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CATEGORICAL-ALGEBRAIC PROPERTIES OF
LATTICE-ORDERED GROUPS

ANDREA CAPPELLETTI

Abstract. We study the categorical-algebraic properties of the semi-abelian variety
ℓGrp of lattice-ordered groups. In particular, we show that this category is fiber-wise
algebraically cartesian closed, arithmetical, and strongly protomodular. Moreover, we
observe that ℓGrp is not action accessible, despite the good behaviour of centralizers of
internal equivalence relations. Finally, we restrict our attention to the subvariety ℓAb
of lattice-ordered abelian groups, showing that it is algebraically coherent; this provides
an example of an algebraically coherent category which is not action accessible.

1. Introduction

A lattice-ordered group is a set endowed with both a group structure and a lattice structure
such that the underlying order relation is invariant under translations. In other words, a
lattice-ordered group can be defined as an algebraic structure of signature {·, e,−1 ,∨,∧}
satisfying the axioms of groups, the axioms of lattices, and the axioms related to the dis-
tributivity of the group product over both the lattice operations. Therefore, the category
of lattice-ordered groups (denoted by ℓGrp) can be presented as the variety of models
associated with the equational theory just described.
Recently, lattice-ordered groups have emerged in many areas of mathematics. For in-
stance, in the study of many-valued logic (as shown in [Mundici, 1986], the category of
lattice-ordered abelian groups with a distinguished order-unit is equivalent to the one of
MV-algebras, which provides algebraic semantics for  Lukasiewicz many-valued proposi-
tional logic [Cignoli et al., 2013]), in the theory of Bézout domains, in complex intuition-
istic fuzzy soft set theory, and in varietal questions in universal algebra.
Although the notion of lattice-ordered groups is as natural as that of rings or partially
ordered groups (it suffices to say that examples of lattice-ordered groups include the set
of integers Z, the set of rational numbers Q, and the set of real numbers R with the usual
group sum and the usual order structure), there are currently no studies about this variety
from a categorical point of view. The purpose of this work is precisely to explore these
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aspects.
A first observation is that the category of lattice-ordered groups is semi-abelian. In a
similar way to how abelian categories describe the properties of the categories of abelian
groups and of modules over a ring, the notion of semi-abelian category is aimed at cap-
turing the main algebraic properties of the category of groups. Briefly, a semi-abelian
category [Janelidze et al., 2002] is a pointed finitely cocomplete category which is Barr-
exact [Barr, 1971] and protomodular [Bourn, 1991] (protomodularity, in this context, is
equivalent to the Split Short Five Lemma). Examples of semi-abelian categories include,
for instance, groups, rings without unit, loops, Lie algebras, Heyting semilattices, etc.
However, the notion of semi-abelian category is not as efficient in capturing the proper-
ties of groups as the one of abelian category is with respect to abelian groups and modules.
Therefore, additional categorical-algebraic conditions have been introduced over the years
to get closer to a characterization of the structural properties of the category of groups;
among these, one can mention representability of actions [Borceux et al., 2005], algebraic
coherence [Cigoli et al., 2015a], and strong protomodularity [Bourn, 2000]. This paper is
aimed at studying which of these properties hold in the category of lattice-ordered groups.

In Section 2 we recall some classical facts about lattice-ordered groups and we focus
on the notion of semi-direct product in ℓGrp.

In Section 3 we study the nature of commutators in ℓGrp and we show that every sub-
object admits a centralizer, which coincides with the classical notion of polar; moreover,
we prove that ℓGrp is algebraically cartesian closed.

In Section 4 we give an alternative proof of the known fact that ℓGrp is arithmetical
using the observation that the only internal group object is the trivial one.

In Section 5 we show that ℓGrp is strongly protomodular; this property implies that,
among other things, the commutativity of internal equivalence relations in the Smith-
Pedicchio sense [Pedicchio, 1995] is equivalent to the commutativity in the Huq sense
[Huq, 1968] of their associated ideals. Moreover, we observe that in ℓGrp every internal
equivalence relation admits a centralizer and we provide a description of it.

Section 6 is devoted to the study of action accessibility, a property related to the exis-
tence of centralizers of internal equivalence relations; here we observe that, despite ℓGrp
is not action accessible, there is a construction of centralizers which is very close to the
one developed in [Bourn and Janelidze, 2009] for the action accessible category of rings
without unit.

Section 7 is aimed at proving that the category of lattice-ordered groups is fiber-wise
algebraically cartesian closed (i.e. each category of points in ℓGrp is algebraically cartesian
closed); in detail, we show that in the categories of points in ℓGrp every subobject admits
a centralizer, and we provide a description of it.

In Section 8 we study the properties of the Higgins commutator in ℓGrp; in particular,
we prove that ℓGrp satisfies the condition of normality of the Higgins commutators show-
ing that the Huq commutator of a pair of ideals (i.e. kernels of some arrows) is nothing
more than the intersection of the two subobjects.

Finally, in Section 9, we focus our attention on the study of the categorical-algebraic
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properties of the variety of lattice-ordered abelian groups (denoted by ℓAb). To be precise,
we show that ℓAb is algebraically coherent; this condition implies several algebraic proper-
ties (such as, for example, strong protomodularity, normality of the Higgins commutator,
and the so-called “Smith is Huq” condition). Furthermore, we observe that the category
of lattice-ordered abelian groups provides an example of an algebraically coherent cate-
gory that is not action accessible (thus partially solving the Open Problem 6.28 presented
in [Cigoli et al., 2015a]).

2. Preliminaries

In this section, we recall the notion of lattice-ordered group. Roughly speaking, a lattice-
ordered group is a set endowed with a group structure and a lattice structure such that
the group operation is distributive with respect to the lattice operations.

2.1. Definition. A lattice-ordered group is an algebra (X, ·, e, (−)−1,∨) where:

LG1) (X, ·, e, (−)−1) is a group;

LG2) (X,∨) is a semilattice (i.e. ∨ is a binary, associative, commutative and idempotent
operation on X);

LG3) for every x, y, z ∈ X the following equalities hold

x · (y ∨ z) = (x · y) ∨ (x · z) and

(x ∨ y) · z = (x · z) ∨ (y · z).

A morphism between two lattice-ordered groups (X, ·, e, (−)−1,∨) and
(Y, ·, e, (−)−1,∨) is a map f : X → Y such that f is both a group homomorphism be-
tween (X, ·, e, (−)−1) and (Y, ·, e, (−)−1) and a semilattice homomorphism between (X,∨)
and (Y,∨).
The category ℓGrp is the category whose objects are the lattice-ordered groups and whose
arrows are the morphisms between them.

Many fundamental algebraic structures naturally admit the structure of lattice-ordered
groups. In particular, the set of integers Z, the set of rational numbers Q, and the set
of real numbers R with the usual group sum and the usual order structure are lattice-
ordered groups. Moreover, given a totally ordered set Γ we can provide a lattice-ordered
group structure on the set of order automorphisms Aut(Γ): for every f, g ∈ Aut(Γ) the
group product is defined as the composition f ◦ g, and (f ∨ g)(x) := max(f(x), g(x)) for
all x ∈ Γ. For these and further examples see e.g. [Kopytov and Medvedev, 2013] and
[Anderson and Feil, 2012].

Given a lattice-ordered group X, we typically denote an algebra by its underlying set.
In our notation, we will use xy instead of x ·y as usual. Furthermore, we will assume that



CATEGORICAL-ALGEBRAIC PROPERTIES OF LATTICE-ORDERED GROUPS 919

the product operation precedes the lattice operation. Therefore, we will write xy ∨ z to
mean (xy) ∨ z.

In the literature, lattice-ordered groups are usually presented as algebras on the set
of operations {·, e, (−)−1,∨,∧} satisfying the group axioms, the lattice axioms and the
axioms related to the left and right distributivity of the group operation over both lattice
operations. However, in this paper, we have preferred a presentation that does not directly
involve the meet operation in order to reduce the number of operations to deal with. In
fact, starting from Definition 2.1 it is always possible to define, in a unique way, the
meet operation. To show this, we are about to cite and prove several well-known results,
that can be found, for example, in [Birkhoff, 1942], [Kopytov and Medvedev, 2013], and
[Anderson and Feil, 2012]. Given a lattice-ordered group (X, ·, e, (−)−1,∨), since (−)−1

is an isomorphism of groups between (X, ·, e, (−)−1) and (X, ·op, e, (−)−1), it immediately
follows that defining

x ∧ y := (x−1 ∨ y−1)−1

makes (X, ·op, e, (−)−1,∧) a lattice-ordered group, which implies that also
(X, ·, e, (−)−1,∧) is a lattice-ordered group. Moreover, (X,∨,∧) is a distributive lattice.
To prove this, we start by observing that the identity

a(x ∧ y)−1b = (ax−1b) ∨ (ay−1b) (2.1)

holds. This is immediate since a(x ∧ y)−1b = a(x−1 ∨ y−1)b = (ax−1b) ∨ (ay−1b). The
identity (2.1) implies (setting a = x and b = y) that

x(x ∧ y)−1y = x ∨ y, (2.2)

x = (x ∨ y)y−1(x ∧ y). (2.3)

To prove that (X,∨,∧) is a lattice, we observe that a ∨ b = b if and only if a ∧ b = a.
In fact, note that if a ∨ b = b, then a = (a ∨ b)b−1(a ∧ b) = b(b−1(a ∧ b)) = a ∧ b, and
if a ∧ b = a, then b = (b ∨ a)a−1(b ∧ a) = (b ∨ a)a−1a = b ∨ a. Finally, to show the
distributivity, we recall the well-known fact that a lattice is distributive if and only if the
implication

[x ∧ b = y ∧ b and x ∨ b = y ∨ b] =⇒ x = y

holds. This is true because if x ∧ b = y ∧ b and x ∨ b = y ∨ b, then, by the identity (2.3),
we get x = (x ∨ b)b−1(x ∧ b) = (y ∨ b)b−1(y ∧ b) = y.
Moreover, when · is commutative, identity (2.2) implies xy = (x ∧ y)(x ∨ y). This fact
will be crucial in the last part of this paper.

2.2. Definition. [Kopytov and Medvedev, 2013, Anderson and Feil, 2012] Let X be an
object of ℓGrp. For every x ∈ X we define

x+ := x ∨ e, x− := x ∧ e and |x| := x ∨ x−1;

x+ is called the positive part of x, x− the negative part of x, and |x| the absolute value
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of x.

The previous definition is useful in order to see that, in a lattice-ordered group, ev-
ery element can be written as the product of a positive element and a negative one.
Specifically, given an object X of ℓGrp, we define the positive cone of X as

P := {x ∈ X |x ≥ e}.

It is a well-known fact that X is generated by its positive cone (i.e. X = PP−1). We
offer a proof of this fact by essentially following the approach outlined in [Birkhoff, 1942],
[Kopytov and Medvedev, 2013], and [Anderson and Feil, 2012]. To do this, we show that

x = x+x−, (2.4)

for every x ∈ X. Clearly, (2.4) follows by (2.3) setting y = e. Another well-known and
interesting fact regarding the behavior of elements in a lattice-ordered group is that

|x| = x+(x−)−1. (2.5)

We prove this identity, too (once again, the proof follows what is presented in [Birkhoff,
1942], [Kopytov and Medvedev, 2013], and [Anderson and Feil, 2012]). Note that x ∨
x−1 ≥ x ∧ x−1, hence (x ∨ x−1)(x ∧ x−1)−1 ≥ e, and so (x ∨ x−1)2 ≥ e. Now, since
(a ∧ e)n = (an ∧ e) ∧ (a ∧ e)n−1 (to see this, it suffices to expand and observe that
(a∧ e)n = an ∧ an−1 ∧ · · · ∧ e), it follows that an ≥ e implies (a∧ e)n = (a∧ e)n−1, and so
a ≥ e. Therefore, x ∨ x−1 ≥ e. To conclude, we compute x+(x−)−1 = (x ∨ e)(x−1 ∨ e) =
e ∨ x ∨ x−1 ∨ e = x ∨ x−1.
Furthermore, the notion of positive part is extremely useful in order to characterize group
homomorphisms between lattice-ordered groups which are, in addition, morphisms of
ℓGrp. In fact, the following holds:

2.3. Lemma. Let X, Y be two objects of ℓGrp. A map f : X → Y is a morphism of ℓGrp
if and only if f preserves the group product and

f(x ∨ e) = f(x) ∨ e, for all x ∈ X.

Proof. One implication is trivial. So, let us suppose that f preserves the group product
(i.e. is a group homomorphism) and f(x ∨ e) = f(x) ∨ e for every x ∈ X. We have to
prove that

f(x ∨ y) = f(x) ∨ f(y), for all x, y ∈ X.

We have x ∨ y = (xy−1 ∨ e)y, hence f(x ∨ y) = f(xy−1 ∨ e)f(y) and, by assumption,

f(xy−1 ∨ e)f(y) = (f(xy−1) ∨ e)f(y) = (f(x)f(y)−1 ∨ e)f(y) = f(x) ∨ f(y).

This last result follows essentially from Theorem 9 of [Birkhoff, 1942].
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Now, we want to provide a description of the ideals in the variety ℓGrp. In a category
where it makes sense to speak of a kernel of a morphism (for example a pointed finitely
complete category), a subobject of X is called an ideal (or normal subobject) if it is the
kernel of some morphism. A detailed study of the notion of an ideal in the variety ℓGrp
can be found in [Kopytov and Medvedev, 2013] and [Anderson and Feil, 2012].
First of all, we have to recall the definition of a convex subset. Given an object X of
ℓGrp and a subset S ⊆ X, S is said to be convex if for every a, b ∈ S and every x ∈ X, if
a ≤ x ≤ b then x ∈ S.
A subobject A ≤ X is an ideal if and only if it is normal (in the classical sense) as a
subgroup and it is a convex subset.

The aim of the following proposition is to describe the notion of convexity only with
terms. This characterization will be crucial for the purpose of working with semi-direct
products.

2.4. Proposition. Let X be an object of ℓGrp and A ≤ X a subalgebra. A is convex if
and only if for every a1, a2 ∈ A and x, y ∈ X one has

(a1x ∨ a2y)(x ∨ y)−1 ∈ A.

Proof. Let us suppose that A is convex. We consider the following inequalities:

((a1 ∧ a2)x) ∨ ((a1 ∧ a2)y) ≤ a1x ∨ a2y ≤ ((a1 ∨ a2)x) ∨ ((a1 ∨ a2)y),

hence
(a1 ∧ a2)(x ∨ y) ≤ a1x ∨ a2y ≤ (a1 ∨ a2)(x ∨ y),

and so
(a1 ∧ a2) ≤ (a1x ∨ a2y)(x ∨ y)−1 ≤ (a1 ∨ a2).

Thus, since A is convex, we deduce (a1x ∨ a2y)(x ∨ y)−1 ∈ A.
Conversely, let us suppose that for every a1, a2 ∈ A and x, y ∈ X one has (a1x∨ a2y)(x∨
y)−1 ∈ A. Let us take an element x ∈ X and two elements a1, a2 ∈ A such that a1 ≤ x ≤
a2. We want to prove that x belongs to A, We observe that a1 ∨ x = x and a2 ∧ x = x.
Therefore,

x = (a1 ∨ x)x−1(x ∧ a2) = (a1 ∨ x)(e ∧ x−1a2) = (a1 ∨ x)(e ∨ a−1
2 x)−1

= (a1e ∨ a2a
−1
2 x)(e ∨ a−1

2 x)−1 ∈ A;

where the last term belongs to A by assumption.

This means that a subobject A ≤ X in ℓGrp is normal if and only if for every
a1, a2, a ∈ A and x, y, z ∈ X one has (a1x ∨ a2y)(x ∨ y)−1 ∈ A and z−1az ∈ A.

In the following part of this section, we will deal with the notion of a semi-abelian
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category. The concept of a semi-abelian category aims to capture some of the common al-
gebraic properties of the category of groups; among the examples of semi-abelian category
we can find those of groups, rings without unit, Lie algebras, and Heyting semilattices.

2.5. Definition. [Janelidze et al., 2002] A pointed category (i.e. a category with a zero
object) C is semi-abelian if:

• it is Barr-exact [Barr, 1971] (which means that C is a regular category in which
every internal equivalence relation is a kernel pair);

• it has finite coproducts;

• it is protomodular [Bourn, 1991] (in this context, this is equivalent to the Split Short
Five Lemma holding in C).

In [Bourn and Janelidze, 2003], Theorem 1.1 the authors provided, in the case of
a variety V of universal algebras, a characterization for protomodularity depending on
terms. In fact, the authors proved that a variety V is protomodular if and only if it has
0-ary terms e1, . . . , en, binary terms t1, . . . , tn and an (n + 1)-ary term t satisfying the
identities

t(x, t1(x, y), . . . , tn(x, y)) = y and ti(x, x) = ei

for all i = 1, . . . , n.

Since every variety of Ω-groups is semi-abelian (see Example 2.6 of [Janelidze et al.,
2002]) we obtain:

2.6. Proposition. ℓGrp is a semi-abelian category.

As shown in [Bourn and Janelidze, 1998], in every semi-abelian category there exist
semi-direct products in a categorical sense. In the category of groups, the categorical
semi-direct product coincides with the classical one. Now we can describe semi-direct
products in the category ℓGrp. In order to do this, we will apply, in the next proposition,
the results provided in [Clementino et al., 2015].

2.7. Proposition. Let p : A → B be a split epimorphism in ℓGrp with fixed section
s : B → A, and k : K → A a kernel of p. Without loss of generality let us suppose that
K,B are subalgebras of A and k, s are the inclusions of subalgebras. Then A is isomorphic
(as a lattice-ordered group) to the set K ×B endowed with the operations

• (k1, b1)(k2, b2) = (k1b1k2b
−1
1 , b1b2),

• (k1, b1) ∨ (k2, b2) = ((k1b1 ∨ k2b2)(b1 ∨ b2)
−1, b1 ∨ b2),

(which takes the name of semi-direct product and will be denoted by K ⋊ B) via the
morphism

φ : K ⋊B → A

(k, b) 7→ kb.
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Moreover, considering the following diagram in ℓGrp:

K K ⋊B B

K A Bk
p

s

pB

iB

iK

φ

where iK(k) = (k, e), iB(b) = (e, b) and pB(k, b) = b, we have φiK = k, pφ = pB, and
φiB = s.

3. Centralizers and Algebraic Cartesian Closedness

In this section we study, from a categorical point of view, the commutativity of subobjects
in the variety ℓGrp.
In order to introduce the topic, we mention some known results related to the category
of groups. Given a group G and two subgroups A,B ≤ G, the condition that, for every
a ∈ A and b ∈ B, ab = ba can be reformulated in the following equivalent way: there
exists a group homomorphism φ : A×B → G making the following diagram commutative:

A B

A×B

G.

(idA,0) (0,idB)

φ

Moreover, it is easy to show that φ must be the group product and, therefore, it is
necessarily unique. Hence, with the aim of generalising the notion of commutativity, we
must place ourselves in a context in which a morphism φ of this type is unique. This
reasoning justifies the following definition:

3.1. Definition. [Bourn, 1996] A pointed category C with finite products is unital if, for
X and Y objects of C, the pair of morphisms (idX , 0) : X → X×Y , (0, idY ) : Y → X×Y
is jointly extremally epimorphic.

To be more explicit, a pair of arrows f : A → B and g : C → B of a category C is said
to be jointly extremally epimorphic when, for every commutative diagram

M

A B C,
f g

f ′ g′
m
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if m is a monomorphism, then m is an isomorphism.

It has been shown in [Borceux and Bourn, 2004] that every semi-abelian category is
unital.

We are ready to mention the generalized notion of commutativity between subobjects.

3.2. Definition. [Huq, 1968] Let C be a unital category. Two subobjects a : A ↣ X
and b : B ↣ X of X are said to cooperate (or commute in the sense of Huq, and we
write [a, b] = 0) if there exists a (necessarily unique) morphism φ : A × B → X (called
cooperator) such that the following diagram commutes:

A B

A×B

X.

a b

(idA,0) (0,idB)

∃φ

Given a subobject a : A ↣ X, the centralizer of a in X, if it exists, is the greatest subobject
of X that cooperates with a.

Now, let us recall the definition of orthogonal subobjects of a lattice-ordered group.
This concept will be essential in order to study the condition of cooperation.

3.3. Definition. [Birkhoff, 1942] Let X be an object of ℓGrp. Two elements a, b ∈ X
are called orthogonal if

|a| ∧ |b| = e.

Two subsets A,B ⊆ X are called orthogonal (and one writes A ⊥ B) if, for every a ∈ A
and for every b ∈ B, a and b are orthogonal as elements.

It is a known fact that two orthogonal subobjects of a lattice-ordered group commute
as subgroups. More generally, if a and b are orthogonal then ab = ba. A proof of this can
be found, for instance, in Proposition 2.2.10 of [Kopytov and Medvedev, 2013].

3.4. Proposition. Let X be an object of ℓGrp and A,B ≤ X two subobjects. Then A
and B cooperate if and only if A ⊥ B.

Proof. (⇒) The cooperator φ : A × B → X is given by φ(a, b) = ab. In fact, since φ
preserves the group operation, we have

φ(a, b) = φ(a, e)φ(e, b) = φ(iA(a))φ(iB(b)) = ab.
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We observe that, for every a ∈ A and b ∈ B, (|a|, e) ∧ (e, |b|) = (e, e) holds. So, since φ
preserves the lattice operations, we get

e = φ(e, e) = φ((|a|, e) ∧ (e, |b|)) = φ(|a|, e) ∧ φ(e, |b|) = |a| ∧ |b|.

(⇐) If a cooperator φ exists then it must be the group multiplication because of what we
observed at the beginning of the proof. In fact, in order to guarantee the existence of a
cooperator, we only have to prove

ab = ba and (ab)+ = a+b+ (3.1)

for all a ∈ A and b ∈ B. Indeed, if ab = ba for every a ∈ A and b ∈ B, then φ((a, b)(c, d)) =
φ(ac, bd) = acbd = abcd = φ(a, b)φ(c, d) since, by assumption, cb = bc; furthermore, if
(ab)+ = a+b+ for every a ∈ A and b ∈ B, then φ((a, b)+) = φ((a, b)∨(e, e)) = φ(a+, b+) =
a+b+ = (ab)+ = φ(a, b)+ = φ(a, b)∨ e, and thus we can apply Lemma 2.3 to say that φ is
a morphism of lattice-ordered groups. As recalled above, the first equality of (3.1) holds
since A ⊥ B. For the second one, we observe that a+b+ = (a ∨ e)(b ∨ e) = ab ∨ a ∨ b ∨ e
and (ab)+ = ab ∨ e; so we have to prove a ∨ b ≤ ab ∨ e. Since |a| ∧ |b| = e, we have
(a ∨ a−1) ∧ (b ∨ b−1) = e and, by distributivity, we get

(a ∧ b) ∨ (a ∧ b−1) ∨ (a−1 ∧ b) ∨ (a−1 ∧ b−1) = e.

Hence, a−1 ∧ b ≤ e implies a ∨ b−1 ≥ e and, multiplying by b on the right, we obtain
ab ∨ e ≥ b; with a similar argument we get ab ∨ e ≥ a. Finally, considering the last two
inequalities, we conclude that ab ∨ e ≥ a ∨ b.

As a direct consequence of this proof we have the following:

3.5. Corollary. Let X be an object of ℓGrp and A,B ≤ X two subobjects. Then A ⊥ B
if and only if, for every a ∈ A and b ∈ B, the following equalities hold:

ab = ba and (ab)+ = a+b+.

The previous result will be of fundamental importance in the next sections.

We recall the notion of polar of a subset S of a lattice-ordered group (i.e. the set of
elements orthogonal to each element of S). We will show that the polar of a subobject
is nothing but the centralizer of the subobject. Hence, we will exhibit some properties of
centralizers related to being ideals.

3.6. Proposition. [Kopytov and Medvedev, 2013], Proposition 1.2.6 Let X be an object
of ℓGrp and S ⊆ X a non-empty subset. Then the set S⊥ := {x ∈ X | for each s ∈
S |x| ∧ |s| = e} (called the polar of S) is a convex subalgebra of X.

3.7. Lemma. Let X be an object of ℓGrp and S ⊆ X a non-empty subset of X closed
under conjugation. Then S⊥ is an ideal of X.
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Proof. First of all we observe that, for all x, y ∈ X, one has

|x−1yx| = x−1yx ∨ x−1y−1x = x−1(y ∨ y−1)x = x−1|y|x.

We want to show that |x−1yx| ∧ |s| = e, for every x ∈ X, y ∈ S⊥, and s ∈ S. We
observe that |x−1yx| ∧ |s| = x−1|y|x ∧ |s| = x−1(|y| ∧ x|s|x−1)x = x−1(|y| ∧ |xsx−1|)x =
x−1(|y| ∧ |s|)x = e, where xsx−1 = s ∈ S because S is closed under conjugation, and
|y| ∧ |s| = e (since y ∈ S⊥).

3.8. Corollary. Let X be an object of ℓGrp and A,B ≤ X two subobjects. A and
B cooperate if and only if B ⊆ A⊥. Therefore, A⊥ ≤ X is the centralizer of A ≤ X.
Moreover, if A is an ideal of X, then A⊥ is an ideal of X, too.

Finally, we recall a property that is strictly related to the existence of centralizers. It
is well known that a category E with finite products is cartesian closed if and only if for
every object Y of E the change-of-base functor τ ∗Y : E → E/Y along the terminal arrow
τY : Y → 1 has a right adjoint. For algebraic categories, such adjoints rarely exist, but it
turns out to be of interest to consider a variation of this notion; this leads to:

3.9. Definition. [Bourn and Gray, 2012]
A category C is algebraically cartesian closed (a.c.c.) if for every object X of C the

change-of-base functor τ ∗X : Pt1C → PtXC has a right adjoint, where τX : X → 1 is the
unique arrow from X to the terminal object.

In [Bourn and Gray, 2012] the authors show that the existence of such adjoints is
related to the existence of cofree structures for the split epimorphisms pY : Y ×X → Y in
PtY E with fixed section (idY , u), where u : Y → X can be chosen to be a monomorphism.

3.10. Proposition. [Bourn and Gray, 2012], Proposition 1.2 A unital category C is
algebraically cartesian closed if and only if, for every X object of C, each subobject of X
has a centralizer.

3.11. Corollary. The category ℓGrp is algebraically cartesian closed.

4. Congruence Distributivity and Arithmeticity

It is a widely known fact that in the category ℓGrp the lattice of congruences on any
object is distributive (see Theorem 21 of [Birkhoff, 1942]). In this section we provide
an alternative proof of this fact based on categorical tools. We recall that a category is
a Mal’tsev category [Carboni et al., 1991] if it is finitely complete and if every internal
reflexive relation is an internal equivalence relation. If the category is regular, this notion
is equivalent to the following property: for every object X and for every pair of internal
equivalence relations (s1, s2) : S ↣ X×X and (r1, r2) : R ↣ X×X one has R◦S = S◦R;
in detail, R ◦ S : ↣ X × X is defined as the regular image of (p1, p3), where (p1, p3) is



CATEGORICAL-ALGEBRAIC PROPERTIES OF LATTICE-ORDERED GROUPS 927

given by the following diagram:

R×X S S X

R X

X.

πS

πR

r2

s1

r1

s2
⌟

p1

p3

The composite S ◦ R can be defined in a similar way. Moreover, if the category is a
variety of universal algebras, the property of being a Mal’tsev category is equivalent to
the existence of a ternary term p(x, y, z) (called Mal’tsev term) satisfying the axioms

p(x, x, z) = z and p(x, y, y) = x,

for every object X and for every x, y, z ∈ X. Therefore, if the theory contains a group
operation, the associated variety is a Mal’tsev category: in fact, a Mal’tsev ternary term
is p(x, y, z) := xy−1z.
Then, we immediately get the following result:

4.1. Corollary. The category ℓGrp is a Mal’tsev category.

If C is a Barr-exact category with coequalizers then, for every object X of C, the set
Eq(X) of internal equivalence relations on X is a lattice; given two internal equivalence
relations (s1, s2) : S ↣ X ×X and (r1, r2) : R ↣ X ×X, the meet S ∧R is defined as the
meet of subobjects of X×X, and the join (t1, t2) : S∨R ↣ X×X is defined as the kernel
pair of q = coeq(v1, v2), where (v1, v2) : V ↣ X ×X is the join of S and R as subobjects
of X ×X (we recall that the join, as subobjects, of two internal equivalence relations is
not, in general, an internal equivalence relation). Thanks to the previous observations,
the classical notion of arithmetical variety of universal algebras can be extended to a
categorical context as follows:

4.2. Definition. [Pedicchio, 1996] A Barr-exact category with coequalizers C is arith-
metical if it is a Mal’tsev category and, for any object X of C, the lattice Eq(X) of internal
equivalence relations on X is distributive.

It is a known fact (a proof of this can be found in [Borceux and Bourn, 2004]) that the
property of being an arithmetical category is related to the absence of non-trivial internal
group objects in the category. In fact, the following holds:+

4.3. Proposition. [Borceux and Bourn, 2004], Proposition 2.9.9 Let C be a semi-abelian
category. If in C the only internal group object is the zero object then C is arithmetical.

4.4. Proposition. The only internal group object in ℓGrp is the zero object.
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Proof. Given an internal group X in ℓGrp, with multiplication µ : X × X → X and
neutral element η : {∗} → X, we want to show that X = {e}. It is not difficult to see
that η(∗) = e and µ(x, y) = xy for all x, y ∈ X. This determines a cooperator between X
and itself. Hence, we get X ⊥ X and so x+ = x+∧x+ = |x+| ∧ |x+| = e, for every x ∈ X.
With a similar argument we can prove x− = e, for every x ∈ X. Finally, recalling that
x = x+x−, we obtain x = e for every x ∈ X (i.e. X = {e}).

4.5. Corollary. ℓGrp is an arithmetical category.

5. Strong Protomodularity

Given a category C, we denote by Pt(C) the category whose objects are the diagrams in
C of the form

A B
p

s

where ps = idB, and whose arrows are the pairs (f, g) of arrows of C

A B

C D

p

s

q

r

f g

such that qf = gp and fs = rg. We denote by π : Pt(C) → C the functor that associates
to every split extension (i.e. an object of Pt(C)) (p, s) the codomain of p.

5.1. Definition. [Bourn, 2000] A finitely complete category C is strongly protomodular
when all the change-of-base functors of π : Pt(C) → C reflect both isomorphisms and
normal monomorphisms (in the semi-abelian case a monomorphism is normal if and only
if it is the kernel of some arrow).

In [Bourn, 2000] the author shows that, if C is a pointed protomodular category, there
is a characterization of strong protomodularity related to the stability of kernels. Let us
consider a diagram in C of the form

X A B

Y C B
l

m

k

f

p

s

q

r

where k = ker(p), ps = idB, l = ker(q), qr = idB, m is a normal monomorphism and
the right-rightward square, the right-leftward square, and the left square commute. Then
C is strongly protomodular if and only if the composite lm is a normal monomorphism,
for every diagram of this form.
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5.2. Proposition. ℓGrp is a strongly protomodular category.

Proof. Let us consider the following commutative diagram (without loss of generality
we can assume that the monomorphisms are inclusions):

X A B

Y C B

f

p

s

q

r

where ps = idB, qr = idB, X is the ideal of A determined by ker(p), Y is the ideal of C
determined by ker(q), X is an ideal of Y and the right-rightward square, the right-leftward
square, and the left square commute. We want to show that X is an ideal of C, too.

• X is a normal subgroup of C. This immediately follows from the fact that the
category of groups is strongly protomodular, as established in [Bourn, 2000].

• X is a convex subset of C. We know that, for every y ∈ Y , if x1 ≤ y ≤ x2, with
x1, x2 ∈ X, then y ∈ X and, for every c ∈ C, if y1 ≤ c ≤ y2, with y1, y2 ∈ Y , then
c ∈ Y . So, given an element c ∈ C such that x1 ≤ c ≤ x2, with x1, x2 ∈ X, we have
c ∈ Y (since x1, x2 ∈ Y ) and thus c ∈ X.

In the final part of this section we study, in the case of ℓGrp, the consequences of
strong protomodularity relatively to the commutativity, in the Smith-Pedicchio sense,
of internal equivalence relations. In particular, we show that every internal equivalence
relation admits a centralizer. Let us begin by recalling the necessary notions to deal with
this subject.

5.3. Definition. [Pedicchio, 1995], [Bourn and Gran, 2002a]
Let C be a Mal’tsev category and

R X, S X

r1

r2

δR

s1

s2

δS

a pair of internal equivalence relations on an object X of C. We say that (R, r1, r2)
and (S, s1, s2) commute in the Smith-Pedicchio sense (and we write [R, S] = 0) if, given
the following diagram:

R×X S S

R X

s1

r2

δS

δR

πR

πS

τR

τS⌟

where R ×X S is the pullback of r2 through s1, τR = (idR, δSr2) and τS = (δRs1, idS)
are induced by the universal property, there exists a unique morphism p : R ×X S → X
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(called connector between R and S) such that pτS = s2 and pτR = r1. The centralizer
of an internal equivalence relation (R, r1, r2) on X, if it exists, is the greatest internal
equivalence relation on X which commutes with (R, r1, r2).

It has been shown in Proposition 3.2 of [Bourn and Gran, 2002b] that, in a pointed
Mal’tsev category, if two internal equivalence relations (R, r1, r2) and (S, s1, s2) com-
mute in the Smith-Pedicchio sense, then necessarily their associated normal subobjects
jR and jS commute in the Huq sense, where jR := ker(qR) and jS := ker(qS), with
qR := coeq(r1, r2) and qS := coeq(s1, s2). Briefly, [R, S] = 0 implies [jR, jS] = 0. The
converse is not true, in general. We say that a pointed Mal’tsev category satisfies the so-
called Smith is Huq condition (SH) if [jR, jS] = 0 implies [R, S] = 0. It has been proved
in Theorem 6.1 of [Bourn and Gran, 2002b] that in every pointed strongly protomodular
category the Smith is Huq condition holds.

In [Smith, 2006], page 39, it is shown that, in every Mal’tsev variety, internal equiva-
lence relations have centralizers. We provide an explicit description of these centralizers
in ℓGrp.
Since ℓGrp is a semi-abelian category, we have, for every object X, an order-preserving
bijection φ between Eq(X) and the lattice Ideals(X) of ideals of X, where φ(R) := IR,
with IR := {x ∈ X | (x, e) ∈ R}. Given two internal equivalence relations R ≤ X×X and
S ≤ X ×X, we know that [R, S] = 0 if and only if [φ(R), φ(S)] = 0 (ℓGrp is a strongly
protomodular category, hence (SH) holds). Moreover, given an internal equivalence re-
lation R on X, we recall from Lemma 3.7 that the centralizer I⊥R ≤ X of the ideal IR
associated with R is an ideal. Therefore, since φ is an order-preserving bijection and ℓGrp
satisfies (SH), the centralizer of R in X is φ−1(I⊥R ).

6. Action Accessibility

To approach the topic covered in this section, let us recall a fundamental concept in the
category Grp of groups: the notion of split extension.

6.1. Definition. Let C be a pointed protomodular category. A split extension of C is a
diagram of the form

X A B,k s

p

where k = ker(p) and ps = idB.
We denote by SplExtC(X) the category whose objects are the split extensions of C with
the same fixed kernel object X and whose arrows are the pairs (g, f) of arrows in C

X A B

X C D

g f

k

l

p

s

q

r
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such that gk = l,fp = qg and gs = rf .

Given a group X, we can define a functor

Grpop Set

B {X → A ⇆ B}/ ∼

B′ {X → A′ ⇆ B′}/ ∼

SplExt(−,X)

f SplExt(f,X)

where {X → A ⇆ B} is the set of split extensions with fixed kernel object X and fixed
quotient object B; two split extensions X → A ⇆ B and X → A ⇆ B are equivalent
(under the equivalence relation ∼) if there exists an arrow g : A → A such that gk = k,
gs = s and pg = p

X A B

X A B
k

k

g
p

s

p

s

(hence, thanks to the Split Short Five Lemma, g is an isomorphism). Finally, SplExt(f,X)
sends the class of a split extension X → A′ ⇆ B′ to the class of the split extension defined
via the following diagram, where the right-rightward square is a pullback:

X A′ ×B′ B B

X A′ B′.
k′ p′

s′

f

πB

πA′

(s′f,idB)(k′,0)

⌟

It is a known fact that, in Grp, there is a one-to-one correspondence between the set
{X → A ⇆ B}/ ∼ and the set of group homomorphisms with domain B and codomain the
group Aut(X) of automorphisms of X. In fact, it turns out that the functor SplExt(−, X)
is representable and a representing object is Aut(X). A pointed protomodular category
in which the functor SplExt(−, X) is representable for every object X is called action
representable [Borceux et al., 2005]. It can be seen that this condition is extremely strong.
In fact, it emerged that many of categories of interest in classical algebra are not action
representable, but do satisfy a weaker related condition we will describe now. In order to
do this, it is easy to observe that, in Grp, the property of being an action representable
category can be restated in the following way: the split extension

X X ⋊ Aut(X) Aut(X),
(idX ,0) πAut(X)

(0,idAut(X))

(6.1)
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corresponding to the action idAut(X) : Aut(X) → Aut(X), is a terminal object of
SplExtGrp(X). Therefore, in Grp, for every object of SplExtGrp(X) there exists a unique
morphism into (6.1).
In light of this, the authors of [Bourn and Janelidze, 2009] have weakened the notion of
action representable category in the following way:

6.2. Definition. [Bourn and Janelidze, 2009] An object F of SplExtC(X) is said to be
faithful if for each object E of SplExtC(X) there is at most one arrow from E to F .

6.3. Definition. [Bourn and Janelidze, 2009] Let C be a pointed protomodular category.
An object in SplExtC(X) is said to be accessible if it admits a morphism into a faithful
object. We say that C is action accessible if, for every object X of C, every object in
SplExtC(X) is accessible.

As mentioned above, the notion of action accessible category appears as a general-
ization of the one of action representable category: if there is a terminal object T of
SplExtC(X), this object is also faithful and each object of SplExtC(X) admits a unique
morphism into T . Examples of action accessible categories include, for instance, not
necessarily unitary rings (as shown in [Bourn and Janelidze, 2009]) and all categories of
interest in the sense of [Orzech, 1972] (as shown in [Montoli, 2010]).
One of the interesting properties, among other things, implied by action accessibility is
that centralizers of internal equivalence relations exist and they have a simple description
(see Theorem 4.1 in [Bourn and Janelidze, 2009]). Moreover, action accessibility implies
(SH) (Theorem 5.4 in [Bourn and Janelidze, 2009]); hence, in an action accessible cate-
gory centralizers of normal subobjects exist and they are normal. In the next part of this
section we show that the category ℓGrp is not action accessible despite the fact that cen-
tralizers of internal equivalence relations exist and they have the same simple description
as in action accessible categories (as shown at the end of previous section).

6.4. Proposition. ℓGrp is not action accessible.

Proof. Consider the lexicographic product Z ⃗×Z of the group of integers Z (with the
usual order) with itself. The underlying set is the product, and in terms of structure
the group operations are defined component-wise, while the order is defined as follows:
(a, b) ≤ (c, d) if and only if b < d, or b = d and a ≤ c. We consider the following split
extension

Z Z ⃗×Z Z,
i1

p2

i2
(6.2)

where i1 = (idZ, 0), i2 = (0, idZ) and p2 is the projection on the second component. Now,
for every n ∈ N>0 we can consider the morphism of lattice-ordered groups fn : Z → Z
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given by fn(x) := nx. This morphism induces the following morphism in SplExtℓGrp(Z):

Z Z ⃗×Z Z

Z Z ⃗×Z Z

i1

p2

i2

i1 p2

i2

fngn

where gn(x, y) := (x, ny). Thus we can deduce that (6.2) is not faithful. So, if ℓGrp were
action accessible then there should exist a faithful object

X A B
k p

s

and a morphism

Z Z ⃗×Z Z

Z A B.
k p

s

i1

p2

i2

g f

Then, if we consider the (regular epimorphism, monomorphism)-factorization of (g, f) we
get:

Z Z ⃗×Z Z

Z Im(g) Im(f)

Z A B.
k p

s

i1

p2

i2

g f

k p

s (6.3)

Therefore, Im(f) is a quotient (in ℓGrp) of Z. However, Z has only two ideals: {0} and
Z. Hence we have two possibilities: Im(f) ∼= Z or Im(f) ∼= {e}. If Im(f) ∼= Z then f is
injective and so the split extension

Z Z ⃗×Z Z
i1

p2

i2

has to be a faithful object, and this is a contradiction. Alternatively, if Im(f) ∼= {e},
f has to be the trivial morphism, and so Im(g) ∼= Z. Therefore, recalling that the top
right-rightward square of (6.3) is a pullback, we get a contradiction since Z ⃗×Z is not
isomorphic, as a lattice-ordered group, to Z× Z.

In [Bourn and Janelidze, 2009] the authors show that, in the case of the variety Rng
of not necessarily unitary rings, given a split extension there is a procedure, based on
centralizers of subobjects, to build a morphism from it into a faithful split extension.
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This same argument has also been extended in [Montoli, 2010] to categories of interest in
the sense of [Orzech, 1972]. We recall here a sketch of the proof presented in [Bourn and
Janelidze, 2009].
Given an object A of Rng, two subobjects X, Y ≤ A cooperate if and only if, for every
x ∈ X and for every y ∈ Y ,

xy = 0 = yx.

Hence, it can be shown that the centralizer of X in A is the subobject

ZA(X) := {a ∈ A | ax = 0 = xa for all x ∈ X}.

Given an object of SplExtRng(X)

X A B,k
p

s
(6.4)

they define I := {b ∈ B | s(b)k(x) = 0 = k(x)s(b) for all x ∈ X}; they prove that I is an
ideal of B and s(I) = ZA(k(X)) ∩ s(B) is an ideal of A. Thus, they show that the split
extension

X A/s(I) B/I,k
p

s
(6.5)

where the morphisms are induced by the universal property of the quotient, is a faith-
ful object of SplExtRng(X) and the pair (πs(I), πI), obtained by the quotient projections
πs(I) : A → A/s(I) and πI : B → B/I, is a morphism between (6.4) and (6.5). Therefore,
in the case of rings, there is a canonical way to construct an arrow of SplExtRng(X) into
a faithful object making use of the notion of centralizer.
Although the category ℓGrp is not action accessible, it is possible to emulate the previous
construction in this case. This shows that in ℓGrp centralizers of subobjects have a good
behaviour even though the category is not action accessible.
Let us fix a split extension in ℓGrp:

X A B.k
p

s

We want to show that the intersection between s(B) and the centralizer of k(X) in A is
an ideal of A. In other words, we need to prove that k(X)⊥ ∩ S(B) is convex and closed
under conjugation in A.

• Convexity: let us consider s(b1) ≤ a ≤ s(b2) where s(b1), s(b2) ∈ k(X)⊥ ∩ s(B) and
a ∈ A. We recall that for all a ∈ A there exist x ∈ k(X) and b ∈ B such that
a = k(x)s(b) (see Proposition 2.7). Then, applying p to the inequalities, we obtain
b1 ≤ b ≤ b2 and thus

s(b1) ≤ s(b) ≤ s(b2).

Therefore, since k(X)⊥ is a convex subobject of A, we get s(b) ∈ k(X)⊥ ∩ s(B).
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Hence, from s(b1) ≤ a ≤ s(b2) multiplying on the right by s(b−1), we obtain

s(b1b
−1) ≤ k(x) ≤ s(b2b

−1).

So, since s(b1b
−1), s(b2b

−1) ∈ k(X)⊥ ∩ s(B) (because k(X)⊥ ∩ s(B) is a subalgebra
of A and s(b), s(b1), s(b2) ∈ k(X)⊥ ∩ s(B)), we get k(x) ∈ k(X)⊥ (k(X)⊥ is a
convex subalgebra). Therefore, k(x) = e and then we obtain a = k(x)s(b) = s(b) ∈
k(X)⊥ ∩ s(B).

• Closedness under conjugation: let us consider s(c) ∈ k(X)⊥ ∩ s(B) and a =
k(x)s(b) ∈ A. Then, we have

as(c)a−1 = k(x)s(b)s(c)s(b−1)k(x)−1 = k(x)s(d)k(x)−1

where s(d) = s(b)s(c)s(b−1) ∈ k(X)⊥∩s(B) since k(X)⊥ is closed under conjugation
and, clearly, s(d) ∈ s(B). Therefore, we get

as(c)a−1 = k(x)s(d)k(x)−1 = s(d)

since s(d) ∈ k(X)⊥ and the elements of k(X)⊥ commute with the ones of k(X).

7. Fiber-wise Algebraic Cartesian Closedness

In this section we deal with a stronger version of the notion of algebraically cartesian
closed category. We propose an equivalent version of the definition presented in [Bourn
and Gray, 2012]:

7.1. Definition. [Bourn and Gray, 2012] A category C is fiber-wise algebraically carte-
sian closed if for every split epimorphism

A B
p

s

the change-of-base functor
p∗ : PtBC→ PtAC

has a right adjoint.

As established in [Bourn and Gray, 2012], it is not difficult to see that this condition
holds for a category C if and only if every category of points over C is algebraically
cartesian closed. First of all, we observe that the category PtA⇆BPtBC is isomorphic to
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PtAC: an object of PtA⇆BPtBC can be seen as a diagram of type

C B

A B,

q

r

p

s

h t

where ps = idB, qr = idB, ht = idA, ph = q, and ts = r; therefore, q and r are uniquely
determined by h and t. Hence, each category of points is algebraically cartesian closed if
and only if the functor

τ ∗ : PtB=BPtBC PtA⇆BPtBC

has a right adjoint; thanks to the isomorphism shown above between PtAC and
PtA⇆BPtBC and recalling that τ = p, we get that τ ∗ has a right adjoint if and only
if p∗ has a right adjoint. Therefore, C is fiber-wise algebraically cartesian closed if and
only if every category of points over C is algebraically cartesian closed.
Our aim is to show, thanks to the previous observations, that ℓGrp is fiber-wise alge-
braically cartesian closed. In order to do this we will prove that, in every category of
points over ℓGrp, subobjects have centralizers. As a preliminary remark, we recall that

an arrow (A ⇆ B)
f→ (C ⇆ B) of PtBC is a monomorphism if and only if f : A → C is

a monomorphism of C.

We are ready to show the existence of centralizers in every category of points over
ℓGrp and to provide an explicit description of them.

7.2. Definition. Let X be an object of ℓGrp and B a subalgebra of X. A subalgebra L
of X is closed under the action of B if

blb−1 ∈ L and (l1b1 ∨ l2b2)(b1 ∨ b2)
−1 ∈ L

for every l, l1, l2 ∈ L and b, b1, b2 ∈ B.

7.3. Proposition. Let B be an object of ℓGrp. In the category PtBℓGrp subobjects have
centralizers.

Proof. Let us consider an object (A, p, s) of PtBℓGrp, i.e. a diagram of the form

K A B
p

sk

where ps = idB and k = ker(p). Given two subobjects (X, p|X , rX) and (Y, p|Y , rY )
of (A, p, s) and the product between them in PtBℓGrp, we need to describe the arrows
iX : X → X ×B Y and iY : Y → X ×B Y induced by the universal property (we recall
that the product in PtBℓGrp is given by the pullback of p|X along p|Y in ℓGrp). Then, if
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we consider the following diagram

X B

X ×B Y Y

X B,

p|Y

p|X

πX

πY

⌟
idX

iX

p|X
s

we get iX(x) = (x, sp(x)); in a similar way iY : Y → X×BY is given by iY (y) = (sp(y), y).
We know that (x, y) ∈ X ×B Y if and only if p(x) = p(y). Moreover, given (x, y) ∈
X ×B Y , we have (x, y) = (x, sp(x))(sp(y), sp(x))−1(sp(y), y) where (x, sp(x)) ∈ X ×B Y ,
(sp(y), y) ∈ X ×B Y and, since psp(x) = p(x) = p(y) = psp(y), we get (sp(y), sp(x)) =
(sp(x), sp(x)) = (sp(y), sp(y)) ∈ X ×B Y .
Hence, if there exists a cooperator φ : X ×B Y → A, then

φ(x, y) = φ(x, sp(x))φ(sp(y), sp(x))−1φ(sp(y), y) = xsp(x)−1y = xsp(y)−1y,

since

φ(x, sp(x))φ(sp(y), sp(x))−1φ(sp(y), y) = φ(iX(x))φ(iX(sp(x)))−1φ(iY (y))

X Y

X ×B Y

A.

iYiX

φ

It is well known that the category of points over B, in the case of groups, is equivalent
to the category of groups with an action of B. Therefore, thanks to Proposition 2.7, we
can extend this to the case of lattice-ordered groups and obtain that A is isomorphic to
K ⋊B with join operation defined by

(k1, b1) ∨ (k2, b2) = ((k1b1 ∨ k2b2)(b1 ∨ b2)
−1, b1 ∨ b2);

more specifically, the split extension (A, p, s) is isomorphic to the split extension

K ⋊B B.
pB

iB
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Hence, a subobject (X, q, r) of (A, p, s) in PtBℓGrp can be seen, modulo isomorphisms,
as a subalgebra X ≤ K ⋊B in ℓGrp such that, referring to the diagram

X

K ⋊B B,
pB

iB

q

r

q is the restriction of pB to X and, for every b ∈ B, r(b) = (e, b) (in particular {e}×B ≤
X).
Given a subobject (X, q, r) of (K ⋊B, pB, iB) we define

X := {x ∈ K | there exists b ∈ B s.t. (x, b) ∈ X}.

We show that X = X × B as sets. Clearly X ⊆ X × B. Conversely, fix an element
(k, b) ∈ X × B. Then k ∈ X, and so there exists b1 ∈ B such that (k, b1) ∈ X; but
(e, b), (e, b1) ∈ X, therefore (k, b) = (k, b1)(e, b1)

−1(e, b) ∈ X. In general, we have a one-
to-one correspondence between the subobjects of (A, p, s) and the subalgebras of K closed
under the action of B.
Therefore, given two subobjects (X, p|X , rX) and (Y, p|Y , rY ) of (A, p, s) we can suppose
X = X ×B and Y = Y ×B. Thus,

X ×B Y = {((x, b1), (y, b2)) ∈ X × Y | b1 = b2}

and φ : X ×B Y → K ⋊B is such that

φ((x, b), (y, b)) = (x, b)(e, b)−1(y, b) = (x y, b).

We start by showing that

φ is a group homomorphism if and only if xy = yx for all x ∈ X, y ∈ Y .

Given an element ((x, b), (y, b)), ((z, c), (w, c)) ∈ (X ×B) ×B (Y ×B) one has

((x, b), (y, b))((z, c), (w, c)) = ((x, b)(z, c), (y, b)(w, c))

= ((xbzb−1, bc), (ybwb−1, bc)).

Hence
φ((x, b), (y, b))φ((z, c), (w, c)) = (xy, b)(zw, c) = (xybzwb−1, bc)

and, since ((x, b), (y, b))((z, c), (w, c)) = ((xbzb−1, bc), (ybwb−1, bc)), we get

φ((xbzb−1, bc), (ybwb−1, bc)) = (xbzb−1ybwb−1, bc).
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So, φ is a group homomorphism if and only if bzb−1y = ybzb−1 for all z ∈ X, y ∈ Y and
b ∈ B. Then, setting b = e, we obtain zy = yz for all z ∈ X and y ∈ Y . Moreover, since
X is closed under the action of B and the conjugation is a bijection, we get that every
element of X can be seen as bzb−1, for appropriate b ∈ B and z ∈ X; thus, if zy = yz for
all z ∈ X and y ∈ Y then bzb−1y = ybzb−1 for all z ∈ X, y ∈ Y and b ∈ B. Now, let us
deal with the order structure. We know that φ is a morphism of lattice-ordered groups if
and only if φ is a group homomorphism and for all ((x, b), (y, b)) ∈ (X ×B) ×B (Y ×B)

φ(((x, b), (y, b)) ∨ ((e, e), (e, e))) = φ(((x, b), (y, b))) ∨ (e, e). (7.1)

Observing that

((x, b), (y, b)) ∨ ((e, e), (e, e)) = ((x, b) ∨ (e, e), (y, b) ∨ (e, e))

= (((xb ∨ e)(b ∨ e)−1, b ∨ e), ((yb ∨ e)(b ∨ e)−1, b ∨ e))

= (((xb)+(b+)−1, b+), ((yb)+(b+)−1, b+)),

we have
φ(((x, b), (y, b)) ∨ ((e, e), (e, e))) = ((xb)+(b+)−1(yb)+(b+)−1, b+).

Considering the right term of (7.1), we obtain

φ(((x, b), (y, b))) ∨ (e, e) = (xy, b) ∨ (e, e) = ((xyb)+(b+)−1, b+).

We prove that

φ is a lattice-ordered group morphism if and only if X ⊥ Y .

If φ is a lattice-ordered group morphism, then

(xb)+(b+)−1(yb)+(b+)−1 = (xyb)+(b+)−1

for each x ∈ X, y ∈ Y and b ∈ B; therefore, setting b = e, we get

(xy)+ = x+y+ for every x ∈ X and y ∈ Y ,

and so, thanks to Corollary 3.5, X and Y are orthogonal.
Conversely, let us suppose X ⊥ Y . We want to show that, for all x ∈ X, y ∈ Y and b ∈ B,

(xb)+(b+)−1(yb)+(b+)−1 = (xyb)+(b+)−1
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or, equivalently, that (xb ∨ e)(b ∨ e)−1(yb ∨ e) = xyb ∨ e. We start with the term on the
left:

(xb ∨ e)(b ∨ e)−1(yb ∨ e) = (xb(b−1 ∧ e) ∨ (b−1 ∧ e))(yb ∨ e)

= xb(b−1 ∧ e)(yb ∨ e) ∨ (b−1 ∧ e)(yb ∨ e)

= xb(b−1 ∧ e)yb ∨ xb(b−1 ∧ e) ∨ (b−1 ∧ e)yb ∨ (b−1 ∧ e).

Now, we know that there exists an element y1 ∈ Y such that yb = by1 (since Y is closed
under the action of B and the conjugation is an automorphism of Y ), hence the last term
is equal to

xb(b−1 ∧ e)by1 ∨ xb(b−1 ∧ e) ∨ (b−1 ∧ e)by1 ∨ (b−1 ∧ e)

= x(b ∧ b2)y1 ∨ x(b ∧ e) ∨ (b ∧ e)y1 ∨ (b−1 ∧ e).

Moreover, we observe that (b ∧ e)y1 = y2(b ∧ e) for an appropriate element y2 ∈ Y , thus

x(b ∧ e) ∨ (b ∧ e)y1 = x(b ∧ e) ∨ y2(b ∧ e) = (x ∨ y2)(b ∧ e)

= (xy2 ∨ e)(b ∧ e) = xy2(b ∧ e) ∨ (b ∧ e)

= x(b ∧ e)y1 ∨ (b ∧ e)

(by Corollary 3.5 we know that x ∨ y2 = xy2 ∨ e, since X ⊥ Y ). Then, one has

x(b ∧ b2)y1 ∨ x(b ∧ e) ∨ (b ∧ e)y1 ∨ (b−1 ∧ e)

= x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ (b ∧ e) ∨ (b−1 ∧ e).

We recall that (b ∧ e) ∨ (b−1 ∧ e) = (b ∨ b−1) ∧ e = |b| ∧ e = e, so we finally get

x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ (b ∧ e) ∨ (b−1 ∧ e) = x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ e

= x[(b ∧ b2) ∨ (b ∧ e)]y1 ∨ e

= xby1 ∨ e = xyb ∨ e,

observing that (b ∧ b2) ∨ (b ∧ e) = b(b ∧ e) ∨ e(b ∧ e) = (b ∨ e)(b ∧ e) = b+b− = b.
To conclude, we have to prove that, for every subalgebra X ≤ K closed under the action

of B, then X
⊥ ≤ K is closed under the action of B (and so the centralizer of X = X×B is

X
⊥×B endowed with the structure induced by the semi-direct product). Fix an element

y ∈ X
⊥

and an element b ∈ B; we show that byb−1 ∈ X
⊥

. We know that

byb−1 ∈ X
⊥ ⇐⇒ |byb−1| ∧ |x| = e for all x ∈ X ⇐⇒

|y| ∧ |b−1xb| = e for all x ∈ X ⇐⇒ |y| ∧ |x| = e for all x ∈ X;
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observe that the last assertion holds since y ∈ X
⊥

. We recall that X
⊥

is a convex

subalgebra of K. For every y1, y2 ∈ X
⊥

and b1, b2 ∈ B we have y1b1 ≤ (y1 ∨ y2)(b1 ∨ b2)
and y2b2 ≤ (y1∨y2)(b1∨ b2); we also observe that (y1∧y2)b1 ≤ y1b1 and (y1∧y2)b2 ≤ y2b2.
So one has

y1b1 ∨ y2b2 ≤ (y1 ∨ y2)(b1 ∨ b2)

and
(y1 ∧ y2)(b1 ∨ b2) = (y1 ∧ y2)b1 ∨ (y1 ∧ y2)b2 ≤ y1b1 ∨ y2b2.

Therefore, for all y1, y2 ∈ X
⊥

and b1, b2 ∈ B, we obtain

y1 ∧ y2 ≤ (y1b1 ∨ y2b2)(b1 ∨ b2)
−1 ≤ y1 ∨ y2;

then, since X
⊥

is convex in K, we get (y1b1 ∨ y2b2)(b1 ∨ b2)
−1 ∈ X

⊥
for all y1, y2 ∈ X

⊥

and b1, b2 ∈ B.

7.4. Corollary. For every object B of ℓGrp, in the category PtBℓGrp subobjects have
centralizers, therefore PtBℓGrp is algebraically cartesian closed. Hence, the category ℓGrp
is fiber-wise algebraically cartesian closed.

8. Normality of the Higgins Commutator

The aim of this section is to propose a further study regarding the properties of commu-
tators in the category of lattice-ordered groups.
We recall a first notion of categorical commutator strongly linked to the concept of coop-
eration.

8.1. Definition. [Huq, 1968], [Bourn, 2002] Let C be a unital category. For a pair of
subobjects a : A ↣ X and b : B ↣ X of an object X in C, the Huq commutator is the
smallest normal subobject [A,B]X ↣ X such that the images of a and b cooperate in the
quotient X/[A,B]X .

Next we recall here the notion of Higgins commutator. In a pointed category C with
binary products and coproducts, for every pair of objects H and K, we have the following
canonical arrows:

H H ×K K

H H + K K;

(idH ,0) (0,idK)

[0,idK ][idH ,0]

combining them we get a canonical arrow

Σ =
(
idH 0
0 idK

)
: H + K → H ×K.
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In other words, Σ is the unique morphism making either the diagram

H H + K K

H ×K

ιK ιH

(idH ,0) (0,idK)
Σ

or equivalently the diagram

H + K

H H ×K KπH πK

[idH ,0] [0,idK ]
Σ

commute. For instance, in the case of the variety of groups, the morphism Σ associates
to each word h1k1h2k2 . . . hnkn, where hi ∈ H and ki ∈ K for i = 1, . . . , n, the pair
(h1h2 . . . hn, k1k2 . . . kn) ∈ H ×K. It is easy to see that a category with binary products
and coproducts is unital if and only if, for every pair of objects H and K, Σ is a strong
epimorphism (see e.g. [Borceux and Bourn, 2004]). Hence, again in the case of groups,
the kernel of Σ, denoted by H ⋄K and called the cosmash product of H and K, can be
described as the subgroup of H +K generated by the elements of the form hkh−1k−1 with
h ∈ H and k ∈ K. In the light of the above, we are ready to recall the following:

8.2. Definition. [Mantovani and Metere, 2010] Let C be a semi-abelian category. Given
a pair of subobjects a : A ↣ X and b : B ↣ X of an object X in C, the Higgins commu-
tator of A and B is the subobject [A,B] ↣ X constructed, via the (regular epimorphism,
monomorphism)-factorization, as in diagram

A ⋄B A + B

[A,B] X,

[a,b]

kA,B

where kA,B is the kernel of Σ =
(
idA 0
0 idB

)
: A + B → A×B.

In general, the Higgins commutator of two normal subobjects is not normal. Therefore,
it makes sense to mention the following definition:

8.3. Definition. [Cigoli et al., 2015b] A semi-abelian category C satisfies the condition
of normality of Higgins commutators (NH) when, for every pair of normal subobjects
H ↣ X, K ↣ X where X is an object of C, the Higgins commutator [H,K] ↣ X is a
normal subobject of X.

We have everything we need to prove that that the category of lattice-ordered groups
satisfies (NH).
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8.4. Lemma. Let H,K ≤ X be two convex subalgebras of X in ℓGrp. Then H and K
cooperate if and only if H ∩K = {e}.

Proof. (⇒) Trivial since H ⊥ K (thanks to Proposition 3.4).
(⇐) We want to show that H ⊥ K: let us consider two elements h ∈ H and k ∈ K; then
e ≤ |h| ∧ |k| ≤ |h| and e ≤ |h| ∧ |k| ≤ |k|. Therefore, since H and K are convex, we have
|h| ∧ |k| ∈ H ∩K = {e}.

8.5. Notation. We will write [H,K] for the Higgins commutator of H ↣ X and K ↣
X, and [H,K]Y for the Huq commutator of H ↣ X and K ↣ X in the subobject Y of
X, where H and K are subobjects of Y .

8.6. Proposition. Let X be an object of ℓGrp and H,K ideals of X. Then, [H,K]X =
H ∩K.

Proof. Let us prove the inclusion H ∩K ⊆ [H,K]X . Consider the following diagram:

H K

H ×K

X/[H,K]X

φ
q|H q|K

iH iK

where q : X ↠ X/[H,K]X is the canonical projection. Then, by Lemma 8.4, we know that
q(H) ∩ q(K) = {e}. So, since q(H ∩K) ⊆ q(H) ∩ q(K) = {e} we get H ∩K ⊆ [H,K]X .
The other inclusion holds in every semi-abelian category (see Theorem 3.9 in [Everaert
and Van der Linden, 2012]).

8.7. Proposition. The category ℓGrp satisfies (NH).

Proof. Thanks to Theorem 2.8 of [Cigoli et al., 2015b], it suffices to prove that, given an
ideal H of X and an ideal K of Y such that H,K ≤ Y , then [H,K]X = [H,K]Y . Thus
the statement follows from the previous proposition, since [H,K]X = [H,K]Y = H ∩K.

9. Algebraic Coherence for ℓAb

In the last part of the paper we focus on the notion of algebraically coherent category.
This concept has an important algebraic meaning: an algebraically coherent category
satisfies a large set of properties related to the good behaviour of commutators (such
as, for example, strong protomodularity); moreover, in the case of a variety of universal
algebras, the property of being fiber-wise algebraically cartesian closed is implied by
algebraic coherence.



944 ANDREA CAPPELLETTI

9.1. Definition. [Cigoli et al., 2015a] A category C with finite limits is algebraically
coherent if, for every morphism f : X → Y in C, the change-of-base functor

f ∗ : PtY C→ PtXC

is coherent: a functor between categories with finite limits is coherent if it preserves finite
limits and jointly extremally epimorphic pairs.

Since in the semi-abelian case the split extensions with fixed splitting can be totally
described in terms of semi-direct products, the authors in [Cigoli et al., 2015a] proved the
following result:

9.2. Proposition. [Cigoli et al., 2015a], Theorem 3.21 Suppose C is a semi-abelian
category. The following are equivalent:

• C is algebraically coherent;

• given K ↣ X and H ↣ X in C, any action ξ : B♭X → X which restricts to K and
H also restricts to K ∨H.

Let us now try to understand how this result can be interpreted in the category of
lattice-ordered groups. We know (see [Bourn and Janelidze, 1998]) that, in the semi-
abelian case, for each internal action ξ : B♭X → X there exists a unique (up to isomor-
phism) split extension

X A B
p

sk

making, in the following diagram, the right-rightward square, the right-leftward square
and the left square commute:

B♭X X + B B

X A B.

k0

[0,idB ]

ιB

ξ

k

[k,s]

p

s

Therefore, in ℓGrp, ξ restricts to a subalgebra L ≤ X if and only if L is closed under
the corresponding action of B (in the sense of Definition 7.2).

In the next proposition we will deal with the category of lattice-ordered abelian groups.
A lattice-ordered abelian group is a lattice-ordered group in which the group operation
is commutative. The category ℓAb is the full subcategory of ℓGrp whose objects are
lattice-ordered abelian groups.

9.3. Proposition. ℓAb is algebraically coherent.
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Proof. Let us consider an object (A, p, s) of PtBℓAb i.e. a diagram of the form

X A B
p

sk

where ps = idB and k = ker(p). For simplicity, let us suppose that k is the inclusion of
X ≤ A and s is the inclusion of B ≤ A. Given two subalgebras K,H ≤ X closed under
the action of B, we want to show that also K ∨H is closed under the action of B.
First of all, let us observe that, given a subalgebra L ≤ X, the following equality holds
for every l1, l2 ∈ L and b1, b2 ∈ B:

(l1b1 ∨ l2b2)(b1 ∨ b2)
−1 = l2(l

−1
2 l1b1b

−1
2 ∨ e)(b1b

−1
2 ∨ e)−1.

Therefore, L is closed under the action of B if and only if, for all l ∈ L and b ∈ B,

(lb ∨ e)(b ∨ e)−1 belongs to L.

We recall, as proved in Section 2, that in a lattice-ordered abelian group A the equation

xy = (x ∨ y)(x ∧ y)

holds for all x, y ∈ A. Finally, it is easy to see that every element of K∨H can be written
as ∨

i∈I

∧
j∈J

ki,jhi,j

where I, J are finite sets of indices and ki,j ∈ K,hi,j ∈ H for all i ∈ I, j ∈ J . This
statement can be proved by iteratively applying the distributive properties of the lattice
operations, the distributivity property of the group product over the lattice operations,
and the commutative property of the group product. Therefore, given an element b ∈ B,
one has ((∨

i∈I

∧
j∈J

ki,jhi,j

)
b ∨ e

)
=

(∨
i∈I

∧
j∈J

ki,jhi,jb

)
∨ e

=
∨
i∈I

(∧
j∈J

ki,jhi,jb ∨ e

)
=
∨
i∈I

∧
j∈J

(ki,jhi,jb ∨ e)

where the first equality holds thanks to the distributivity of the group operation over the
lattice operations, the second thanks to the idempotence of the join, and the third thanks
to the distributivity of the join over the meet. Therefore((∨

i∈I

∧
j∈J

ki,jhi,j

)
b ∨ e

)
(b ∨ e)−1 =

∨
i∈I

∧
j∈J

(ki,jhi,jb ∨ e)(b ∨ e)−1
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and hence, in order to prove that if K and H are closed under the action of B then also
K ∨H is closed under the action of B, it suffices to prove that

(khb ∨ e)(b ∨ e)−1 ∈ K ∨H,

for every k ∈ K, h ∈ H and b ∈ B. We need to take care of an intermediate step: we
want to show that, for all k ∈ K, h ∈ H and b ∈ B,

((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 belongs to K ∨H.

To do this we observe that

((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 = (kb ∨ hb ∨ k−1 ∨ h−1)(b ∨ e)−1

= (kb ∨ k−1)(b ∨ e)−1 ∨ (hb ∨ h−1)(b ∨ e)−1

= k−1(k2b ∨ e)(b ∨ e)−1 ∨ h−1(h2b ∨ e)(b ∨ e)−1.

So, since K is closed under the action of B, we have (k2b ∨ e)(b ∨ e)−1 ∈ K and then we
obtain k−1(k2b ∨ e)(b ∨ e)−1 ∈ K; similarly h−1(h2b ∨ e)(b ∨ e)−1 ∈ H. Therefore, taking
the join of these two terms, we get ((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 ∈ K ∨H. To conclude,
since k ∧ h ∈ K ∨H, the product

(k ∧ h)((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 belongs to K ∨H;

then, applying the distributivity property of the group product over the lattice join and
recalling that (k ∧ h)(k ∨ h) = kh, we deduce

(khb ∨ e)(b ∨ e)−1 ∈ H ∨K.

This conclusive result partially answers the Open Problem 6.28 presented in [Cigoli
et al., 2015a]. In fact, the category ℓAb is algebraically coherent, as just shown, however
it is not action accessible: the example provided in Proposition 6.4 exclusively involves
lattice-ordered groups whose group operations are commutative.
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