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SURJECTION-LIKE CLASSES OF MORPHISMS

PIERRE-ALAIN JACQMIN

Abstract. We characterize ‘good’ classes of epimorphisms in a finitely complete cat-
egory, i.e., those which ‘interact with finite limits as surjections do in the category Set
of sets and functions’. More precisely, we prove that given a class E of morphisms in a
small finitely complete category C, there exists a faithful conservative (respectively fully
faithful) embedding C ↪→ SetD into a presheaf category which preserves and reflects
finite limits and which sends morphisms in E, and only those, to componentwise surjec-
tions if and only if E contains the identities, is closed under composition, has the strong
right cancellation property, is stable under pullbacks and does not contain any proper
monomorphisms (respectively any morphism in it is a regular epimorphism). The classes
of split epimorphisms and descent morphisms are such examples and the corresponding
full embedding theorems are given by Yoneda and Barr’s embeddings. As new exam-
ples, we get a conservative embedding theorem for the class of pullback-stable strong
epimorphisms and a full embedding theorem for the class of effective descent morphisms.
The proof presented here is not based on transfinite inductions and is therefore rather
explicit, in contrast with similar embedding theorems.

Introduction

The most natural examples of categories one may think of are given by mathematical
structures of some kind together with the appropriate functions between them as mor-
phisms. Among many others, we can cite the categories Set of sets and functions, Gp of
groups and group homomorphisms, Mon of monoids and monoid homomorphisms, Top of
topological spaces and continuous functions or Pos of partially ordered sets and order pre-
serving maps. In all these examples, as in most of the classical examples, monomorphisms
are characterized as exactly the injective morphisms. For this reason, monomorphisms
are commonly thought of as the ‘right’ categorical generalization of injective morphisms.

The analogous question of generalizing surjective morphisms is much more subtle and
no definite answer has been given so far, each author often using his/her own preferred
classes of morphisms. A first class of morphisms one can think of to generalize surjective
morphisms is the class of epimorphisms. However, it is commonly accepted not to be a
good solution. Although epimorphisms in Set are exactly surjective functions, it is far
from being the case in many classical categories. For instance, in Mon, the embedding
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N ↪→ Z of natural numbers into integers is an epimorphism. This is therefore an example
of a morphism which is both a monomorphism and an epimorphism but which is not
an isomorphism. As this phenomenon cannot occur in our leading example of surjective
functions in Set, this brings us to our first axiom for a ‘good class E of surjections’ in a
category C:

(NoPMono) Every monomorphism in E is an isomorphism.

Another candidate to generalize surjective morphisms to an arbitrary category is the
class of regular epimorphisms, i.e., coequalizers. This class satisfies our first axiom (NoP-
Mono). In addition, in every algebraic category (i.e. variety of universal algebras), regular
epimorphisms coincide with surjective homomorphisms. However, in general, they fail to
be closed under composition. Since this is an important property shared by surjective
morphisms in classical categories, we will also impose this as an axiom on E:

(ClComp) E is closed under composition.

Let us now make our question more precise. As finite limits are overwhelming in many
subfields of category theory, we will look for classes E of morphisms in a finitely complete
category C which ‘interact with finite limits in the same way surjections interact with
finite limits in Set’. Setting aside concerns about size, we can be even more precise: we
are looking for classes E of morphisms for which there exists an ‘embedding’ φ : C →
SetD into a presheaf category which preserves and reflects finite limits and such that, for
each morphism e ∈ C, one has e ∈ E if and only if φ(e) is a componentwise surjective
natural transformation. The word ‘embedding’ will have two different meanings: in the
‘conservative case’, it will be a faithful conservative functor; while in the ‘full case’, we
mean a fully faithful functor. As we have seen so far, in both cases, the axioms (NoPMono)
and (ClComp) have to be satisfied, which makes the classes of epimorphisms and of
regular epimorphisms counter-examples in general. However, Barr’s embedding theorem
for regular categories [3] exactly means that the class of regular epimorphisms in a regular
category [4] satisfies the full embedding theorem.

Going back to the general case of a finitely complete category C, we can consider the
class of strong epimorphisms, or equivalently the class of extremal epimorphisms, i.e.,
epimorphisms which do not factorize through any proper subobject of their codomain.
This class satisfies both axioms (NoPMono) and (ClComp) and coincide with surjective
homomorphisms in any algebraic category. However, in general, it fails to be stable
under pullbacks. Since surjections in Set are pullback-stable, this means that strong
epimorphisms do not interact with finite limits in a general finitely complete category in
the same way surjections do in Set. We therefore need to add an additional axiom for our
‘good classes of surjections’, namely:

(StPb) E is stable under pullbacks.

To avoid the degenerate empty class of morphisms and that of isomorphisms (which
in general do not satisfy any of the two embedding theorems mentioned above), we need
to add the following two axioms:
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(Id) E contains the identities;

(SRightCancP) E has the strong right cancellation property, i.e., gf ∈ E ⇒ g ∈ E.

We have therefore the five axioms (NoPMono), (ClComp), (StPb), (Id) and (SRight-
CancP) which we prove to be together equivalent to the conservative embedding theorem
(Theorem 2.1). For this reason, we call a class of morphisms satisfying these five axioms
a surjection-like class of morphisms, as referenced in the title. In any finitely complete
category, the largest such class of morphisms is given by the class Epb strong epi of pullback-
stable strong epimorphisms, i.e., morphisms whose pullback along any morphism is a
strong epimorphism. We also show that in general, this class fails to satisfy the full em-
bedding theorem mentioned above. The reason is that morphisms in Epb strong epi are in
general not regular epimorphisms, which is a necessary condition for the full embedding
theorem. We thus add a last axiom:

(Reg) Morphisms in E are regular epimorphisms.

A surjection-like class of morphisms satisfying (Reg) is said to be regular and we show
(Theorem 2.2) that this is exactly what is needed to have a full embedding theorem. The
biggest such class of morphisms is the class Edescent of descent morphisms, also described
as pullback-stable regular epimorphisms. The fact that this class satisfies the axioms to
be a regular surjection-like class of morphisms has been shown in [9]. The full embedding
theorem obtained from this class Edescent has been obtained in [2] from the embedding
theorem for regular categories [3].

The smallest example of a (regular) surjection-like class of morphisms is the class
Esplit epi of split epimorphisms (i.e., epimorphisms admitting a section). In that case, the
full embedding can be taken to be just the classical Yoneda embedding. Between these two
examples, one also has the class Eeff descent of effective descent morphisms, which, in view
of the results from [9, 11, 12], is a regular surjection-like class of morphisms (assuming the
axiom of universes [1] to avoid some size issues). The full embedding theorem coming from
Eeff descent, as well as the conservative embedding theorem coming from Epb strong epi, are to
our knowledge new from this paper. It is also worth mentioning that from the results
in [5, 9], we know that in the category Cat of small categories and functors, the four
classes Esplit epi ⫋ Eeff descent ⫋ Edescent ⫋ Epb strong epi are distinct and there exist infinitely
many other regular surjection-like classes of morphisms in Cat.

Let us also mention that, given a surjection-like class of morphisms E in a finitely
complete category C, one cannot expect in general to have an (E,M)-factorization system
where M is the class of monomorphisms in C. Indeed, all morphisms f in C factorize as
f = me with m a monomorphism and e ∈ E if and only if C is a regular category and E
is the class of regular epimorphisms in it.

Our Embedding Theorems 2.1 and 2.2 have two main applications. On the practical
side, one can prove many statements about finite limits and morphisms in a surjection-like
class of morphisms E in any finitely complete category C just by producing a proof for the
particular case C = Set and E = {surjections}. Therefore, for these statements, a proof
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using elements will be enough to prove the result in full generality. To avoid size issues, one
has to assume here the axiom of universes. For such proof reductions, the Conservative
Embedding Theorem 2.1 (and so surjection-like classes of morphisms) is almost as useful
as the Full Embedding Theorem 2.2 (and so regular surjection-like classes of morphisms)
since, even in the full case, one has to take extra caution when dealing with the existence
of some morphism. This technique is well-known and have been briefly discussed e.g.
in [2] and more precisely described in [7]. We will give as such an application here a
generalization of the so-called Barr–Kock theorem where one requires that a morphism is
(only) a pullback-stable strong epimorphism (see Corollary 2.3).

More importantly, on the theoretical side, these embedding theorems give potential
criteria to decide which classes of morphisms form ‘good’ categorical generalizations of
surjections.

The major part of the paper is devoted to the proof of our Embedding Theorems 2.1
and 2.2, so let us say a word on it now. A possible way to tackle this problem is to
consider the Grothendieck topology TE on C induced by E and the composite functor

C Y // SetC
op a // Sh(C, TE)

B // SetD

where Y is the classical Yoneda embedding, a is the sheafification functor for the topol-
ogy TE and B is Barr’s full embedding [3] for the regular category Sh(C, TE) of sheaves
on the site (C, TE). If E is a surjection-like class of morphisms, it can be proved that
aY is conservative and faithful and it sends a morphism e to a (regular) epimorphism in
Sh(C, TE) if and only if e ∈ E. Moreover, if E is a regular surjection-like class of mor-
phisms, TE is a subcanonical topology and aY is a fully faithful embedding. Although
this proof might be short and elegant, it is has several drawbacks. Firstly, even if the
category C is assumed to be small, the sheaf category Sh(C, TE) is in general not small.
Therefore, Barr’s embedding theorem cannot be applied as such to this regular category
Sh(C, TE). One thus needs to change universe even in the case where C is small which
is very unpleasant. In particular, in the codomain of this embedding, the category D
need not be small and the category Set is not any more the usual category of (small) sets
and functions. Secondly, in the construction of B from [3], some transfinite inductions
are used, based on the axiom of choice to well-order the sets on which these transfinite
inductions run. As a result, the way the category D and the embedding B are constructed
is quite obscure and this has raised a certain scepticism in the community. Finally, this
proof technique seems not to be easily generalizable and this will probably prevent us to
prove similar results in the future (see the section on future work below).

Another strategy could be to generalize Barr’s proof of his embedding theorem for reg-
ular categories by replacing small regular categories by small finitely complete categories
and the class of regular epimorphisms by a (regular) surjection-like class of morphisms.
This would have the advantage of avoiding the size issue raised by the above proof tech-
nique, but this would still be based on some not explicit transfinite inductions. Moreover,
it is not clear how one could achieve such a generalization directly. Indeed, the first step
in Barr’s proof is to show that, if C is a small regular category, the opposite category
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C̃ = Lex(C, Set)op of the category of finite limit preserving functors C → Set is also regular
and the fully faithful embedding C → C̃ preserves and reflects finite limits and regular
epimorphisms. Barr then uses this bigger category C̃ to construct (using transfinite in-
ductions) a C-projective covering of any object of C (and even of C̃); this argument being
based on an argument by Grothendieck. The problem in our generalized setting is that, if
we replace regular epimorphisms in C by morphisms in E, by what should we replace regu-
lar epimorphisms in C̃? Although we could close the class E in C̃ under certain properties,
it is not clear to us how to adapt the proof in that context.

Our idea will be instead to ‘deconstruct’ Barr’s proof in order to make it explicit in
terms of C (and not working in C̃). The hardest step in that process was to make explicit
how to construct pullbacks and cofiltered limits in C̃. That way, we achieved to turn
the C-projective covering of a finite limit preserving functor F : C → Set constructed by
Barr into an explicit (transfinite induction free) construction of a componentwise injective
natural transformation ιF : F ↣ F where F : C → Set preserves finite limits and sends
elements of E to surjections. As a result, we get a much more explicit construction of
the small category D and the embedding φ : C → SetD in our Embedding Theorems 2.1
and 2.2. In particular, in the conservative case, the objects of the category D can be
chosen to be the objects of C, and given objects C,D, the set φ(C)(D) can be defined as
some quotient of the set of diagrams of the form

C //

��

oo

ek1×···×eknk
��

...

::

...
...

��

//

e21×···×e2n2
��

//

��

::

e11×···×e1n1
��D //

where the k quadrilaterals are pullbacks of finite products of specified elements of E.
Except from this Introduction, the paper contains only two sections. In the first

one, the definitions of (regular) surjection-like classes of morphisms are given, their basic
properties are studied and some examples are discussed. The second section is devoted
to our embedding theorems. They are proved simultaneously in a common proof which is
divided into 42 steps, but the proof in the conservative case only requires the first 30 steps.

Future work. If possible, we would like to study the case of jointly epimorphic cospans
in a future work. Actually, we want to generalize our work in order to answer the question:
which classes of cospans (or which Grothendieck topologies) interact with finite limits in
the same way as jointly surjective cospans interact with finite limits in Set?
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We are also interested in the analogous question where finite limits are not considered,
i.e., which classes of morphisms behave like surjections do in Set? More precisely, we
would like to characterize those classes E of morphisms in a small category C for which
there exists a (fully) faithful conservative functor φ : C → SetD to a presheaf category
such that a morphism e ∈ C is in E if and only if φ(e) is a componentwise surjection. Of
course, the axioms (Id), (ClComp) and (SRightCancP) still have to hold for E, but the
axioms (StPb) and (NoPMono) do not seem to be needed any more. Indeed, these two
axioms are ‘finite limit statements’ (for (NoPMono), we recall that the property of being
a monomorphism is equivalent to the condition that the two projections of the kernel pair
are equal). In view of that, the class of epimorphisms might be an example of such a class
and therefore be considered as a ‘good class of surjections’, although we did not consider
it to be so since the very beginning of this introduction as it has ‘poor interactions with
finite limits’.

Acknowledgments. The author would like to thank Michael Hoefnagel and Zurab
Janelidze for interesting discussions on the subject. He also thanks the anonymous referee
for his/her helpful remarks on the paper. He is also grateful to the FNRS for its generous
support.

1. Axioms and examples

Let us fix in this whole section a finitely complete category C (i.e., a category admitting
finite limits).

Axioms for a conservative embedding. Let us consider a class of morphisms E in C.
We say that E is a surjection-like class of morphisms (in C) if it satisfies the following
five axioms:

(Id) E contains identities, i.e., for each object A ∈ C, one has 1A ∈ E.

(ClComp) E is closed under composition, i.e., given any pair of composable morphisms

A
f
// B

g
// C

in C, if f and g are in E, then so is the composite gf .

(SRightCancP) E has the strong right cancellation property, i.e., given any pair of composable

morphisms A
f
// B

g
// C in C, if gf ∈ E, then g ∈ E.

(StPb) E is stable under pullbacks, i.e., given any pullback square

P
f
//

g

��

B

g

��

A
f
// C
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in C, if f ∈ E, then f ∈ E.

(NoPMono) E does not contain any proper monomorphisms, i.e., each monomorphism in E is
an isomorphism.

In that case, since E satisfies (Id) and (StPb), we know it contains isomorphisms.
This can be seen via the following pullback square

A i //

1A
��

B

i−1

��

A
1A
// A

for any isomorphism i. In addition, since E satisfies (ClComp) and (StPb), it is well-known
that E is closed under binary products, i.e., if e, e′ ∈ E, then e× e′ ∈ E. If e : A → B and
e′ : A′ → B′ are two morphisms, then e× e′ : A×A′ → B×B′ is canonically induced by e
and e′ between the product of A and A′ and that of B and B′. The following commutative
diagram

A× A′ e×e′
//

e×1A′
""

pA,A′
1

��

B ×B′

pB,B′
2

  

A

e

��

B × A′

1B×e′

<<

pB,A′
1

||
pB,A′
2

##

B′

B A′

e′

>>

where the squares are pullbacks and where the morphisms pA,A′

1 , pB,A′

1 , pB,A′

2 and pB,B′

2 are
product projections indicates how to prove this property. Therefore, each surjection-like
class of morphisms E is closed under finite products, i.e., given any finite family (ei ∈ E)i∈I
of elements of E, their product

∏
i∈I ei also belongs to E.

Let us now denote by Esplit epi the class of split epimorphisms in C, i.e., the class of
morphisms e : A → B such that there exists s : B → A with es = 1B. It is well-known
and routine to prove that Esplit epi is a surjection-like class of morphisms. Moreover, in
view of (Id) and (SRightCancP), it is the smallest one, i.e., the inclusion

Esplit epi ⊆ E

holds for any surjection-like class of morphisms E in C.
We recall that a strong epimorphism in C is a morphism e : A → B such that for any

commutative square of plain morphisms

A
e //

f

��

B

g

��h
~~

C //
m
// D
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where m is a monomorphism, there exists a (necessarily unique) dotted morphism h mak-
ing the two triangles commutative. Since C is finitely complete, this property implies that
e is an epimorphism, and it is equivalent to the property of being an extremal epimorphism,
i.e., an (epi)morphism such that given any commutative triangle

C
��

m

��

A e
//

f
??

B

where m is a monomorphism, then m is an isomorphism. The class of strong epimorphisms
is in general not stable under pullbacks. We thus need the notion of pullback-stable strong
epimorphism, which is a morphism e : A → B such that, for any pullback square

P e //

f
��

C

f

��

A e
// B,

the morphism e is a strong epimorphism. In particular, this implies that e is itself a strong
epimorphism. We denote by Epb strong epi the class of pullback-stable strong epimorphisms
in C. Again, it is well-known and routine to prove that Epb strong epi is a surjection-like
class of morphisms. Moreover, it is the largest one. Indeed, given a surjection-like class of
morphisms E, by (SRightCancP) and (NoPMono), each element of E is an extremal epi-
morphism. Hence, by (StPb), each element of E is a pullback-stable strong epimorphism.
Therefore, for each surjection-like class of morphisms E in C, the inclusions

Esplit epi ⊆ E ⊆ Epb strong epi

hold.

Axioms for a full embedding. We recall that a regular epimorphism in C is a mor-
phism e which is the coequalizer of two parallel morphisms. Since C is finitely complete,
this is equivalent to require that e is the coequalizer of its kernel pair.

A surjection-like class of morphisms E in the finitely complete category C is said to
be regular when it satisfies the additional axiom:

(Reg) Every morphism in E is a regular epimorphism.

Since (Reg) is stronger than (NoPMono), a regular surjection-like class of morphisms
in C is a class of morphisms satisfying the axioms (Id), (ClComp), (SRightCancP), (StPb)
and (Reg).

It is classical that each split epimorphism is a regular epimorphism. Therefore, the
class Esplit epi is a regular surjection-like class of morphisms and it is the smallest such.
Besides, not all pullback-stable strong epimorphisms are regular epimorphisms (e.g. in
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the category Cat of small categories, see below). Therefore, the surjection-like class of
morphisms Epb strong epi is in general not regular.

Since C is finitely complete, a descent morphism can be characterized [10] as a pullback-
stable regular epimorphism, i.e., a morphism e : A → B such that, for any pullback square

P e //

f
��

C

f

��

A e
// B,

the morphism e is a regular epimorphism. We denote by Edescent the class of descent
morphisms in C. It has been proved in [9] that Edescent is a regular surjection-like class of
morphisms. Moreover, in view of (StPb) and (Reg), it is the largest one. Therefore, for
each regular surjection-like class of morphisms E in C, the inclusions

Esplit epi ⊆ E ⊆ Edescent

hold.
The finitely complete category C is said to be regular in the sense of [4] if it has co-

equalizers of kernel pairs and if regular epimorphisms are stable under pullbacks. In that
case, the classes Epb strong epi and Edescent both coincide with the class of regular epimor-
phisms, which is thus a regular surjection-like class of morphisms. Given a surjection-like
class of morphisms E in a general finitely complete category C, the following conditions
are equivalent:

• the class E has the additional property that each morphism f in C factorizes as
f = me where m is a monomorphism and e ∈ E;

• C is a regular category and E is the class of regular epimorphisms in it.

Indeed, the factorization property is well-known in regular categories, while the other
direction can be proved as follows. Given a strong epimorphism f , we can factorize it
as f = me with e ∈ E and m a monomorphism. Since f is a strong epimorphism, m
is an isomorphism and f ∈ E. This proves that E is the class of strong epimorphisms.
Using Proposition 2.2.2 in [6], this proves that C is regular and E is the class of regular
epimorphisms.

Examples. We have already seen the examples Esplit epi and Edescent of regular surjection-
like classes of morphisms and Epb strong epi of (in general not regular) surjection-like class
of morphisms.

The class Eeff descent of effective descent morphisms in C is easily seen to satisfy (Id)
and (Reg). Moreover, it is proved in [12] that Eeff descent satisfies (StPb) and in [11] that it
satisfies (ClComp). Finally, it is shown in [9], under some smallness assumption on C, that
Eeff descent satisfies (SRightCancP). This smallness assumption can be removed assuming
for instance the axiom of universes [1]. The class Eeff descent is thus a regular surjection-like
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class of morphisms, which sits, in general, strictly between Esplit epi and Edescent (see e.g.
the case C = Cat below).

In the category Set of sets, assuming the axiom of choice, the four classes Epb strong epi,
Edescent, Eeff descent and Esplit epi all coincide with the class of surjective functions. However,
this situation is very specific to Set.

Given an object X in the finitely complete category C, we denote by EX the class of
morphisms e : A → B such that, for each morphism f : X → B, there exists a morphism
g : X → A such that eg = f .

X
g
//

f
  

A

e

��

B

Clearly, EX satisfies the axioms (Id), (ClComp), (SRightCancP) and (StPb), but in gen-
eral it does not satisfies (NoPMono). Let us consider the particular case where C = Cat
is the category of small categories. For a non-negative integer n, let Jn be the totally
ordered set on n+1 elements seen as a category, i.e., the category generated by the graph

0 // 1 // · · · // n− 1 // n.

We have the strict inclusions

EJ0 ⫌ EJ1 ⫌ EJ2 ⫌ EJ3 ⫌ EJ4 ⫌ · · ·

and
⋂

n⩾0EJn ⫌ Esplit epi. The class EJ0 is the class of functors which are surjective on
objects. It does not satisfies (NoPMono). It is shown in [5] that EJ1 = Epb strong epi and
EJ2 = Edescent; and it is shown in [9] that EJ3 = Eeff descent. In view of the above strict
inclusions, we therefore have that EJ1 is a surjection-like class of morphisms which is
not regular; and for n ⩾ 2, the class EJn is a regular surjection-like class of morphisms.
Hence,

⋂
n⩾0EJn is also a regular surjection-like class of morphisms. We therefore have

infinitely many such classes in Cat.
Let us conclude this section by proving that none of the axioms (Id), (ClComp),

(SRightCancP), (StPb) and (NoPMono) (respectively (Id), (ClComp), (SRightCancP),
(StPb) and (Reg)) can be removed from the definition of surjection-like classes of mor-
phisms (respectively of regular surjection-like classes of morphisms). If the finitely com-
plete category C is not a preorder, the empty class E = ∅ satisfies all axioms except (Id);
the class of isomorphisms in C satisfies all axioms except (SRightCancP) and the class
of all morphisms in C satisfies all axioms except (NoPMono) and (Reg). Let now E and
E ′ be two distinct regular surjection-like classes of morphisms in C (which exist, e.g., if
C = Cat). The class (E × E ′) ∪ (E ′ × E) in the product category C × C satisfies all
axioms except (ClComp). Finally, if C is the category of preordered sets, the class of
regular epimorphisms, which coincides with the class of strong epimorphisms, has been
described in [8]. It satisfies (Id), (ClComp), (SRightCancP), (NoPMono) and (Reg), but
not (StPb).
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2. The embedding theorems

We are now ready to state and prove our embedding theorems. We recall that a functor
is said to be conservative if it reflects isomorphisms. For a small category D, we denote
by SetD the category of functors D → Set and their natural transformations. In this
category SetD, the classes Epb strong epi, Edescent and Eeff descent all coincide with the class of
componentwise surjections, i.e., the class of natural transformations α : F ⇒ G : D → Set
such that, for each object D ∈ D, αD is a surjective function.

For set-theoretical reasons, the theorems below are stated under the assumption that
the category C is small. However, using the axiom of universes [1], this condition can
easily be overcome.

2.1. Theorem. Let C be a small finitely complete category. The following conditions on
a class E of morphisms in C are equivalent:

• There exists a small category D and a faithful conservative functor φ : C → SetD

which preserves and reflects finite limits and such that, for each morphism e in C,
φ(e) is a componentwise surjection if and only if e ∈ E.

• E is a surjection-like class of morphisms, i.e., it satisfies the axioms

(Id) E contains all identities;

(ClComp) E is closed under composition;

(SRightCancP) E has the strong right cancellation property;

(StPb) E is stable under pullbacks;

(NoPMono) every monomorphism in E is an isomorphism.

2.2. Theorem. Let C be a small finitely complete category. The following conditions on
a class E of morphisms in C are equivalent:

• There exists a small category D and a fully faithful functor φ : C → SetD which
preserves and reflects finite limits and such that, for each morphism e in C, φ(e) is
a componentwise surjection if and only if e ∈ E.

• E is a regular surjection-like class of morphisms, i.e., it satisfies the axioms

(Id) E contains all identities;

(ClComp) E is closed under composition;

(SRightCancP) E has the strong right cancellation property;

(StPb) E is stable under pullbacks;

(Reg) every morphism in E is a regular epimorphism.
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Before proving these theorems, let us make a few comments about them. Considering
C to be a small regular category and E the class of regular epimorphisms in it, one
recovers from Theorem 2.2 Barr’s full embedding theorem [3] for regular categories. More
generally, if in Theorem 2.2 one chooses E to be the class Edescent of descent morphisms
in a small finitely complete category C, one recovers the embedding theorem established
in [2].

The particular instance of Theorem 2.2 for E = Esplit epi is also known. Indeed, in that
case, it is sufficient to consider the Yoneda embedding Y : C → SetC

op

since a morphism e
is a split epimorphism if and only if Y(e) is a componentwise surjection.

To our knowledge, the conservative embedding theorem obtained from Theorem 2.1
for E = Epb strong epi and the full embedding theorem obtained from Theorem 2.2 for
E = Eeff descent are new.

In our opinion, the main theoretical application of Theorems 2.1 and 2.2 is to justify
why, and in which sense, (regular) surjection-like classes of morphisms are exactly the
ones interacting with finite limits in the same way as surjections do in Set.

On the practical side, as it is explained in [2, 7], these embedding theorems (and the
axiom of universes) enable one to reduce the proof of some results about the interaction
between finite limits and a surjection-like class of morphisms E in a finitely complete
category C to the case where C = Set and E is the class of surjective functions. Arguments
using elements can therefore be applied in those contexts. As an example of this technique,
we prove a generalization of the so-called Barr–Kock theorem where the morphism e below
is only required to be a pullback-stable strong epimorphism (in this particular case, taking
E = Epb strong epi gives the most general version of the result).

2.3. Corollary. (Barr–Kock) Given a finitely complete category C, we consider the
following diagram

R[e]
re1 //

re2

//

k

��

A e //

g

��

B

h

��

R[f ]
rf1 //

rf2

// X
f

// Y

(1)

where (re1, r
e
2) is the kernel pair of e, (rf1 , r

f
2 ) is the kernel pair of f , the right hand square

is commutative and the morphism k is the induced morphism making the upper left hand
and down left hand squares commute. If e is a pullback-stable strong epimorphism and
the upper left hand square is a pullback, then the right hand square is also a pullback.

Proof. Let E = Epb strong epi so that e is supposed to be in E. By the axiom of universes,
we can suppose without loss of generality that C is a small category. We can thus consider
the embedding φ : C → SetD given by Theorem 2.1. Since φ preserves finite limits and
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commutative diagrams, the diagram in SetD

φ(R[e])
φ(re1) //

φ(re2)
//

φ(k)

��

φ(A)
φ(e)

//

φ(g)

��

φ(B)

φ(h)

��

φ(R[f ])
φ(rf1 ) //

φ(rf2 )

// φ(X)
φ(f)

// φ(Y )

(2)

satisfies similar assumptions as (1), with e ∈ E being replaced with φ(e) is a componen-
twise surjection. Since finite limits are computed componentwise in SetD, for any object
D ∈ D, we know that the diagram in Set

φ(R[e])(D)
φ(re1)D //

φ(re2)D

//

φ(k)D

��

φ(A)(D)
φ(e)D

//

φ(g)D

��

φ(B)(D)

φ(h)D

��

φ(R[f ])(D)
φ(rf1 )D //

φ(rf2 )D

// φ(X)(D)
φ(f)D

// φ(Y )(D)

(3)

satisfies similar assumptions as (1), with φ(e)D a surjective function. Since Barr–Kock
theorem can easily be proved in Set using elements (see e.g. [7]), we deduce that for each
object D ∈ D, the right hand square of diagram (3) is a pullback. Since finite limits are
computed componentwise in SetD, this means that the right hand square in diagram (2)
is a pullback. Since φ reflects finite limits, this finally implies that the right hand square
of diagram (1) is also a pullback as desired.

Proof of Theorems 2.1 and 2.2. We are now going to prove both Theorem 2.1 and
Theorem 2.2 simultaneously.

Proof. The proof is divided in 42 steps, but the proof of Theorem 2.1 already ends after
30 steps.

Step 1. The easy direction. Let us first suppose that such a category D and such
a functor φ : C → SetD exist. Since the axioms (Id), (ClComp), (SRightCancP), (StPb)
and (NoPMono) are (or can be) stated in terms of finite limits and the class E, and in
view of the properties of φ, they hold for E in C just because they hold for the class of
componentwise surjections in SetD. If φ is full, let us prove that E satisfies (Reg). Let
e : A → B be a morphism in E and let r1, r2 : R[e] ⇒ A be its kernel pair. We must
show that e is the coequalizer of r1 and r2. Let x : A → X be a morphism such that
xr1 = xr2. Using the properties of φ, we know that φ(e) is a componentwise surjection
and φ(r1), φ(r2) : φ(R[e]) ⇒ φ(A) is its kernel pair. Therefore, since componentwise
surjections in SetD are regular epimorphisms, φ(e) is the coequalizer of φ(r1) and φ(r2).
Since φ(x)φ(r1) = φ(x)φ(r2), there exists a unique natural transformation α : φ(B) →
φ(X) such that αφ(e) = φ(x). One then concludes that there is a unique morphism
y : B → X in C such that ye = x using the fact that φ is full and faithful.
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Step 2. Desired properties of the category D. Conversely, let us suppose that
E is a surjection-like class of morphisms (respectively a regular surjection-like class of
morphisms). For each morphism f : C → C ′ in C, we denote by C(f,−) : C(C ′,−) →
C(C,−) the corresponding natural transformation between the representable functors.
Let us suppose we have constructed a small full subcategory D of the functor category
SetC satisfying the following properties:

(i) Each functor F : C → Set in D preserves finite limits.

(ii) For each e ∈ E and each F ∈ D, the function F (e) is surjective.

(iii) For each object C ∈ C, there exists a natural transformation ιC : C(C,−) → FC

with FC ∈ D such that:

(a) ιC is a monomorphism in SetC;
(b) for each morphism e : C ′ → C in C, if there exists a natural transformation

α : C(C ′,−) → FC making the triangle

C(C,−)
C(e,−)

//

ιC
��

C(C ′,−)

α
xx

FC

commute, then e ∈ E;

and moreover, in the case the proof of the full embedding of Theorem 2.2 is con-
cerned,

(c) there exists two parallel morphisms ρ1, ρ2 : FC ⇒ GC in D of which ιC is an
equalizer of in SetC;

(d) for each natural transformation α : C(C,−) → H with H ∈ D, there exists a
natural transformation β : FC → H making the triangle

C(C,−)
ιC //

α
��

FC

β
zz

H

commute.

Step 3. The functor φ. In the case where such a category D exists, we are able to
construct the desired functor φ : C → SetD as follows. Given an object C ∈ C, the functor
φ(C) : D → Set is defined on an object F ∈ D by φ(C)(F ) = F (C) and on a natural
transformation α : F → F ′ in D by φ(C)(α) = αC : F (C) → F ′(C). Given a morphism
f : C → C ′ in C, the natural transformation φ(f) : φ(C) → φ(C ′) is defined on an object
F of D as φ(f)F = F (f) : F (C) → F (C ′). It is routine to show that this indeed gives a
functor φ : C → SetD.
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Step 4. φ preserves finite limits. Since finite limits are computed in SetD compo-
nentwise and since each functor F ∈ D preserves finite limits (i), we can immediately see
that φ also preserves finite limits.

Step 5. φ is faithful. To see that φ is faithful, let f, g : C ⇒ C ′ be two morphisms in
C such that φ(f) = φ(g). In particular, we know that FC(f) = φ(f)FC

= φ(g)FC
= FC(g)

for the functor FC given by (iii). We can thus compute:

ιC,C′(f) = ιC,C′(C(C,−)(f)(1C))

= FC(f)(ιC,C(1C))

= FC(g)(ιC,C(1C))

= ιC,C′(C(C,−)(g)(1C))

= ιC,C′(g).

Since ιC is a monomorphism in SetC (iii)(a), its C ′-component ιC,C′ is an injection and so
f = g which proves that φ is faithful.

Step 6. e ∈ E if and only if φ(e) is a componentwise surjection. Given a
morphism e : C → C ′ in C, if e ∈ E, then φ(e) is a componentwise surjection in view
of (ii). Conversely, if φ(e) is a componentwise surjection, in particular, FC′(e) : FC′(C) →
FC′(C ′) is a surjection. There exists thus an element a ∈ FC′(C) such that FC′(e)(a) =
ιC′,C′(1C′). By the Yoneda Lemma, this element a corresponds to a natural transformation
α : C(C,−) → FC′ such that α ◦ C(e,−) = ιC′ . Using (iii)(b), we deduce that e ∈ E.

Step 7. φ is conservative. It is now easy to prove that φ is conservative. Let f be a
morphism in C for which φ(f) is an isomorphism in SetD. Since φ(f) is in particular a
componentwise surjection, f ∈ E by Step 6. But since φ(f) is a monomorphism and φ is
faithful, f is also a monomorphism. Since f is a monomorphism in E, using (NoPMono),
we know that f is an isomorphism.

Step 8. φ reflects finite limits. Since φ is a conservative functor which preserves
finite limits from a finitely complete category, we know that φ reflects finite limits.

Step 9. In the regular case, φ is full. In the case the proof of the full embedding
of Theorem 2.2 is concerned, let us also show that φ is full. Let C,C ′ be two objects of C
and γ : φ(C) → φ(C ′) a natural transformation. We thus have a function γFC

: FC(C) →
FC(C

′). Let us consider the natural transformation α : C(C ′,−) → FC corresponding
via the Yoneda Lemma to γFC

(ιC,C(1C)) ∈ FC(C
′). Considering also the two natural

transformations ρ1, ρ2 : FC ⇒ GC given by (iii)(c), we can compute

ρ1C′(αC′(1C′)) = ρ1C′(γFC
(ιC,C(1C)))

= φ(C ′)(ρ1)(γFC
(ιC,C(1C)))

= γGC
(φ(C)(ρ1)(ιC,C(1C)))

= γGC
(ρ1C(ιC,C(1C)))
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= γGC
(ρ2C(ιC,C(1C)))

= γGC
(φ(C)(ρ2)(ιC,C(1C)))

= φ(C ′)(ρ2)(γFC
(ιC,C(1C)))

= ρ2C′(γFC
(ιC,C(1C)))

= ρ2C′(αC′(1C′))

which, by the Yoneda Lemma, proves that ρ1α = ρ2α. Since ιC is the equalizer of
ρ1 and ρ2 in SetC (iii)(c), we know that there exists a unique natural transformation
β : C(C ′,−) → C(C,−) such that ιCβ = α. Using the Yoneda Lemma again, there
exists a unique morphism f : C → C ′ in C such that β = C(f,−). We shall prove that
γ = φ(f). Given F ∈ D and d ∈ F (C), it suffices to prove that γF (d) = F (f)(d). By the
Yoneda Lemma, this element d corresponds to a natural transformation δ : C(C,−) → F .
Using (iii)(d), there exists a natural transformation ε : FC → F such that ειC = δ. It thus
suffices to compute:

γF (d) = γF (δC(1C))

= γF (εC(ιC,C(1C)))

= εC′(γFC
(ιC,C(1C)))

= εC′(αC′(1C′))

= εC′(ιC,C′(βC′(1C′)))

= εC′(ιC,C′(f))

= δC′(f)

= F (f)(δC(1C))

= F (f)(d).

Step 10. The set F̂ (C). It remains now to construct a full subcategory D of SetC

satisfying the properties described in Step 2. In order to do so, for a finite limit preserving
functor F : C → Set, let us construct a finite limit preserving functor F̂ : C → Set as
follows. Given an object C ∈ C, we consider the set of 7-tuples (n, (ei)i, (fi)i, f , e, g, a)
where

• n ∈ N = {0, 1, 2, . . . } is non-negative integer;

• (ei)i is a family (ei : Bi → Di)1⩽i⩽n of n morphisms in E;

• (fi)i is a family (fi : A → Di)1⩽i⩽n of n morphisms in C;

• f and e are the projections of a pullback square

P
f

//

e

��

B1 × · · · ×Bn

e1×···×en
��

A
(f1,...,fn)

// D1 × · · · ×Dn
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where e1 × · · · × en is the product of e1, . . . , en and (f1, . . . , fn) is the morphism
induced by f1, . . . , fn;

• g : P → C is a morphism in C;

• a ∈ F (A) is an element.

Notice that since E is closed under finite products (since E satisfies (Id), (ClComp)
and (StPb)), the morphism e1×· · ·×en is in E. Since E is stable under pullbacks (StPb),
this implies that e ∈ E. We define F̂ (C)

F̂ (C) =


(
n ∈ N, (ei ∈ E)i, (fi)i, f , e, g, a ∈ F (A)

)
|

P

g

��

f
//

e

��

n∏
i=1

Bi

n∏
i=1

ei
��

C A
(f1,...,fn)

//

n∏
i=1

Di


/ ∼=F,C

to be the quotient of this set of such 7-tuples by the equivalence relation ∼=F,C defined
as follows. For two such 7-tuples (n, (ei)i, (fi)i, f , e, g, a) and (n′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′),

represented by

P
g

		

f
//

e

��

B1 × · · · ×Bn

e1×···×en
��

C A
(f1,...,fn)

// D1 × · · · ×Dn

and

P ′

g′

��

f
′

//

e′

��

B′
1 × · · · ×B′

n′

e′1×···×e′
n′

��

C A′
(f ′

1,...,f
′
n′ )
// D′

1 × · · · ×D′
n′

,

we have
(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′)

if and only if there exists a span

A′′

h

~~

h′

  

A A′

in C together with an element a′′ ∈ F (A′′) such that

• F (h)(a′′) = a;

• F (h′)(a′′) = a′;



966 PIERRE-ALAIN JACQMIN

• considering the pullback diagram

P ′′ (k1,...,kn,k′1,...,k′n′)
//

e′′

��

B1 × · · · ×Bn ×B′
1 × · · · ×B′

n′

e1×···×en×e′1×···×e′
n′

��

A′′
(f1h,...,fnh,f ′

1h
′,...,f ′

n′h
′)
// D1 × · · · ×Dn ×D′

1 × · · · ×D′
n′

,

the sets

X = {(i, i′) ∈ N2 | 1 ⩽ i ⩽ n, 1 ⩽ i′ ⩽ n′, ei = e′i′ and F (fi)(a) = F (f ′
i′)(a

′)},

Y = {(i1, i2) ∈ N2 | 1 ⩽ i1 ⩽ n, 1 ⩽ i2 ⩽ n, ei1 = ei2 and F (fi1)(a) = F (fi2)(a)}

and

Y ′ = {(i′1, i′2) ∈ N2 | 1 ⩽ i′1 ⩽ n′, 1 ⩽ i′2 ⩽ n′, e′i′1 = e′i′2 and F (f ′
i′1
)(a′) = F (f ′

i′2
)(a′)},

and the equalizer

M // m // P ′′

(
(ki)(i,i′)∈X ,(ki1 )(i1,i2)∈Y ,(k′

i′1
)(i′1,i

′
2)∈Y′

)
//(

(k′
i′ )(i,i′)∈X ,(ki2 )(i1,i2)∈Y ,(k′

i′2
)(i′1,i

′
2)∈Y′

) //
∏

(i,i′)∈X

Bi ×
∏

(i1,i2)∈Y

Bi1 ×
∏

(i′1,i
′
2)∈Y ′

B′
i′1
,

the diagram

M // m //

��

m
��

P ′′ (he′′,(ki)1⩽i⩽n)
// P

g

��

P ′′
(h′e′′,(k′

i′ )1⩽i′⩽n′)
// P ′

g′
// C

commutes where (he′′, (ki)1⩽i⩽n) is the unique morphism P ′′ → P such that

e (he′′, (ki)1⩽i⩽n) = he′′

and
f (he′′, (ki)1⩽i⩽n) = (k1, . . . , kn)

and where (h′e′′, (k′
i′)1⩽i′⩽n′) is the unique morphism P ′′ → P ′ such that

e′ (h′e′′, (k′
i′)1⩽i′⩽n′) = h′e′′

and
f
′
(h′e′′, (k′

i′)1⩽i′⩽n′) = (k′
1, . . . , k

′
n′) .
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Remark: Before proceeding with the rest of the proof, let us give a little intuition of
this construction. The dream would be that F (A) ⊆ F̂ (A) for every object A (see Step 22)
and that for every e : P → A ∈ E, the function F̂ (e) would be surjective. Although we
will not reach this dream directly (see Step 25), we want to add, for any a ∈ F (A), an
element p ∈ F̂ (P ) such that F̂ (e)(p) = a. Moreover, for every g : P → C, we need to add
an element F̂ (g)(p) ∈ F̂ (C). When we tried to define F̂ (C) as a quotient of the mere
set of triples (e, g, a), we were not able to prove the required properties of F̂ . Instead,
for each a ∈ F (A), we needed to consider many liftings to elements of F̂ (P ). A careful
analysis of the required properties resulted in the above definition.

Step 11. An equivalent definition of ∼=F,C. Before proving that ∼=F,C is indeed an
equivalence relation, let us prove that, in the above definition of ∼=F,C , we can equivalently
require the additional following conditions (together with those from Step 10):

• fih = f ′
i′h

′ for all (i, i′) ∈ X ;

• fi1h = fi2h for all (i1, i2) ∈ Y ;

• f ′
i′1
h′ = f ′

i′2
h′ for all (i′1, i′2) ∈ Y ′.

In order to do so, let us consider the following equalizer diagram.

A′′′ // h
′′
// A′′

(
(fih)(i,i′)∈X ,(fi1h)(i1,i2)∈Y ,(f ′

i′1
h′)(i′1,i

′
2)∈Y′

)
//(

(f ′
i′h

′)(i,i′)∈X ,(fi2h)(i1,i2)∈Y ,(f ′
i′2
h′)(i′1,i

′
2)∈Y′

) //
∏

(i,i′)∈X

Di ×
∏

(i1,i2)∈Y

Di1 ×
∏

(i′1,i
′
2)∈Y ′

D′
i′1

Since F preserves finite limits and in view of the definitions of X , Y and Y ′, there exists
a unique a′′′ ∈ F (A′′′) such that F (h′′)(a′′′) = a′′. Let us show that the span

A′′′

hh′′

~~

h′h′′

!!

A A′

together with the element a′′′ ∈ F (A′′′) is also a witness of

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′).

One obviously has F (hh′′)(a′′′) = F (h)(a′′) = a and F (h′h′′)(a′′′) = F (h′)(a′′) = a′. As
far as the last condition is concerned, we consider the diagram

R
r //

e′′′

��

P ′′ (k1,...,kn,k′1,...,k′n′)
//

e′′

��

B1 × · · · ×Bn ×B′
1 × · · · ×B′

n′

e1×···×en×e′1×···×e′
n′

��

A′′′
h′′

// A′′
(f1h,...,fnh,f ′

1h
′,...,f ′

n′h
′)
// D1 × · · · ×Dn ×D′

1 × · · · ×D′
n′
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where both rectangles are pullbacks and the equalizer diagram

R′ // r
′
// R

(
(kir)(i,i′)∈X ,(ki1r)(i1,i2)∈Y ,(k′

i′1
r)(i′1,i

′
2)∈Y′

)
//(

(k′
i′r)(i,i′)∈X ,(ki2r)(i1,i2)∈Y ,(k′

i′2
r)(i′1,i

′
2)∈Y′

) //
∏

(i,i′)∈X

Bi ×
∏

(i1,i2)∈Y

Bi1 ×
∏

(i′1,i
′
2)∈Y ′

B′
i′1
.

Using the universal property of the equalizer m, there exists a unique morphism r′′ : R′ →
M such that mr′′ = rr′. The last condition then follows from

g (hh′′e′′′, (kir)1⩽i⩽n) r
′ = g (he′′, (ki)1⩽i⩽n) rr

′

= g (he′′, (ki)1⩽i⩽n)mr′′

= g′ (h′e′′, (k′
i′)1⩽i′⩽n′)mr′′

= g′ (h′e′′, (k′
i′)1⩽i′⩽n′) rr′

= g′ (h′h′′e′′′, (k′
i′r)1⩽i′⩽n′) r′.

In addition, from the definition of h′′, we immediately have fihh
′′ = f ′

i′h
′h′′ for all (i, i′) ∈

X , fi1hh′′ = fi2hh
′′ for all (i1, i2) ∈ Y and f ′

i′1
h′h′′ = f ′

i′2
h′h′′ for all (i′1, i′2) ∈ Y ′.

Step 12. ∼=F,C is symmetric. Let us now prove that this relation ∼=F,C is indeed an
equivalence relation. The symmetry of this relation is easily obtained by exchanging the
roles of h and h′.

Step 13. ∼=F,C is reflexive. In order to prove the reflexivity of ∼=F,C , let us consider a
7-tuple (n, (ei)i, (fi)i, f , e, g, a) and the set

X = {(i, i′) ∈ N2 | 1 ⩽ i ⩽ n, 1 ⩽ i′ ⩽ n, ei = ei′ and F (fi)(a) = F (fi′)(a)}.

The relation
(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n, (ei)i, (fi)i, f , e, g, a)

is attested by the span
A

1A

��

1A

��

A A

together with the element a. Indeed, while the first two conditions are obviously satisfied,
the equality

g (e′′, (ki)1⩽i⩽n)m = g (e′′, (k′
i)1⩽i⩽n)m

can be deduced in this case from the fact that kim = k′
im for each 1 ⩽ i ⩽ n since

(i, i) ∈ X .
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Step 14. ∼=F,C is transitive. As far as the transitivity of ∼=F,C is concerned, we consider
three 7-tuples, denoted

(nj, (e
j
i )i, (f

j
i )i, f j, ej, gj, aj)

and represented by

Pj

gj

��

fj
//

ej

��

Bj
1 × · · · ×Bj

nj

ej1×···×ejnj
��

C Aj
(fj

1 ,...,f
j
nj

)

// Dj
1 × · · · ×Dj

nj

for each j ∈ {1, 2, 3}. We suppose

(n1, (e
1
i )i, (f

1
i )i, f 1, e1, g1, a1)

∼=F,C (n2, (e
2
i )i, (f

2
i )i, f 2, e2, g2, a2)

and
(n2, (e

2
i )i, (f

2
i )i, f 2, e2, g2, a2)

∼=F,C (n3, (e
3
i )i, (f

3
i )i, f 3, e3, g3, a3)

and we shall prove that

(n1, (e
1
i )i, (f

1
i )i, f 1, e1, g1, a1)

∼=F,C (n3, (e
3
i )i, (f

3
i )i, f 3, e3, g3, a3).

We consider the sets

X12 = {(i1, i2) ∈ N2 | 1 ⩽ i1 ⩽ n1, 1 ⩽ i2 ⩽ n2, e
1
i1
= e2i2 and F (f 1

i1
)(a1) = F (f 2

i2
)(a2)},

X13 = {(i1, i3) ∈ N2 | 1 ⩽ i1 ⩽ n1, 1 ⩽ i3 ⩽ n3, e
1
i1
= e3i3 and F (f 1

i1
)(a1) = F (f 3

i3
)(a3)},

X23 = {(i2, i3) ∈ N2 | 1 ⩽ i2 ⩽ n2, 1 ⩽ i3 ⩽ n3, e
2
i2
= e3i3 and F (f 2

i2
)(a2) = F (f 3

i3
)(a3)},

Y1 = {(i1, i′1) ∈ N2 | 1 ⩽ i1 ⩽ n1, 1 ⩽ i′1 ⩽ n1, e
1
i1
= e1i′1 and F (f 1

i1
)(a1) = F (f 1

i′1
)(a1)},

Y2 = {(i2, i′2) ∈ N2 | 1 ⩽ i2 ⩽ n2, 1 ⩽ i′2 ⩽ n2, e
2
i2
= e2i′2 and F (f 2

i2
)(a2) = F (f 2

i′2
)(a2)}

and

Y3 = {(i3, i′3) ∈ N2 | 1 ⩽ i3 ⩽ n3, 1 ⩽ i′3 ⩽ n3, e
3
i3
= e3i′3 and F (f 3

i3
)(a3) = F (f 3

i′3
)(a3)}.

By assumption, we know there exist two spans

A
h1

~~

h2

  

A1 A2

and

A′

h′
2

~~

h′
3

  

A2 A3

together with elements a ∈ F (A) and a′ ∈ F (A′) satisfying

• F (h1)(a) = a1, F (h2)(a) = a2 = F (h′
2)(a

′) and F (h′
3)(a

′) = a3;
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•
g1
(
h1e, (k

1
i1
)1⩽i1⩽n1

)
m = g2

(
h2e, (k

2
i2
)1⩽i2⩽n2

)
m (4)

and
g2
(
h′
2e

′, (k′2
i2
)1⩽i2⩽n2

)
m′ = g3

(
h′
3e

′, (k′3
i3
)1⩽i3⩽n3

)
m′ (5)

where

P
(k11 ,...,k1n1

,k21 ,...,k
2
n2) //

e

��

B1
1 × · · · ×B1

n1
×B2

1 × · · · ×B2
n2

e11×···×e1n1
×e21×···×e2n2

��

A
(f1

1h1,...,f1
n1

h1,f2
1h2,...,f2

n2
h2)
// D1

1 × · · · ×D1
n1

×D2
1 × · · · ×D2

n2

and

P ′ (k′21 ,...,k′2n2
,k′31 ,...,k′3n3) //

e′

��

B2
1 × · · · ×B2

n2
×B3

1 × · · · ×B3
n3

e21×···×e2n2
×e31×···×e3n3

��

A′
(f2

1h
′
2,...,f

2
n2

h′
2,f

3
1h

′
3,...,f

3
n3

h′
3)
// D2

1 × · · · ×D2
n2

×D3
1 × · · · ×D3

n3

are pullback diagrams and

M // m // P

(
(k1i1

)(i1,i2)∈X12
,(k1i1

)(i1,i′1)∈Y1
,(k2i2

)(i2,i′2)∈Y2

)
//(

(k2i2
)(i1,i2)∈X12

,(k1
i′1
)(i1,i′1)∈Y1

,(k2
i′2
)(i2,i′2)∈Y2

) //
∏

(i1,i2)∈X12

B1
i1
×

∏
(i1,i′1)∈Y1

B1
i1
×

∏
(i2,i′2)∈Y2

B2
i2

and

M ′ // m
′
// P ′

(
(k′2i2

)(i2,i3)∈X23
,(k′2i2

)(i2,i′2)∈Y2
,(k′3i3

)(i3,i′3)∈Y3

)
//(

(k′3i3
)(i2,i3)∈X23

,(k′2
i′2
)(i2,i′2)∈Y2

,(k′3
i′3
)(i3,i′3)∈Y3

) //
∏

(i2,i3)∈X23

B2
i2
×

∏
(i2,i′2)∈Y2

B2
i2
×

∏
(i3,i′3)∈Y3

B3
i3

are equalizer diagrams.

Moreover, using Step 11, we can assume without loss of generality that

• f 1
i1
h1 = f 2

i2
h2 for all (i1, i2) ∈ X12;

• f 2
i2
h2 = f 2

i′2
h2 for all (i2, i′2) ∈ Y2;

• f 2
i2
h′
2 = f 3

i3
h′
3 for all (i2, i3) ∈ X23.
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We consider the pullback
A′′ l′ //

l
��

A′

h′
2

��

A
h2

// A2

(6)

and since F (h2)(a) = a2 = F (h′
2)(a

′) and F preserves finite limits, we know that there
exists a unique element a′′ ∈ F (A′′) such that F (l)(a′′) = a and F (l′)(a′′) = a′. We are
going to show that the span

A′′

h1l

}}

h′
3l

′

!!

A1 A3

together with the element a′′ ∈ F (A′′) is a witness of

(n1, (e
1
i )i, (f

1
i )i, f 1, e1, g1, a1)

∼=F,C (n3, (e
3
i )i, (f

3
i )i, f 3, e3, g3, a3).

We immediately notice that F (h1l)(a
′′) = F (h1)(a) = a1 and F (h′

3l
′)(a′′) = F (h′

3)(a
′) =

a3. In order to check the last condition, we consider the pullback

P ′′ (k′′11 ,...,k′′1n1
,k′′31 ,...,k′′3n3) //

e′′

��

B1
1 × · · · ×B1

n1
×B3

1 × · · · ×B3
n3

e11×···×e1n1
×e31×···×e3n3

��

A′′
(f1

1h1l,...,f1
n1

h1l,f3
1h

′
3l

′,...,f3
n3

h′
3l

′)
// D1

1 × · · · ×D1
n1

×D3
1 × · · · ×D3

n3

(7)

and the equalizer

M ′′ // m
′′
// P ′′

(
(k′′1i1

)(i1,i3)∈X13
,(k′′1i1

)(i1,i′1)∈Y1
,(k′′3i3

)(i3,i′3)∈Y3

)
//(

(k′′3i3
)(i1,i3)∈X13

,(k′′1
i′1

)(i1,i′1)∈Y1
,(k′′3

i′3
)(i3,i′3)∈Y3

)//
∏

(i1,i3)∈X13

B1
i1
×

∏
(i1,i′1)∈Y1

B1
i1
×

∏
(i3,i′3)∈Y3

B3
i3

and we must show that

g1
(
h1le

′′, (k′′1
i1
)1⩽i1⩽n1

)
m′′ = g3

(
h′
3l

′e′′, (k′′3
i3
)1⩽i3⩽n3

)
m′′.

We now consider the set Y2 as an equivalence relation on the set {1, . . . , n2} and denote
by N2 the quotient of {1, . . . , n2} by Y2. We denote by [i2] ∈ N2 the element represented
by i2 ∈ {1, . . . , n2}. From the definition of Y2 and using our assumptions, we know that
if (i2, i′2) ∈ Y2, then e2i2 = e2i′2

and f 2
i2
h2le

′′m′′ = f 2
i′2
h2le

′′m′′. This shows that the pullback
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square

N
(n[i2])[i2]∈N2 //

e

��

∏
[i2]∈N2

B2
i2

∏
[i2]∈N2

e2i2

��

M ′′
(f2

i2
h2le′′m′′)

[i2]∈N2

//
∏

[i2]∈N2

D2
i2

(8)

is well-defined. Since E is closed under finite products (by (Id), (ClComp) and (StPb))
and since E is stable under pullbacks (StPb), we know that e ∈ E. Since morphisms in
E are (strong) epimorphisms (by (SRightCancP) and (NoPMono)), we only need to show
that the identity

g1
(
h1le

′′, (k′′1
i1
)1⩽i1⩽n1

)
m′′e = g3

(
h′
3l

′e′′, (k′′3
i3
)1⩽i3⩽n3

)
m′′e

holds. In order to do so, for each i2 ∈ {1, . . . , n2}, we define a morphism ui2 : N → B2
i2

as
follows:

ui2 =


k′′1
i1
m′′e for some i1 ∈ {1, . . . , n1} such that (i1, i2) ∈ X12 if it exists,

k′′3
i3
m′′e for some i3 ∈ {1, . . . , n3} such that (i2, i3) ∈ X23 if it exists,

n[i2] if no such i1 or i3 exists.

Let us check that this definition makes sense. If i1, i′1 ∈ {1, . . . , n1} are such that (i1, i2)
and (i′1, i2) are in X12, then (i1, i

′
1) ∈ Y1 and k′′1

i1
m′′ = k′′1

i′1
m′′ by definition of m′′. The

other cases are treated similarly.
The outer part of the diagram

N

v

��

((k′′1i1
m′′e)1⩽i1⩽n1

,(ui2
)1⩽i2⩽n2)

))

le′′m′′e

��

P
((k1i1 )1⩽i1⩽n1

,(k2i2
)1⩽i2⩽n2)

//

e

��

n1∏
i1=1

B1
i1
×

n2∏
i2=1

B2
i2

n1∏
i1=1

e1i1 ×
n2∏

i2=1

e2i2

��

A
((f1

i1
h1)1⩽i1⩽n1

,(f2
i2
h2)1⩽i2⩽n2)

//

n1∏
i1=1

D1
i1
×

n2∏
i2=1

D2
i2

is commutative. Indeed, for i1 ∈ {1, . . . , n1}, f 1
i1
h1le

′′m′′e = e1i1k
′′1
i1
m′′e follows from the

commutativity of (7); for i2 ∈ {1, . . . , n2}, f 2
i2
h2le

′′m′′e = e2i2ui2 is obtained from

f 2
i2
h2le

′′m′′e = f 1
i1
h1le

′′m′′e = e1i1k
′′1
i1
m′′e = e2i2k

′′1
i1
m′′e
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if (i1, i2) ∈ X12 for some 1 ⩽ i1 ⩽ n1, from

f 2
i2
h2le

′′m′′e = f 2
i2
h′
2l

′e′′m′′e = f 3
i3
h′
3l

′e′′m′′e = e3i3k
′′3
i3
m′′e = e2i2k

′′3
i3
m′′e

if (i2, i3) ∈ X23 for some 1 ⩽ i3 ⩽ n3 and from the commutativity of (8) if ui2 = n[i2].
Hence, there exists a unique morphism v : N → P retaining commutativity of the diagram.
For each (i1, i2) ∈ X12, one has k1

i1
v = k′′1

i1
m′′e = ui2 = k2

i2
v and for each (i1, i

′
1) ∈ Y1, one

has k1
i1
v = k′′1

i1
m′′e = k′′1

i′1
m′′e = k1

i′1
v. Moreover, for each (i2, i

′
2) ∈ Y2, one has

k2
i2
v = ui2 = ui′2

= k2
i′2
v

where the second equality is proved case-by-case:

• if there exists i1 ∈ {1, . . . , n1} such that (i1, i2) ∈ X12, then (i1, i
′
2) ∈ X12 and

ui2 = k′′1
i1
m′′e = ui′2

;

• if there exists i3 ∈ {1, . . . , n3} such that (i2, i3) ∈ X23, then (i′2, i3) ∈ X23 and
ui2 = k′′3

i3
m′′e = ui′2

;

• if none of the above occurs, then ui2 = n[i2] = n[i′2]
= ui′2

.

By definition of the equalizer m, it follows from the above identities that there exists a
unique morphism w : N → M such that mw = v.

Analogously, one can show that there exists a unique morphism v′ : N → P ′ satisfying
e′v′ = l′e′′m′′e and(

(k′2
i2
)1⩽i2⩽n2 , (k

′3
i3
)1⩽i3⩽n3

)
v′ =

(
(ui2)1⩽i2⩽n2 , (k

′′3
i3
m′′e)1⩽i3⩽n3

)
and a unique morphism w′ : N → M ′ such that m′w′ = v′.

It follows immediately from the definitions of v and v′ and the commutativity of (6)
that the diagrams

N
v //

m′′e

��

P

(h1e,(k1i1
)1⩽i1⩽n1)

��

P ′′
(h1le′′,(k′′1i1

)1⩽i1⩽n1)
// P1

(9)

N v //

v′

��

P

(h2e,(k2i2
)1⩽i2⩽n2)

��

P ′
(h′

2e
′,(k′2i2

)1⩽i2⩽n2)
// P2

(10)
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and
N

v′ //

m′′e

��

P ′

(h′
3e

′,(k′3i3
)1⩽i3⩽n3)

��

P ′′
(h′

3l
′e′′,(k′′3i3

)1⩽i3⩽n3)
// P3

(11)

commute. We then have the required equality as follows:

g1
(
h1le

′′, (k′′1
i1
)1⩽i1⩽n1

)
m′′e = g1

(
h1e, (k

1
i1
)1⩽i1⩽n1

)
v by (9)

= g1
(
h1e, (k

1
i1
)1⩽i1⩽n1

)
mw

= g2
(
h2e, (k

2
i2
)1⩽i2⩽n2

)
mw by (4)

= g2
(
h2e, (k

2
i2
)1⩽i2⩽n2

)
v

= g2
(
h′
2e

′, (k′2
i2
)1⩽i2⩽n2

)
v′ by (10)

= g2
(
h′
2e

′, (k′2
i2
)1⩽i2⩽n2

)
m′w′

= g3
(
h′
3e

′, (k′3
i3
)1⩽i3⩽n3

)
m′w′ by (5)

= g3
(
h′
3e

′, (k′3
i3
)1⩽i3⩽n3

)
v′

= g3
(
h′
3l

′e′′, (k′′3
i3
)1⩽i3⩽n3

)
m′′e by (11)

proving the transitivity of ∼=F,C .

Step 15. A good representative. We will denote by [(n, (ei)i, (fi)i, f , e, g, a)] the
element of F̂ (C) represented by the 7-tuple (n, (ei)i, (fi)i, f , e, g, a). Let us show now
that each element [(n, (ei)i, (fi)i, f , e, g, a)] of F̂ (C) can be represented by a 7-tuple
(n′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′) for which the equivalence relation

Y ′ = {(i′1, i′2) ∈ N2 | 1 ⩽ i′1 ⩽ n′, 1 ⩽ i′2 ⩽ n′, e′i′1 = e′i′2 and F (f ′
i′1
)(a′) = F (f ′

i′2
)(a′)}

on {1, . . . , n′} is simply the diagonal

∆n′ = {(i′, i′) | i′ ∈ {1, . . . , n′}}.

To fix notation, we display the morphisms forming the 7-tuple (n, (ei)i, (fi)i, f , e, g, a) in
the following diagram

P
g

		

f
//

e

��

B1 × · · · ×Bn

e1×···×en
��

C A
(f1,...,fn)

// D1 × · · · ×Dn

and denote as before by Y the set

Y = {(i1, i2) ∈ N2 | 1 ⩽ i1 ⩽ n, 1 ⩽ i2 ⩽ n, ei1 = ei2 and F (fi1)(a) = F (fi2)(a)}.
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We denote by N the quotient of the set {1, . . . , n} by the equivalence relation Y and
consider a bijection σ : N → {1, . . . , n′} where n′ is the cardinality of the finite set N .
We also consider the equalizer diagram

A′ // h // A

(fi1)(i1,i2)∈Y
//

(fi2)(i1,i2)∈Y

//

∏
(i1,i2)∈Y

Di1 .

Since F preserves finite limits and by definition of Y , there exists a unique element
a′ ∈ F (A′) such that F (h)(a′) = a. For each i′ ∈ {1, . . . , n′}, we choose a representative
i ∈ {1, . . . , n} such that i′ = σ([i]) and denote by e′i′ : B

′
i′ → D′

i′ the morphism ei : Bi → Di

and by f ′
i′ : A

′ → D′
i′ the morphism fih : A

′ → Di. Note that the definitions of e′i′ and f ′
i′

are independent of the chosen i. We then form the pullback

P ′ f
′
=(f

′
1,...,f

′
n′ )

//

e′

��

B′
1 × · · · ×B′

n′

e′1×···×e′
n′

��

A′
(f ′

1,...,f
′
n′ )

// D′
1 × · · · ×D′

n′

and consider the diagram

P ′

l

��

(f ′
σ([i]))1⩽i⩽n

))

he′

��

P
f

//

e

��

B1 × · · · ×Bn

e1×···×en
��

A
(f1,...,fn)

// D1 × · · · ×Dn

whose outer part is commutative, inducing the existence of a unique morphism l making
this diagram commute. We denote by g′ : P ′ → C the morphism gl. We thus have defined
a 7-tuple (n′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′). This 7-tuple satisfies the implication(

e′i′1 = e′i′2 ∧ F (f ′
i′1
)(a′) = F (f ′

i′2
)(a′)

)
=⇒ i′1 = i′2

for each i′1, i
′
2 ∈ {1, . . . , n′}. Indeed, for i′1 and i′2 satisfying the premise in the above

implication, if i1, i2 ∈ {1, . . . , n} are such that i′1 = σ([i1]) and i′2 = σ([i2]), one has

ei1 = e′i′1 = e′i′2 = ei2

and

F (fi1)(a) = F (fi1h)(a
′) = F (f ′

i′1
)(a′) = F (f ′

i′2
)(a′) = F (fi2h)(a

′) = F (fi2)(a).



976 PIERRE-ALAIN JACQMIN

This implies that [i1] = [i2] and thus i′1 = i′2. To conclude this step, it remains to show
that the span

A′

h

~~

1A′

  

A A′

together with the element a′ ∈ F (A′) is a witness of

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′).

We already know that F (h)(a′) = a and F (1A′)(a′) = a′. The equalities

X = {(i1, i′2) ∈ N2 | 1 ⩽ i1 ⩽ n, 1 ⩽ i′2 ⩽ n′, ei1 = e′i′2 and F (fi1)(a) = F (f ′
i′2
)(a′)}

= {(i1, σ([i2])) ∈ N2 | (i1, i2) ∈ Y}

follow easily from the definitions introduced above. In order to check the last condition
of the definition of ∼=F,C , we need the pullback

P ′′ (k1,...,kn,k′1,...,k′n′)
//

e′′

��

B1 × · · · ×Bn ×B′
1 × · · · ×B′

n′

e1×···×en×e′1×···×e′
n′

��

A′
(f1h,...,fnh,f ′

1,...,f
′
n′)
// D1 × · · · ×Dn ×D′

1 × · · · ×D′
n′

and, in view of the description of X and Y ′, the equalizer

M // m // P ′′
((ki1 )(i1,i2)∈Y ,(ki1 )(i1,i2)∈Y)

//(
(k′

σ([i2])
)(i1,i2)∈Y ,(ki2 )(i1,i2)∈Y

) //

∏
(i1,i2)∈Y

Bi1 ×
∏

(i1,i2)∈Y

Bi1 .

In particular, we know that for each i ∈ {1, . . . , n}, the identity kim = k′
σ([i])m holds.

Using this and the definition of l, it is straightforward to prove that the diagram

M // m //

��

m
��

P ′′

(he′′,(ki)1⩽i⩽n)
��

P ′′
(e′′,(k′i′ )1⩽i′⩽n′)

// P ′
l

// P

commutes. Since g′ = gl, this proves that g (he′′, (ki)1⩽i⩽n)m = g′ (e′′, (k′
i′)1⩽i′⩽n′)m as

required.
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Step 16. The functor F̂ . Given a finite limit preserving functor F : C → Set, we
have constructed, for each object C ∈ C, a set F̂ (C). We now turn this construction
into a functor F̂ : C → Set. Given a morphism u : C → C ′ in C, we define the function
F̂ (u) : F̂ (C) → F̂ (C ′) as

F̂ (u)([(n, (ei)i, (fi)i, f , e, g, a)]) = [(n, (ei)i, (fi)i, f , e, ug, a)]

for each element [(n, (ei)i, (fi)i, f , e, g, a)] of F̂ (C). It is obvious that this function is
well-defined, i.e., that the implication

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′)

=⇒ (n, (ei)i, (fi)i, f , e, ug, a) ∼=F,C′ (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, ug′, a′)

holds and that this gives rise to a functor F̂ : C → Set.

Step 17. F̂ preserves the terminal object. We now want to prove that, given a
finite limit preserving functor F : C → Set, the functor F̂ : C → Set also preserves finite
limits. To do this, it is sufficient to prove that F̂ preserves the terminal object and
pullbacks. Let us start with the terminal object. So let 1 be the terminal object of C
and let us prove that F̂ (1) is a singleton set. Since F preserves finite limits, F (1) is a
singleton set, say {∗}. We can immediately notice that the 7-tuple

(0,∅,∅, 11, 11, 11, ∗),

displayed as in

1

11





11 //

11

��

1 ∼=
∏
∅

Bi

1 1
11

// 1 ∼=
∏
∅

Di

11

��

represents an element of F̂ (1). In order to prove uniqueness, let (n, (ei)i, (fi)i, f , e, g, a)

and (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′) be two 7-tuples representing elements of F̂ (1), with a ∈

F (A) and a′ ∈ F (A′), and let us prove that

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,1 (n
′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′). (12)

We consider the product diagram

A× A′

p

{{

p′

##

A A′

(13)
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and, since F preserves finite limits, the unique element a′′ ∈ F (A × A′) such that
F (p)(a′′) = a and F (p′)(a′′) = a′. The span (13) together with the element a′′ is a
witness of the relation (12). Indeed, the first two conditions hold by definition of a′′

and the last condition trivially holds since it requires that two parallel morphisms with
codomain 1 are identical.

Step 18. F̂ preserves jointly monomorphic pairs of morphisms. As a prelimi-
nary step to prove that F̂ preserves pullbacks, let us show it preserves jointly monomorphic
pairs of morphisms. This means we must show that given two morphisms

C1 C
p1
oo

p2
// C2

in C satisfying the implication

(p1u = p1v ∧ p2u = p2v) =⇒ u = v

for any pair of morphisms u, v : X ⇒ C, then the induced function

F̂ (C)
(F̂ (p1),F̂ (p2))

// F̂ (C1)× F̂ (C2)

is injective. Let [(n, (ei)i, (fi)i, f , e, g, a)] and [(n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′)] be two ele-

ments of F̂ (C) such that

(n, (ei)i, (fi)i, f , e, p1g, a) ∼=F,C1 (n
′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, p1g

′, a′) (14)

and
(n, (ei)i, (fi)i, f , e, p2g, a) ∼=F,C2 (n

′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, p2g

′, a′). (15)

Using Step 15, we can assume without loss of generality that the two implications

(ei1 = ei2 ∧ F (fi1)(a) = F (fi2)(a)) =⇒ i1 = i2

and (
e′i′1 = e′i′2 ∧ F (f ′

i′1
)(a′) = F (f ′

i′2
)(a′)

)
=⇒ i′1 = i′2

hold for indices i1, i2 ∈ {1, . . . , n} and i′1, i
′
2 ∈ {1, . . . , n′}. To fix notation, we say that

the morphisms involved in those elements of F̂ (C) can be displayed as in

P
g

		

f
//

e

��

B1 × · · · ×Bn

e1×···×en
��

C A
(f1,...,fn)

// D1 × · · · ×Dn

and

P ′

g′

��

f
′

//

e′

��

B′
1 × · · · ×B′

n′

e′1×···×e′
n′

��

C A′
(f ′

1,...,f
′
n′ )
// D′

1 × · · · ×D′
n′
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and, for j ∈ {1, 2}, the relation mentioned in (14) if j = 1, respectively in (15) if j = 2,
is witnessed by the span

A′′
j

hj

��

h′
j

  

A A′

together with the element a′′j ∈ F (A′′
j ). Therefore, for each j ∈ {1, 2}, we have F (hj)(a

′′
j ) =

a, F (h′
j)(a

′′
j ) = a′ and, considering the pullback diagram

P ′′
j

(
kj1,...,kjn,k

′
j1,...,k

′
jn′

)
//

e′′j
��

B1 × · · · ×Bn ×B′
1 × · · · ×B′

n′

e1×···×en×e′1×···×e′
n′

��

A′′
j

(f1hj ,...,fnhj ,f
′
1h

′
j ,...,f

′
n′h

′
j)

// D1 × · · · ×Dn ×D′
1 × · · · ×D′

n′

, (16)

the set

X = {(i, i′) ∈ N2 | 1 ⩽ i ⩽ n, 1 ⩽ i′ ⩽ n′, ei = e′i′ and F (fi)(a) = F (f ′
i′)(a

′)}

and the equalizer

Mj
//
mj
// P ′′

j

(kji)(i,i′)∈X
//

(k′
ji′ )(i,i′)∈X

//

∏
(i,i′)∈X

Bi , (17)

the diagram

Mj
//

mj
//

��

mj
��

P ′′
j

(hje
′′
j ,(kji)1⩽i⩽n)

// P

pjg

��

P ′′
j (

h′
je

′′
j ,(k

′
ji′ )1⩽i′⩽n′

) // P ′
pjg

′
// Cj

(18)

commutes. We consider the pullback

A′′

l1

��

l2 // A′′
2

(h2,h′
2)

��

A′′
1 (h1,h′

1)
// A× A′

(19)

and, since F preserves finite limits, we know there exists a unique element a′′ ∈ F (A′′)
such that F (l1)(a

′′) = a′′1 and F (l2)(a
′′) = a′′2. Let us show that the span

A′′

h1l1

~~

h′
1l1

  

A A′
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together with the element a′′ ∈ F (A′′) is a witness of the relation

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′).

We already know that F (h1l1)(a
′′) = F (h1)(a

′′
1) = a and F (h′

1l1)(a
′′) = F (h′

1)(a
′′
1) = a′.

In order to check the last condition, we need to consider the diagram

M
r′1 //

��

m
��

M1
��

m1
��

P ′′ r1 //

e′′

��

P ′′
1

(k11,...,k1n,k′11,...,k′1n′)
//

e′′1
��

B1 × · · · ×Bn ×B′
1 × · · · ×B′

n′

e1×···×en×e′1×···×e′
n′

��

A′′
l1

// A′′
1

(f1h1,...,fnh1,f ′
1h

′
1,...,f

′
n′h

′
1)

// D1 × · · · ×Dn ×D′
1 × · · · ×D′

n′

(20)

where all rectangles are pullbacks. Using the equalizer (17) for j = 1, it is routine to show
that the diagram

M // m // P ′′
(k1ir1)(i,i′)∈X

//

(k′
1i′r1)(i,i′)∈X

//

∏
(i,i′)∈X

Bi

is also an equalizer diagram. We must therefore prove that the diagram

M // m //

��

m
��

P ′′ (h1l1e′′,(k1ir1)1⩽i⩽n)
// P

g

��

P ′′
(h′

1l1e
′′,(k′

1i′r1)1⩽i′⩽n′)
// P ′

g′
// C

commutes. Using the commutativity of (20), this means we must show that the identity

g (h1e
′′
1, (k1i)1⩽i⩽n)m1r

′
1 = g′ (h′

1e
′′
1, (k

′
1i′)1⩽i′⩽n′)m1r

′
1

holds. Since p1 and p2 are jointly monomorphic, and since this identity composed with p1
holds by commutativity of (18) for j = 1, it remains to show that the identity

p2g (h1e
′′
1, (k1i)1⩽i⩽n)m1r

′
1 = p2g

′ (h′
1e

′′
1, (k

′
1i′)1⩽i′⩽n′)m1r

′
1

holds. In view of the pullback (16) for j = 2, and since

(f1h2, . . . , fnh2, f
′
1h

′
2, . . . , f

′
n′h′

2) l2e
′′

= (f1h1, . . . , fnh1, f
′
1h

′
1, . . . , f

′
n′h′

1) l1e
′′

= (e1 × · · · × en × e′1 × · · · × e′n′) (k11, . . . , k1n, k
′
11, . . . , k

′
1n′) r1,
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there exists a unique morphism r2 : P
′′ → P ′′

2 such that

e′′2r2 = l2e
′′ (21)

and
(k21, . . . , k2n, k

′
21, . . . , k

′
2n′) r2 = (k11, . . . , k1n, k

′
11, . . . , k

′
1n′) r1. (22)

For each (i, i′) ∈ X , we know that

k2ir2m = k1ir1m = k′
1i′r1m = k′

2i′r2m.

Hence, using the equalizer (17) for j = 2, we know that there exists a unique morphism
r′2 : M → M2 such that m2r

′
2 = r2m. To conclude this step, it remains to compute

p2g (h1e
′′
1, (k1i)1⩽i⩽n)m1r

′
1 = p2g (h1e

′′
1r1, (k1ir1)1⩽i⩽n)m by (20)

= p2g (h1l1e
′′, (k2ir2)1⩽i⩽n)m by (20) and (22)

= p2g (h2l2e
′′, (k2ir2)1⩽i⩽n)m by (19)

= p2g (h2e
′′
2, (k2i)1⩽i⩽n) r2m by (21)

= p2g (h2e
′′
2, (k2i)1⩽i⩽n)m2r

′
2

= p2g
′ (h′

2e
′′
2, (k

′
2i′)1⩽i′⩽n′)m2r

′
2 by (18) for j = 2

= p2g
′ (h′

2e
′′
2r2, (k

′
2i′r2)1⩽i′⩽n′)m

= p2g
′ (h′

2l2e
′′, (k′

1i′r1)1⩽i′⩽n′)m by (21) and (22)
= p2g

′ (h′
1l1e

′′, (k′
1i′r1)1⩽i′⩽n′)m by (19)

= p2g
′ (h′

1e
′′
1, (k

′
1i′)1⩽i′⩽n′) r1m by (20)

= p2g
′ (h′

1e
′′
1, (k

′
1i′)1⩽i′⩽n′)m1r

′
1 by (20).

Step 19. F̂ preserves pullbacks. Let us now show that F̂ preserves pullbacks. Let

C
p2
//

p1

��

C2

u2

��

C1 u1

// C3

(23)

be a pullback diagram in C. Let [(n1, (e
1
i1
)i1 , (f

1
i1
)i1 , f 1, e1, g1, a1)] be an element of F̂ (C1)

and [(n2, (e
2
i2
)i2 , (f

2
i2
)i2 , f 2, e2, g2, a2)] be an element of F̂ (C2) such that

(n1, (e
1
i1
)i1 , (f

1
i1
)i1 , f 1, e1, u1g1, a1) ∼=F,C3 (n2, (e

2
i2
)i2 , (f

2
i2
)i2 , f 2, e2, u2g2, a2). (24)

Using Step 15, we can assume without loss of generality that the two implications(
e1i1 = e1i′1 ∧ F (f 1

i1
)(a1) = F (f 1

i′1
)(a1)

)
=⇒ i1 = i′1 (25)

and (
e2i2 = e2i′2 ∧ F (f 2

i2
)(a2) = F (f 2

i′2
)(a2)

)
=⇒ i2 = i′2 (26)
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hold for indices i1, i
′
1 ∈ {1, . . . , n1} and i2, i

′
2 ∈ {1, . . . , n2}. To fix notation, we say that

the morphisms involved in the chosen elements of F̂ (C1) and of F̂ (C2) can be displayed
as in

P1

g1

��

f1 //

e1

��

B1
1 × · · · ×B1

n1

e11×···×e1n1
��

C1 A1
(f1

1 ,...,f
1
n1

)
// D1

1 × · · · ×D1
n1

and

P2

g2

��

f2 //

e2

��

B2
1 × · · · ×B2

n2

e21×···×e2n2
��

C2 A2
(f2

1 ,...,f
2
n2

)
// D2

1 × · · · ×D2
n2

and the relation mentioned in (24) is witnessed by the span

A
h1

~~

h2

  

A1 A2

together with the element a ∈ F (A). We thus know that F (h1)(a) = a1, F (h2)(a) = a2
and, considering the pullback

P
(k11 ,...,k1n1

,k21 ,...,k
2
n2) //

e

��

B1
1 × · · · ×B1

n1
×B2

1 × · · · ×B2
n2

e11×···×e1n1
×e21×···×e2n2

��

A
(f1

1h1,...,f1
n1

h1,f2
1h2,...,f2

n2
h2)
// D1

1 × · · · ×D1
n1

×D2
1 × · · · ×D2

n2

, (27)

the set

X = {(i1, i2) ∈ N2 | 1 ⩽ i1 ⩽ n1, 1 ⩽ i2 ⩽ n2, e
1
i1
= e2i2 and F (f 1

i1
)(a1) = F (f 2

i2
)(a2)}

and the equalizer

M // m // P
(k1i1

)(i1,i2)∈X
//

(k2i2
)(i1,i2)∈X

//

∏
(i1,i2)∈X

B1
i1
, (28)

the diagram

M // m //

��

m
��

P
(h1e,(k1i1

)1⩽i1⩽n1)
// P1

u1g1
��

P
(h2e,(k2i2

)1⩽i2⩽n2)
// P2 u2g2

// C3

(29)

commutes. Moreover, using Step 11, we can suppose without loss of generality that
f 1
i1
h1 = f 2

i2
h2 for all (i1, i2) ∈ X . Using the commutativity of (29) and the pullback (23),

we know that there is a unique morphism g : M → C such that

p1g = g1
(
h1e, (k

1
i1
)1⩽i1⩽n1

)
m (30)
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and
p2g = g2

(
h2e, (k

2
i2
)1⩽i2⩽n2

)
m. (31)

We consider the set

{1, . . . , n1} ⨿ {1, . . . , n2} = {(i1, 1) | 1 ⩽ i1 ⩽ n1} ∪ {(i2, 2) | 1 ⩽ i2 ⩽ n2}

and its quotient N by the equivalence relation RX on it generated by the relations

(i1, 1)RX (i2, 2)

for all (i1, i2) ∈ X . We consider a bijection σ : N → {1, . . . , n} where n is the cardinality of
the finite set N . For each i ∈ {1, . . . , n}, we choose a representative (ij, j) ∈ {1, . . . , n1}⨿
{1, . . . , n2} such that σ([(ij, j)]) = i and denote by ei : Bi → Di the morphism ejij : B

j
ij
→

Dj
ij
, by fi : A → Di the morphism f j

ij
hj : A → Dj

ij
and by f

′
i : M → Bi the morphism

kj
ij
m : M → Bj

ij
. Note that the morphisms ei, fi and f

′
i are independent of the chosen

representative (ij, j). Let us show that the diagram

M
f
′
=(f ′

1,...,f
′
n)

//

em

��

B1 × · · · ×Bn

e1×···×en

��

A
(f1,...,fn)

// D1 × · · · ×Dn

(32)

is a pullback. The diagram commutes since, for each i ∈ {1, . . . , n}, fiem = f j
ij
hjem =

ejijk
j
ij
m = eif

′
i where (ij, j) is the representative of i. Moreover, given morphisms x : X →

A and (y1, . . . , yn) : X → B1 × · · · × Bn such that fix = eiyi for all i ∈ {1, . . . , n}, the
outer part of the diagram

X

x′

$$

x

%%

(yσ([(1,1)]),...,yσ([(n1,1)])
,yσ([(1,2)]),...,yσ([(n2,2)]))

))

P
(k11 ,...,k1n1

,k21 ,...,k
2
n2) //

e

��

B1
1 × · · · ×B1

n1
×B2

1 × · · · ×B2
n2

e11×···×e1n1
×e21×···×e2n2

��

A
(f1

1h1,...,f1
n1

h1,f2
1h2,...,f2

n2
h2)
// D1

1 × · · · ×D1
n1

×D2
1 × · · · ×D2

n2

commutes. Therefore, using the pullback (27), there exists a unique dotted morphism
x′ : X → P making the diagram commutative. In addition, given (i1, i2) ∈ X , k1

i1
x′ =

yσ([(i1,1)]) = yσ([(i2,2)]) = k2
i2
x′. Using the equalizer (28), this means that there exists a

unique x′′ : X → M such that mx′′ = x′. In particular, emx′′ = ex′ = x and, for each
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i ∈ {1, . . . , n}, f
′
ix

′′ = kj
ij
mx′′ = kj

ij
x′ = yi where (ij, j) is the representative of i. A

morphism satisfying these properties is unique. Indeed, if x′′′ : X → M is such that
emx′′′ = x and, for each i ∈ {1, . . . , n}, f ′

ix
′′′ = yi, then kj

ij
mx′′′ = f

′
σ([(ij ,j)])

x′′′ = yσ([(ij ,j)])
for all (ij, j) ∈ {1, . . . , n1} ⨿ {1, . . . , n2}. Since (27) is a pullback, this implies that
mx′′′ = x′ and so x′′′ = x′′. This proves that the diagram (32) is indeed a pullback. We
thus have an element [(n, (ei)i, (fi)i, f

′
, em, g, a)] in F̂ (C) which can be displayed as in

M
g

��

f
′
=(f ′

1,...,f
′
n)

//

em

��

B1 × · · · ×Bn

e1×···×en

��

C A
(f1,...,fn)

// D1 × · · · ×Dn

.

We can notice that the implication

(ei = ei′ ∧ F (fi)(a) = F (fi′)(a)) =⇒ i = i′

holds for indices i, i′ ∈ {1, . . . , n}. Indeed, if (ij, j), (i′j′ , j′) ∈ {1, . . . , n1}⨿ {1, . . . , n2} are
such that i = σ([(ij, j)]) and i′ = σ([(i′j′ , j

′)]), then

(ei = ei′ ∧ F (fi)(a) = F (fi′)(a)) ⇐⇒
(
ejij = ej

′

i′
j′
∧ F (f j

ij
)(aj) = F (f j′

i′
j′
)(aj′)

)
=⇒ [(ij, j)] = [(i′j′ , j

′)]

where the last implication holds by definition of RX if j ̸= j′ and by our assumptions (25)
and (26) if j = j′.

For each j ∈ {1, 2}, we shall prove that the span

A
1A

��

hj

��

A Aj

together with the element a ∈ F (A) is a witness of the relation

(n, (ei)i, (fi)i, f
′
, em, pjg, a) ∼=F,Cj

(nj, (e
j
ij
)ij , (f

j
ij
)ij , f j, ej, gj, aj).

We already know that F (1A)(a) = a, F (hj)(a) = aj. We then consider the pullback
diagram

P ′
j

(
kj1,...,kjn,k

′
j1,...,k

′
jnj

)
//

e′j

��

B1 × · · · ×Bn ×Bj
1 × · · · ×Bj

nj

e1×···×en×ej1×···×ejnj

��

A
(f1,...,fn,fj

1hj ,...,f
j
nj

hj)
// D1 × · · · ×Dn ×Dj

1 × · · · ×Dj
nj
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and the equalizer diagram

M ′
j
//
m′

j
// P ′

j

(
(kji)(i,ij)∈X′

j

)
//(

(k′jij
)(i,ij)∈X′

j

) //

∏
(i,ij)∈X ′

j

Bi

where the set X ′
j is defined by

X ′
j = {(i, ij) ∈ N2 | 1 ⩽ i ⩽ n, 1 ⩽ ij ⩽ nj, ei = ejij and F (fi)(a) = F (f j

ij
)(aj)}

= {(σ([(ij, j)]), ij) | 1 ⩽ ij ⩽ nj}.

We need to prove that the diagram

M ′
j
//

m′
j

//

��
m′

j

��

P ′
j

(e′j ,(kji)1⩽i⩽n)
//M

pjg

��

P ′
j (

hje
′
j ,(k

′
jij

)1⩽ij⩽nj

) // Pj gj
// Cj

commutes where
(
e′j, (kji)1⩽i⩽n

)
is the unique morphism P ′

j → M such that

em
(
e′j, (kji)1⩽i⩽n

)
= e′j (33)

and
f
′
i

(
e′j, (kji)1⩽i⩽n

)
= kji

for each i ∈ {1, . . . , n}. In view of (30) and (31), it is sufficient to prove(
hje, (k

j
ij
)1⩽ij⩽nj

)
m
(
e′j, (kji)1⩽i⩽n

)
m′

j =
(
hje

′
j, (k

′
jij
)1⩽ij⩽nj

)
m′

j.

Composing with the pullback projection ej, this amounts to

hjem
(
e′j, (kji)1⩽i⩽n

)
m′

j = hje
′
jm

′
j

which follows from (33); and composing with the other pullback projection f j, this
amounts to

kj
ij
m
(
e′j, (kji)1⩽i⩽n

)
m′

j = f
′
σ([(ij ,j)])

(
e′j, (kji)1⩽i⩽n

)
m′

j = kjσ([(ij ,j)])m
′
j = k′

jij
m′

j

for each ij ∈ {1, . . . , nj}, where the last identity holds in view of the definition of m′
j

since (σ([(ij, j)]), ij) ∈ X ′
j . We have therefore proved the existence of an element in F̂ (C)

whose image under F̂ (p1) is [(n1, (e
1
i1
)i1 , (f

1
i1
)i1 , f 1, e1, g1, a1)] and whose image under F̂ (p2)

is [(n2, (e
2
i2
)i2 , (f

2
i2
)i2 , f 2, e2, g2, a2)]. In view of Step 18, it is the unique such, proving that

F̂ preserves pullbacks. In view of Step 17, this means that F̂ preserves finite limits.
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Step 20. The natural transformation λF : F → F̂ . Given a finite limit preserving
functor F : C → Set, we have so far constructed a finite limit preserving functor F̂ : C →
Set. Let us now construct a natural transformation λF : F → F̂ . As before, we denote by
1 the terminal object of C. For an object C ∈ C, we define the function λF,C : F (C) −→
F̂ (C) by

λF,C(c) = [(0,∅,∅, !C , 1C , 1C , c)]

for each element c ∈ F (C), where !C is the unique morphism C → 1. The morphisms
involved here can be displayed as in

C

1C

		

!C //

1C

��

1 ∼=
∏
∅

Bi

C C
!C

// 1 ∼=
∏
∅

Di

11

��

and we define the C-component of λF to be λF,C . As far as the naturality of λF is
concerned, one is required to show that for a morphism u : C → C ′ in C and an element
c ∈ F (C), the relation

(0,∅,∅, !C , 1C , u, c) ∼=F,C′ (0,∅,∅, !C′ , 1C′ , 1C′ , F (u)(c))

holds, which is easily seen to be attested by the span

C
1C

��

u

  

C C ′

together with the element c ∈ F (C).

Step 21. The relation ∼=F,C in a particular case. We now give an easier descrip-
tion of when, given an object C ∈ C, an element of F̂ (C) (represented by a 7-tuple in the
form as in Step 15) is equal to λF,C(c) for an element c of F (C). More precisely, given a
finite limit preserving functor F : C → Set, an object C ∈ C, an element c ∈ F (C) and an
element [(n, (ei)i, (fi)i, f , e, g, a)] ∈ F̂ (C) satisfying the implication

(ei = ei′ ∧ F (fi)(a) = F (fi′)(a)) =⇒ i = i′

for indices i, i′ ∈ {1, . . . , n} and whose morphisms can be displayed as in

P
g

		

f
//

e

��

B1 × · · · ×Bn

e1×···×en
��

C A
(f1,...,fn)

// D1 × · · · ×Dn

,
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the equality
[(n, (ei)i, (fi)i, f , e, g, a)] = λF,C(c) (34)

holds if and only if there exists a span

A′

h

~~

h′

  

A C

(35)

together with an element a′ ∈ F (A′) such that F (h)(a′) = a, F (h′)(a′) = c and, consider-
ing the pullback

P ′ h′′
//

e′

��

P

e
��

A′
h
// A

,

the identity h′e′ = gh′′ holds. Indeed, the identity (34) holds if and only if the relation

(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (0,∅,∅, !C , 1C , 1C , c)

holds, i.e., if and only if there exists a span as in (35) and an element a′ ∈ F (A′) satisfying
F (h)(a′) = a, F (h′)(a′) = c and a third condition. For this last condition, we need to
consider the pullback made of the composite of the two pullback rectangles in the diagram
below.

P ′ h′′
//

e′

��

P
f

//

e

��

B1 × · · · ×Bn

e1×···×en
��

A′
h
// A

(f1,...,fn)
// D1 × · · · ×Dn

In addition, using the notation of Step 10, the sets X and Y ′ are empty and the set Y is
just Y = {(i, i)} | i ∈ {1, . . . , n}} which shows that the equalizer m is the identity 1P ′ . In
view of this, the last condition turns out to be h′e′ = gh′′ as required.

Step 22. λF : F ↣ F̂ is a monomorphism. Let us now show that the natural transfor-
mation λF : F → F̂ is a monomorphism in SetC, i.e., for each object C ∈ C, the function
λF,C is injective. Let c, c′ be two elements of F (C) such that λF,C(c) = λF,C(c

′). In view
of Step 21, there exists a span

A
h

��

h′

��

C C

together with an element a ∈ F (A) such that F (h)(a) = c, F (h′)(a) = c′ and, considering
the pullback

A
h //

1A
��

C

1C
��

A
h
// C

,
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the identity h′ = h holds. Therefore, c = F (h)(a) = F (h′)(a) = c′ and λF,C is injective.

Step 23. If e : C → C ′ is in E, the image of F̂ (e) contains the image of λF,C′.
Given a morphism e : C → C ′ in E and an element c′ ∈ F (C ′), we shall show that there
exists an element x ∈ F̂ (C) such that F̂ (e)(x) = λF,C′(c′). This element x may be given by
[(1, (e), (1C′), 1C , e, 1C , c

′)] whose morphisms can be displayed as in the following diagram.

C
1C

��

1C //

e

��

C

e

��

C C ′
1C′

// C ′

We thus need to show that the identity [(1, (e), (1C′), 1C , e, e, c
′)] = λF,C′(c′) holds. Using

Step 21, we can immediately see that this is the case as attested by the span

C ′

1C′

~~

1C′

  

C ′ C ′

together with the element c′ ∈ F (C ′).

Step 24. Extension property along λF : F ↣ F̂ . This step is a preparation step
for the regular case (i.e., for the proof of Theorem 2.2), but holds in the general case.
Let F,G : C ⇒ Set be two finite limit preserving functors such that, for each e ∈ E, G(e)
is a surjective function. Then, for any natural transformation α : F → G, there exists a
natural transformation β : F̂ → G such that the triangle

F //
λF //

α

��

F̂

β
��

G

commutes. For each morphism e : C → C ′ in E, using the axiom of choice, we choose
a section for G(e), i.e., a function se : G(C ′) → G(C) such that G(e)se = 1G(C′). Given
an object C ∈ C, we define the function βC : F̂ (C) → G(C) as follows. Given a 7-
tuple (n, (ei)i, (fi)i, f , e, g, a) representing an element of F̂ (C), whose morphisms can be
displayed as in the diagram

P
g

		

f
//

e

��

B1 × · · · ×Bn

e1×···×en
��

C A
(f1,...,fn)

// D1 × · · · ×Dn

,
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we know that, since G preserves finite limits, the n-tuple

(sei(G(fi)(αA(a))))1⩽i⩽n

represents an element of G(B1 × · · · × Bn). This element is sent by G(e1 × · · · × en)
to the n-tuple (G(fi)(αA(a)))1⩽i⩽n in G(D1 × · · · × Dn). Therefore, since G preserves
finite limits, there exists a unique element p ∈ G(P ) such that G(e)(p) = αA(a) and
G(f)(p) = (sei(G(fi)(αA(a))))1⩽i⩽n. We define

βC([(n, (ei)i, (fi)i, f , e, g, a)]) = G(g)(p).

Let us show that this function is well-defined. If (n′, (e′i′)i′ , (f
′
i′)i′ , f

′
, e′, g′, a′) is another

7-tuple, whose morphisms can be displayed as in the diagram

P ′

g′

��

f
′

//

e′

��

B′
1 × · · · ×B′

n′

e′1×···×e′
n′

��

C A′
(f ′

1,...,f
′
n′ )
// D′

1 × · · · ×D′
n′

,

such that
(n, (ei)i, (fi)i, f , e, g, a) ∼=F,C (n′, (e′i′)i′ , (f

′
i′)i′ , f

′
, e′, g′, a′),

let us prove that G(g)(p) = G(g′)(p′) where p′ ∈ G(P ′) is defined analogously to p. There
exists a span

A′′

h

~~

h′

  

A A′

together with an element a′′ ∈ F (A′′) such that F (h)(a′′) = a, F (h′)(a′′) = a′ and,
using the notation of Step 10, g (he′′, (ki)1⩽i⩽n)m = g′ (h′e′′, (k′

i′)1⩽i′⩽n′)m. For each
i ∈ {1, . . . , n}, we have

G(fih)(αA′′(a′′)) = G(fi)(αA(F (h)(a′′)) = G(fi)(αA(a)) = G(ei)(sei(G(fi)(αA(a))))

and similarly, for each i′ ∈ {1, . . . , n′}, we have

G(f ′
i′h

′)(αA′′(a′′)) = G(e′i′)(se′i′ (G(f ′
i′)(αA′(a′)))).

Again since G preserves finite limits, this implies that there exists a unique element
p′′ ∈ G(P ′′) such that

• G(e′′)(p′′) = αA′′(a′′);

• G(ki)(p
′′) = sei(G(fi)(αA(a))) for each i ∈ {1, . . . , n};
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• G(k′
i′)(p

′′) = se′
i′
(G(f ′

i′)(αA′(a′))) for each i′ ∈ {1, . . . , n′}.

For each (i, i′) ∈ X , we know that

G(ki)(p
′′) = sei(G(fi)(αA(a)))

= sei(αDi
(F (fi)(a)))

= se′
i′
(αD′

i′
(F (f ′

i′)(a
′)))

= se′
i′
(G(f ′

i′)(αA′(a′)))

= G(k′
i′)(p

′′).

Similarly, G(ki1)(p
′′) = G(ki2)(p

′′) holds for each (i1, i2) ∈ Y and G(k′
i′1
)(p′′) = G(k′

i′2
)(p′′)

holds for each (i′1, i
′
2) ∈ Y ′. Therefore, since G preserves finite limits, there exists a unique

element p′′′ ∈ G(M) such that G(m)(p′′′) = p′′. We can now compute

G(g)(p) = G (g (he′′, (ki)1⩽i⩽n)) (p
′′)

= G (g (he′′, (ki)1⩽i⩽n)m) (p′′′)

= G (g′ (h′e′′, (k′
i′)1⩽i′⩽n′)m) (p′′′)

= G (g′ (h′e′′, (k′
i′)1⩽i′⩽n′)) (p′′)

= G(g′)(p′)

proving that the function βC is well-defined.
Given a morphism u : C → C ′ and using the above notation, we have, for each element

[(n, (ei)i, (fi)i, f , e, g, a)] of F̂ (C),

βC′(F̂ (u)([(n, (ei)i, (fi)i, f , e, g, a)])) = βC′([(n, (ei)i, (fi)i, f , e, ug, a)])

= G(ug)(p)

= G(u)(βC([(n, (ei)i, (fi)i, f , e, g, a)])).

This shows that the functions βC ’s form a natural transformation β : F̂ → G. We conclude
this step by remarking that, for each object C ∈ C and each element c ∈ F (C), the
identities

βC(λF,C(c)) = βC([(0,∅,∅, !C , 1C , 1C , c)]) = G(1C)(αC(c)) = αC(c)

hold.

Step 25. The monomorphism ιF : F ↣ F . Since Step 23 does not give surjectivity
of F̂ (e) for e ∈ E, but only surjectivity ‘relative to the elements in the image of λF,C′ ’,
we need to use this construction λF : F ↣ F̂ infinitely many times. Given a finite limit
preserving functor F : C → Set, we thus construct by (ordinary) induction a sequence

F (0) //
λ0
F // F (1) //

λ1
F // F (2) //

λ2
F // F (3) //

λ3
F // · · ·

of finite limit preserving functors F (n) : C → Set and monomorphisms λn
F : F

(n) ↣ F (n+1)

in SetC as follows:
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• F (0) = F ;

• if F (n) is constructed, λn
F : F

(n) ↣ F (n+1) is defined as λF (n) : F (n) ↣ F̂ (n).

We now consider the colimit F in SetC of this filtered diagram. Since filtered colimits
commute with finite limits in Set, and since the colimit F is constructed componentwise,
the functor F : C → Set also preserves finite limits. Moreover, the canonical natural
transformation F (0) → F , denoted by ιF : F ↣ F , is also a monomorphism in SetC since
the filtered colimit of the pullbacks in the left part of the diagram

F
1F //

��

1F
��

F
1F //

��

λ0
F

��

F
1F //

��

λ1
Fλ0

F

��

F //

��

λ2
Fλ1

Fλ0
F

��

F
��

ιF

��

F
1F //

1F

��

1F

==

F
1F //

1F

��

1F

==

F
1F //

1F

��

1F

==

F //

1F

��

1F

==

F

1F

??

1F

��

F (0)
λ0
F // F (1)

λ1
F // F (2)

λ2
F // F (3) // F

F
1F

//
==

1F

==

F
1F

//
==

λ0
F

==

F
1F

//
==

λ1
Fλ0

F

==

F //
==

λ2
Fλ1

Fλ0
F

==

F
?? ιF

??

is the pullback of the respective filtered colimits, represented in the right part of the
diagram.

To fix notation, let us recall that, given an object C ∈ C, the set F (C) is constructed
as the quotient

F (C) =

(∐
n∈N

F (n)(C)

)
/ ∼=∞

F,C

of the disjoint union of the sets F (n)(C) by the equivalence relation ∼=∞
F,C defined as follows.

We denote an element in this disjoint union by (n, c) where n ∈ N and c ∈ F (n)(C). Two
such elements (n, c) and (n′, c′) satisfy the relation (n, c) ∼=∞

F,C (n′, c′) if and only if
λn′−1
F,C (· · · (λn

F,C(c)) · · · ) = c′ if n < n′

c = c′ if n = n′

λn−1
F,C (· · · (λn′

F,C(c
′)) · · · ) = c if n > n′.

An element (n, c) in the above disjoint union represents the element denoted by [(n, c)]
in F (C). For a morphism u : C → C ′ in C, this element is mapped by F (u) to

F (u)([(n, c)]) = [(n, F (n)(u)(c))].

The C-component of the monomorphism ιF is simply the injection ιF,C : F (C) ↣ F (C)
defined by ιF,C(c) = [(0, c)] for each c ∈ F (C).
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Step 26. F (e) is surjective for all e ∈ E. We shall now prove that, given a finite
limit preserving functor F : C → Set and a morphism e : C → C ′ in E, the function
F (e) : F (C) → F (C ′) is surjective. Let [(n, c′)] be an element of F (C ′) with n ∈ N
and c′ ∈ F (n)(C ′). Using Step 23, there exists an element x ∈ F (n+1)(C) such that
F (n+1)(e)(x) = λn

F,C′(c′). We therefore have

F (e)([(n+ 1, x)]) = [(n+ 1, F (n+1)(e)(x))] = [(n+ 1, λn
F,C′(c′))] = [(n, c′)],

proving the surjectivity of F (e).

Step 27. Extension property along ιF : F ↣ F . This step is a preparation step
for the regular case (i.e., for the proof of Theorem 2.2), but holds in the general case.
Let F,G : C ⇒ Set be two finite limit preserving functors such that, for each e ∈ E, G(e)
is a surjective function. Then, for any natural transformation α : F → G, there exists a
natural transformation β : F → G such that the triangle

F //
ιF //

α

��

F

β
��

G

commutes. This fact is an immediate consequence of Step 24 and the colimit definition
of F in Step 25.

Step 28. The natural transformation ιC(C,−) : C(C,−) ↣ C(C,−). Given an
object C ∈ C, it is well-known and routine to prove that the representable functor
C(C,−) : C → Set preserves finite limits. We can thus apply the previous construc-
tions and results to the case F = C(C,−). In particular, we get a monomorphism
ιC(C,−) : C(C,−) ↣ C(C,−) in SetC.

Step 29. For e : C ′ → C, if C(C,−)(e)(x) = ιC(C,−),C(1C), then e ∈ E. Given a
morphism e : C ′ → C in C, ιC(C,−),C(1C) is an element of C(C,−)(C). If this element is in
the image of C(C,−)(e), i.e., if C(C,−)(e)(x) = ιC(C,−),C(1C) for some x ∈ C(C,−)(C ′),
we now show that e ∈ E. We know that x is written in the form x = [(n, c′)] for some
n ∈ N and some c′ ∈ C(C,−)(n)(C ′), hence

ιC(C,−),C(1C) = C(C,−)(e)(x) = C(C,−)(e)([(n, c′)]) = [(n, C(C,−)(n)(e)(c′))].

We thus need to prove by induction on n that

ιC(C,−),C(1C) = [(n, C(C,−)(n)(e)(c′))] (36)

implies that e ∈ E, for any n ∈ N, any morphism e : C ′ → C and any element c′ ∈
C(C,−)(n)(C ′).

If n = 0, we have C(C,−)(0) = C(C,−) and thus c′ is a morphism C → C ′. The
identity (36) becomes [(0, 1C)] = [(0, ec′)], which means 1C = ec′ and therefore e is a
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split epimorphism. Since E contains split epimorphisms (by (Id) and (SRightCancP)),
we know that e ∈ E.

Let us suppose now that our thesis holds for n ⩾ 0 and let us prove it also holds
for n+1. Our hypothesis (36) becomes in this case [(0, 1C)] = [(n+1, C(C,−)(n+1)(e)(c′))].
The element c′ ∈ C(C,−)(n+1)(C ′) = ̂C(C,−)(n)(C ′) can be represented by a 7-tuple as

c′ = [(n′, (ei)i, (fi)i, f , e, g, a)]

where the morphisms involved can be displayed as in the diagram

P
g

��

f
//

e

��

B1 × · · · ×Bn′

e1×···×en′

��

C ′ A
(f1,...,fn′ )

// D1 × · · · ×Dn′

and where a is an element of C(C,−)(n)(A). Using Step 15, we can suppose without loss
of generality that the implication

(ei = ei′ ∧ F (fi)(a) = F (fi′)(a)) =⇒ i = i′

holds for indices i, i′ ∈ {1, . . . , n′}. Our hypothesis can now be rewritten as

[(0, 1C)] = [(n+ 1, C(C,−)(n+1)(e)(c′))]

= [(n+ 1, ̂C(C,−)(n)(e)([(n′, (ei)i, (fi)i, f , e, g, a)]))]

= [(n+ 1, [(n′, (ei)i, (fi)i, f , e, eg, a)])]

which means

λn
C(C,−),C(· · · (λ0

C(C,−),C(1C)) · · · ) = [(n′, (ei)i, (fi)i, f , e, eg, a)].

Since λn
C(C,−),C = λC(C,−)(n),C holds by definition, we know from Step 21 that there exists

a span
A′

h

~~

h′

  

A C

together with an element a′ ∈ C(C,−)(n)(A′) such that C(C,−)(n)(h)(a′) = a,

C(C,−)(n)(h′)(a′) = λn−1
C(C,−),C(· · · (λ

0
C(C,−),C(1C)) · · · ) (37)

and, considering the pullback
P ′ h′′

//

e′

��

P

e
��

A′
h
// A

,



994 PIERRE-ALAIN JACQMIN

the identity h′e′ = egh′′ holds. Since E is closed under finite products (by (Id), (ClComp)
and (StPb)), we know that e1 × · · · × en′ ∈ E. Since E is stable under pullbacks (StPb),
this implies that e ∈ E and so e′ ∈ E. Moreover, [(n, a′)] is an element of C(C,−)(A′)
and we know, by (37), that

ιC(C,−),C(1C) = [(0, 1C)] = [(n, C(C,−)(n)(h′)(a′))].

Using our induction hypothesis, this implies that h′ ∈ E. Since h′, e′ ∈ E and E is closed
under composition (ClComp), we deduce from this that h′e′ = egh′′ ∈ E. Since E has the
strong right cancellation property (SRightCancP), this implies that e ∈ E, concluding
this step.

Step 30. Conclusion of the proof of Theorem 2.1. We are now able to construct
a small full subcategory D of SetC satisfying properties (i), (ii) and (iii) described in Step 2
in the case the proof of Theorem 2.1 is concerned. We define in this case D to be the
full subcategory of SetC made of the functors C(C,−) for each object C ∈ C. Since
C is small, so is D. Property (i), requiring that each functor F ∈ D preserves finite
limits, has been proved in Step 25. Property (ii), requiring that for each e ∈ E and each
F ∈ D the function F (e) is surjective, is the content of Step 26. For each object C ∈ C,
the natural transformation ιC : C(C,−) → FC mentioned in property (iii) is given by
ιC(C,−) : C(C,−) ↣ C(C,−). Step 28 shows that property (iii)(a) holds, i.e., that ιC(C,−) is
a monomorphism in SetC. By the Yoneda Lemma, property (iii)(b) can be reformulated
exactly as Step 29. Notice that, in view of Step 27, property (iii)(d) is also satisfied,
although it is not require here. This concludes the proof of Theorem 2.1. It remains to
conclude also the proof of Theorem 2.2.

Step 31. The set FC
c (D). In order to construct the morphisms ρ1, ρ2 of (iii)(c) from

Step 2, we need to consider an explicit description of the cokernel pair of ιC(C,−) in the
category of finite limit preserving functors C → Set and their natural transformations.
Since it is not harder to do this construction more generally, we are going to construct
this cokernel pair for any natural transformation C(C,−) → F for a finite limit preserving
functor F and an object C (see the remark at the end of Step 40). By the Yoneda lemma,
such a natural transformation corresponds to an element of F (C). This construction will
take several steps.

Therefore, given a finite limit preserving functor F : C → Set, an object C ∈ C and an
element c ∈ F (C), we now construct a functor FC

c : C → Set as follows. Given an object
D ∈ C, we consider the set of 5-tuples (f, rf1 , r

f
2 , g, a) where

• f : A → C is a morphism;

• rf1 and rf2 are the projections of the kernel pair of f , i.e.,

R[f ]

rf1
��

rf2 // A

f

��

A
f
// C
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is a pullback diagram;

• g : R[f ] → D is a morphism;

• a ∈ F (A) is an element such that F (f)(a) = c.

We define FC
c (D)

FC
c (D) =

(f, rf1 , r
f
2 , g, a ∈ F (A)) |

R[f ]
g

��

rf2 //

rf1
��

A

f

��

D A
f
// C

and F (f)(a) = c

 / ∼=F,C,c,D

to be the quotient of this set of such 5-tuples by the equivalence relation ∼=F,C,c,D defined as
follows. Given two such 5-tuples (f, rf1 , r

f
2 , g, a) and (f ′, rf

′

1 , r
f ′

2 , g
′, a′), whose morphisms

can be displayed as in the diagrams

D R[f ]
g
oo

rf1 //

rf2

// A
f
// C and D R[f ′]

g′
oo

rf
′

1 //

rf
′

2

// A′ f ′
// C ,

one has
(f, rf1 , r

f
2 , g, a)

∼=F,C,c,D (f ′, rf
′

1 , r
f ′

2 , g
′, a′)

if and only if there exists a span

A′′

h

~~

h′

  

A A′

in C together with an element a′′ ∈ F (A′′) such that

• F (h)(a′′) = a;

• F (h′)(a′′) = a′;

• fh = f ′h′;

• considering the kernel pair rfh1 , rfh2 : R[fh] ⇒ A′′ of fh = f ′h′ and the unique
morphisms h : R[fh] → R[f ] and h

′
: R[fh] → R[f ′] making the diagrams

R[fh]
rfh1 //

rfh2

//

h

��

A′′

h

��

R[f ]
rf1 //

rf2

// A

and

R[fh]
rfh1 //

rfh2

//

h
′

��

A′′

h′

��

R[f ′]
rf

′
1 //

rf
′

2

// A′
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(reasonably) commutative (in the sense hrfh1 = rf1h, hrfh2 = rf2h, h′rfh1 = rf
′

1 h
′ and

h′rfh2 = rf
′

2 h
′), the diagram

R[fh]

h
��

h
′
// R[f ′]

g′

��

R[f ] g
// D

also commutes.

Step 32. ∼=F,C,c,D is an equivalence relation. To see that the relation ∼=F,C,c,D is
symmetric, it suffices to exchange the roles of h and h′. To see that ∼=F,C,c,D is reflexive,
one can consider, for a 5-tuple (f, rf1 , r

f
2 , g, a), the span

A
1A

��

1A

��

A A

together with the element a ∈ F (A) (where A is the domain of f) to prove

(f, rf1 , r
f
2 , g, a)

∼=F,C,c,D (f, rf1 , r
f
2 , g, a).

It remains to prove that ∼=F,C,c,D is transitive. We consider, for each j ∈ {1, 2, 3}, a 5-tuple
(fj, r

fj
1 , r

fj
2 , gj, aj) whose morphisms can be displayed as in the diagram

D R[fj]
gj
oo

r
fj
1 //

r
fj
2

// Aj

fj
// C .

We suppose that
(f1, r

f1
1 , rf12 , g1, a1) ∼=F,C,c,D (f2, r

f2
1 , rf22 , g2, a2)

and
(f2, r

f2
1 , rf22 , g2, a2) ∼=F,C,c,D (f3, r

f3
1 , rf32 , g3, a3)

and we shall show that

(f1, r
f1
1 , rf12 , g1, a1) ∼=F,C,c,D (f3, r

f3
1 , rf32 , g3, a3). (38)

We thus know there exist two spans

A
h1

~~

h2

  

A1 A2

and

A′

h′
2

~~

h′
3

  

A2 A3

together with two elements a ∈ F (A) and a′ ∈ F (A′) satisfying
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• F (h1)(a) = a1, F (h2)(a) = a2 = F (h′
2)(a

′) and F (h′
3)(a

′) = a3;

• f1h1 = f2h2 and f2h
′
2 = f3h

′
3;

• considering the kernel pairs rf1h1

1 , rf1h1

2 : R[f1h1] ⇒ A and r
f2h′

2
1 , r

f2h′
2

2 : R[f2h
′
2] ⇒ A′

of f1h1 and f2h
′
2 respectively, and the unique morphisms h1, h2, h

′
2 and h

′
3 making

the four diagrams

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

h1

��

A

h1

��

R[f1]
r
f1
1 //

r
f1
2

// A1

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

h2

��

A

h2

��

R[f2]
r
f2
1 //

r
f2
2

// A2

R[f2h
′
2]

r
f2h

′
2

1 //

r
f2h

′
2

2

//

h
′
2

��

A′

h′
2

��

R[f2]
r
f2
1 //

r
f2
2

// A2

R[f2h
′
2]

r
f2h

′
2

1 //

r
f2h

′
2

2

//

h
′
3

��

A′

h′
3

��

R[f3]
r
f3
1 //

r
f3
2

// A3

(reasonably) commutative, the diagrams

R[f1h1]

h1

��

h2 // R[f2]

g2

��

R[f1] g1
// D

and
R[f2h

′
2]

h
′
2
��

h
′
3 // R[f3]

g3

��

R[f2] g2
// D

also commute.

We consider the pullback square
P k′ //

k
��

A′

h′
2

��

A
h2

// A2

and, since F preserves finite limits and F (h2)(a) = F (h′
2)(a

′), we know that there exists
a unique element p ∈ F (P ) such that F (k)(p) = a and F (k′)(p) = a′. Let us show that
the span

P
h1k

~~

h′
3k

′

  

A1 A3
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together with the element p is a witness of the relation (38). We already know that the
identities

F (h1k)(p) = F (h1)(a) = a1,

F (h′
3k

′)(p) = F (h′
3)(a

′) = a3

and
f1h1k = f2h2k = f2h

′
2k

′ = f3h
′
3k

′

hold. For the last condition to check, we consider the kernel pair rf1h1k
1 , rf1h1k

2 : R[f1h1k] ⇒
P of f1h1k and the unique morphisms l and l′ making the diagrams

R[f1h1k]
r
f1h1k
1 //

r
f1h1k
2

//

l

��

P

k

��

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

h1

��

A

h1

��

R[f1]
r
f1
1 //

r
f1
2

// A1

and

R[f1h1k]
r
f1h1k
1 //

r
f1h1k
2

//

l′

��

P

k′

��

R[f2h
′
2]

r
f2h

′
2

1 //

r
f2h

′
2

2

//

h
′
3

��

A′

h′
3

��

R[f3]
r
f3
1 //

r
f3
2

// A3

(reasonably) commute, and we must show that g1h1l = g3h
′
3l

′. For each i ∈ {1, 2}, we can
compute

rf2i h2l = h2r
f1h1

i l = h2kr
f1h1k
i = h′

2k
′rf1h1k

i = h′
2r

f2h′
2

i l′ = rf2i h
′
2l

′,

showing that h2l = h
′
2l

′. We can then conclude this step by the computation

g1h1l = g2h2l = g2h
′
2l

′ = g3h
′
3l

′.

Step 33. The functor FC
c . Given a finite limit preserving functor F : C → Set, an

object C ∈ C and an element c ∈ F (C), we have constructed, for each object D ∈ C, a
set FC

c (D). We now turn this construction into a functor FC
c : C → Set. Given a morphism

u : D → D′ in C, we define the function FC
c (u) : FC

c (D) → FC
c (D′) as

FC
c (u)([(f, rf1 , r

f
2 , g, a)]) = [(f, rf1 , r

f
2 , ug, a)]

for each element [(f, rf1 , r
f
2 , g, a)] of FC

c (D) (represented by the 5-tuple (f, rf1 , r
f
2 , g, a)). It

is obvious that this function is well-defined, i.e., that the implication

(f, rf1 , r
f
2 , g, a)

∼=F,C,c,D (f ′, rf
′

1 , r
f ′

2 , g
′, a′)

=⇒ (f, rf1 , r
f
2 , ug, a)

∼=F,C,c,D′ (f ′, rf
′

1 , r
f ′

2 , ug
′, a′)

holds and that this gives rise to a functor FC
c : C → Set.
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Step 34. FC
c preserves the terminal object. In order to apply the construction

ιFC
c
: FC

c ↣ FC
c , we shall now prove that this functor FC

c also preserves finite limits. As
for F̂ , it is enough to show that FC

c preserves the terminal object 1 of C and pullbacks.
Let us start with the terminal object. We must thus show that FC

c (1) is a singleton set.
The element [(1C , 1C , 1C , !C , c)] ∈ FC

c (1), whose morphisms can be displayed as in the
diagram

1 C
!Coo

1C //

1C
// C

1C // C ,

shows that FC
c (1) is not empty. Let [(f, rf1 , r

f
2 , g, a)] and [(f ′, rf

′

1 , r
f ′

2 , g
′, a′)] be two ele-

ments of FC
c (1) whose morphisms can be displayed as in the diagrams

1 R[f ]
g
oo

rf1 //

rf2

// A
f
// C and 1 R[f ′]

g′
oo

rf
′

1 //

rf
′

2

// A′ f ′
// C .

We consider the pullback square
A′′ h′

//

h
��

A′

f ′

��

A
f
// C

and, since F preserves finite limits and F (f)(a) = c = F (f ′)(a′), we know there exists a
unique element a′′ ∈ F (A′′) such that F (h)(a′′) = a and F (h′)(a′′) = a′. The span

A′′

h

~~

h′

  

A A′

together with the element a′′ is a witness of the relation

(f, rf1 , r
f
2 , g, a)

∼=F,C,c,1 (f
′, rf

′

1 , r
f ′

2 , g
′, a′).

Indeed, the first three conditions follow immediately from the definitions and the last
condition is trivially satisfied since it requires that two parallel morphisms with codomain
1 are equal. This proves that [(f, rf1 , r

f
2 , g, a)] = [(f ′, rf

′

1 , r
f ′

2 , g
′, a′)] and so FC

c (1) is indeed
a singleton set.

Step 35. FC
c preserves jointly monomorphic pairs of morphisms. As a pre-

liminary step to prove that FC
c preserves pullbacks, we show that it preserves jointly

monomorphic pairs of morphisms. So let

D1 D
p1
oo

p2
// D2
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be a pair of morphisms satisfying the implication

(p1x = p1y ∧ p2x = p2y) =⇒ x = y

for each pair of morphisms x, y : X ⇒ D and let us prove that the function

FC
c (D)

(FC
c (p1),FC

c (p2))
// FC

c (D1)× FC
c (D2)

is injective. We consider two elements [(f, rf1 , r
f
2 , g, a)] and [(f ′, rf

′

1 , r
f ′

2 , g
′, a′)] of FC

c (D)
whose morphisms can be displayed as in the diagrams

D R[f ]
g
oo

rf1 //

rf2

// A
f
// C and D R[f ′]

g′
oo

rf
′

1 //

rf
′

2

// A′ f ′
// C

and satisfying
(f, rf1 , r

f
2 , pjg, a)

∼=F,C,c,Dj
(f ′, rf

′

1 , r
f ′

2 , pjg
′, a′) (39)

for each j ∈ {1, 2}. We shall prove that

(f, rf1 , r
f
2 , g, a)

∼=F,C,c,D (f ′, rf
′

1 , r
f ′

2 , g
′, a′). (40)

For each j ∈ {1, 2}, the relation (39) gives us a span

A′′
j

hj

��

h′
j

  

A A′

together with an element a′′j ∈ F (A′′
j ) such that F (hj)(a

′′
j ) = a, F (h′

j)(a
′′
j ) = a′, fhj = f ′h′

j

and, considering the kernel pair rfhj

1 , r
fhj

2 : R[fhj] ⇒ A′′
j of fhj and the unique morphisms

hj and h
′
j making the diagrams

R[fhj]
r
fhj
1 //

r
fhj
2

//

hj

��

A′′
j

hj

��

R[f ]
rf1 //

rf2

// A

and

R[fhj]
r
fhj
1 //

r
fhj
2

//

h
′
j

��

A′′
j

h′
j

��

R[f ′]
rf

′
1 //

rf
′

2

// A′

(reasonably) commute, the identity

pjghj = pjg
′h

′
j (41)
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holds. We consider the pullback diagram

A′′

k1

��

k2 // A′′
2

(h2,h′
2)

��

A′′
1 (h1,h′

1)
// A× A′

and, since F preserves finite limits, F (h1)(a
′′
1) = F (h2)(a

′′
2) and F (h′

1)(a
′′
1) = F (h′

2)(a
′′
2),

there exists a unique element a′′ ∈ F (A′′) such that F (k1)(a
′′) = a′′1 and F (k2)(a

′′) = a′′2.
Let us show that the span

A′′

h1k1

~~

h′
1k1

  

A A′

together with the element a′′ is a witness of the relation (40). We already know that
F (h1k1)(a

′′) = F (h1)(a
′′
1) = a, F (h′

1k1)(a
′′) = F (h′

1)(a
′′
1) = a′ and fh1k1 = f ′h′

1k1. For
the last condition to check, we consider the kernel pair rfh1k1

1 , rfh1k1
2 : R[fh1k1] ⇒ A′′ of

fh1k1 and the unique morphisms k1 and k2 making the diagrams

R[fh1k1]
r
fh1k1
1 //

r
fh1k1
2

//

k1

��

A′′

k1

��

R[fh1]
r
fh1
1 //

r
fh1
2

// A′′
1

and

R[fh1k1]
r
fh1k1
1 //

r
fh1k1
2

//

k2

��

A′′

k2

��

R[fh2]
r
fh2
1 //

r
fh2
2

// A′′
2

(reasonably) commute. In particular, k1 makes the diagrams

R[fh1k1]
r
fh1k1
1 //

r
fh1k1
2

//

h1k1

��

A′′

h1k1

��

R[f ]
rf1 //

rf2

// A

and

R[fh1k1]
r
fh1k1
1 //

r
fh1k1
2

//

h
′
1k1

��

A′′

h′
1k1

��

R[f ′]
rf

′
1 //

rf
′

2

// A′

(reasonably) commute. To conclude this step, it remains to prove that gh1k1 = g′h
′
1k1.

Since p1 and p2 are jointly monomorphic, we actually need only to prove that p1gh1k1 =
p1g

′h
′
1k1 and p2gh1k1 = p2g

′h
′
1k1. The first equality follows immediately from the iden-

tity (41) for j = 1. Since h1k1 = h2k2 and h′
1k1 = h′

2k2, we know that h1k1 = h2k2 and
h
′
1k1 = h

′
2k2. Using (41) for j = 2, we can then conclude this step with the computation

p2gh1k1 = p2gh2k2 = p2g
′h

′
2k2 = p2g

′h
′
1k1.
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Step 36. FC
c preserves pullbacks. Let us now show that FC

c preserves pullbacks.
We consider a pullback square

D
p2
//

p1

��

D2

u2

��

D1 u1

// D3

(42)

in C together with elements [(f1, r
f1
1 , rf12 , g1, a1)] ∈ FC

c (D1) and [(f2, r
f2
1 , rf22 , g2, a2)] ∈

FC
c (D2) satisfying

FC
c (u1)([(f1, r

f1
1 , rf12 , g1, a1)]) = FC

c (u2)([(f2, r
f2
1 , rf22 , g2, a2)])

i.e.,
(f1, r

f1
1 , rf12 , u1g1, a1) ∼=F,C,c,D3 (f2, r

f2
1 , rf22 , u2g2, a2). (43)

The morphisms involved in these elements can be displayed as in the diagrams

D1 R[f1]
g1
oo

r
f1
1 //

r
f1
2

// A1
f1
// C and D2 R[f2]

g2
oo

r
f2
1 //

r
f2
2

// A2
f2
// C

and the relation (43) gives us a span

A
h1

~~

h2

  

A1 A2

together with an element a ∈ F (A) such that F (h1)(a) = a1, F (h2)(a) = a2, f1h1 =
f2h2 and, considering the kernel pair rf1h1

1 , rf1h1

2 : R[f1h1] ⇒ A of f1h1 and the unique
morphisms h1 and h2 making the diagrams

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

h1

��

A

h1

��

R[f1]
r
f1
1 //

r
f1
2

// A1

and

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

h2

��

A

h2

��

R[f2]
r
f2
1 //

r
f2
2

// A2

(reasonably) commute, the identity u1g1h1 = u2g2h2 holds. In view of this identity and of
the pullback in (42), there exists a unique morphism g : R[f1h1] → D such that p1g = g1h1

and p2g = g2h2. Since F (f1h1)(a) = F (f1)(a1) = c, we have defined in this way an element
[(f1h1, r

f1h1

1 , rf1h1

2 , g, a)] of FC
c (D) whose morphisms can be displayed as in the diagram

D R[f1h1]
g

oo

r
f1h1
1 //

r
f1h1
2

// A
f1h1

// C .
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For each j ∈ {1, 2}, let us prove that the relation

(f1h1, r
f1h1

1 , rf1h1

2 , pjg, a) ∼=F,C,c,Dj
(fj, r

fj
1 , r

fj
2 , gj, aj)

is attested by the span
A

1A

��

hj

��

A Aj

together with the element a ∈ F (A). We already know that F (1A)(a) = a, F (hj)(a) = aj
and f1h1 = fjhj. Since the diagrams

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

1R[f1h1]

��

A

1A

��

R[f1h1]
r
f1h1
1 //

r
f1h1
2

// A

and

R[f1h1]
r
f1h1
1 //

r
f1h1
2

//

hj

��

A

hj

��

R[fj]
r
fj
1 //

r
fj
2

// Aj

(reasonably) commute, the last condition we need to check reduces to pjg = gjhj which
holds by definition of g. We have thus constructed an element of FC

c (D) which is sent
by FC

c (pj) to [(fj, r
fj
1 , r

fj
2 , gj, aj)] for each j ∈ {1, 2}. By Step 35, this element is unique,

proving that FC
c preserves pullbacks. Combining this with Step 34, we have shown that

FC
c preserves finite limits.

Step 37. The natural transformations ξF,C,c
1 , ξF,C,c

2 : F ⇒ FC
c . Given a finite limit

preserving functor F : C → Set, an object C ∈ C and an element c ∈ F (C), we have
constructed a finite limit preserving functor FC

c : C → Set. Let us now construct two
natural transformations ξF,C,c

1 , ξF,C,c
2 : F ⇒ FC

c . Given i ∈ {1, 2} and an object D ∈ C,
we define the function ξF,C,c

i,D : F (D) → FC
c (D) as follows. We consider the binary and

ternary products

D × C
pD,C
1

{{

pD,C
2

##

D C

and

D ×D × C

pD,D,C
1

||

pD,D,C
2

��

pD,D,C
3

""

D D C

and remark that the kernel pair of pD,C
2 is given by

(pD,D,C
1 , pD,D,C

3 ), (pD,D,C
2 , pD,D,C

3 ) : D ×D × C ⇒ D × C.

For each element d ∈ F (D), since F preserves finite limits, there is a unique element of
F (D × C), denoted by (d, c), such that F (pD,C

1 )((d, c)) = d and F (pD,C
2 )((d, c)) = c. For

each such element d ∈ F (D), we then define

ξF,C,c
i,D (d) = [(pD,C

2 , (pD,D,C
1 , pD,D,C

3 ), (pD,D,C
2 , pD,D,C

3 ), pD,D,C
i , (d, c))]
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where morphisms involved in this element of FC
c (D) can be displayed as in the diagram

D D ×D × C
pD,D,C
ioo

(pD,D,C
1 ,pD,D,C

3 )
//

(pD,D,C
2 ,pD,D,C

3 )

// D × C
pD,C
2 // C .

To show that ξF,C,c
i is indeed a natural transformation, we consider a morphism u : D →

D′ in C and an element d ∈ F (D). We must show that

FC
c (u)(ξF,C,c

i,D (d)) = ξF,C,c
i,D′ (F (u)(d))

or in other words that the relation

(pD,C
2 , (pD,D,C

1 , pD,D,C
3 ), (pD,D,C

2 , pD,D,C
3 ), upD,D,C

i , (d, c))

∼=F,C,c,D′ (pD
′,C

2 , (pD
′,D′,C

1 , pD
′,D′,C

3 ), (pD
′,D′,C

2 , pD
′,D′,C

3 ), pD
′,D′,C

i , (F (u)(d), c))

holds. Let us show that this relation is witnessed by the span

D × C
1D×C

yy

u×1C

%%

D × C D′ × C

together with the element (d, c) ∈ F (D×C). We obviously have F (1D×C)((d, c)) = (d, c),
F (u× 1C)((d, c)) = (F (u)(d), c) and pD,C

2 = pD
′,C

2 (u× 1C). Since the diagrams

D ×D × C
(pD,D,C

1 ,pD,D,C
3 )

//

(pD,D,C
2 ,pD,D,C

3 )

//

1D×D×C

��

D × C

1D×C

��

D ×D × C
(pD,D,C

1 ,pD,D,C
3 )

//

(pD,D,C
2 ,pD,D,C

3 )

// D × C

and

D ×D × C
(pD,D,C

1 ,pD,D,C
3 )

//

(pD,D,C
2 ,pD,D,C

3 )

//

u×u×1C

��

D × C

u×1C

��

D′ ×D′ × C
(pD

′,D′,C
1 ,pD

′,D′,C
3 )

//

(pD
′,D′,C

2 ,pD
′,D′,C

3 )

// D′ × C

(reasonably) commute, the last condition reduces to upD,D,C
i = pD

′,D′,C
i (u×u× 1C) which

obviously holds.

Step 38. Characterization of ξF,C,c
1,D (d) = ξF,C,c

2,D (d). For an object D ∈ C and an
element d ∈ F (D), we now show that the equality ξF,C,c

1,D (d) = ξF,C,c
2,D (d) holds if and only

if there exists a span
D′

h

~~

h′

  

D C

(44)
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together with an element d′ ∈ F (D′) such that F (h)(d′) = d, F (h′)(d′) = c and hrh
′

1 = hrh
′

2

where rh
′

1 , r
h′
2 : R[h′] ⇒ D′ is the kernel pair of h′. The equality ξF,C,c

1,D (d) = ξF,C,c
2,D (d) means

(pD,C
2 , (pD,D,C

1 , pD,D,C
3 ), (pD,D,C

2 , pD,D,C
3 ), pD,D,C

1 , (d, c))

∼=F,C,c,D (pD,C
2 , (pD,D,C

1 , pD,D,C
3 ), (pD,D,C

2 , pD,D,C
3 ), pD,D,C

2 , (d, c))

or, in other words, that there exists a span

D′′

(h1,h′′)

zz

(h2,h′′)

$$

D × C D × C

(45)

together with an element d′′ ∈ F (D′′) such that F (h1)(d
′′) = d = F (h2)(d

′′), F (h′′)(d′′) = c
and, since the diagrams

R[h′′]
rh

′′
1 //

rh
′′

2

//

(h1rh
′′

1 ,h1rh
′′

2 ,h′′rh
′′

1 )

��

D′′

(h1,h′′)

��

D ×D × C
(pD,D,C

1 ,pD,D,C
3 )

//

(pD,D,C
2 ,pD,D,C

3 )

// D × C

and

R[h′′]
rh

′′
1 //

rh
′′

2

//

(h2rh
′′

1 ,h2rh
′′

2 ,h′′rh
′′

1 )

��

D′′

(h2,h′′)

��

D ×D × C
(pD,D,C

1 ,pD,D,C
3 )

//

(pD,D,C
2 ,pD,D,C

3 )

// D × C

(reasonably) commute (where rh
′′

1 , rh
′′

2 : R[h′′] ⇒ D′′ is the kernel pair of h′′), the identity
h1r

h′′
1 = h2r

h′′
2 holds. If a span (h, h′) and an element d′ as in (44) exist, one can get a

span as in (45) simply as
D′

(h,h′)

{{

(h,h′)

##

D × C D × C

together with the same element d′ ∈ F (D′). Conversely, if a span ((h1, h
′′), (h2, h

′′)) and
an element d′′ as in (45) exist, we consider the equalizer

D′ // m // D′′
h1 //

h2

// D
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and, since F preserves finite limits and F (h1)(d
′′) = F (h2)(d

′′), there exists a unique
element d′ ∈ F (D′) such that F (m)(d′) = d′′. Then, the span

D′

h1m

~~

h′′m

  

D C

together with the element d′ satisfies the required properties. Indeed, we know that
F (h1m)(d′) = F (h1)(d

′′) = d, F (h′′m)(d′) = F (h′′)(d′′) = c and, considering the kernel
pair rh

′′m
1 , rh

′′m
2 : R[h′′m] ⇒ D′ of h′′m and the unique morphism m making the diagram

R[h′′m]
rh

′′m
1 //

rh
′′m

2

//

m

��

D′

m

��

R[h′′]
rh

′′
1 //

rh
′′

2

// D′′

(reasonably) commute, the identities

h1mrh
′′m

1 = h1r
h′′

1 m = h2r
h′′

2 m = h2mrh
′′m

2 = h1mrh
′′m

2

hold.

Step 39. ξF,C,c
1,C (c) = ξF,C,c

2,C (c). Particularizing the characterization of Step 38 to the case
where D = C and d = c, we get that ξF,C,c

1,C (c) = ξF,C,c
2,C (c). Indeed, it suffices to consider

the span
C

1C

��

1C

��

C C

together with the element c ∈ F (C).

Step 40. Characterization of when θc : C(C,−) → F is the equalizer of ξF,C,c
1

and ξF,C,c
2 . Given a finite limit preserving functor F : C → Set, an object C ∈ C and an

element c ∈ F (C), we have constructed a finite limit preserving functor FC
c together with

two natural transformations ξF,C,c
1 , ξF,C,c

2 : F ⇒ FC
c . By the Yoneda Lemma, the element

c ∈ F (C) corresponds to a natural transformation θc : C(C,−) → F , defined for each
object D ∈ C and each morphism f : C → D by θc,D(f) = F (f)(c). Using the Yoneda
Lemma, Step 39 means exactly that ξF,C,c

1 θc = ξF,C,c
2 θc. We shall now prove that

C(C,−)
θc // F

ξF,C,c
1 //

ξF,C,c
2

// FC
c (46)
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is an equalizer diagram in SetC if and only if for each span

A
h

��

k

��

D C

(47)

such that hrk1 = hrk2 where rk1 , r
k
2 : R[k] ⇒ A is the kernel pair of k and for each element

a ∈ F (A) such that F (k)(a) = c, there exists a unique morphism f : C → D in C such
that F (f)(c) = F (h)(a).

The diagram (46) is an equalizer diagram in SetC if and only if for each object D ∈ C
and each element d ∈ F (D) such that ξF,C,c

1,D (d) = ξF,C,c
2,D (d), there exists a unique morphism

f ∈ C(C,D) such that θc,D(f) = d, i.e., F (f)(c) = d. If this property holds, given a span
(h, k) and an element a ∈ F (A) as in (47), the element d = F (h)(a) ∈ F (D) satisfies
ξF,C,c
1,D (d) = ξF,C,c

2,D (d) by Step 38, and therefore there exists a unique morphism f : C → D
such that F (f)(c) = F (h)(a).

Conversely, suppose the property about spans (47) holds and let D be an object of
C and d be an element of F (D) such that ξF,C,c

1,D (d) = ξF,C,c
2,D (d). By Step 38, there exists

a span (h, k) and an element a ∈ F (A) as in (47) such that, in addition of hrk1 = hrk2
and F (k)(a) = c, the identity F (h)(a) = d also holds. Therefore, there exists a unique
morphism f : C → D such that F (f)(c) = d.

Remark: It can be proved that ξF,C,c
1 , ξF,C,c

2 : F ⇒ FC
c is the cokernel pair of θc in the

category of finite limit preserving functors C → Set and their natural transformations.
Therefore, θc is a regular monomorphism in that category exactly when (46) is an equalizer
diagram (in the category of finite limit preserving functors C → Set, or equivalently,
in SetC). Since we will not need that in this proof, we omit details here.

Step 41. In the regular case, ιC(C,−) : C(C,−) ↣ C(C,−) is the equalizer
of ξC1 and ξC2 . Given an object C ∈ C, we have defined in Step 28 a monomorphism
ιC(C,−) : C(C,−) ↣ C(C,−) in SetC. By the Yoneda Lemma, this natural transformation
corresponds to an element c = ιC(C,−),C(1C) ∈ C(C,−)(C). To shorten notation, for each
i ∈ {1, 2}, we denote by ξCi the natural transformation ξ

C(C,−),C,c
i : C(C,−) → C(C,−)

C

c .
Applying the characterization of Step 40, we shall now prove that, if E is a regular
surjection-like class of morphisms,

C(C,−) //
ιC(C,−)

// C(C,−)
ξC1 //

ξC2

// C(C,−)
C

c

is an equalizer diagram in SetC. That is, for each span

A
h

��

k

��

D C
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such that hrk1 = hrk2 , where rk1 , r
k
2 : R[k] ⇒ A is the kernel pair of k, and for each element

a ∈ C(C,−)(A) such that

C(C,−)(k)(a) = ιC(C,−),C(1C),

we must show that there exists a unique morphism f : C → D such that

C(C,−)(f)(ιC(C,−),C(1C)) = C(C,−)(h)(a).

In view of the construction of C(C,−) given in Step 25, an element a ∈ C(C,−)(A) can
be written in the form a = [(n, x)] for some n ∈ N and some x ∈ C(C,−)(n)(A). In that
case, C(C,−)(k)(a) = [(n, C(C,−)(n)(k)(x))] and C(C,−)(h)(a) = [(n, C(C,−)(n)(h)(x))].
Moreover, ιC(C,−),C(1C) = [(0, 1C)]. Therefore, we must prove that, for each n ∈ N, for
each span

A
h

��

k

��

D C

(48)

and for each x ∈ C(C,−)(n)(A), if hrk1 = hrk2 and

[(n, C(C,−)(n)(k)(x))] = [(0, 1C)], (49)

there exists a unique morphism f : C → D such that

[(n, C(C,−)(n)(h)(x))] = [(0, f)]. (50)

The uniqueness of f follows immediately from the fact that ιC(C,−) : C(C,−) ↣ C(C,−)
is a monomorphism (Step 28). We shall prove the existence of f by induction on n.

If n = 0, since C(C,−)(0) = C(C,−), x is a morphism C → A and the equality (50)
becomes hx = f . We thus have to prove that there exists a morphism f : C → D such
that hx = f , which is trivial.

We now assume that the above property holds for n and we shall prove it also holds for
n+1. We are thus given a span (h, k) as in (48) and an element x ∈ C(C,−)(n+1)(A). Since
C(C,−)(n+1) = ̂C(C,−)(n), the element x can be written as x = [(n′, (ei)i, (fi)i, f , e, g, a

′)],
where the morphisms involved can be displayed as in the diagram

P
g

��

f
//

e

��

B1 × · · · ×Bn′

e1×···×en′

��

A A′
(f1,...,fn′ )

// D1 × · · · ×Dn′

and where a′ ∈ C(C,−)(n)(A′). Using Step 15, we can assume without loss of generality
that the implication(

ei = ei′ ∧ C(C,−)(n)(fi)(a
′) = C(C,−)(n)(fi′)(a

′)
)
=⇒ i = i′
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holds for indices i, i′ ∈ {1, . . . , n′}. Moreover, we assume that hrk1 = hrk2 as well as the
hypothesis (49) which now becomes

[(n+ 1, [(n′, (ei)i, (fi)i, f , e, kg, a
′)])] = [(0, 1C)],

i.e.,
[(n′, (ei)i, (fi)i, f , e, kg, a

′)] = λn
C(C,−),C(· · · (λ0

C(C,−),C(1C)) · · · ).

Since λn
C(C,−),C = λC(C,−)(n),C holds by definition, we know from Step 21 that there exists

a span
A′′

l1

~~

l2

  

A′ C

together with an element a′′ ∈ C(C,−)(n)(A′′) such that

C(C,−)(n)(l1)(a
′′) = a′, (51)

C(C,−)(n)(l2)(a
′′) = λn−1

C(C,−),C(· · · (λ
0
C(C,−),C(1C)) · · · ) (52)

and, considering the pullback

P ′ l3 //

e′

��

P

e
��

A′′
l1
// A′

, (53)

the identity l2e
′ = kgl3 holds. Since E is closed under finite products (by (Id), (ClComp)

and (StPb)), we know that e1×· · ·×en′ ∈ E. Since E is stable under pullbacks (StPb), this
implies that e ∈ E and so e′ ∈ E. Since morphisms in E are regular epimorphisms (Reg),
e′ is a regular epimorphism, i.e., the coequalizer of its kernel pair re

′
1 , r

e′
2 : R[e′] ⇒ P ′.

Note that this is the only place where we use the axiom (Reg) in the entire proof. We
now consider the kernel pairs rl21 , r

l2
2 : R[l2] ⇒ A′′ of l2 and rl2e

′

1 , rl2e
′

2 : R[l2e
′] ⇒ P ′ of l2e′
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and the unique morphisms l4, l5 and l6 making the diagram of plain arrows

R[l2e
′]

l5

��

r
l2e

′
1

!!

r
l2e

′
2

!!

l6 // R[l2]

r
l2
1

��

r
l2
2

��

R[e′]

l4

��

re
′

1 //

re
′

2

// P ′

gl3

��

e′ //

l2e′

  

A′′

l2

�� l7

��

R[k]
rk1 //

rk2

// A
k

//

h
..

C

D

(reasonably) commute. Since

hgl3r
e′

1 = hrk1 l4 = hrk2 l4 = hgl3r
e′

2 ,

we know there is a unique morphism l7 : A
′′ → D such that

l7e
′ = hgl3. (54)

In the diagram below,

R[l2e
′]

l6

##

r
l2e

′
1

��

r
l2e

′
2

((
l13 //

l12

��

P2
l11 //

l10

��

P ′

e′

��

P1
l9 //

l8

��

R[l2]
r
l2
2 //

r
l2
1

��

A′′

l2

��

P ′
e′

// A′′
l2

// C

P1 and P2 are defined as pullbacks and the morphisms l12 and l13 as the unique ones making
the diagram commutative. Since the outer square is a pullback, the top left square is a
also pullback by the usual properties of composition and cancellation of pullbacks. Since
e′ ∈ E and since E is stable under pullbacks (StPb), we know that l9, l10, l12, l13 ∈ E.
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Since E is closed under composition (ClComp), this proves that l6 = l9l12 ∈ E. Moreover,
we can compute

l7r
l2
1 l6 = l7e

′rl2e
′

1 = hgl3r
l2e′

1 = hrk1 l5 = hrk2 l5 = hgl3r
l2e′

2 = l7e
′rl2e

′

2 = l7r
l2
2 l6.

Since morphisms in E are (strong) epimorphisms (by (SRightCancP) and (NoPMono))
and since l6 ∈ E, this shows that l7r

l2
1 = l7r

l2
2 . We thus have a span

A′′

l7

~~

l2

  

D C

together with an element a′′ ∈ C(C,−)(n)(A′′) such that l7r
l2
1 = l7r

l2
2 and

[(n, C(C,−)(n)(l2)(a
′′))] = [(0, 1C)]

by (52). Using our induction hypothesis, there exists a morphism f : C → D such that

[(n, C(C,−)(n)(l7)(a
′′))] = [(0, f)].

It remains to prove that

[(n, C(C,−)(n)(l7)(a
′′))] = [(n+ 1, C(C,−)(n+1)(h)(x))]

which is equivalent to

[(n, C(C,−)(n)(l7)(a
′′))] = [(n+ 1, [(n′, (ei)i, (fi)i, f , e, hg, a

′)])]

or, in other words, to

λC(C,−)(n),D(C(C,−)(n)(l7)(a
′′)) = [(n′, (ei)i, (fi)i, f , e, hg, a

′)].

Using Step 21, this equality is attested by the span

A′′

l1

~~

l7

  

A′ D

together with the element a′′ ∈ C(C,−)(n)(A′′), the pullback (53) and the equalities (51)
and (54).
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Step 42. Conclusion of the proof of Theorem 2.2. We are now able to construct
a small full subcategory D of SetC satisfying properties (i), (ii) and (iii) described in Step 2.
We define in this case D to be the full subcategory of SetC made of the functors C(C,−) and

C(C,−)
C

ιC(C,−),C(1C) for each object C ∈ C. Since C is small, so is D. Property (i), requiring
that each functor F ∈ D preserves finite limits, has been proved in Step 25. Property (ii),
requiring that for each e ∈ E and each F ∈ D the function F (e) is surjective, follows
from Step 26. For each object C ∈ C, the natural transformation ιC : C(C,−) → FC

mentioned in property (iii) is given by ιC(C,−) : C(C,−) ↣ C(C,−). Step 28 shows that
property (iii)(a) holds, i.e., that ιC(C,−) is a monomorphism in SetC. By the Yoneda
Lemma, property (iii)(b) can be reformulated exactly as Step 29. Property (iii)(d) is
satisfied in view of Step 27. Given an object C ∈ C, let c = ιC(C,−),C(1C) ∈ C(C,−)(C).
By Step 41,

C(C,−) //
ιC(C,−)

// C(C,−)
ξC1 //

ξC2

// C(C,−)
C

c

is an equalizer diagram in SetC. By Step 25, ιC(C,−)
C

c

: C(C,−)
C

c ↣ C(C,−)
C

c is a monomor-
phism. Therefore

C(C,−) //
ιC(C,−)

// C(C,−)

ι
C(C,−)

C
c
ξC1

//

ι
C(C,−)

C
c
ξC2

// C(C,−)
C

c

is also an equalizer diagram in SetC, proving that property (iii)(c) holds.
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