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HOPF MONADS ON BIPRODUCTS

MASAHITO HASEGAWA AND JEAN-SIMON PACAUD LEMAY

Abstract. A Hopf monad, in the sense of Bruguières, Lack, and Virelizier, is a special
kind of monad that can be defined for any monoidal category. In this note, we study Hopf
monads in the case of a category with finite biproducts, seen as a symmetric monoidal
category. We show that for biproducts, a Hopf monad is precisely characterized as a
monad equipped with an extra natural transformation satisfying three axioms, which
we call a fusion invertor. We will also consider three special cases: representable Hopf
monads, idempotent Hopf monads, and when the category also has negatives. In these
cases, the fusion invertor will always be of a specific form that can be defined for any
monad. Thus in these cases, checking that a monad is a Hopf monad is reduced to
checking one identity.
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1. Introduction

Hopf monads were originally introduced by Bruguières and Virelizier in [BV, 2007] for
autonomous categories, and later generalized by Bruguières, Lack, and Virelizier in [BLV,
2011] to arbitrary monoidal categories. This latter definition of a Hopf monad requires
that canonical natural transformations, called fusion operators, are isomorphisms. The
name “Hopf monad” comes from the fact that a Hopf monad is a generalization of a Hopf
algebra (whose antipode is invertible). Hopf monads have the ability to lift many desirable
monoidal related structures. Indeed, for a monoidal closed category, Hopf monads are pre-
cisely the kinds of monads that lift the monoidal closed structure to their Eilenberg-Moore
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category [BLV, 2011, Theorem 3.6], and similarly for autonomous categories [BLV, 2011,
Theorem 3.10]. Furthermore, for star autonomous categories or traced monoidal cate-
gories, we can precisely characterize which Hopf monads lift star autonomous structure
[HL, 2018] or traced monoidal structure [HL, 2022]. The purpose of this note is to dis-
cuss Hopf monads on a category with finite biproducts, viewed as a symmetric monoidal
category.

1.1. Remark. It is important to point out and stress that the term “Hopf monad” used
in this paper and by Bruguières, Lack, and Virelizier in [BLV, 2011] differs from the
term “Hopf monad” used by Moerdijk in [M, 2002]. Indeed, what Moerdijk calls a “Hopf
monad” in [M, 2002] is what Bruguières et. al call a “bimonad” in [BV, 2007, BLV,
2011], which has also alternatively been called an “opmonoidal monad” [Mc, 2002] or a
“comonoidal monad” [HL, 2018]. So a “Hopf monad” in the Bruguières et al. sense in
[BLV, 2011] is a bimonad/opmonoidal monad/comonoidal monad whose canonical fusion
operators are isomorphisms. Fusion operators and their inverses were not considered by
Moerdijk in [M, 2002]. As such, as this a follow-up on the work of Bruguières et al.,
we have elected to use the same terminology and definitions of “bimonads” and “Hopf
monads” as they used in [BLV, 2011].

For an arbitrary category X, we denote a monad as a triple (T, µ, η) where T ∶ X //X
is the endofunctor, µA ∶ TT(A) // T(A) is the multiplication, and ηA ∶ A // T(A) is
the unit. For a monoidal category X, with monoidal product ⊗ and monoidal unit I,
a bimonad [BLV, 2011, Section 2.4] is a monad (T, µ, η) which comes equipped with a
natural transformation mA,B ∶ T(A⊗B) //T(A)⊗T(B) and a map mI ∶ T(I) // I such
that T is a comonoidal functor, and µ and η are both comonoidal natural transformations.
For any bimonad, there are two canonical natural transformations, which can always
be defined, called the fusion operators [BLV, 2011, Section 2.6]. The left fusion
operator hlA,B ∶ T(A⊗ T (B)) //T(A)⊗T(B) and the right fusion operator hrA,B ∶

T(T(A)⊗B) //T(A)⊗T(B) are respectively defined as the following composites:

hlA,B ∶= T (A⊗T(B))
mA,T(B)

// T(A)⊗TT(B)
1T(A)⊗µB

// T(A)⊗T(B) (1)

hrA,B ∶= T (T(A)⊗B)
mT(A),B

// TT(A)⊗T(B)
µA⊗1T(B)

// T(A)⊗T(B) (2)

A Hopf monad [BLV, 2011, Section 2.7] is a bimonad whose fusion operators are natural
isomorphisms, so we have that:

T(A⊗T(B)) ≅ T(A)⊗T(B) ≅ T(T(A)⊗B)

For a symmetric monoidal category, a symmetric bimonad [M, 2002, Section 3, under
the name “cocommutative Hopf monad”] is a bimonad that is also compatible with the
natural symmetry isomorphism σA,B ∶ A ⊗ B // B ⊗ A. For a symmetric bimonad, the
fusion operators can be defined from one another using the symmetry:

hrA,B = σT (B),T (A) ○ hlB,A ○ T (σT(A),B)
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Therefore for a symmetric bimonad, the invertibility of one fusion operator implies the
invertibility of the other [HL, 2022, Lemma 6.5]. So for a symmetric bimonad, we may
speak of the fusion operator hA,B ∶ T(A⊗T (B)) //T(A)⊗T(B), and define a symmetric
Hopf monad [HL, 2022, Definition 6.4] to be a symmetric bimonad whose fusion operator
h is a natural isomorphism. The main examples of (symmetric) Hopf monads are those
of the form T(−) =H ⊗− where H is a (cocommutative) Hopf monoid with an invertible
antipode [BLV, 2011, Example 2.10], and these Hopf monads are called representable Hopf
monads [BLV, 2011, Section 5].

Before we discuss Hopf monads for biproducts, let us first discuss what one can say
about Hopf monads for products and coproducts. Starting with products, let X be a cat-
egory with finite products, with binary product ×, projections πi ∶ A1 ×⋯ ×An

//Ai,
pairing operator ⟨−,⋯,−⟩, and terminal object ∗. Every monad (T, µ, η) on a cate-
gory X with finite products has a unique bimonad structure with respect to the Carte-
sian monoidal structure [M, 2002, Example 1.6, under the name “Hopf monad”] where
mA,B ∶ T(A ×B) //T(A) ×T(B) is defined as mA,B ∶= ⟨T(π1),T(π2)⟩ and m∗ ∶ T(∗) // ∗

is defined as the unique map to the terminal object. In fact, this gives a symmetric bi-
monad structure. So the fusion operator hA,B ∶ T(A × T (B)) // T(A) × T(B) is worked
out to be:

hA,B = ⟨T(π1), µB ○T(π2)⟩

or in other words, using the universal property of the product, the fusion operator is the
unique map which makes the following diagram commute:

T (A ×T(B))

∃! hA,B

��

T(π2)
//

T(π1)

��

TT(B)

µB

��

T(A) T(A) ×T(B)π1

oo
π2

// T(B)

So for a category with finite products, we can say that a Hopf monad is a monad (T, µ, η)
such that the fusion operator h as defined above is a natural isomorphism. However,
not much can be necessarily said about the form of the inverse of the fusion operator
h−1A,B ∶ T(A) ×T(B)

//T (A ×T(B)).
On the other hand, what about the coproduct case? So now let X be a category with

finite coproducts, with binary coproduct ⊕, injections ιj ∶ Aj
//A1⊕⋯⊕An, copairing op-

erator [−,⋯,−], and initial object 0. Not every monad (T, µ, η) on a category X with finite
coproducts will have a bimonad structure with respect to the coCartesian monoidal struc-
ture. So we must ask that our monad (T, µ, η) be a symmetric bimonad with structure
maps mA,B ∶ T(A⊕B) //T(A)⊕T(B) and m0 ∶ T(0) // 0. In this case, not much can
be said about the fusion operator hA,B ∶ T(A⊕T (B)) //T(A)⊕T(B). Instead, if we have a
symmetric Hopf monad on a category with finite coproducts, we can say something about
the inverse of the fusion operator since it is of type h−1A,B ∶ T(A)⊕T(B) //T (A⊕T(B)).
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Since h−1A,B ○ (ηA ⊕ 1T(B)) = ηA⊕T(B) [HL, 2018, Lemma 4.2], by pre-composing by the in-
jection ι2 and then using the naturality of η, it follows that: h−1A,B ○ ι2 = T(ι2) ○ ηB. In
other words, by using the couniversal property of the coproduct, the inverse of the fusion
operator is of the form:

h−1A,B ∶= [h
⋆
A,T(ι2) ○ ηB]

for some unique map h⋆A ∶ T(A) // T (A⊕T(B)), that is, h−1A,B is the unique map which
makes the following diagram commute:

T(A)
ι1 //

h⋆A,B

++

T(A)⊕T(B)

∃! h−1A,B

��

T(B)
ι2oo

ηT(B)

��

T (A⊕T(B)) TT(B)
T(ι2)

oo

Therefore, for coproducts, a symmetric Hopf monad can be characterized in terms of the
existence of a natural transformation h⋆A,B ∶ T(A)

//T (A⊕T(B)) such that hA,B○h⋆A = ι1
and [h⋆A,T(ι2) ○ ηB] ○ hA,B = 1T(A×T(B)).

To recap, for products we have a full description of the fusion operator h but not
the inverse h−1, while for coproducts we can’t say much more on the form of the fusion
operator h but know that the first argument of the inverse of the fusion operator h−1 must
always be of a specific form. Since a biproduct is both a product and a coproduct, we
can combine both observations to obtain a characterization of Hopf monads on categories
with finite biproducts. Furthermore by naturality and using zero maps, it follows that
h⋆A,B ∶ T(A)

// T (A⊕T(B)) is completely determined by the case where B is the zero
object 0. The main objective of this paper is to explain how a Hopf monad on a category
with finite biproducts is precisely a monad (T, µ, η) which comes equipped with an extra
natural transformation h○A ∶ T(A) // T (A⊕T(0)) satisfying three extra axioms, which
we call a fusion invertor. We will also explain how in the cases of a representable Hopf
monad, an idempotent Hopf monad, or in a setting with negatives, the fusion invertor is
always of a specific form and how in these cases, checking that one has a Hopf monad is
reduced to checking one identity.

Lastly, before diving into this story, let us quickly discuss lifting again. A category
with finite biproducts seen as a monoidal category is closed if and only if it is trivial, that
is, all objects are zero objects. So using Hopf monads to lift (compact) closed structure
or (star) autonomous structure in the biproduct setting is not interesting. On the other
hand, it is possible to have a trace operator for biproducts. Per [HL, 2022, Corollary
7.10], for a traced coCartesian monoidal category, a Hopf monad lifts the trace operator
if and only if the monad is an idempotent monad. As such, the same is true in the
biproduct setting. At first glance, it may seem this clashes with another result which says
that representable Hopf monads always lift trace operators [HL, 2022, Proposition 7.3].
However, in a traced Cartesian monoidal category, the only Hopf monoid is the terminal
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object [S, 2003, Theorem 3.7], which means the only possible representable Hopf monad
is the identity monad, which is trivially idempotent. Of course, for a category with finite
biproducts, there can be non-representable idempotent Hopf monads, which in a traced
setting would lift the trace operator.

2. Hopf Monads for Biproducts

Let us reformulate the story of Hopf monads given in the introduction but this time
described fully in terms of biproduct structure and its induced additive structure. For a
category X with finite biproducts, we denote the biproduct of a family of n objects as
A1⊕⋯⊕An with injections ιj ∶ Aj

//A1⊕⋯⊕An and projection πj ∶ A1⊕⋯⊕An
//Aj,

and denote the zero object as 0. For the induced commutative monoid enrichment, we
denote the addition of parallel maps f ∶ A //B and g ∶ A //B as f +g and the zero maps
as 0 ∶ A //B. Lastly, recall that we denote a monad on a category X as a triple (T, µ, η)
where T ∶ X //X is the endofunctor, and µA ∶ TT(A) // T(A) and ηA ∶ A // T(A) are
the natural transformations.

As explained in the introduction, for a category with finite (bi)products, every monad
always has a unique symmetric bimonad structure with respect to the (bi)product. There-
fore, in the case of (bi)products we can define fusion operators and Hopf monads simply
in terms of a monad. In the case of biproducts, the fusion operator can be defined in
terms of a sum.

2.1. Definition. For a monad (T, µ, η) on a category X with finite biproducts, the fu-
sion operator is the natural transformation hA,B ∶ T (A⊕T(B)) //T(A)⊕T(B) defined
as follows:

hA,B = ι1 ○T(π1) + ι2 ○ µB ○T(π2) (3)

A Hopf monad on a category X with finite biproducts is a monad (T, µ, η) on X whose
fusion operator h is a natural isomorphism, so in particular T (A⊕T(B)) ≅ T(A)⊕T(B).

A list of identities that the fusion operator satisfies can be found in [BLV, 2011,
Proposition 2.6], and a list of identities that the inverse of the fusion operator satisfies
can be found in [HL, 2018, Lemma 4.2]. Here are some examples of Hopf monads on
biproducts.

2.2. Example. Let CMON be the category of commutative monoids (written additively)
and monoid morphisms between them. CMON is a category with finite biproducts where
the biproduct is given by the Cartesian product, M⊕N =M×N , with the monoid structure
given pointwise, and where the zero object is the singleton 0 = {0}. For any Abelian group
G, T(−) ∶= G⊕ − is a Hopf monad where the monad structure is given by:

µM ∶ G⊕M ⊕M //M

µM(g, h,m) = (g + h,m)
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ηM ∶M //G⊕M

ηM(m) = (0,m)

and where the fusion operator and its inverse are:

hM,N ∶ G⊕M ⊕G⊕N //G⊕M ⊕G⊕N

hM,N(g,m,h,n) = (g,m, g + h,n)

h−1M,N ∶ G⊕M ⊕G⊕N //G⊕M ⊕G⊕N

h−1M,N(g,m,h,n) = (g,m,h − g, n)

This is an example of a representable Hopf monad, and can be generalized to any category
with finite biproducts, which we discuss in Section 4.

2.3. Example. Let Ab be the category of Abelian groups and group morphisms between
them. Ab is a category with finite biproducts, with the same biproduct structure as CMON.
Let Z be the ring of integers and let Z2 be the ring of integers modulo 2. Then T(G) ∶=
Z2 ⊗Z G (where ⊗Z is the tensor product of Abelian groups/Z-modules) is a Hopf monad
where the monad structure is given by:

µG ∶ Z2 ⊗Z Z2 ⊗Z G //Z2 ⊗Z G

µG (x⊗ y ⊗ g) = xy ⊗ g

ηG ∶ G //Z2 ⊗Z G

ηG(g) = 1⊗ g

and where the fusion operator and its inverse are:

hG,H ∶ Z2 ⊗Z (G⊕ (Z2 ⊗Z H)) // (Z2 ⊗Z G)⊕ (Z2 ⊗Z H)

hG,H (x⊗ (g, y ⊗ h)) = (x⊗ g, xy ⊗ h)

h−1M,N ∶ (Z2 ⊗Z G)⊕ (Z2 ⊗Z H) //Z2 ⊗Z (G⊕ (Z2 ⊗Z H))

h−1G,H(x⊗ g, y ⊗ h) = x⊗ (g,0) + y ⊗ (0, y ⊗ h)

We leave it as an exercise for the reader to check for themselves that h−1G,H is indeed
well-defined and is the inverse of hG,H . The two reasons that Z2 ⊗Z − is a Hopf monad
follows from the fact that the biproduct ⊕ distributes over the tensor product ⊗Z, and that
Z2 ⊗Z Z2 ≅ Z2 via x⊗ y ↦ xy and x↦ x⊗ x. This latter fact actually implies that Z2 ⊗Z −

is an idempotent Hopf monad, meaning in particular that TT(G) ≅ T(G), which we will
discuss more of in Section 5. It is worth noting that Z2 ⊗Z − is also a (symmetric) Hopf
monad with respect to the tensor product ⊗Z, and thus gives a (non-trivial) example of a
monad which is a Hopf monad with respect to two different monoidal structures. However,
we stress that while Z2 ⊗Z − is a representable Hopf monad for the tensor product ⊗Z, it
is not a representable Hopf monad for the biproduct ⊕ (since it is not of the form G⊕−).
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2.4. Example.The above example generalizes to any monoidal category with finite biprod-
ucts such that the monoidal product ⊗ distributes over the biproduct ⊕. Then by taking
any solid monoid [G, 2015, Definition 3.1] M with respect to the monoidal product ⊗
(i.e. a monoid whose multiplication is an isomorphism, so M ⊗M ≅M), T(−) =M ⊗ −
is a Hopf monad with respect to the biproduct ⊕. Other examples of solid monoids in Ab
include Z, the ring of rationals Q, and the ring of p-adic integers for any prime p (see
[G, 2015] for a full list of all solid monoids in Ab).

2.5. Example. Here is a simple example that is neither representable nor idempotent.
Consider the product category CMON×CMON, which has a finite biproduct structure given
pointwise. Then for any Abelian group G, T(M,N) ∶= (G⊕M,0) is a Hopf monad where
the Hopf monad structure in the first argument is the same as in Example 2.2, while the
Hopf monad structure in the second argument is trivially all zero maps.

Let us now discuss what we can say about the form of the inverse of the fusion
operator. For a Hopf monad on a category with finite biproducts, by the couniversal
property of the coproduct, h−1A,B ∶ T(A)⊕T(B) //T (A⊕T(B)) is completely determined
by its precomposition with the injection maps: h−1A,B ○ ι1 ∶ T(A)

// T (A⊕T(B)) and
h−1A,B○ι2 ∶ T(B)

//T (A⊕T(B)). As explained in the introduction, for coproducts h−1A,B○ι2
can always be shown to be T(ι1) ○ ηT(B). Here we will provide an alternative proof using
directly the biproduct structure. On the other hand, for coproducts, we cannot say much
about h−1A,B ○ ι1. For biproducts, however, we can show h−1A,B ○ ι1 is completely independent
of the B term.

2.6. Lemma. Let (T, µ, η) be a Hopf monad on a category X with finite biproducts. Then
for every pair of objects A,B ∈ X, the following diagrams commute:

T(A)
ι1 //

ι1
��

T(A)⊕T(B)

h−1A,B

��

T(A)⊕T(0)
h−1A,0

// T (A⊕T(0))
T(1A⊕T(0))

// T (A⊕T(B))

T(B)
ι2 //

ηT(B)

��

T(A)⊕T(B)

h−1A,B

��

TT(B)
T(ι2)

// T (A⊕T(B))

Proof. The first diagram follows from the naturality of the inverse of the fusion operator
and the injection:

T (1A ⊕T(0)) ○ h−1A,0 ○ ι1 = h
−1
A,B ○ (T (1A)⊕T(0)) ○ ι1 = h

−1
A,B ○ ι1

For the second diagram, we first compute the following:

hA,B ○T(ι2) ○ ηT(B) = (ι1 ○T(π1) + ι2 ○ µB ○T(π2)) ○T(ι2) ○ ηT(B) (Def. of h)
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= ι1 ○T(π1) ○T(ι2) ○ ηT(B) + ι2 ○ µB ○T(π2) ○T(ι2) ○ ηT(B)
= ι1 ○T(0) ○ ηT(B) + ι2 ○ µB ○ ηT(B) (π1 ○ ι2 = 0 and π2 ○ ι2 = 1)

= ι1 ○ ηA ○ 0 + ι2 (Nat. of η and µ ○ η = 1)

= 0 + ι2

= ι2

So hA,B ○T(ι2)○ηT(B) = ι2. By post-composing by h−1A,B, we obtain T(ι2)○ηT(B) = h−1A,B ○ ι2,
as desired.

By the above lemma, it follows that h−1A,B ∶ T(A)⊕T(B) //T (A⊕T(B)) must be of
the form:

h−1A,B = T (1A ⊕T(0)) ○ h−1A,0 ○ ι1 ○ π1 +T(ι2) ○ ηT(B) ○ π2

Looking more closely, every part on the right side can be defined for any monad except
for h−1A,0, meaning that the only unfixed part of h−1A,B is completely determined by h−1A,0 ○ ι1.
Therefore it follows that a monad is a Hopf monad if and only if there exists a map of
type h○A ∶ T(A) //T (A⊕T(0)) satisfying the necessary identities such that:

h−1A,B ∶= T (1A ⊕T(0)) ○ h○A ○ π1 +T(ι2) ○ ηT(B) ○ π2

is the inverse of the fusion operator h. We call such a natural transformation h○ the
fusion invertor, since it is used in the construction of the inverse of the fusion operator,
and define it below.

3. Fusion Invertor

In this section, we introduce the main novel concept of this note, which is a fusion invertor,
and prove our main result that for biproducts, a monad is a Hopf monad if and only if it
has a fusion invertor.

3.1. Definition. A fusion invertor for a monad (T, µ, η) on a category X with finite
biproducts is a natural transformation h○A ∶ T(A) //T (A⊕T(0)) such that:

[FI.1] T(π1) ○ h○A = 1T(A)

[FI.2] µ0 ○T(π2) ○ h○A = 0

[FI.3] For every object B, T (1A ⊕T(0))○h○A○T(π1)+T(ι2)○ηT(B)○µB○T(π2) = 1T(A⊕T(B))

As we will see in the proof of Proposition 3.4 below, the three axioms of a fusion
invertor are precisely what is required to construct an inverse for the fusion operator.
Indeed, [FI.1] and [FI.2] are used to show that h ○ h−1 = 1, while [FI.3] will be used to
prove that h−1 ○ h = 1. A useful identity to have is the special case of [FI.3] when B = 0
is the zero object.
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3.2. Lemma. For a (T, µ, η) monad with a fusion invertor h○A ∶ T(A) //T (A⊕T(0)) on
a category X with finite biproducts, for every object A, the following equality holds:

[FI.3.0] h○A ○T(π1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2) = 1T(A⊕T(0))

Proof. This immediately follows from the fact for the zero object 0, the identity map is
equal to the zero map: 0 = 10. So [FI.3.0] is simply rewritting [FI.3] for the case B = 0
using that T (1A ⊕T(0)) = 1A⊕T(0).

In particular, [FI.3.0] will be very useful in showing that in special cases, the fusion
invertor must always be of a specific form. We can also use [FI.3.0] to show that a fusion
invertor, if one exists, is unique, allowing one to speak of the fusion operator.

3.3. Lemma. A fusion invertor, if it exists, is unique.

Proof. Suppose that (T, µ, η) has two fusion invertors h○A ∶ T(A) //T (A⊕T(0)) and
h⋆A ∶ T(A) //T (A⊕T(0)). Then we compute:

h⋆A = (h
○
A ○T(π1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2)) ○ h

⋆
A ([FI.3.0])

= h○A ○T(π1) ○ h
⋆
A +T(ι2) ○ ηT(0) ○ µ0 ○T(π2) ○ h

⋆
A

= h○A +T(ι2) ○ ηT(0) ○ 0 ([FI.1] and [FI.2] for h⋆)
= h○A + 0
= h○A

Thus h⋆A = h
○
A. So we conclude that a fusion invertor, if it exists, is unique.

We now prove the main result of this paper.

3.4. Proposition. A monad on a category with finite biproducts is a Hopf monad if and
only if it has a fusion invertor. Explicitly, if (T, µ, η) is a monad on a category X with
finite biproducts, then:

(i) If (T, µ, η) is a Hopf monad, then (T, µ, η) has a fusion invertor

h○A ∶ T(A) //T (A⊕T(0))

defined as the following composite:

h○A ∶= T(A)
ι1 // T(A)⊕T(0)

h−1A,0
// T (A⊕T(0)) (4)

(ii) If (T, µ, η) has a fusion invertor h○, then (T, µ, η) is Hopf monad where the inverse
of the fusion operator,

h−1A,B ∶ T(A)⊕T(B) //T (A⊕T(B))

is defined as follows:

h−1A,B = T (1A ⊕T(0)) ○ h○A ○ π1 +T(ι2) ○ ηT(B) ○ π2 (5)



HOPF MONADS ON BIPRODUCTS 813

Proof. Suppose that (T, µ, η) is a Hopf monad. By construction h○ is natural, so it
remains to show that h○ satisfies the three identities [FI.1], [FI.2], and [FI.3]. So we
compute:

(i) T(π1) ○ h○A = 1T(A)

T(π1) ○ h
○
A = T(π1) ○ h

−1
A,B ○ ι1 (Def. of h○)

= π1 ○ h
○
A ○ h

−1
A,B ○ ι1 (Def. of h)

= π1 ○ ι1

= 1T(A)

(ii) µ0 ○T(π2) ○ h○A = 0

µ0 ○T(π2) ○ h
○
A = µ0 ○T(π2) ○ h

−1
A,B ○ ι1 (Def. of h○)

= π2 ○ h
○
A ○ h

−1
A,0 ○ ι1 (Def. of h)

= π2 ○ ι1

= 0

(iii) T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2) = 1T(A⊕T(B))

1T(A⊕T(B)) = h−1A,B ○ hA,B

= h−1A,B ○ (ι1 ○T(π1) + ι2 ○ µB ○T(π2)) (Def. h)

= h−1A,B ○ ι1 ○T(π1) + h
−1
A,B ○ ι2 ○ µB ○T(π2)

= T (1A ⊕T(0)) ○ h−1A,0 ○ ι1 ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(Lemma 2.6)

= h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2) (Def. of h○)

So we conclude that h○ is a fusion invertor.
Conversely, suppose that (T, µ, η) has a fusion invertor h○. We must show that h−1 is

an inverse of h. Using [FI.3], we first compute that:

h−1A,B ○ hA,B = (T (1A ⊕T(0)) ○ h○A ○ π1 +T(ι2) ○ ηT(B) ○ π2) ○ hA,B (Def. of h−1)

= T (1A ⊕T(0)) ○ h○A ○ π1 ○ hA,B +T(ι2) ○ ηT(B) ○ π2 ○ hA,B

= T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2) (Def. of h)

= 1T(A⊕T(B)) ([FI.3])

So h−1A,B ○hA,B = 1T(A⊕T(B)). For the other direction, first recall that in the proof of Lemma
2.6, we computed that:

hA,B ○T(ι2) ○ ηT(B) = ι2 (6)
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Using [FI.1] and [FI.2], we can also compute that:

hA,0 ○ h
○
A = (ι1 ○T(π1) + ι2 ○ µ0 ○T(π2)) ○ h

○
A (Def. of h)

= ι1 ○T(π1) ○ h
○
A + ι2 ○ µ0 ○T(π2) ○ h

○
A

= ι1 + ι2 ○ 0 ([FI.1] and [FI.2])

= ι1 + 0

= ι1

So we have that:

hA,0 ○ h
○
A = ι1 (7)

Then we compute that:

hA,B ○ h
−1
A,B = hA,B ○ (T (1A ⊕T(0)) ○ h○A ○ π1 +T(ι2) ○ ηT(B) ○ π2) (Def. of h○)

= hA,B ○T (1A ⊕T(0)) ○ h○A ○ π1 + hA,B ○T(ι2) ○ ηT(B) ○ π2

= (T (1A)⊕T(0)) ○ hA,0 ○ h
○
A ○ π1 + hA,B ○T(ι2) ○ ηT(B) ○ π2 (Nat. of h)

= (1T(A) ⊕T(0)) ○ ι1 ○ π1 + ι2 ○ π2 ((6) and (7))

= ι1 ○ π1 + ι2 ○ π2 (Nat. of ι1)

= 1T(A)⊕T(B) (ι1 ○ π1 + ι2 ○ π2 = 1)

So hA,B ○ h−1A,B = 1T(A)⊕T(B). So we conclude that the fusion operator is a natural isomor-
phism, and therefore that (T, µ, η) is a Hopf monad.

We conclude this section by considering the fusion invertors for the Hopf monad ex-
amples in Section 2.

3.5. Example. For any Abelian group G and the induced Hopf monad T(−) ∶= G⊕− on
CMON (Example 2.2), the fusion invertor h○M ∶ G ⊕M //G ⊕M ⊕G ⊕ 0 is defined as
follows:

h○M(g,m) = (g,m,−g,0)

In Section 4, we will show that the fusion invertor is always of this form for any repre-
sentable Hopf monad.

3.6. Example. For the Hopf monad T(−) ∶= Z2 ⊗Z − on Ab (Example 2.3), the fusion
invertor h○G ∶ Z2 ⊗Z G //Z2 ⊗Z (G⊕ (Z2 ⊗Z 0)) is defined as follows:

h○G(x⊗ g) = x⊗ (g,0)

In fact, the fusion operator is precisely h○G = Z2 ⊗Z ι1. In Section 5, we will show that the
fusion invertor is always of this form for any idempotent Hopf monad.

3.7. Example. For any Abelian group G and the Hopf monad T(M,N) ∶= (G ⊕M,0)
on CMON × CMON, the fusion invertor is given by the pair h○(M,N) ∶= (h

○
M ,0), where

h○M ∶ G⊕M //G⊕M ⊕G⊕ 0 is the fusion invertor defined in Example 3.5.
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4. Representable Hopf Monads

As discussed in the introduction, the main class of Hopf monads are those induced by
Hopf monoids, which are called representable Hopf monads. In an arbitrary symmetric
monoidal category, every (cocommutative) bimonoid B induces a (symmetric) bimonad
T(−) ∶= B ⊗−, while every (cocommutative) Hopf monoid H induces a (symmetric) Hopf
monad T(−) ∶= H ⊗ −, where the inverse of the fusion operator is constructed using the
antipode [BLV, 2011, Example 2.10]. In this section, we consider representable Hopf
monads in the biproduct case and show that the fusion invertor is always of the same
form.

In a category X with finite biproducts, recall that every object H has a canonical and
unique bimonoid structure, which is also bicommutative. The multiplication H⊕H //H
is the canonical codiagonal of the coproduct, the comultiplication H //H ⊕H of the
product, while the unit 0 //H and counit H // 0 are the zero maps from and to the
zero object. As such for every object H, we obtain a monad T(−) ∶= H ⊕ − on X, where
the monad multiplication µA ∶H ⊕A⊕A //H ⊕A and the monad unit ηA ∶ A //H ⊕A
are respectively defined as follows using the additive structure of the biproduct:

µA ∶= ι1 ○ π1 + ι1 ○ π2 + ι2 ○ π3 ηA ∶= ι2 (8)

Thus the induced fusion operator hA,B ∶H ⊕A⊕H ⊕B //H ⊕A⊕H ⊕B is given by:

hA,B ∶= ι1 ○ π1 + ι2 ○ π2 + ι3 ○ π1 + ι3 ○ π3 + ι4 ○ π4 (9)

In a category X with finite biproducts, an object H is a Hopf monoid if and only if the
identity 1H ∶ H //H has an additive inverse −1H ∶ H //H, that is, 1H + (−1H) = 0. In
this case, −1H is the antipode for the canonical bimonoid structure on H. Using −1H we
may construct the inverse of the fusion operator h−1A,B ∶H ⊕A⊕H ⊕B

//H ⊕A⊕H ⊕B
as follows:

h−1A,B ∶= ι1 ○ π1 + ι2 ○ π2 + ι3 ○ (−1H) ○ π1 + ι3 ○ π3 + ι4 ○ π4 (10)

Using “element notation”, one can see that this is indeed a generalization of Example 2.2.

4.1. Lemma. Let H be an object in a category X with finite biproducts such that its
identity 1H ∶ H //H has an additive inverse −1H ∶ H //H. Then for the Hopf monad
H ⊕ − on X, the induced fusion invertor h○A ∶H ⊕A //H ⊕A⊕H ⊕ 0 is of the form:

h○A = ι1 ○ π1 + ι2 ○ π1 + ι3 ○ (−1H) ○ π1 (11)

Proof. By Proposition 3.4, applying (4) to the Hopf monad H⊕−, we get that the fusion
invertor h○ is given by the forumla h○A ∶= h

−1
A,0 ○ (ι1 ○ π1 + ι2 ○ π2). Then expanding out the

definition of h−1 and using the biproduct identities that πi ○ ιj = 0 if i ≠ j and πi ○ ιi = 1,
we obtain precisely (11).
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Again, one can use “element notation” to see that this fusion invertor is indeed a
generalization of Example 3.5.

5. Idempotent Monads

In this section, we consider the case of Hopf monads which are also idempotent monads,
since idempotent Hopf monads were of particular interest in [HL, 2022]. We will show
that for an idempotent Hopf monad, the fusion invertor and inverse of the fusion operator
are always of a specific form. In fact, we will show that checking that an idempotent
monad is a Hopf monad amounts to checking one identity.

Recall that an idempotent monad [B, 1994, Proposition 4.2.3] on a category X is
a monad (T,µ, η) on X such that the monad multiplication µA ∶ TT (A) // T (A) is a
natural isomorphism, so TT (A) ≅ T (A) and µ−1A = ηT(A) = T(ηA). Our first observation is
that idempotent monads preserve zero maps and zero objects.

5.1. Lemma. Let (T, µ, η) be a idempotent monad on a category X with finite biproducts.
Then T preserves zero maps, that is, T(0) = 0. Therefore T also preserves the zero object.

Proof. Suppose that (T, µ, η) is an idempotent monad Then we compute:

T(0) = T(0) ○ µA ○ ηT(A) (µ ○ η = 1)

= T (0 ○ ηA) ○ µA ○ ηT(A)
= T(0) ○T(ηA) ○ µA ○ ηT(A)
= T(0) ○ ηT(A) (Idem. monad so T(ηA) ○ µ = 1)

= ηB ○ 0 (Nat. of η)

= 0

So T(0) = 0.

The inverse of the above lemma is not necessarily true: some monads preserve zero
maps but are not idempotent monads. However, for Hopf monads, preserving zero maps
is equivalent to being idempotent. Using this fact, we can show that the fusion invertor
h○A ∶ T(A) //T (A⊕T(0)) must always be T(ι1) ∶ T(A) //T (A⊕T(0)). In fact, we can
also show that if the fusion operator is of this form then the Hopf monad must also be an
idempotent monad.

5.2. Lemma. Let (T, µ, η) be a Hopf monad on a category X with finite biproducts. Then
the following are equivalent:

(i) (T, µ, η) is an idempotent monad;

(ii) T preserves zero maps, that is, T(0) = 0;

(iii) The fusion invertor h○A ∶ T(A) //T (A⊕T(0)) is of the form:

h○A = T(ι1) (12)
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Proof. Observe that (i) ⇒ (ii) is simply Lemma 5.1. For (ii) ⇒ (iii), suppose that T
preserves zero maps. Using [FI.3.0], we compute that:

T(ι1) = (h
○
A ○T(π1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2)) ○T(ι1) ([FI.3.0])

= h○A ○T(π1) ○T(ι1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2) ○T(ι1)

= h○A +T(ι2) ○ ηT(B) ○ µB ○T(0) (π2 ○ ι1 = 0)

= h○A +T(ι2) ○ ηT(B) ○ µB ○ 0 (By assump. T(0) = 0)

= h○A + 0
= h○A

So h○A = T(ι1). For (iii) ⇒ (i), suppose that h○A = T(ι1). To prove that (T, µ, η) is an
idempotent monad, it suffices to show that ηT(B)○µB = 1TT(B) [B, 1994, Proposition 4.2.3].
First using [FI.2], we compute that following:

0 = µB ○T(π2) ○ h
○
A ([FI.2])

= µB ○T(π2) ○T(ι1) (By assump. h○A = T(ι1))
= µB ○T(0) (π2 ○ ι1 = 0)

= µB ○T (ηB ○ 0)

= µB ○T (ηB) ○T(0)

= T(0) (µ ○T(η) = 1)

So T(0) = 0. Then using this and [FI.3], we compute that:

T(ι2) = (T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)) ○T(ι2) ([FI.3])

= (T (1A ⊕T(0)) ○T(ι1) ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)) ○T(ι2)

(By assump. h○A = T(ι1))

= (T(ι1) ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)) ○T(ι2) (Nat. of ι1)

= T(ι1) ○T(π1) ○T(ι2) +T(ι2) ○ ηT(B) ○ µB ○T(π2) ○T(ι2)

= T(ι1) ○T(0) +T(ι2) ○ ηT(B) ○ µB (π1 ○ ι2 = 0)

= T(ι1) ○ 0 +T(ι2) ○ ηT(B) ○ µB (T(0) = 0)

= 0 +T(ι2) ○ ηT(B) ○ µB

= T(ι2) ○ ηT(B) ○ µB

So we have that T(ι2) = T(ι2) ○ ηT(B) ○ µB. Post-composing by T(π2), since π2 ○ ι2 = 1,
we obtain ηT(B) ○ µB = 1TT(B). Therefore we can conclude that (T, µ, η) is an idempotent
monad. So we conclude that (i)⇔ (ii)⇔ (iii).

It follows that for idempotent Hopf monads, the inverse of the fusion operator is always
of the same form as well.
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5.3. Corollary. Let (T, µ, η) be an idempotent Hopf monad on a category X with finite
biproducts. Then the inverse of the fusion operator h−1A,B ∶ T(A)⊕T(B)

//T (A⊕T(B))
is of the form:

h−1A,B = T(ι1) ○ π2 +T(ι2) ○ ηT(B) ○ π2 (13)

Proof. By Lemma 5.2, we have that T(0) = 0. This means that for the zero object,
we have that T (1A ⊕T(0)) = 1T(A⊕T(0)). By Lemma 5.2, we also have that h○A = T(ι1).
So by Proposition 3.4, applying the construction of (5) and rewriting with the previous
identities in mind, we obtain precisely (13).

Of course, for any monad (T, µ, η) on any category with finite biproducts, the map
T(ι1) ∶ T(A) //T (A⊕T(0)) can always be defined. However, while T(ι1) always satisfies
[FI.1] and [FI.2], T(ι1) will not in general also satisfy [FI.3]. So checking that an
idempotent monad is a Hopf monad amounts to checking that T(ι1) satisfies [FI.3]. It
turns out that for an idempotent monad, [FI.3] can be simplified even further. Therefore,
checking that an idempotent monad is a Hopf monad is reduced to checking one identity.

5.4. Proposition. Let (T, µ, η) be an idempotent monad on a category X with finite
biproducts. Then (T, µ, η) is a Hopf monad if and only if for all pairs of objects A,B ∈ X
the following equality holds:

T (1A ⊕ 0) +T(0⊕ 1T(B)) = 1T(A⊕T(B)) (14)

Proof. Suppose that (T, µ, η) is a Hopf monad. By Lemma 5.2, we have that the fusion
invertor is of the form h○A = T(ι1). Using [FI.3], we compute:

T (1A ⊕ 0) +T(0⊕ 1B) = T(ι1) ○T(π1) +T(ι2) ○T(π2)

(ι1 ○ π1 = 1⊕ 0 and ι2 ○ π2 = 0⊕ 1)

= T (1A ⊕T(0)) ○T(ι1) ○T(π1) +T(ι2) ○T(π2) (Nat. of ι1)

= T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○T(π2) (12)

= T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(Idem. monad so η ○ µ = 1)

= 1T(A⊕T(B)) ([FI.3])

So the desired equality (14) holds.
Conversely, suppose that (14) holds. Then define the following natural transformation:

h○A ∶= T(A)
T(ι1)

// T (A⊕T(0))

We will now show that h○A satisfies the three identities [FI.1], [FI.2], and [FI.3]. So we
compute:

(i) T(π1) ○ h○A = 1T(A)

T(π1) ○ h
○
A = T(π1) ○T(ι1) (Def. of h○)
= 1T(A) (π1 ○ ι1 = 1)
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(ii) µB ○T(π2) ○ h○A = 0

µB ○T(π2) ○ h
○
A = µB ○T(π2) ○T(ι1) (Def. of h○)
= µB ○T(0) (π2 ○ ι1 = 0)

= µB ○ 0 (Lem. 5.1)

= 0

(iii) T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2) = 1T(A⊕T(B))

T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

= T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○T(π2) (Idem. monad so η ○ µ = 1)

= T (1A ⊕T(0)) ○T(ι1) ○T(π1) +T(ι2) ○T(π2) (Def. of h○)
= T(ι1) ○T(π1) +T(ι2) ○T(π2) (Nat. of ι1)

= T (1A ⊕ 0) +T(0⊕ 1B) (ι1 ○ π1 = 1⊕ 0 and ι2 ○ π2 = 0⊕ 1)

= 1T(A⊕T(B)) (14)

Therefore, h○ is a fusion invertor for (T, µ, η). Then by Proposition 3.4, (T, µ, η) is a Hopf
monad.

6. Negatives

In this section, we consider Hopf monads on a category that has finite biproducts and
also additive negatives (also sometimes called an additive category). We will show that
in a setting with negatives, for any Hopf monad, its fusion invertor and inverse of the
fusion operator are always of the same form. We will then show that in the presence of
negatives, checking that a monad is a Hopf monad is simplified to checking one identity.

In a category X with finite biproducts that also has negatives, every homset is an
Abelian group, which means that every map f ∶ A // B has an additive inverse −f ∶
A //B, that is, f + (−f) = 0. First observe that this implies that every object is a Hopf
monoid, which means every object induces a Hopf monad.

6.1. Lemma. In a category X with finite biproducts that also has negatives, for every
object H, the monad T(−) ∶=H ⊕ −, as defined in Section 4, is a Hopf monad.

Turning our attention from representable Hopf monads to arbitrary Hopf monads, we
will now explain how using negatives, one can show that fusion invertor is always of a
specific form.

6.2. Lemma. Let (T, µ, η) be a Hopf monad on a category X with finite biproducts that
also has negatives. Then the fusion invertor h○A ∶ T(A) //T (A⊕T(0)) is of the following
form:

h○A = T(ι1) −T(ι2) ○ ηT(0) ○T(0) (15)
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and the inverse of the fusion operator h−1A,B ∶ T(A)⊕T(B)
//T (A⊕T(B)) is of the form:

h−1A,B = T(ι1) ○ π1 −T(ι2) ○ ηT(B) ○T(0) ○ π1 +T(ι2) ○ ηT(B) ○ π2 (16)

Proof. Using [FI.3.0], we first compute that:

T(ι1) = (h
○
A ○T(π1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2)) ○T(ι1) ([FI.3])

= h○A ○T(π1) ○T(ι1) +T(ι2) ○ ηT(0) ○ µ0 ○T(π2) ○T(ι1)

= h○A +T(ι2) ○ ηT(0) ○ µ0 ○T(0) (π1 ○ ι1 = 1 and π2 ○ ι1 = 0)

= h○A +T(ι2) ○ ηT(0) ○ µ0 ○T (η0 ○ 0)

= h○A +T(ι2) ○ ηT(0) ○ µ0 ○T (η0) ○T(0)

= h○A +T(ι2) ○ ηT(0) ○T(0) (µ ○T(η) = 1)

So we have that h○A + T(ι2) ○ ηT(0) ○ T(0) = T(ι1). By subtracting T(ι2) ○ ηT(B) ○ T(0)
from both sides, we finally obtain that h○A = T(ι1) −T(ι2) ○ ηT(B) ○T(0) as desired. So by
Proposition 3.4, applying the construction of (5), we compute:

h−1A,B = T (1A ⊕T(0)) ○ h○A ○ π1 +T(ι2) ○ ηT(B) ○ π2 (5)

= T (1A ⊕T(0)) ○ (T(ι1) −T(ι2) ○ ηT(B) ○T(0)) ○ π1 +T(ι2) ○ ηT(B) ○ π2 (15)

= T (1A ⊕T(0)) ○T(ι1) ○ π1 −T (1A ⊕T(0)) ○T(ι2) ○ ηT(B) ○T(0) ○ π1

+T(ι2) ○ ηT(B) ○ π2

= T(ι1) ○ π1 −T(ι2) ○ ηT(B) ○T(0) ○T(0) ○ π1 +T(ι2) ○ ηT(B) ○ π2 (Nat. of ι1, ι2, and η)

= T(ι1) ○ π1 −T(ι2) ○ ηT(B) ○T(0) ○ π1 +T(ι2) ○ ηT(B) ○ π2 (0 ○ 0 = 0)

So h−1A,B = T(ι1) ○ π1 −T(ι2) ○ ηT(B) ○T(0) ○ π1 +T(ι2) ○ ηT(B) ○ π2 as desired.

Observe that for any monad (T, µ, η) on a category with biproducts that also has
negatives, one can always define the map T(ι1)−T(ι2) ○ ηT(0) ○T(0). However, while said
map will satisfy [FI.1] and [FI.2], it may not satisfy [FI.3]. So in this setting, checking
if a monad is a Hopf monad, one needs only check that said map satisfies [FI.3]. It
turns out that the equality in question can be simplified even further. Therefore, in the
presence of negatives, checking that a monad is a Hopf monad amounts to showing that
one equality holds.

6.3. Proposition. Let (T, µ, η) be a monad on a category X with finite biproducts that
also has negatives. Then (T, µ, η) is a Hopf monad if and only if for all pairs of objects
A,B ∈ X the following equality holds:

T (1A ⊕ 0) +T(ι2) ○ ηT(B) ○ µB ○T(π2) −T(ι2) ○ ηT(B) ○T(0) = 1T(A⊕T(B)) (17)

Proof. Suppose that (T, µ, η) is a Hopf monad. Using [FI.3], we compute:

1T(A⊕T(B)) = T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)
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= T (1A ⊕T(0)) ○ (T(ι1) −T(ι2) ○ ηT(B) ○T(0)) ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(15)

= T (1A ⊕T(0)) ○T(ι1) ○T(π1) −T (1A ⊕T(0)) ○T(ι2) ○ ηT(B) ○T(0) ○T(π1)

+T(ι2) ○ ηT(B) ○ µB ○T(π2)

= T(ι1) ○T(π1) −T(ι2) ○ ηT(B) ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(Nat. of ι1, ι2, and η, and 0 ○ 0 = 0)

= T (1A ⊕ 0) −T(ι2) ○ ηT(B) ○T(0) +T(ι2) ○ ηT(B) ○ µB ○T(π2) (ι0 ○ π0 = 1A ⊕ 0)

So the desired equality (17) holds.
Conversely, suppose that (17) holds. Then define the natural transformation h○A ∶

T(A) //T (A⊕T(B)) as follows:

h○A = T(ι1) −T(ι2) ○ ηT(B) ○T(0) (18)

We will now show that h○A satisfies the three identities [FI.1], [FI.2], and [FI.3]. So we
compute:

(i) T(π1) ○ h○A = 1T(A)

T(π1) ○ h
○
A = T(π1) ○ (T(ι1) −T(ι2) ○ ηT(B) ○T(0)) (Def. of h○)

= T(π1) ○T(ι1) −T(π1) ○T(ι2) ○ ηT(B) ○T(0)
= 1T(A) −T(0) ○ ηT(B) ○T(0) (π1 ○ ι1 = 1 and π1 ○ ι2 = 0)

= 1T(A) − ηA ○ 0 ○T(0) (Nat. of η)

= 1T(A) − 0
= 1T(A)

(ii) µB ○T(π2) ○ h○A = 0

µB ○T(π2) ○ h
○
A = µB ○T(π2) ○ (T(ι1) −T(ι2) ○ ηT(B) ○T(0)) (Def. of h○)

= µB ○T(π2) ○T(ι1) − µB ○T(π2) ○T(ι2) ○ ηT(B) ○T(0)
(π2 ○ ι1 = 0 and π2 ○ ι2 = 1)

= µB ○T(0) − µB ○ ηT(B) ○T(0)
= µB ○T (ηB ○ 0) −T(0) (µ ○ η = 1)

= µB ○T (ηB) ○T(0) −T(0)

= T(0) −T(0) (µ ○T(η) = 1)

= 0

(iii) T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2) = 1T(A⊕T(B))

T (1A ⊕T(0)) ○ h○A ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)
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= T (1A ⊕T(0)) ○ (T(ι1) −T(ι2) ○ ηT(B) ○T(0)) ○T(π1) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(Def. of h○)

= T (1A ⊕T(0)) ○T(ι1) ○T(π1) −T (1A ⊕T(0)) ○T(ι2) ○ ηT(B) ○T(0) ○T(π1)

+T(ι2) ○ ηT(B) ○ µB ○T(π2)

= T(ι1) ○T(π1) −T(ι2) ○ ηT(B) ○T(0) +T(ι2) ○ ηT(B) ○ µB ○T(π2)

(Nat. of ι1, ι2, and η, and 0 ○ 0 = 0)

= T (1A ⊕ 0) −T(ι2) ○ ηT(B) ○T(0) +T(ι2) ○ ηT(B) ○ µB ○T(π2) (ι1 ○ π1 = 1⊕ 0)

= 1T(A⊕T(B)) (17)

Therefore, h○ is a fusion invertor for (T, µ, η). Then by Proposition 3.4, (T, µ, η) is a Hopf
monad.
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