW and T: M — N be functions.

1. Assume that for every relation ((g1,--.,9x), (h1,...,h)) between any two elements
w, W in Q, the pair ((T'(g1),-.-,T(gx)), (T(h1),...,T(l))) is a relation between
a(w) and a(w') in V. Under this assumption, there is a unique SEO, (o, T): (®, M)
— (U, N), for which the restriction of a: ® — W to Q) is a.

2. Assume (P, M) and (V,N), are monoid perception pairs, T is a monoid homo-
morphism, and if wg = W'h for some w,w’ in Q and g,h in M, then a(w)T(g) =
a(W)T(h). Then there is a unique MEO, (a,T): (&, M) — (¥, N), for which the
restriction of a: ® — U to ) is a.
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3. Assume (&, M) and (¥, N) are group perception pairs, T is a group homomorphism,
and if w = wg, for some w in ) and g in M, then a(w) = a(w)T(g). Then there is
a unique GEO, (a,T): (&, M) — (V, N), for which the restriction of a: ® — ¥ to

Q s a.
PROOF. Since the proofs are analogous, we illustrate only how to show statement (2). For
every ¢ in @, there exist (not necessarily unique) w in  and ¢ in M such that ¢ = wg.
The assumption implies that the expression a(w)7T'(g) depends on ¢ and not on the choices
of w and ¢ for which ¢ = wg. Thus by mapping ¢ in ® to a(w)T'(g) in ¥, we obtain a
well defined function also denoted by a: ® — W. The pair («,T") is the desired MEO.
The uniqueness is a consequence of Proposition 5.2. [

An example of Proposition 5.3.3 is the following. Assume (®, M) is a transitive group
perception pair and (W, N) is a group perception pair. Choose an element w in ¢ and
recall that any such element is a basis of (&, M). If T: M — N is a group homomorphism,
then any GEO (o, T): (&, M) — (¥, N) is uniquely determined by the element a(w) in
U. Thus by choosing a basis element w in ®, we can identify the collection of GEOs of
the form (o, T): (®, M) — (¥, N) with a subset of U. To describe this subset explicitly,
we apply Proposition 5.3.3. It states that there is a GEO (o, T): (®,M) — (¥, N)
(necessarily unique) such that a(w) = 9 if and only if the following implication holds:
if w = wg, then p = YT (g). Since the collection M, = {g € M | w = wg} is the
isotropy subgroup of w consisting of all the elements in M that fix w, GEOs of the form
(o, T): (&, M) — (¥, N) can be identified with the subset of all the elements in ¥ whose
isotropy group contains T'(M,,).

6. Decomposition

Let (®, M) be a perception pair of a data set ®. Consider its quotient ®/M, which is a
partition of ®, and the perception pairs ([¢)], M) for every equivalence class [¢)] in ®/M
(see Section 4). Let X be the domain of ®. Recall that the domain of the data set
[ yjca /%] is given by the disjoint union [ cq,5, X, and that this data set consists of
functions [ce,5s X — R whose restrictions to all but one summands X in [cq/, X is
the 0 function and the restriction to the remaining summand belongs to the corresponding
equivalence class of the partition ®/M. Define:

M= 1] ¢« JI X= ] ¥ | geMm
[Wlee/M  [gle®/M [Y]e®/M
Then M’ C Endyy, o wl (L yjea/n X)- We call (Iyeq/ar[¢)], M) the diagonal percep-
tion pair. Define T: M — M’ to map g: X — X in M to HM@/Mg in M’. Define
a: ® = [Tece/n ] to map ¢ to the function [] g/, X — R whose restriction to
the summand X corresponding to the equivalence class [¢] is ¢ and that maps all other
summands to 0.
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6.1. PROPOSITION. The SEO (a,T): (2, M) = (Ijyca/m[¥], M') is an isomorphism.

PROOF. By definition 7" and « are injective and surjective. Since ¢ and ¢g are in the same
equivalence class, following the indexing of the disjoint unions for a(¢g) and a(¢)T'(g) we
can observe that they are equal, and, hence, that («,T') is a SEO. [

7. Grothendieck graphs

In this section we explain a convenient data structure to encode perception pairs of data
sets.

A Grothendieck graph is a triple (V, M, E') consisting of a finite set V' whose ele-
ments are called vertices, a finite set M whose elements are called colors or operations,
and a subset £ C V x M x V whose elements are called edges, such that, for every vertex
v in V| the following composition is a bijection:

(o} x M xV)NE —— E —— VxMxV 22, M.

This condition assures that, for every v in V and ¢g in M, there is a unique element in
V', denoted by vg, such that (v,g,vg) is an edge in E. For example, let (&, M) be a
perception pair of a data set ®. Define

Eon ={(0,9,9) €2 x M X @ | g =9}

Then the triple (®, M, Eg ) is a Grothendieck graph. We think about this graph as a
convenient data structure representing the perception pair (®, M).

Grothendieck graphs are also convenient to represent SEOs. Define a morphism
between Grothendieck graphs (V,M,FE) and (W, N, F) to be a pair of functions
a:V — W and T: M — N such that, if (v,g,w) belongs to E, then («(v),T(g), a(w))
belongs to F'. Such a morphism is denoted as (a, T'): (V, M, E) — (W, N, F). The compo-
nentwise composition defines a category structure on the collection of Grothendieck graphs
and we use the symbol GGraph to denote this category. If (a,T): (P, M) — (¥, N) is
a SEO, then (a,T): (®,M, Es ) = (¥, N, Ey y) is a morphism between the associated
Grothendieck graphs. By assigning to a SEO (a,T') the graph morphism given by the
same pair (a, T'), we obtain a fully faithful functor from the perception space to GGraph.

Grothendieck graphs can also be used to encode pseudometric information on percep-
tion pairs. A pseudometric on a Grothendieck graph (V, M, E) is a pseudometric d on
V' such that d(v,w) > d(vg,wg) for all v and w in V, and g in M. For example, the
pseudometric ||¢ — ¢||« on @ is a pseudometric on the graph (®, M, Eg ar).

A Grothendieck graph (V, M, E) is said to be compatible with a monoid structure
on M if (v,1,v) is in E, and whenever (vg,go,v1) and (v1,g1,v2) belong to E, then
so does (vg, g190,v2). In this case the composition operation given by the association
(vo, go, v1)(v1, g1, v2) — (vo, 9190, v2) defines a category structure, denoted by Gry,/ V', with
V' as the set of objects and E as the set of morphisms. This category is a familiar



SYMMETRIES OF DATA SETS AND FUNCTORIALITY OF PERSISTENT HOMOLOGY 683

Grothendieck construction [5, 12]. For example, the Grothendieck graph associated with
a monoid perception pair (®, M) is compatible with the monoid structure on M. We
think about Gry;® as an additional categorical structure on the data set ®, where objects
are the measurements in ®, morphisms are triples (¢, g, ¢g), where ¢ is in ®, g is in M,
and the composition of (¢, g, pg) and (¢g, h, pgh) is given by (¢, gh, dgh).

A contravariant functor indexed by a Grothendieck graph (V, M, E) with values
in a category C, denoted by P: (V,M,E) — C, is by definition a sequence of objects
{P(v) | v € V} and a sequence of morphisms {P(vy, g,v1): P(v1) — P(vo) | (vo,g,v1) €
E} in C such that the following holds: if (vg, go, v1), (v1, 91, v2), and (vg, h,v9) are edges
in E, then P(vg, h,v9) = P(ve,g1,v1)P(v1,90,v0). If (V,M,E) is compatible with a
monoid structure on M, then a contravariant functor indexed by (V, M, E) is simply a
contravariant functor indexed by the category Gr, V.

Let (®, M) be a perception pair of a data set ® consisting of measurements on X, and
let (@, M, Eg ) be the associated Grothendieck graph. For every g in M, the function
—g: & — &, mapping ¢ to ¢g, is geometric and realized by g: X — X (see Section 3).
Persistent homology leads therefore to the following collections of objects and morphisms
in Tame([0, 00) x R, Vect) as explained in Section 3:

{PH](¢) | ¢ € @},

{PH,%(¢): PH(¢g) — PHS(8) | (¢,9,09) € Eo} -

These sequences form a functor PHY: (®, M, Eg ) — Tame([0, 00) x R, Vect) also re-
ferred to as the persistent homology functor of the perception pair (®, M).

Let (o, T): (W, N, F) — (V, M, E) be a morphism and P: (V, M, E) — C be a functor.
The following sequences of objects and morphisms in C form a contravariant functor
denoted by P(a,T): (W, N, F') — C and called the composition of (a,T") with P:

{Pla(w)) | we W},

{P(a(wo), T(g), a(wr)): Pla(wr)) = Pla(w)) | (wo, g, w1) € F} .

For example, let (idg,i): (P, M) — (P,Ende(X)) be the canonical SEO (see Section 5).
Consider the induced morphism of the associated Grothendieck graphs:

(id@, ’LM) : ((I), M, Eq>7M) — ((I), El’ldq)(X), E<I>,End<p(X))-
Consider also the persistent homology of the universal perception pair:
PHY: (®,Endg(X), Es pnds(x)) — Tame([0, 00) x R, Vect).

The composition of these two functors coincides with the persistent homology of the
perception pair (&, M):

PHY: (®, M, Eg ;) — Tame([0,00) x R, Vect).
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In this way we obtain a commutative diagram:

(@, Ende(X), Ep Endg (x))

(my \PH;I’

PHY
(D, M, Eg pr) > Tame([0, 00) x R, Vect)

There is no such commutative diagram for arbitrary SEOs. Consider a SEO
(a, T): (&, M) — (¥, N).
We have two functors indexed by the graph (@, M, Eg a):

PH?

/—> Tame([0,00) x R, Vect)

(®, M, Eg )
@ 4
\» (U, N, Ey n) T, Tame([0,00) x R, Vect)

These functors rarely coincide. However, in the case (a,T) is a geometric SEO, the
morphisms PH$(¢): PH} (a(¢)) — PHS(#) (see Section 3), for all ¢ in ®, form a natural
transformation.

8. Conclusions

In Figurel we give a graphical representation of some of the concepts introduced in this
article. Data sets can be equipped with three structures: a pseudometric, a perception
pair describing an action, and a Grothendieck graph. We imagine the perception space as
the collection of all possible perception pairs of data sets, represented by the shaded region
in the figure. Each point in the perception space has a lot of internal structure allowing the
extraction of persistent homology. In this landscape the black arrows represent geometric
SEOs and the grey ones non-geometric SEOs. The main idea is that geometric SEOs
enable us to compare relevant persistent homologies, whereas non-geometric SEOs contain
complementary information to persistence.
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Figure 1: Representation of the space of SEOs. The points correspond to the perception
pairs and the arrows to the SEOs.
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