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ON ENRICHED CATEGORIES AND INDUCED REPRESENTATIONS

JOSHUA A. LESLIE AND RALPH A. TWUM

Abstract. We show that induced representations for a pair of diffeological Lie groups
exist, in the form of an indexed colimit in the category of diffeological spaces.

1. Introduction

Let G be a group. A representation of G may be described as a functor F : G →
VectK, where G is a single-set category with the elements of G forming the arrows of the
category, and VectK is the category of vector spaces over a field K. Any subgroup H of
G is automatically a full subcategory of G, hence the representation of G restricts to a
representation of H. Thus the functor F restricts to a subfunctor on H, which we may
also denote by F .

Now, given a functor T : H → VectK, we consider if T can be canonically extended
to a functor from G to VectK. This process of induction has been defined for a variety of
pairs G,H:

(a) G,H finite groups;

(b) G,H complex analytic groups, withH a closed subgroup of G. This led to the Borel-
Weil theorem and its extensions by Bott and Kostant([Bot57], [Kos61], [Dem76],
[Lur]). Other cases have also been considered, for instance

(c) G,H direct limit groups, with H a closed subgroup of G. In this case both G and
H are infinite dimensional ([Kum02], [DP04]).

We want to consider the concept of induced representations of infinite dimensional Lie
groups using results from enriched category theory and diffeology. We will specifically
deal with the pair of groups G = DG∞

(M) and H = SG∞
(M) defined below.

Our goal is the nonconstructive proof of the following theorem:

1.1. Theorem. Let SG∞
(M) be the regular diffeological Lie group of super symplectic

diffeomorphisms of a supermanifold M . SG∞
(M)is a Lie subgroup of the group of super

diffeomorphisms DG∞
(M); further, there exist induced representations for Hilbert space

representations for these two regular Lie groups.
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We use existing results from enriched category theory to show that the induced rep-
resentation exists, first as a Kan extension, which can be written as an indexed limit.
In order to show that the representation exists, we need to enlarge the category from
that of smooth (super-)manifolds to a more convenient category. We use the category of
diffeological spaces, whose properties we will recall in the following section.

This paper is organized as follows. In Section 2, we recall some useful facts about
Diffeological spaces, and discuss the category of diffeological spaces, which include (super)
manifolds. We also define the two groups in Theorem 1.1 above.

Sections 3 and 4 introduce the main categorical notions: Kan extensions and indexed
limits, and we show that induced representations can be interpreted as Kan extensions,
which can also be interpreted as indexed limits. We collect these facts and prove Theorem
1.1 in Section 5. Section 6 contains some remarks on Diffeological categories and regularity
of (diffeological) Lie groups.

2. Diffeology and Diffeological Spaces

2.1. Diffeological Spaces. The axioms of a diffeological space, or a diffeology on a
set, were set forth by Iglesias-Zemmour [IZ13]. In the definition of a smooth manifold,
we define a maximal atlas consisting of compatible charts on a set X. In a diffeology, we
focus on the maps themselves between coordinate patches of open sets in Rn, n ≥ 0 and
the set X, satisfying three axioms. These maps are called plots of the diffeology, and the
set X with the defined collection of plots is called a diffeological space. The advantage of
considering a diffelogical space is that smooth manifolds have a natural diffeology, and so
form a full subcategory of the category of diffeological spaces.

2.2. Definition. Let X be a set. An n-parametrization of X is defined as a map f :
U → X, where U is an open set in Rn, n ≥ 0. A constant parametrization is a map of
the form f : U → X such that f(u) = x for all u ∈ U .

2.3. Definition. A diffeology D on X is a collection of parametrizations of X satisfying
the following axioms:

(D1) D contains the constant parametrizations.

(D2) If p : U → X is a parametrization such that ∀u ∈ U , there exists a neighborhood V
of u such that p|V is in D, then p itself is in D. In other words, the collection D
satisfies the axioms of a set-valued sheaf.

(D3) Given a parametrization p : U → X in D, if f : V → U is a smooth map, then p ◦ f
is a parametrization in D.

The parametrizations in D are called plots of the diffeology on X and the pair (X,D)
is called a diffeological space.
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2.4. Definition. Let X be a set and F be a collection of parametrizations on X. The
diffeology on X induced by F is the intersection of all diffeologies on X containing F .

2.5. Definition. Let (X,F) and (Y,G) be diffeological spaces. A map f : X → Y is
smooth if f takes plots of the diffeology on X to plots of the diffeology on Y .

A diffeological group is defined naturally, as a group such that the product and inverse
maps are smooth in the sense of diffeology. Since Lie groups (resp. super Lie groups) are
manifolds (resp. supermanifolds), they are diffeological groups.

2.6. Definition. A diffeological space (S, F ) is lattice type (or L-type) when given any
two plots f : M1 → S, g : M2 → S at a point f(x) = g(y), there exists a third plot h
through which the germs of f at x and g at y factor, that is there exists a map h : N → S
with f = h ◦ φ, g = h ◦ γ where φ : M̃1 → N and γ : M̃2 → N are plots such that
M̃i ⊂ Mi, i = 1, 2 are neigborhoods of x and y respectively and φ(x) = γ(y).

All diffeological groups are L-type ([Lau08], Lemma 2.37). The property of being
L-type allows for the definition of the tangent space at the identity, and a diffeological
structure on that space, which gives a diffeological vector space.

2.7. Definition. A diffeological group G is called a diffeological Lie group when TeG is
a diffeological vector space such that

(DL1) For any nonzero vector α ∈ TeG, there exists a smooth real-valued map T : TeG → R
such that T (α) ̸= 0:

(DL2) Every plot of TeG factors smoothly through a smooth linear map of a compact Haus-
dorff topological vector space into TeG.

Let us apply the above definitions to that of supermanifolds. Using the construction
in the paper by Leslie [Les03], we form a super vector space of super dimension m,n. We
use this to define the open sets for the diffeology on super manifolds and super Lie groups.
The parametrizations (and hence the plots) can be adapted similarly.

Let Γ be the Grassmann algebra over R generated by the elements 1 and {ξ}i∈I , where
I is a countably infinite set. In line with the theory of super vector spaces, all ξi are odd,
with degree 1. Let J be the collection of finite subsets of I, ordered by inclusion. Each
homogeneous element of Γ may be expressed as xKξi1ξi2 . . . ξinK

, xK ∈ R, where K ∈ J
and nK is the cardinality of K. We will use the notation in Rogers [Rog07], in which even
homogeneous elements are represented using latin letters and odd homogeneous elements
are represented using Greek letters.

As seen in [Les03], Γ is a super commutative algebra, with ab = (−1)|a||b|ba, where a, b
are elements of Γ, with the degree of elements of Γ extended by linearity from the degree
of homogeneous elements of Γ.

Define V to be the m,n-dimensional superspace Γm
0 ⊕ Γn

1 , where Γ0 is the subspace
of Γ consisting of even elements and Γ1 is the subspace of Γ consisting of odd elements.
Thus

V = Γ0 × Γ0 × · · · × Γ0 × Γ1 × Γ1 · · · × Γ1 (m,n) times.
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We define a topology on V as follows: define the inductive limit topology on Γ, that is
the finest topology such that all inclusion maps ΓK ↪→ Γ are continuous, where ΓK is the
finite dimensional subspace generated by elements ξi1 , . . . , ξinK

, K ∈ J . The topologies
on Γ0 and Γ1 are defined by restricting the inductive limit topology to the even and
odd subspaces of Γ respectively. Finally the topology on V is defined using the product
topology on Γm

0 and Γn
1 .

For the objects under study, we have modified Iglesias’ definition of a diffeological
space as follows: instead of using open sets in n-dimensional space Rn where n ≥ 1, we
consider open subsets of the spaces Γm

0 ⊕ Γn
1 , where m,n ≥ 0.

We use the following definition of a supersmooth (G∞) function from [Les11]:

2.8. Definition. Let V and W be topological graded modules over Γ0. A continuous
map f : V × · · · × V → W is said to be an n-multimorphism if

(M1) f is n-multilinear with respect to the ground field R,

(M2) f(v1, . . . viγ, vi+1, . . . vn) = f(v1, . . . , vi, γvi+1, . . . , vn), where vi ∈ V, 1 ≤ i ≤ n and
γ ∈ Γ0,

(M3) f(v1 . . . vnγ) = f(v1, . . . , vn)γ, vi ∈ V , 1 ≤ i ≤ n, γ ∈ Γ0.

2.9. Definition. Let V and W be topological graded modules over Γ0 and let U ⊆ V be
open in V . A function f : U → W will be called supersmoooth or G∞ when for every
n ≥ 1, there exist continuous maps which are regular k-multimorphisms in the k terminal
variables for each fixed x ∈ U , denoted by Dkf(x; · · · ) : U × V × · · · × V → W , where
k ≤ n, such that the map

Fk(h) := f(x+h)−f(x)−Df(x;h)− 1

2!
D2f(x;h, h)−· · ·− 1

k!
Dkf(x;h, . . . , h), 1 ≤ k ≤ n

satisfies the property that

Gk(t, h) :=

{
Fk(th)

tk
, t ̸= 0

0, t = 0

is continuous at (0, h) in V .

Now, let M be a supermanifold modeled on V = Γm
0 ⊕ Γn

1 , where m and n are fixed.
Thus the charts are G∞ maps from open subsets U of V into M . Then M is automatically
a diffeological space, with the diffeology generated by the (m,n)-charts on M . This
diffeology is by definition the smallest diffeology containing all such charts as plots.

2.10. The category of Diffeological Spaces. Let us denote the category of dif-
feological spaces by D. By definition, D contains the category of smooth manifolds (and
supermanifolds) as a full subcategory. It also has several useful properties outlined below,
as shown by Iglesias [IZ13].
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2.11. Proposition. D is closed under coproducts. For a collection {Xi|i ∈ I} of diffe-
ological spaces, the coproduct of the collection is called the sum of the diffeological spaces
Xi and is denoted ⊔i∈IXi (Iglesias [IZ13], 1.39).

2.12. Proposition. D is closed under products. Just as in the above result, given an

arbitrary collection {Xi|i ∈ I}, the product object is denoted
∏
i∈I

Xi and can be given a

canonical diffeology (Iglesias [IZ13], 1.55).

2.13. Proposition. D is a symmetric monoidal category.

Proof.The product map is derived from the definition of the product object. In addition,
since D is essentially a concrete category, associativity of the product map holds. We
can take any one-point set as a unit object, since all one-point sets are unique up to
isomorphism of diffeological spaces (all plots are constant). The coherence axioms are
clearly satisfied. The symmetry of D is given by the canonical map γ : X × Y →
Y ×X, (x, y) 7→ (y, x).

2.14. Proposition. D is complete with respect to (all small) limits and colimits.

Proof. From Mac Lane ([ML98], Corollary V.2.2), we know that if a category C has
equalizers of all pairs of arrows and all small products, then C is small-complete. In D,
the equalizer of pairs of smooth maps f, g : X → Y is defined to be the subspace Z of
X such that f(x) = g(x) for x ∈ Z. The universal arrow is the canonical inclusion map.
The coequalizer is defined for pairs f, g : X → Y by considering the smallest equivalence
relation E ⊂ Y × Y containing all pairs (f(x), g(x)), for x ∈ X. The coequalizer is the
quotient space Z = Y/E, with the universal arrow given by the canonical projection map.
From the existence of equalizers, coequalizers, coproducts and products, we conclude that
D is complete.

2.15. Proposition. D is Cartesian closed.

Proof. The map ϕ : D(X × Y, Z) → D(X,D(Y, Z)) given by (ϕ(f)(x))(y) = f(x, y) for
f : X × Y → Z is a bijection, and shows that the functor D(Y,−) : D → D is the right
adjoint to the functor −× Y : D → D.

2.16. Remark. The properties of D as a category make it suitable as an enriching
category. This gives us the ability to use the results of Kelly [Kel05] on indexed limits,
indexed colimits and Kan extensions in the case of enriched categories. These ideas are
discussed in the following section.

Now we can define the (super) Lie groups we make use of in the paper.

2.17. The super Lie groups DG∞
(M) and SG∞

(M).
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2.18. Definition. DG∞
(M) is defined to be the group of super diffeomorphisms of M ,

where M is a supermanifold. DG∞
(M) can be made into a diffeological space by applying

the function space diffeology: a map f : U ⊆ DG∞
(M) is a plot if the induced map

F : U × M → M given by F (u,m) = (f(u))(m) is smooth for all u ∈ U . The smallest
diffeology generated by such plots is called the function space diffeology on DG∞

(M).

Finally, let us consider the space SG∞
(M) of super symplectic diffeomorphisms of M ,

defined as follows.
In [Les11], the following vector bundles on M were defined:

• TΓM , which is the associated vector bundle with fiber Γ⊗Γ0 V , where V = Γm
0 ⊕Γn

1

as defined earlier.

• T ∗
ΓM := (TΓM)∗, which is the associated vector bundle with fiber the dual of the

space Γ⊗Γ0 V , Hom(Γ⊗Γ0 V,Γ).

Define the bundle π : ∧pT ∗
ΓM ⊗Γ0 ⊗

q
Γ0
TΓM → M [Les11]. Let ω be a non zero section

of the above bundle and define the Lie algebra s to be the set {X ∈ d |Lx(w) = 0}.
Suppose further that s is a Lie subalgebra of d, where d is the Lie algebra of the group
of superdiffeomorphisms of M . Leslie [Les11] has shown that s is a strongly integrable
diffeological Lie subalgebra of d, which indicates that there exists a regular diffeological
Lie group such that the exponential map is smooth. We shall call this Lie group SG∞

(M).
SG∞

(M) is by definition a subgroup of DG∞
(M).

3. Induced Representations are Kan Extensions

Let A, C and M be small categories. Recall that ([ML98], Chapter X) a right Kan
extension of a functor T : M → A along K : M → C is a functor R = RanKT : C → A
and a natural transformation µ : RK ˙−→T such that for any other right extension S of T
along K and σ : SK ˙−→T , there exists a unique natural transformation ε : S ˙−→R such
that σ = µ ◦ εK : SK ˙−→RK ˙−→T . This gives the following bijection of sets:

AC(S,RanKT ) ≃ AM(SK, T ) (3.1)

This bijection is an adjunction between the functor categories AC and AM. By the
universal property, RanKT is unique up to natural isomorphism.

Dually, a left Kan extension of T along K is a functor L = LanKT : C→̇A and a
natural transformation µ : T ˙−→LK such that for any other left extension S of T along
K and σ : T ˙−→SK, there exists a unique natural transformation ε : L ˙−→S such that
σ = εK ◦ µ : T ˙−→LK ˙−→SK. We thus have the following adjunction

AC(LanKT, S) ≃ AM(T, SK). (3.2)

If A is a small complete category, then ([ML98], Chapter X) the Kan extensions can
be expressed as pointwise limits: for the functors T : M → A and K : M → C, the left
and right Kan extensions are functors L,R : C → A, where for each object c of C,
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Lc = Colim
[
(K ↓ c)

Q−−→ M T−−→ A
]
= Colim fTm, f in (K ↓ c)

Rc = Lim
[
(c ↓ K)

Q−−→ M T−−→ A
]
= Lim fTm, f in (c ↓ K)

where (K ↓ c) and (c ↓ K) are the comma (or slice) categories of objects over and
under c, respectively. Now, we can rewrite (K ↓ c) and (c ↓ K) as follows: consider the
functor F = C(c,K−) : M → Set, which assigns to each object of M the set of arrows
of the form f : c → Km, where m is an object of M. The category of elements of F has
objects pairs < m, f >, where m is an object of M and f ∈ C(c,Km). If τ : m → m′ is
an arrow in M, then we have an induced arrow τ ∗ :< m, f >→< m′, f ′ >, given by the
commutative diagram

c
f

}}

f ′

""

Km
Kτ // Km′

Therefore the slice category (c ↓ K) is precisely the category of elements of F =
C(c,K−). Similarly, (K ↓ c) is the category of elements of C(K−, c).

Let us relate the above definitions to the problem of induced representations, using the
categories H, G and V = VectK which were defined in the Introduction, in place of A, C
and M above. We notice immediately that the induced representation can be interpreted
as a Kan extension of the functor T : H → V . The left and right Kan extensions of T
lead in principle to two formulations of the induced representation of T , where it exists.
In the finite case, the two induced representations, denoted Ind and coInd, exist and are
isomorphic.

We will focus on the left Kan extension in our case. We will prove that the left Kan
extension does exist, hence prove Theorem 1.1, using the tools provided by diffeology. In
the next section, we discuss indexed limits, and illustrate how the Kan extension can be
expressed as an indexed limit.

4. Indexed Limits in Diffeological Categories

The properties of the category D of diffeological spaces enable us to define an enriched
category with the morphisms between objects having extra structure:

4.1. Definition. ([Twu12] Definition 5.1.1) A Diffeological Category D is a locally small
category such that for any objects x, y in D, the hom set D(x, y) is a diffeological space
which satisfies the following axiom: for all objects x, y and z in D and elements g in
D(x, y) and f in D(y, z), the composition f ◦ g in D(x, z) defines a smooth map:

D(y, z)×D(x, y) → D(x, z)

f × g 7→ f ◦ g
(4.1)

where D(y, z)×D(x, y) has the product diffeology.
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Thus a diffeological category is an enriched category where arrows between objects
have the structure of a diffeological space. Functors defined between diffeological cate-
gories are called smooth when they induce maps between diffeological spaces of arrows.
Smooth natural transformations, smooth adjunctions and smooth universal arrows are
defined similarly.

We note that the concept of a diffeological category makes sense, since the category D
of diffeological spaces is itself a diffeological category: the function space diffeology makes
the set of functions between diffeological spaces into a diffeological space itself.

Let G : J → C be a functor of diffeological categories. We observe, from [Kel05] and
[Fre10] that the limits and colimits of G satisfy the following natural isomorphisms:

C(c,Lim G) ≃ CJ (∆c,G)

C(Colim G, c) ≃ CJ (G,∆c)

We can rewrite the cones CJ (∆c,G) and CJ (G,∆c) asDJ (∆1, C(c,G−)) andDJ op
(∆1,

C(G−, c)) respectively, where in the second case, ∆1 is regarded as a contravariant functor
from J to C.

The idea of an indexed (or weighted) limit is to replace the functor ∆1 by an index
functor F : J → C.

4.2. Definition. Let F : J → D and G : J → C be smooth functors of diffeological cat-
egories. Fix an object c of C. An (F, c)-cylinder over G is a smooth natural transformation
α : F→̇C(c,G−). It can be illustrated with the commutative diagram:

Fi
αi //

f

��

C(c,Gi)

C(c,Gf)

��

Fj αj

// C(c,Gj)

As discussed above, if F = ∆1 : J → D, the functor assigning to each object i ∈ J
the unit element ∗, the (∆1, c)-cylinder can be identified with a cone τ : ∆c→̇G.

We define the limit of G indexed by F to be the object {F,G} in C such that every
other (F, c)-cylinder over G factors uniquely though {F,G}. The definition is illustrated
by the following commutative diagram:

Fi
αi //

=

C(c,Gi)

Fi
µi // C({F,G}, Gi)

C(t,1)

OO

where t : c → {F,G} is the unique arrow. Hence αi = C(t, 1)µi. This gives the isomor-
phism (in our context a diffeomorphism of diffeological spaces)

C(c, {F,G}) ≃ DJ (F, C(c,G−)) (4.2)
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The universal arrow is µ : F→̇C({F,G}, G−).

{∆1, G} ≃ Lim G, (4.3)

the usual limit of G : J → C.

4.3. Definition. Let F : J op → D and G : J → C be smooth functors of diffeological
categories. An (F, c)-cylinder under G is a natural transformation of smooth functors
α : F→̇C(G−, c). Again, in the case F = ∆1, α : ∆1→̇C(G−, c) can be identified
with a cone from the base G to c. The colimit of G indexed by F is the unique (up to
isomorphism) object of C such that every (F, c)- cylinder under G factors uniquely through
the universal cylinder µ : F→̇C(G−, F ∗ G). The commutative diagram illustrating the
definition is given below.

Fi
αi //

=

C(Gi, c)

Fi
µi // C(Gi, F ∗G)

C(1,t)

OO

where t : F ∗G → c is the unique map. Hence αi = C(1, t)µi.

We have the following diffeomorphism of diffeological spaces:

C(F ∗G, c) ≃ DJ op

(F, C(G−, c)) (4.4)

As before,
∆1 ∗G ≃ Colim G. (4.5)

When we have the smooth functors F,G : J → D, the indexed limits and colimits
take a particularly simple form:

In some cases, we can express indexed limits as ordinary limits. Consider a smooth
functor F : C → D. F can be expressed as a colimit of representable functors ([ML98],
Theorem III.7.1):

F ≃ Colim (elF
Q−−→ C M−−→ DC y−1

−−→ D), (4.6)

where Q is the projection functor (c, x) 7→ c, M is the functor which takes objects c in
C to hom-objects C(c,−) in D, and y−1 is induced by the Yoneda lemma. We can extend
this result as follows:

4.4. Proposition. Let F,G : J → D be smooth functors. Then {F,G} ≃ Nat(F,G),
the diffeological space of natural transformations between the functors F and G.
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Proof. We use the fact that the space of natural transformations between F and G can
be expressed as an end : Nat(F,G) ≃

∫
c
D(Fc,Gc). Using the language of ends, we obtain

the following isomorphisms:

D(c, {F,G}) ≃ DJ (F,D(c,G−)) = Nat(F,D(c,G−))

≃
∫
x

D(Fx,D(c,Gx))

≃ D

(
c,

∫
x

D(Fx,Gx)

)
= D(c,Nat(F,G))

Therefore {F,G} is isomorphic to Nat(F,G).

Using the same preamble as the previous proposition, we can express the indexed
limits and indexed colimits as diffeological spaces of natural transformations. We will
state two propositions that are needed in the sequel.

4.5. Proposition. Let F : J → D and G : J → C be smooth functors, where C is
a diffeological category. For any object c of C, we have the following isomorphism of
diffeological spaces:

C(c, {F,G}) ≃ {F, C(c,G−)}. (4.7)

Proof. C(c,G−) is a smooth functor from J to D, so applying the previous proposition
(4.4) and the definition of indexed limit (4.2), we have

C(c, {F,G}) ≃ DJ (F, C(c,G−))

= Nat(F, C(c,G−))

≃ {F,C(c,G−)}

4.6. Proposition. Let FJ op → D and G : J → C be smooth functors, where C is
a diffeological category. For any object c of C, we have the following isomorphism of
diffeological spaces:

C(F ∗G, c) ≃ {F, C(G−, c)}. (4.8)

Proof. C(G−, c) : J op → D is a smooth functor, so applying the definition of indexed
colimits and Proposition 4.4 we get

C(F ∗G, c) ≃ DJ op

(F, C(G−, c)) = Nat(F, C(G−, c)) ≃ {F, C(G−, c)}
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4.7. Theorem. Let F : C → D and G : C → D be smooth functors. Then Nat(F,G) ≃
Lim (elF

Q−→ C G−→ D) as diffeological spaces.

Proof. The limiting cone for the composite functor elF
Q−→ C G−→ D consists of objects

α(c,x) : ⋆ → Gc, where ⋆ denotes a 1-point set. For a map f ∗ : (c, x) → (c′, x′), Gfα(c,x) =
α(c′,x′), since α is a cone. Define a natural transformation β : F→̇G by βc(x) := α(c,x).
For f ∗ : (c, x) → (c′, x′), we have:

Gf(βc(x)) = Gfα(c,x) = α(c′,x′)

βc′(Ff(x)) = βc′(x
′) = α(c′,x′)

giving the following commutative diagram:

Fc
βc

//

Ff
��

Gc

Gf
��

Fc′
βc′

// Gc′

Hence Nat(F,G) ≃ Lim (elF
Q−→ C G−→ D) ≃ {F,G}.

4.8. Corollary. Let G : C → B be a smooth functor of diffeological categories. Then
given a smooth index functor F : C → D,

{F,G} ≃ Lim (elF
Q−→ C G−→ B)

Proof. Equation (4.6) gives

F ≃ Colim

(
elF

Q−→ C y−1

−−→ DC
)

≃ Colim
(
C(c,−) : elF → DC) .

Therefore:
{F,G} ≃ {Colim C(c,−), G} ≃ {∆1 ∗ C(c,−), G}

≃ {∆1, {C(c,−), G}}
≃ {∆1, Gc}
≃ Lim (c∈elF )Gc

where the canonical limit is indexed by the category elF of elements of F . On the other

hand, Lim (elF
Q−→ C G−→ B) = Lim (c∈elF )Gc. This establishes the isomorphism.

A similar result holds for the case of indexed colimits. Let F : Cop → D be a smooth
index functor and G : C → B be a smooth functor of diffeological categories. Then the
following result holds:

4.9. Proposition.
F ∗G ≃ Colim

(
(elF )op

Qop

−−→ C G−→ B
)
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Proof.As before, Theorem (4.6) gives a representation of F , this time as F ≃ Colim C(−, c)
since F is a contravariant functor. Therefore

F ∗G ≃ (Colim C(−, c)) ∗G
≃ (∆1 ∗ C(−, c)) ∗G
≃ ∆1 ∗ (C(−, c) ∗G)

≃ ∆1 ∗ (Gc)

≃ Colim (c∈elF )(Gc)

The other side of the isomorphism is Colim
(
(elF )op

Qop

−−→ C G−→ B
)

= Colim (c∈elF )Gc.

The isomorphism is now established.

4.10. Proposition.

Lim
[
(c ↓ K)

Q−−→ M T−−→ A
]
≃ {C(c,K−), T}

Proof.Corollary (4.8) gives {F, T} ≃ Lim
[
elF

Q−−→ M T−−→ A
]
. Defining F as C(c,K−)

gives elF = (c ↓ K) as shown above. Hence the result holds.

Propositon (4.10) shows that the right Kan extension of the smooth functor T , if it
exists, is isomorphic to the indexed limit. This leads to the following theorem:

4.11. Theorem. The right Kan extension of the smooth functor T : M → A along
K : M → C is the functor R : C → A, given by Rc = {C(c,K−), T}, whenever it exists.

Proof. We first construct a smooth natural transformation µ : RK ˙−→T . Since Rc =
{C(c,K−), T} is the limit of T indexed by C(c,K−), equation (4.2) from definition (4.2)
gives a universal arrow λc,− : C(c,K−) ˙−→A(Rc, T−). Suppose c = Km for some object
m of M. This gives the transformation

λKm,− : C(Km,K−) ˙−→A(RKm,T−).

Choosing the second component of λ to be m gives

λKm,m : C(Km,Km) ˙−→A(RKm,Tm)

Now define εm : RKm → Tm as εm = λKm,m(1Km), where 1Km is the identity map
in C(Km,Km). We need to show that εm forms the component of a smooth natural
transformation ε : RK ˙−→T . Let g : m → n be an arrow in M. We have the following
commutative diagram:

Km //

Kg
��

Km

Kg
��

Kn // Kn

from which we deduce clearly that 1Kn ◦Kg = Kg ◦ 1Km.
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Now consider the following commutative diagrams

C(Km,Km)
λKm,m

//

C(1,Kg)

��

A(RKm,Tm)

A(1,T g)

��

C(Km,Kn)
λKm,n

// A(RKm,Tn)

C(Kn,Kn)
λKn,n

//

C(Kg,1)

OO

A(RKn, Tn)

A(RKg,1)

OO

(4.9)

Both the upper and lower squares commute, since λ is a universal arrow.

1Km
� //

_

��

εm_

��

Kg ◦ 1Km
� // λKm,n(Kg ◦ 1Km) = Tg ◦ εm

(4.10)

1Kn ◦Kg � // λKm,n(1Kn ◦Kg) = RKg ◦ εn

1Kn
� //

_

OO

εn
_

OO
(4.11)

The result 1Kn ◦Kg = Kg ◦ 1Km enables us to conclude from the commutative diagrams
that Tg ◦ εm = RKg ◦ εn, establishing the natural transformation ε : RK ˙−→T .

Now suppose S : C −→ A is a smooth functor with σ : SK ˙−→T a smooth natural
transformation. We show that σ uniquely factors through ε by means of the adjunction
in equation (3.1). We shall use Kelly’s approach by employing the calculus of ends and
coends. We have:

Nat(S,R) = AC(S,R)

≃
∫
c

A(Sc,Rc)

=

∫
c

A (Sc, {C(c,K−), T})
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Applying equation (4.2) in the case where F = C(c,K−) and G = T , we have

A (Sc, {C(c,K−), T}) ≃ DM [C(c,K−),A(Sc, T−)]

∴
∫
c

A (Sc, {C(c,K−), T}) ≃
∫
c

DM [C(c,K−),A(Sc, T−)]

Now DM [C(c,K−),A(Sc, T−)] = Nat (C(c,K−),A(Sc, T−)) .

Writing the above equation as an end, we get

DM [C(c,K−),A(Sc, T−)] =

∫
m

D [C(c,Km),A(Sc, Tm)]

So,

∫
c

A (Sc, {C(c,K−), T}) ≃
∫
c

∫
m

D [C(c,Km),A(Sc, Tm)]

Applying the Fubini Theorem,∫
c

A (Sc, {C(c,K−), T}) ≃
∫
m

∫
c

D [C(c,Km),A(Sc, Tm)]

≃
∫
m

DCop

[C(−, Km),A(S−, Tm)]

≃
∫
m

A(SKm, Tm)

≃ AM(SK, T ) = Nat(SK, T )

The isomorphism Nat(S,R) ≃ Nat(SK, T ) gives by Yoneda’s Proposition ([ML98], Propo-
sition III.2.1) that the natural transformation ε : RK ˙−→T is universal. Hence (R, ε) is a
right Kan extension of the smooth functor T .

The process of establishing the left Kan extension is dual to the above. Suppose
A, C and M are diffeological categories with K : M → C and T : M → A smooth
functors. Let F = C(K−, c) : Mop −→ D be the smooth functor defined by the association
m 7−→ C(Km, c). For an arrow τ : m → m′, we have the smooth function C(Kτ, c) :
C(Km′, c) −→ C(Km, c). Hence we have an induced map

F ∗ : Mop(m′,m) −→ D (C(Km′, c), C(Km, c))

(F ∗τ op) f ′ = f ′ ◦Kτ

where τ op : m′ → m is in a one-to-one correspondence with τ : m → m′. This gives the
commutative diagram

Km

f
((

Kτ // Km′

f ′
vvc

The opposite category (elF )op of elements of F has as objects < m, f >, and arrows
τ ∗ :< m′, f ′ >−→< m, f > induced by arrows τ : m → m′ from the original category M
such that τ ∗f ′ = f . From the definition of the comma category, (elF )op is exactly the
category (K ↓ c).
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4.12. Proposition.

Colim
[
(K ↓ c)

Qop

−−→ M T−−→ A
]
≃ C(K−, c) ∗ T

Proof. From proposition (4.9), we have for F = C(K−, c) and G = T : M −→ A the
result

Colim
[
(elF )op

Qop

−−→ T−−→
]
≃ F ∗ T

Since (elF ) = (K ↓ c), the result holds.

4.13. Theorem. Let K : M −→ C and T : M −→ A be smooth functors of diffeological
categories. The left Kan extension of T along K is given by the functor L : C → A, given
by Lc = C(K−, c) ∗ T , whenever it exists.

Proof. From definition (4.2), there exits a universal arrow λ−,c : C(K−, c) ˙−→A(T−, Lc).
Suppose c = Km for some object m of M. We obtain the transformation λ−,Km :
C(K−, Km) ˙−→A(T−, LKm). Choosing the first component of λ to be m, we get

λm,Km : C(Km,Km) ˙−→A(Tm,LKm)

Define ε : T ˙−→LK by εm = λm,Km(1Km) : Tm −→ LKm. Just like in the proof
for the case of the right Kan extension, we show that this definition gives a universal
natural transformation. Let g : m → n be an arrow in M. We have the equality
1Kn ◦Kg = Kg ◦ 1Km. Consider the following commutative diagrams:

C(Km,Km)
λm,Km

//

C(1,Kg)

��

A(Tm,LKm)

A(1,LKg)

��

C(Km,Kn)
λm,Kn

// A(Tm,LKn)

C(Kn,Kn)
λKn,n

//

C(Kg,1)

OO

A(Tn, LKn)

A(Tg,1)

OO

(4.12)

Both the upper and lower squares commute, since λ is a universal arrow. Splitting the
diagram into two components and evaluating the identity map for each component gives

1Km
� //

_

��

εm_

��

Kg ◦ 1Km
� // λm,Kn(Kg ◦ 1Km) = LKg ◦ εm

(4.13)
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1Kn ◦Kg � // λm,Kn(1Kn ◦Kg) = Tg ◦ εn

1Kn
� //

_

OO

εn
_

OO
(4.14)

From the result 1Kn ◦Kg = Kg ◦1Km we get Tg ◦εn = LKg ◦εm, establishing the natural
transformation ε : T ˙−→LK. This gives the diagram

Tm
εm //

Tg
��

LKm

LKg
��

Tn εn
// LKn

Finally, we show that ε : T ˙−→LK is unique up to natural isomorphism. Let S : C −→ A
be a smooth functor with σ : T ˙−→SK a natural transformation. We have:

Nat(L, S) ≃ AC(L, S)

≃
∫
c

A(Lc, Sc)

≃
∫
c

A(C(K−, c) ∗ T, Sc)

by the definition of Lc. Applying equation (4.9), we have

A(C(K−, c) ∗ T, Sc) ≃ DMop

[C(K−, c),A(T−, Sc)]

Therefore

∫
c

A(C(K−, c) ∗ T, Sc) ≃
∫
c

DMop

[C(K−, c),A(T−, Sc)]

≃
∫
c

∫
m

D [C(Km, c),A(Tm, Sc)]

Applying the Fubini theorem, we get∫
c

A(C(K−, c) ∗ T, Sc) ≃
∫
m

∫
c

D [C(Km, c),A(Tm, Sc)]

≃
∫
m

DC [C(Km,−),A(Tm, S−)]

≃ A(Tm, SKm)

≃ AM(T, SK) = Nat(T, SK)

Hence by Yoneda’s Proposition ([ML98], Proposition III.2.1), the isomorphism Nat(L, S) ≃
Nat(T, SK) gives the result that the natural transformation ε : T ˙−→LK is universal, es-
tablishing that (L, ε) is a left Kan extension of T along K.
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5. The Proof of Theorem 1.1

Let us consider the category C of topological (super) Hilbert spaces, where the arrows
are continuous linear transformations. We can restrict this to the subcategory where the
arrows are maps T : V → W , with ||T || ≤ 1. As before, define the (super) Lie groups G
and H to be DG∞

(M) and SG∞
(M) respectively, where H is a subgroup of G. We can

use the function space diffeology to make C(V,W ) into a diffeological space (induced from
the structures on V and W ).

Now let J be an index category and F : J op −→ D, G : J −→ C be smooth functors.
Let α : i → j be an arrow in J . Fix an object c of C and let µ : F ˙−→C(G−, c) be an

(F, c)- cylinder over G. This gives a commutative diagram of smooth maps

Fi
µi // C(Gi, c)

Fj

Fα

OO

µj

// C(Gj, c)

C(Gα,c)

OO

The commutativity of the diagram gives the following relation: for fj in Fj and an element
gi in Gi,

µi (Fα(fj)) gi = µj(fj)Gα(gi) (5.1)

The above diagram gives for each element fi in Fi a continuous linear transformation
µi(fi) : Gi −→ c with norm

||µi(fi)|| = sup
gi∈Gi
gi ̸=0

|| (µi(fi)) (gi)||
||gi||

≤ 1 (5.2)

We have an induced map
ϕi : Fi×Gi −→ c

ϕi(fi, gi) := (µi(fi)) (gi)

This map ϕ is continuous and linear in the second variable. Now consider the ordered
pair (fi, gi) in the cartesian product Fi × Gi. We will denote (fi, gi) by fi · gi. Define
fi ·Gi to be the set { fi · gi | gi ∈ Gi }. Since fi ·Gi is in 1-1 correspondence with Gi, we
transport the Hilbert space structure to fi ·Gi, making fi ·Gi a Hilbert space. Hence for
all gi in Gi, ||fi · gi|| = ||gi||. Consider the Hilbert space direct sum

V :=
∑
i∈J

∑
fi∈Fi

fi ·Gi

Now define R ⊆ V as the span of the set

{Fα(fj) · gi − fj ·Gα(gi) | i, j ∈ J }

where α : i → j is an arrow in J as defined previously. The subspace R is well defined,
since Fα(fj) is in Fi and Gα(gi) is in Gj.



ON ENRICHED CATEGORIES AND INDUCED REPRESENTATIONS 731

5.1. Theorem. The orthogonal complement of R, R⊥ = F ∗G.

Proof. By the definition of R, the orthogonal projection of Fα(fj) · gi−fj ·Gα(gi) gives
the zero vector in R⊥. We define the universal cylinder λ : F ˙−→C(G−, R⊥) by means of
the projection Fi×Gi ↪→ V

π−−→ R⊥ , where the projection is given by the composition

fi · gi 7−→
∑

fi · gi −→ π(fi · gi)

where the sum is taken over all i in J and gi in Gi. This gives λi : Fi → C(Gi,R⊥) as
follows: fix an element fi of Fi. We have the map

λi(fi) : Gi −→ R⊥

(λi(fi)) gi = π(fi · gi)

We show that λi(fi) is an arrow of C. The norm of λi(fi) is given by

||λi(fi)|| = sup
gi∈Gi
gi ̸=0

||π(fi · gi)||
||gi||

≤ sup
gi∈Gi
gi ̸=0

||fi · gi||
||gi||

= 1

since π is an orthogonal projection and therefore has norm ||π|| ≤ 1 and ||fi · gi|| = ||gi||.
The naturality of λ is given by the following diagram:

Fi
λi // C(Gi,R⊥)

Fj

Fα

OO

λj

// C(Gj,R⊥)

C(Gα,R⊥)

OO

All the maps in the diagram are smooth maps of diffeological spaces. We show that the
diagram commutes. Let fj be an element of the diffeological space Fj. We have:

λi(Fα(fj))gi = π(Fα(fj) · gi)
= π(fj ·Gα(gi)) by the definition of R

= λj(fi)(Gα(gi)).

Therefore the diagram commutes and λ : F ˙−→C(G−, R⊥) is a cylinder. To show that
λ : F ˙−→C(G−, R⊥) is a universal cylinder, suppose we have another (F, c)−cylinder
β : F ˙−→(G−, c). This gives the commutative diagram illustrated below.

Fi
βi // C(Gi, c)

Fj

Fα

OO

βj

// C(Gj, c)

C(Gα,c)

OO
(5.3)
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Therefore for each fj in Fj, βi(Fα(fj))(gi) = βi(fj)(Gα(gi)).
The unique map T : R⊥ → c is defined as T [π (fi · gi)] = (βi(fi)) (gi). We show that

T is well defined by proving that the generators of R under the action of T give the zero
vector in c. Pick a generator Fα(fj)·gi−fj ·Gα(gi) in R. Then π(Fα(fj)·gi−fj ·Gα(gi)) =
π(Fα(fj) · gi)− π(fj ·Gα(gi)) = 0 in R⊥. We have

T [π(Fα(fj) · gi)− π(fj ·Gα(gi))] = βi(Fα(fj))(gi)− βi(fj)(Gα(gi))

= 0,

by the commutative diagram (5.3). Hence for all pairs (fi, gi) such that (by means of the
inclusion map) fi · gi is in R, (βifi) = 0 in c.

Now we compute the norm of T . We have the following commutative diagrams:

Fi×Gi

π
��

// c

R⊥
T

66 (fi, gi)_

��

� // βi(fi)gi

π(fi · gi)
,

55

We have

||T || = sup
gi∈Gi
gi ̸=0

||βi(fi)gi||
||π(fi · gi)||

(5.4)

Fix a pair (fi, gi) in Fi×Gi. We have that ||π(fi ·gi)|| ≤ ||fi ·gi||. If ||π(fi ·gi)|| = ||fi ·gi||,
then we have

||βi(fi)gi||
||π(fi · gi)||

=
||βi(fi)gi||
||fi · gi||

≤ ||gi||
||fi · gi||

= 1.

Now if ||π(fi · gi)|| < ||fi · gi||, then we can decompose fi · gi in V into the components in
R and R⊥ to get fi · gi = fi · g′i + fi · g′′i , where fi · g′i is in R and fi · g′′i is in R⊥. We can
express fi · g′i as fi · g′i = Fα(hj) · g′i − hj · Gα(g′i), where hj is in Fj and α is an arrow
in J . Since β is a (F, c)−cylinder under G, βi(fi)gi = βi [Fα(hj) · g′i − hj ·Gα(g′i)] = 0.
Hence we have the following results:

In R⊥, ||π(fi · gi)|| = ||fi · g′′i || = ||g′′i ||
In c, ||βi(fi)gi|| = ||βi(fi)g

′′
i || ≤ ||g′′i ||

∴
||βi(fi)gi||
||π(fi · gi)||

=
||βi(fi)g

′′
i ||

||fi · g′′i ||
≤ ||g′′i ||

||g′′i ||
= 1

Therefore, in both cases we have

||T || = sup
gi∈Gi
gi ̸=0

||βi(fi)gi||
||π(fi · gi)||

≤ 1

Hence T is an arrow in C and λ, as defined is a universal cylinder. We conclude that
R⊥ = F ∗G.
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Proof of Theorem 1.1
Given a representation T : H → C, define the inclusion functor I : H → G. The

functor T : H → C is a representation of H. The left Kan extension L : G → C takes the
form L(G) = Hom(I−, G) ∗ T ), which exists by the proof of the previous theorem, and
the completeness of the category D. Given a representation S : G → C, the composite SI
is the restriction of the representation to H.

The adjunction can therefore be expressed Nat(L, S) ≃ Nat(T, SI). Let V = T (H) be
an H-module, and W a G-module. Denoting L(G) by I · V , we obtain the isomorphism
(of diffeological spaces)

HomG(I · V,W ) ≃ HomH(V,W )

establishing that I · V is the (co) induced representation of G.

6. Remarks

6.1. Remark. The definition of diffeological category raises a question; are there ex-
amples of categories with the objects not necessarily diffeological spaces, such that the
hom-sets have the structure of a diffeological space? It seems that the underlying struc-
tures would need to have the structure of a diffeological space, so we can use the function
space diffeology. This means that the category D is its own higher-category: for G,H
diffeological spaces, the morphism D(G,H) is also a diffeological space. We can extend
this to 2-morphisms and so on.

6.2. Remark.Milnor discusses the issue of regularity of (infinite dimensional) Lie groups
in [Mil83]. Essentially, a Lie group is regular if there exists an exponential map from the
Lie algebra to the Lie group, relating representations of both the algebra and the group.
In this paper, we have discussed diffeological Lie groups, and it is natural to ask whether
they are regular. J-P. Magnot [Mag17] has shown that this is not the case, so not
all diffeological Lie groups are regular. This leads to the question whether all regular
diffeological Lie groups can be classified.
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