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Q-SYSTEM COMPLETENESS OF UNITARY CONNECTIONS

MAINAK GHOSH

Abstract. A Q-system is a unitary version of a separable Frobenius algebra object
in a C*-tensor category. In a recent joint work with P. Das, S. Ghosh and C. Jones,
the author has categorified Bratteli diagrams and unitary connections by building a
2-category UC. We prove that every Q-system in UC splits.

1. Introduction

V. Jones’ groundbreaking results on index for subfactors [J83] has led to remarkable
progress in the development of the theory of subfactors. The standard invariant of a
finite index subfactor of a II1 factor was first defined as a λ-lattice [P95]. In [M03], a
Q-system which is a unitary version of a Frobenius algebra object in a C*-tensor category
or C*-2-category, is exhibited as an alternative axiomatization of the standard invariant of
a finite index subfactor [O88, P95, J99]. This further fostered classification of small index
subfactors [JMS14, AMP15]. Q-systems were first introduced in [L94] to characterize
canonical endomorphism associated to a finite index subfactor of an infinite factor.

Given any rigid, semisimple, C*-tensor category C with simple tensor unit 1, an in-
decomposable Q-system Q ∈ C (that is, EndQ−Q (Q) ≃ C) and a fully-faithful unitary
tensor functor H : C → Bim(N) for some II1 factor N , we can apply realization procedure
[JP19, JP20] to construct a II1 factor M containing N as a generalized crossed product
N ⋊H Q. Also, every irreducible finite index extension of N is of this form.

In the context of C*-2-categories, a Q-system is a 1-cell bQb ∈ C1(b, b) along with two
2-cells m : Q ⊠ Q → Q (multiplication) and i : 1b → Q (unit), which are graphically
denoted by the following:

m = •
Q

Q Q

i =
•

Q m∗ = •
Q

Q Q

i∗ =
•

Q

These 2-cells satisfy the following:

•
•

= •
•

(Associativity)
•

• =
•

• = (Unitality)
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•

• = •
•

= •

•

(Frobenius condition) •

•

= (Separability)

Recently [CPJP22] introduced the notion of Q-system completion for C*/W*-2-cat-
egories which is another version of a higher idempotent completion for C*/W*-2-categories
in comparison with 2-categories of separable monads [DR18] and condensation monads
in [GJF19]. Given a C*/W*-2-category C, its Q-system completion is the 2-category
QSys(C) of Q-systems, bimodules and intertwiners in C . There is a canonical inclusion
*-2-functor ιC : C ↪→ QSys(C) which is always an equivalence on all hom categories. C is
said to be Q-system complete if ιC is a *-equivalence of *-2-categories. We study Q-system
completeness in the context of pre-C*-2-categories. We call a pre-C*-2-category C to be
Q-system complete if every Q-system in C ‘splits’.

In our recent joint paper [DGGJ22], we gave a higher categorical interpretation of
Bratteli diagrams and unitary connections in terms of a larger W*-2-category UCtr. The
0-cells of UCtr are Bratteli diagrams with tracial weighting data. These generalize the
Bratteli diagrams appearing from taking the tower of relative commutants of a finite-index
subfactor. 1-cells of UCtr are unitary connections between Bratteli diagrams which are
compatible with the tracial data. Finally the 2-cells are defined as certain fixed points of
a ucp (unital completely positive) map. To define UCtr, we had to first consider a purely
algebraic category UC. The 0-cells of UC are Bratteli diagrams (without the tracial
data). 1-cells of UC are unitary connections and 2-cells are natural intertwiners between
connections which we call flat sequences. UC has a close resemblance to the 2-category
studied in [CPJ22] in the context of fusion category actions on AF-C*-algebras, with
minor differences at the level of 0-cells and 2-cells only.

We investigate Q-system completeness of UC. The following is the main theorem of
the paper.

1.1. Theorem. UC is Q-system complete.

Given a Q-system in UC, to exhibit its ‘splitting’ one needs to construct a suitable
0-cell and a suitable dualizable 1-cell from the initial 0-cell to the newly constructed
one which enables the splitting. The idea to construct our suitable 0-cell in UC comes
from [CPJP22] and we use subfactor theoretic ideas [B97, EK98, P89, P94] to build our
appropriate 1-cell in UC.

There at least two natural questions appearing from our investigations. Bi-faithfulness
of functors (that is, both the functor and its adjoint are faithful) plays a major role in
achieving our results. So the first question is, if we drop the bi-faithfulness condition of
0-cells and 1-cells in UC (see Definition 2.11), then will the modifed 2-category be still
Q-system complete. Second, is UCtr Q-system complete ? We will try to answer these
questions in our future work.
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The outline of the paper is as follows. In Section 2, we will quickly go through some
basic results and definitions and set up some pictorial notations. In Section 3, we explore
Q-systems in UC and prove some results that will be useful to construct our appropriate
0-cell in UC. In Section 4, we build the 0-cell and the dualizable 1-cell and then proceed
to prove our main theorem.

Acknowledgements. The author would like to thank Shamindra Kumar Ghosh, Corey
Jones and David Penneys for several fruitful discussions.

2. Preliminaries

In this section we will furnish the necessary background on Q-system completion and the
2-category of Unitary connections UC.

2.1. Notations related to 2-categories. We refer the reader to [JY21] for basics
of 2-categories.

Suppose C is a 2-category and a, b ∈ C0 be two 0-cells. A 1-cell from a
X−→ b is denoted by

bXa. Pictorially, a 1-cell will be denoted by a red strand and a 2-cell will be denoted by
a box with strings with passing through it. Suppose we have two 1-cells X, Y ∈ C1(a, b)

and f ∈ C2(X, Y ) be a 2-cell. Then we will denote f as
f

X

Y
We write tensor product

⊠ of 1-cells from right to left cY ⊠
b
Xa.

The notion of C*-2-categories is believed to first appear in [LR97]. For basics of
C*/W*-2-categories we refer the reader to [CPJP22, GLR85]. For a detailed study about
graphical calculus, we refer the reader to [HV19].

2.2. Q-system completion.

2.3. Definition. A pre-C*-2-category is a 2-category such that the hom-1-categories sat-
isfies all the conditions of a C*-category except that the 2-cell spaces need not be complete
with repsect to the given norm.

Let C be a pre-C*-2-category.

2.4. Definition. A Q-system in C is a 1-cell bQb ∈ C1(b, b) along with multiplication
map m ∈ C2(Q⊠bQ,Q) and unit map i ∈ C2(1b, Q), as mentioned in Section 1, satisfying
the following properties:

(Q1) •
•

= •
•

(associativity)
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(Q2)
•

• =
•

• = (unitality)

(Q3)
•

•
=

•

•
=

•

•
(Frobenius condition)

(Q4)
•

•
= (Separability)

2.5. Definition. [CPJP22] Given a Q-system (Q,m, i), we define

dQ :=
•

•
∈ EndC (1b)

+

.

• If dQ is invertible, we call Q non-degenerate or an extension of 1b.

• If dQ is an idempotent, we call Q a summand of 1b.

We recall some facts about Q-systems in C*-tensor categories already mentioned in
[CPJP22, Z07].

2.6. Fact.

(F1) Q is a self-dual 1-cell with evQ := •
Q

Q Q

• and coevQ := •Q
Q Q

•
.

(F2) Using (F1) and [Z07, Lemma 1.16] we have the following inequalitites:

•
Q

Q Q

•
•Q

Q Q

• ≤
•

• ≤ ∥dQ∥

(F3) By [Z07, Corollary 1.19] either dQ is invertible, or zero is an isolated point in
Spec(dQ). Define , f : Spec(dQ) → C by

f(x) =

{
0 x = 0

x−1 x ̸= 0

By abuse of notation, set d−1
Q := f (dQ). By continuous functional calculus, set

sQ := dQd
−1
Q . Then we have the following :
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(a)

d−1
Q

•
•

sQ ==

(b)
•
•
≤∥dQ∥

2.7. Definition. Suppose C is a pre-C*-2-category and bXa ∈ C1(a, b). A unitarily
separable left dual for bXa is a dual

(
aXb, evX , coevX

)
such that evX ◦ ev∗X = id1a (cf.

[CPJP22, Example 3.9]).

Given a unitarily separable left dual for bXa ∈ C1(a, b), bX⊠
a
Xb ∈ C1(b, b) is a Q-system

with multiplication map m := idX ⊠ evX ⊠ idX and unit map i := coevX .
Given a Q-system Q ∈ C1(b, b), if it is of the above form then we say that the Q-system

Q ‘splits’.

2.8. Definition. A pre-C*-2-category C is said to be Q-system complete if every Q-
system in C ‘splits’, that is, given a Q-system Q ∈ C1(b, b) there is an object c ∈ C0 and a
dualizable 1-cell X ∈ C1(c, b) which admits a unitary separable dual

(
X, evX , coevX

)
such

that (Q,m, i) is isomorphic to bX ⊠
c
Xb as Q-systems.

2.9. Remark. In [CPJP22], Q-system completion has been treated in the context of
C*/W*-2-categories. It has been proved that Definition 2.8 is equivalent to their definition
of Q-system completeness (see [CPJP22, Theorem 3.36]) of C*/W*-2-categories.

2.10. Unitary connections. Pictorial notations. We will apply the graphical cal-
culus as mentioned in Section 2.1 to the 2-category of Categories (cf. [HV19]).

(i) Let C be a category and let f ∈ C(C,D). It will be denoted by f

D

C

and com-

position of two morphisms will be represented by two vertically stacked labelled
boxes.

(ii) Let C and D be two categories and F,G : C → D be two functors. Then a natural

transformation η : F → G will be denoted by η
G

F

. For an object x in C, the

morphism ηx : Fx → Gx will be denoted by ηx

G

F

x

x

= η
G

F

x .
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(iii) For a ∗-linear functor F : C → D between two semisimple C*-categories categories,
we will denote a solution to conjugate equation by

ρ = F ′F : idD −→ FF ′ and ρ′ = FF ′ : idC −→ F ′F

ρ∗ = F ′F : FF ′ −→ idD and [ρ′]
∗
= FF ′ : F ′F −→ idC

where F ′ : D → C is an adjoint functor of F .

We will extend the above dictionary (between things appearing in the category world
and pictures) in an obvious way. For instance, composition of morphisms and natural
transformations will be pictorially represented by stacking the boxes vertically whereas
tensor product (resp., composition) of objects (resp., functors) by parallel vertical strings.
For simplicity, sometimes we will not label all of the strings (with any object or functor)
emanating from a box (labelled with a morphism or a natural transformation) when it
can be read off from the context. To distinguish between a functor arising in 0-cell and a
functor arising in 1-cell, we will denote the former by a black strand and the latter by a
red strand unless otherwise mentioned.

Let us recall the definition of the pre-C*-2-category of unitary connections UC de-
scribed in [DGGJ22].

2.11. Definition. The 2-category UC consists of the following :

(1) 0-cells are ∗-linear, bi-faithful functors Γk : Mk−1 → Mk (where Mk is a finite,
semisimple, C*-category whose isomorphism classes of the simple objects are indexed

by the vertex set VMk
). We will denote such a 0-cell by

{
Mk−1

Γk−→ Mk

}
k≥1

or

sometimes simply Γ•.

(2) A 1-cell from the 0-cell

{
Mk−1

Γk−→ Mk

}
k≥1

to the 0-cell

{
Nk−1

∆k−→ Nk

}
k≥1

con-

sists of a sequence of ∗-linear bi-faithful functors {Λk : Mk → Nk}k≥0 and natural
unitaries Wk : ∆kΛk−1 → ΛkΓk for k ≥ 1. Such a 1-cell will be denoted by (Λ•,W•)
or simply by Λ•, and W• will be referred as a unitary connection associated to Λ•.
Denote the set of 1-cells from Γ• to ∆• by UC1 (Γ•,∆•).

Pictorially, the natural unitary Wk appearing in the 1-cell will be represented by

Λk−1

Γk

∆k

Λk

and W ∗
k by

Γk

Λk−1

Λk

∆k

(3) Let Λ•,Ω• ∈ UC1 (Γ•,∆•). For describing 2-cells we need the following definition:
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2.12. Definition. A pair (η, κ) ∈ NT(Λk,Ωk)× NT(Λk+1,Ωk+1) is said to satisfy

exchange relation if the condition η

κ

Λk

Ωk

Ωk+1

Λk

Λk+1

Ωk+1

= holds.

2.13. Remark. The exchange relation pair is unique separately in each variable,
that is, if (η, κ1) and (η, κ2) (resp., (η1, κ) and (η2, κ)) both satisfy exchange relation,
then κ1 = κ2 (resp., η1 = η2); this is because the connections are unitary and the
functors Γk and ∆k are bi-faithful.

Let Ex(Λ•,Ω•) denote the space of sequences {η(k) ∈ NT (Λk,Ωk)}k≥0 such that
there exists an N such that (ηk, ηk+1) satifies the exchange relation for all k ≥ N .
Consider the subspace

Ex0(Λ•,Ω•) := {{ηk}k≥0 ∈ Ex(Λ•,Ω•) : ηk = 0 for all k ≥ N for some N ∈ N}

We define the space of 2-cells

UC2 (Λ•,Ω•) :=
Ex(Λ•,Ω•)

Ex0(Λ•,Ω•)

(4) For Ω• ∈ UC1 (∆•,Σ•) and Λ• ∈ UC1 (Γ•,∆•), define

Ω• ⊠ Λ• :=

{Ωk Λk}k≥0 ,

 Σk Ωk−1
Λk−1

Γk

Λk
Ωk


k≥1

 . (1)

For notational convenience, instead of denoting a 2-cell by an equivalence class of
sequences, we simply use a sequence in the class and truncate upto a level after which
the exchange relation holds for every consecutive pair, namely,

{
η(k)
}
k≥N

∈ UC2 (Λ•,Ω•)

where (η(k), η(k+1)) satisfies the exchange relation for all k ≥ N .

2.14. Remark. From the definition of UC2 (Λ•,Ω•), we observe that two 2-cells
{
η(k)
}
k≥N

,{
τ (k)
}
k≥L

∈ UC2 (Λ•,Ω•) are equal if and only if η(k) = τ (k) eventually. So, two 1-
cells Λ• and Ω• are isomorphic in UC if there is a sequence of natural transformations
Uk : Λk → Ωk which satisfies exchange relation from some level l and which implements
isomorphism between Λk and Ωk eventually.

For horizontal and vertical composition of 2-cells we refer the reader to [DGGJ22].
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Given a 0-cell Γ• ∈ UC0, we fix an object m0 :=
⊕
v∈V0

v ∈ ob(M0). Consider the

sequence of finite dimensional C*-algebras {Ak := End(Γk · · ·Γ1m0)}k≥0 (assuming A0 =
End(m0)) along with the unital ∗-algebra inclusions given by

Ak−1 ∋ α ↪→ Γk α ∈ Ak . (2)

Indeed, the Bratteli diagram of Ak−1 inside Ak is given by the graph Γk. To the 0-cell Γ•,
we associate the ∗-algebra A∞ := ∪

k≥0
Ak

To each 1-cell (Λ•,W•) ∈ UC1 (Γ•,∆•), we will associate an A∞-B∞ right correspon-

dence where n0 and Bk’s are related to

{
Nk−1

∆k−→ Nk

}
k≥1

exactly the way m0 and Ak’s

are related to

{
Mk−1

Γk−→ Mk

}
k≥1

respectively. For k ≥ 0, set

Hk := Nk (∆k · · ·∆1n0,ΛkΓk · · ·Γ1m0) .

We have an obvious Ak-Bk-bimodule structure on Hk in the following way:

Ak ×Hk ×Bk ∋ (α, ξ, β) 7−→ Λk(α) ◦ ξ ◦ β ∈ Hk . (3)

Again, there is a Bk-valued inner product on Hk given by

Hk ×Hk ∋ (ξ, ζ)
⟨·, ·⟩Bk7−→ ⟨ξ, ζ⟩Bk

:= ζ∗ ◦ ξ ∈ Bk . (4)

Next, observe that Hk sits inside Hk+1 via the map

Hk ∋ ξ
Ik+17−−→

[
(Wk+1)Γk···Γ1m0

]
◦ [∆k+1ξ] = ξ

· · ·

· · ·

Λk+1

∆k+1 n0

m0

∈ Hk+1 . (5)

2.15. Lemma. ([DGGJ22]) The inclusions Hk ↪→ Hk+1, Ak ↪→ Ak+1, Bk ↪→ Bk+1 and
the corresponding actions are compatible in the obvious sense.

Set H∞ := ∪
k≥0

Hk which clearly becomes an A∞-B∞ right correspondence. To the

1-cell (Λ•,W•) we associate the A∞-B∞ right correspondence H∞.
We also have a Pimsner-Popa (PP) basis of the right-B∞-module H∞ with respect to

the B∞-valued inner product.

2.16. Lemma. ([DGGJ22]) There exists a finite subset S of H0 such that
∑
σ∈S

σ ◦σ∗ =

1Λ0m0; moreover, any such S is a PP-basis for the right B∞-module H∞.
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2.17. Theorem. ([DGGJ22]) Starting from a 2-cell
{
η(k) ∈ NT (Λk,Ωk)

}
k≥K

, we have

an intertwiner Φ
η
(k)
Γk···Γ1m0

∈ A∞LB∞(H∞, G∞) which is independent of k ≥ K.

Conversely, for every T ∈ A∞LB∞(H∞, G∞) (= the space of A∞-B∞-linear adjointable
operator) and for all k ≥ KT := min {l : TH0 ⊂ Gl}, there exists unique η(k) ∈ NT(Λk,Ωk)
such that T = Φ

η
(k)
Γk···Γ1m0

. Further,
(
η(k), η(k+1)

)
satisfies exchange relation for all k ≥ KT .

Clearly UC becomes a pre-C*-2-category.

2.18. Remark. We will denote the object m0 by dashed lines and any other object by
dotted lines in (ii) of the pictorial notations mentioned at the beginning of Section 2.10.

3. Q-systems in UC

In this section, given a Q-system in UC for a 0-cell, we explore certain structural prop-
erties of the associated bimodules that will further enable us to construct new 0-cells and
a new dualizable 1-cell in the next section, that will implement Q-system completion of
UC.

Let (Γ•,M•) be a 0-cell in UC and (Q•,W
Q
• ,m•, i•) be a Q-system in UC1((Γ•,M•),

(Γ•,M•)). Graphically, each natural transformation mk, ik and WQ
k+1 will be represented

by the following respective diagrams:

mk :=
•

Qk

Qk Qk

, ik :=
•

Qk and WQ
k+1 :=

Γk+1 Qk

Qk+1
Γk+1

∀k ≥ 0

Pictorially, exchange relation of mk’s and ik’s with respect to W• will be denoted as
follows:

•Q k
Q k+

1

Q k

Q k

Γ k+
1

Γ k+
1

=

•
Q k+

1

Q k

Q k

Γ k+
1

Γ k+
1

and
•Q k

Q k+
1

Γ k+
1

Γ k+
1

=
•

Qk+1 Γk+1

eventually for all k.

3.1. Remark. From Remark 2.14, we observe that for our Q-system (Q•,m•, i•) in UC
the natural transformations mk and ik satisfy (Q1)-(Q4) as in Definition 2.4 eventually
for all k . For the rest of the paper we fix a natural number l such that mk and ik satisfy
(Q1)-(Q4) and the exchange relations for k ≥ l .
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Consider the filtration of finite dimensional C*-algebras {Ak := End(Γk · · ·Γ1m0)}k≥1

associated to the 0-cell Γ• where m0 is direct sum of a maximal set of mutually non-
isomorphic simple objects in M0. Let {Hk := Mk(Γk · · ·Γ1m0, QkΓk · · ·Γ1m0)}k≥1 be the
right correspondence associated to Q•. By construction (Equation (3) and Equation (4)),
Hk is a right Ak-Ak correspondence. Thus, one may view Hk as a 1-cell in the 2-category
C*Alg of right correspondence bimodules over pairs of C*-algebras.

We will further establish that each Hk is a Q-system in C*Alg(Ak, Ak) for k ≥ l . In
order to do this, we will use the following identification.

3.2. Remark. Let {Yk := Mk(Γk · · ·Γ1m0, Q
2
kΓk · · ·Γ1m0)}k≥1 denote the right corre-

spondence associated to the 1-cell Q• ⊠ Q• in UC. The proof of [DGGJ22, Proposition

3.12] tells us that the map ξ⊠η 7−→

· · ·

· · ·

η

· · ·

Qk

Γk

Γ1
m0

ξ
is an isomorphism between Hk⊠

Ak

Hk

and Yk as right Ak-Ak correspondence.

Via the above identification, the multiplication 2-cell m• and the unit 2-cell i• in UC
corresponds to the maps m̃k : Hk ⊠

Ak

Hk → Hk and ĩk : Ak → Hk respectively at the level

of bimodules; more explicitly

m̃k(ξ ⊠ η) :=

· · ·

· · ·

η

· · ·

•

Qk

Γk Γ1 m0

ξ
and ĩk(x) := x

· · ·

· · ·

Γk Γ1 m0

•

Qk .

3.3. Proposition. For each k ≥ l, m̃k and ĩk are adjointable maps and hence 2-cells in
C*Alg. Moreover, (Hk, m̃k, ĩk) becomes a Q-system in C*Alg(Ak, Ak) for each k ≥ l .

Proof.Using the identification in Remark 3.2, the adjoint of m̃k is given by
· · ·

· · ·

Γk Γ1 m0•Qk

ξ

and that of ĩk is given by
· · ·

· · ·

Γk Γ1 m0
•

Qk

ξ . Now using m̃k and ĩk and their adjoints, and the
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properties (Q1-Q4) of m• and i• mentioned at in preliminaries , associativity, unitality,

frobenius property and separability of
(
Hk, m̃k, ĩk

)
easily follows.

We now explore certain structural properties of Hk.
We prove the following proposition using ideas from [CPJP22].

3.4. Proposition. For each k ≥ l, the space Hk is a unital C*-algebra with multiplica-
tion, adjoint and unit given by

ξ · η := m̃k (ξ ⊠ η) ,


· · ·

· · ·
Γk Γ1

m0Qk

ξ


†

=
· · ·

· · ·

Γk Γ1

m0

••

Qk

ξ∗ and
•

Qk · · ·

Γk Γ1

m0

respectively for ξ, η ∈ Hk.

Proof. Indeed, ξ†† = ξ. Again

(ξ1.ξ2)
† =

•
••

· · ·

· · ·

· · ·

ξ2
∗

ξ1
∗

=

•
••

· · ·

· · ·

· · ·
ξ2

∗

ξ1
∗

=

•

•
•

••

· · ·

· · ·

· · ·
ξ2

∗

ξ1
∗ = ξ†2.ξ

†
1

where the second equality follows from associativity and the third comes from Frobenius
and unitality conditions. Also,

1Hk
· ξ =

· · ·

· · ·

Γk Γ1
m0

Qk

•

•
ξ =

· · ·

· · ·

Γk Γ1
m0Qk

ξ =

· · ·

· · ·

Γk Γ1
m0Qk

••

ξ = ξ · 1Hk
.

Hence, Hk becomes a unital *-algebra.
To prove that Hk is a C*-algebra, we show that it is isomorphic to a *-subalgebra of

a finite dimensional C*-algebra. Define

Sk :=

x ∈ End(QkΓk · · ·Γ1m0)

∣∣∣∣∣∣∣
· · ·

· · ·

Γk Γ1 m0
Qk•

x =
· · ·

· · ·

Γk Γ1 m0Qk

•
x


sitting inside the finite dimensional C*-algebra End(QkΓk · · ·Γ1m0). Clearly Sk is closed
under multiplication, as well as *-closed (using Frobenius property and unitality). Define

ϕ
(k)
1 : Hk → Sk and ϕ

(k)
2 : Sk → Hk as follows:
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ϕ
(k)
1 (ξ) :=

· · ·

· · ·

Γk Γ1
m0

•Qk

ξ ∈ Sk (by associativity of Qk) and ϕ
(k)
2 (x) :=

· · ·

· · ·

Γk Γ1 m0Qk

•

x
.

Now, it is routine to check using the axioms of Q-systems that ϕ
(k)
1 and ϕ

(k)
2 are unital,

*-homomorphisms. Also, ϕ
(k)
1 and ϕ

(k)
2 are mutually inverse to each other, hence they are

isomorphisms.

3.5. Lemma. The map ĩk : Ak → Hk defined by ĩk(a) := a
· · ·

· · ·

Γk Γ1 m0

•

Qk is a unital

inclusion of C*-algebras. In the reverse direction, the map Ek : Hk → Ak defined by

Ek(ξ) :=
· · ·

· · ·

Γk Γ1 m0Qk

•
ξd−1

Qk
(where dQk

= •

•
Qk ) is a finite index, faithful conditional

expectation satisfying Ek

(
η† · ξ

)
=

· · ·

· · ·

m0

m0

Γk

Γk

⟨ξ, η⟩Ak
d−1
Qk

(where ⟨·, ·⟩Ak
is the right Ak-valued

inner product on Hk as defined in Equation (4)) for each k ≥ l .

Proof. We make use of the *-algebra isomorphisms ϕ1, ϕ2 between Hk and Sk and find

that the map ĩk : Ak → Hk corresponds to Ak ∋ a
ϕ
(k)
1 ◦ ĩk7−→ Qk a =

m0

m0

Qk

· · ·

· · ·
a ∈ Sk

which is indeed an inclusion sinceQk is a bi-faithful functor. Now, Qk is symmetrically self-

dual with the solution to conjugate equation given by
•
• . Thus, we have a conditional

expectation given by

Sk ∋ x
E ′
7−→

m0

m0

•

•

•

•

· · ·

· · ·
xd−1

Qk
=

m0

m0•

• · · ·

· · ·
xd−1

Qk
∈ Ak

where the equality follows from the definition of Sk and separability axiom. This condi-
tional expectation is automatically faithful and translates into Ek (defined in the state-

ment) via the *-isomorphism ϕ
(k)
2 . Now, for x ∈ S+

k , we have

· · ·

· · ·

Γk Γ1 m0

x =
· · ·

· · ·

Γk Γ1 m0

•

•

•

•

•

•

•

•

x ≤ ∥dQk
∥

•

•

· · ·

· · ·

Γk Γ1 m0

x
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where the first equality follows from (F1) of Fact 2.6 and the second inequality from

(F2) of Fact 2.6 and the definition of Sk. We rewrite the last term as
•

•

•

•

d−1
Qk

· · ·

· · ·

Γk Γ1 m0

x ≤

∥dQk
∥ Qk (E

′(x)). Hence, the conditional expectation E ′, and thereby Ek has finite index.

Next, we will test the compatibility of the countable family of finite dimensional C*-

algebras {Hk}k≥0 and the inclusionsHk

Ik+1
↪→ Hk+1 for k ≥ 0 (as described in Equation (5)).

3.6. Lemma. The inclusion Hk

Ik+1
↪→ Hk+1 is a ∗-algebra homomorphism eventually for all

k. Further, the unital filtration {Ak}k≥0 of finite dimensional C*-algebras (as described

2) sits inside H∞ = ∪
k
Hk via the inclusions ĩk : Ak → Hk eventually for all k. In

particular, the above conditions commence when (mk,mk+1) and (ik, ik+1) start satisfying
the exchange relation.

Proof. This easily follows from the exchange relation of mk and ik, and the definitions
of m̃k and ĩk.

3.7. Remark. We can obtain Sk ⊂ Hk such that
∑

σ∈Sk

σσ∗ = 1QkΓk···Γ1m0 using Lemma

2.16 and Equation (5).

4. Splitting of (Q•,m•, i•)

In this section we will first construct a suitable 0-cell in UC using results from the
previous section. Then move on to construct a dualizable 1-cell X• from Γ• to the newly
constructed 0-cell. Subsequently we build a unitary from X•⊠X• to Q• which intertwine
the algebra maps as well as satisfy exchange relations eventually.
Notation: Thoughout this section, given a finite dimensional C*-algebra A, we will use
the notation RA for the category of finite-dimensional (as a complex vector space) right
A-correspondences. Note that RA is a finite, semisimple C*-category.

4.1. New 0-cells in UC.
Let l ∈ N be as in Remark 3.1.

For each k ≥ 0, consider the C*-algebra inclusions Ak

Qk
↪→ Ck := End(QkΓk · · ·Γ1m0)

and Ck ∋ γ 7−→
· · ·

· · ·
γ ∈ Ck+1. Note that Qk (Ak) ⊂ Sk ⊂ Ck for all k ≥ l. Consider

the filtration of C*-algebras {Bk}k≥0 defined as follows:

Bk =

{
Hk if k ≥ l

Sl ∩ Ck if 0 ≤ k ≤ l − 1
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where the inclusion Bk ↪→ Bk+1 is given by Ik for k ≥ l, set inclusions for 0 ≤ k ≤ l−2 and

the remaining inclusion Bl−1 ↪→ Bl is ϕ
(l)
2

∣∣∣
Sl∩Cl−1

: Sl ∩ Cl−1 → Hl (where ϕ
(l)
2 : Sl → Hl

is the isomorphism defined in Proposition 3.4).
Define ∆k+1 := • ⊠

Bk

Bk+1 : RBk
→ RBk+1

for k ≥ 0. Each ∆k is a bi-faithful functor

(which follows from the unital inclusion Bk ↪→ Bk+1 of finite dimensional C*-algebra for
k ≥ 0). Thus, we have a 0-cell (∆•,RB•) ∈ UC0 .

Similarly, using the unital filtration {Ak}k≥0 (resp., {Ck}k≥0) of finite dimensional C*-
algebras, we define another 0-cell Σ• (resp. Ψ•) defined by Σk := • ⊠

Ak−1

Ak : RAk−1
→ RAk

(resp., Ψk := • ⊠
Ck−1

Ck : RCk−1
→ RCk

) for k ≥ 1.

4.2. Construction of dualizable 1-cell from (Γ•,M•) to (∆•,RB•).
Our strategy is to build two dualizable 1-cells

(
F•,W

F
•
)
: Γ• → Σ• and

(
Λ•,W

Λ
•
)
:

Σ• → ∆• and define (X•,W•) to be their composition in UC as depicted in Equation (1)
of Definition 2.11 and thereby obtaining our desired dualizable 1-cell X• : Γ• → ∆• in
UC. We first prove the following easy fact.

4.3. Proposition. Given a finite semisimple C*-category M and an object m which
contains every simple object as a sub-object, the functor F := M(m, •) : M → RA is an
equivalence where A = End(m) and RA is the category of right A-correspondences.

Proof. For x ∈ ob(M), F (x) becomes a right A-correspondence with the A-action and
A-valued inner product defined in the following way

F (x)× A ∋ (u, a) 7−→ u a ∈ F (x) and ⟨u, v⟩ := v∗u .

For f ∈ M(x, y), F (f)(u) = f u ∈ F (y) for each u ∈ F (x). Indeed, F -action on any
morphism of M is adjointable (F (f)∗ = F (f ∗)) and A-linear. Clearly, F is a faithful
functor.

Let T ∈ RA(F (x), F (y)). Since every simple appears as a sub-object in m, we can

find a finite set Sx ⊆ F (x) such that
∑
u∈Sx

uu∗ = 1x. Define f :=
∑
u∈Sx

T (u)u∗ ∈ M(x, y).

For v ∈ F (x),we have,

T (v) = T

(∑
u∈Sx

uu∗v

)
=
∑
u∈Sx

T (u)u∗v (since T is right A-linear)

= F (f)(v) (since F (f) = f ◦ − and by definition of f)

Thus, F is full.
Now, we show that F is essentially surjective. Since F is fully faithful by Schur’s

lemma, we have, F (x) is simple if x is simple. We show that for simple H ∈ RA there
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is a simple x in M such that F (x)A ≃ HA. Choose, ξ ∈ H \ {0} such that ⟨ξ, ξ⟩A ̸= 0.
By spectral decomposition of ⟨ξ, ξ⟩A , there is a minimal projection p in A such that
⟨ξ, ξ⟩Ap ∈ Cp \ {0}. Now ,since p is minimal, ⟨ξp, ξp⟩A = p⟨ξ, ξ⟩Ap ∈ Cp \ {0}. Without
loss of generality, we assume ξp = ξ. Now, H being irreducible, we have, H = ξA. Now,
by semi-simplicity of M there is a simple x ∈ M and an isometry α : x → m such
that p = αα∗. Observe that, α∗ ∈ F (x) and F (x) = α∗A. Define T ′ : F (x)A → HA as
T ′(α∗a) = ξa for all a ∈ A. Clearly, T ′ is well-defined, right-A linear and onto. Thus, T ′

is an isomorphism. Hence, F is an equivalence.

4.3.1. Construction of
(
F•,W

F
•
)
∈ UC1 (Γ•,Σ•).

For each k ≥ 0, setting m = Γk · · ·Γ1m0 in Proposition 4.3, we obtain the functor
Fk := Mk(Γk · · ·Γ1m0, •) : Mk → RAk

which is an equivalence.

4.4. Proposition. Suppose C is a C*-2-category. Let X ∈ C1(a, b) be dualizable with dual
X ∈ C1(b, a) such that each component in the solution

(
R,R

)
to the conjugate equations

for
(
X,X

)
are invertible. Then, there exists another solution

(
R′, R

′
)
to the conjugate

equations for
(
X,X

)
such that R′ and R

′
are unitaries.

Proof. Without loss of generality, we may assume that C is strict. Since R and R∗

are invertible, so R∗R is also invertible. Let l := R∗R ∈ End(1b). Define R′ := R ◦
l−

1
2 ∈ C2(1b, X ⊠ X). Clearly, R′ is invertible and R′∗R′ = id1b which further implies

R′R′∗ = 1X ⊠ 1X . In terms of graphical calculus, the last equality can be expressed as the
following identity using the conjugate equations satisfied by (R,R)

X X

=
l
1
2

l
1
2

(6)

Now, define R
′
:= (1X ⊠ l

1
2 ⊠1X)R. It is easy to verify that

(
R′, R

′
)
satisfy the conjugate

equations for
(
X,X

)
. Equation (6) ensures that R

′
is a unitary.

4.5. Remark. Fk being an equivalence is a part of an adjoint equivalence [JY21], so
we may obtain an adjoint F k of Fk, and by Proposition 4.4, we assume evaluation and
coevaulation implementing the duality are both natural unitaries. Thus, for each k ≥ 0,
bi-faithfulness of Fk is immediate.

Before we describe the unitary connections for Fk’s, we digress a bit to prove some
results which will be useful in the construction.

Suppose N is a C*-semisimple category. For x, y ∈ Ob(N ) , consider the morphism
space N (x, y) and consider the C*-algebra A = End(x). Then, N (x, y) becomes a right-A
correspondence with A-valued inner product, ⟨u, v⟩A = u∗v.

We proceed with the following lemma.
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4.6. Lemma. Suppose M and N are finite, C*-semisimple categories. Let Γ1 : M → N
and Γ2 : N → N be bi-faithful, ∗-linear functors. Then the map T : N (Γ1m0, x) ⊠

End(Γ1m0)

N (Γ1m0,Γ2Γ1m0) → N (Γ1m0,Γ2x) given by u ⊠ v
T7−→

v

u

Γ1

Γ1

Γ2

m0

x

is a unitary as a

right- End(Γ1m0)-linear map.

Proof. Let A = End(Γ1m0). Clearly, T is middle A-linear. Now,

⟨T (u1 ⊠ v1), T (u2 ⊠ v2)⟩A =

v∗1

v2

u∗
1u2 = ⟨v1, ⟨u1, u2⟩Av2⟩A = ⟨u1 ⊠ v1, u2 ⊠ v2⟩A.

Hence, T is an isometry. If we can show that T is surjective then we get our de-

sired result from [L95]. Now, let y ∈ N (Γ1m0,Γ2x). Then,

xΓ2

Γ1 m0

y =

x
y

=

∑
α∈S

x
y

α

α∗

. Last equality follows from the fact that, we can find such a set S ⊆

End
(
Γ2Γ1m0

)
because of bi-faithfulness of Γ2, Γ1 and m0 contains all irreducibles of M.

Now, T


∑
α∈S

x
y

α ⊠ α∗

 = y. Hence, T is surjective. So, T is an unitary.

4.7. Corollary. The maps T k
x : Fk(x) ⊠

Ak

Ak+1Ak+1
→ Mk(Γk+1Γk · · ·Γ1m0,Γk+1x)Ak+1

given by u⊠α
Tk
x7−→

· · ·

· · ·

x

Γk Γ1

m0

Γk+1
u

α are unitaries and they are natural in x, for each x ∈ Mk

and k ≥ 0.
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Proof. Clearly, T k
x are right-Ak+1 linear. Unitarity of T k

x follows from Lemma 4.6. Natu-
rality of T k follows from the definition of Fk acting on morphism spaces as in Proposition
4.3.

We now define the unitary connections for {Fk}k≥0 as W F
k+1 := T k : Σk+1Fk →

Fk+1Γk+1 as defined in Corollary 4.7, for each k ≥ 0 . Pictorially we denote, for each

k ≥ 0, Fk by and F k by and for each k ≥ 1, W F
k by Fk−1

Γk

Σk

Fk

and
(
W F

k

)∗
by

Γk

Fk−1

Fk

Σk

. Hence, we have a 1-cell
(
F•,W

F
•
)
∈ UC1(Γ•,Σ•).

For each k ≥ 1, define

W
F

k :=
F k−1

Σk

Γk

F k
:=

Γk

Σk

(
W

F

k

)∗
:=

Σk

F k−1

F k

Γk
:=

Γk

Σk

Since the evaluation and coevaluation are chosen (in Remark 4.5) to be unitaries,

therefore W
F

k ’s are also so. We claim that F• is a dualizable 1-cell in UC with dual(
F •,W

F

•

)
. For this, we verify that solutions to conjugate equations (as in Remark 4.5)

satisfy exchange relations for k ≥ 0, which is equivalent to the equations by which W F
k ’s

and W
F

k ’s become unitaries.

4.8. Remark. Observe that by Proposition 4.3, we have an adjoint equivalence Gk :
Mk → RCk

using the fact that QkΓk · · ·Γ1m0 contains every simple of Mk as a subobject

for each k ≥ 0. Further, the square

Mk+1 RCk+1

Mk RCk

Gk+1

Γk

Gk

•⊠
Ck

Ck+1 commutes up to a natural

unitary, say WG
k+1, which can be proven exactly the same was done for Fk’s, and thereby

yeilding a dualizable 1-cell
(
G•,W

G
•
)
in UC from Γ• to Ψ•.

Picking a dual G• ∈ UC1 (Ψ•,Γ•) of G•, we set
(
R•,W

R
•
)
:= F•⊠G• ∈ UC1 (Ψ•,Σ•).

That is, Rk = FkGk : RCk
→ RAk

for k ≥ 0 which along with the unitary connections are
compatible with the Σk’s and Ψk’s.
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4.8.1. Construction of
(
Λ•,W

Λ
•
)
∈ UC1 (Σ•,∆•) and its dual.

Observe that in Section 4.1, for each k ≥ 0, we have unital inclusions Ak ↪→ Bk of
C*-algebras; in particular, for k ≥ l, this is given in Lemma 3.5. As a result, the functor
Λk := • ⊠

Ak

Bk : RAk
→ RBk

turns out to bi-faithful for each k ≥ 0. Next, we need to

define the unitary connection for Λ•. We acheive this using the following easy fact.

4.9. Fact. Suppose A,B,C,D are finite dimensional C*-algebras such that we have a

square of unital inclusions

C D

A B

. This induces a square of categories and functors

RC RD

RA RB

•⊠
C
D

•⊠
A
C

•⊠
A
B

•⊠
B
D . Corresponding to this last square, there exists a unitary natural

transformation between the functors •⊠
A
B ⊠

B
D and •⊠

A
C ⊠

C
D.

For 0 ≤ k ≤ l − 1 , the unitaries WΛ
k+1 may be obtained by applying Fact 4.9 to the

squares

RAk+1
RBk+1

RAk
RBk

Λk+1

Σk+1

Λk

∆k+1

We now explicitly describe the unitaries WΛ
k : ∆kΛk−1 → ΛkΣk for each k ≥ l+1 . For

V ∈ Ob
(
RAk−1

)
, define

(
WΛ

k

)
V
: V ⊠

Ak−1

Hk−1 ⊠
Hk−1

HkHk
→ V ⊠

Ak−1

Ak ⊠
Ak

HkHk
as follows :

V ⊠
Ak−1

Hk−1 ⊠
Hk−1

Hk ∋ q ⊠
Ak−1

ξ1 ⊠
Hk−1

ξ2
(WΛ

k )V7−→ q ⊠
Ak−1

1Ak
⊠
Ak

ξ1 · ξ2 for each q ∈ V .

It is easy to see that each
(
WΛ

k

)
V
is a unitary and natural in V , and

(
WΛ

k

)∗
V
is given as

follows:

V ⊠
Ak−1

Ak ⊠
Ak

Hk ∋ q ⊠
Ak−1

α ⊠
Ak

ξ
(WΛ

k )
∗
V7−→ q ⊠

Ak−1

1Hk−1
⊠
Ak

ξ1 · ξ2 for each q ∈ V .

Thus, we get a 1-cell (Λ•,W•) : Σ• → ∆• in UC .

We now define
(
Λ•,W

Λ

•

)
∈ UC1 (∆•,Σ•) so that it becomes dual to (Λ•,W•) in UC.

For 0 ≤ k ≤ l − 1, define Λk := Rk ◦
(
• ⊠

Bk

Ck

)
: RBk

→ RAk
where Rk : RCk

→ RAk
is

the equivalence given in Remark 4.8.
For k ≥ l, define Λk := • ⊠

Hk

Hk : RHk
→ RAk

. Here the right action of Ak on Hk is given

by the inclusion Ak ↪→ Hk (as in Lemma 3.5) and the multiplication in C*-algebra Hk;
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however, the right Ak-valued inner product is the one defined in Equation (4) (and not
the one coming from conditional expectation).

4.10. Remark. Although the functors Λk may not be adjoint to Λk for 0 ≤ k ≤ l − 1,
we will need these functors to define an adjoint of

(
Λ•,W

Λ
•
)
in UC .

Our next job is to define the unitary connections
{
W

Λ

k

}
k≥1

for Λ•. This will be divide

into three different ranges for k, namely {1, . . . , l − 1}, {l} and {l+1, l+2, . . .}; the choice
of the natural unitaries in the first two ranges could be arbitrary

Case 0 ≤ k ≤ l − 2 : For the unitary connection W
Λ

k+1, we look at the following
horizontally stacked squares of functors.

RBk+1
RCk+1

RAk+1

RBk
RCk

RAk

• ⊠
Bk+1

Ck+1
Rk+1

∆k+1

• ⊠
Bk

Ck

•⊠
Ck

Ck+1

Rk

Σk+1
.

Both the squares are commutative up to natural unitaries; the left one follows from Fact

4.9 and the right comes from Remark 4.8. W
Λ

k+1 is defined as the appropriate composition
of above two natural unitaries.
Case k = l: To define the natural unitary W

Λ

l : Σl Λl−1 → Λl ∆l, it is enough to

check whether the square

RHl
RAl

RSl∩Cl−1
RAl−1

•⊠
Hl

Hl

Λl

• ⊠
Bl−1

Bl ∆l

Λl−1

Rl−1◦
(
• ⊠
Bl−1

Cl−1

)
• ⊠
Al−1

AlΣl
commutes up to a natu-

ral isomorphism; let us call this square S. Consider the horizontal pair of squares

RSl
RCl

RAl

RSl∩Cl−1
RCl−1

RAl−1

•⊠
Sl

Cl
Rl

• ⊠
Sl∩Cl−1

Sl

• ⊠
Sl∩Cl−1

Cl−1

Ψl

Rl−1

Σl
referred as S1 ; the first square of

S1 commutes by Fact 4.9 and the second follows from Remark 4.8. Note that the bottom
and the right sides of S matches with that of S1.

We next claim that the top side of S1 is naturally isomorphic to •⊠
Sl

Sl : RSl
→ RAl

.
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To see this, consider the square

RCl
Ml

RSl
RAl

•⊠
Cl

Cl

Gl

Fl

•⊠
Al

Sl

referred as S2. For x ∈ Ob (Ml), the

map

Fl(x)⊠
Al

Sl ∋ ξ ⊠
Al

γ 7−→ · · ·

· · ·

•

Ql m0

m0

x

γ

ξ

⊠
Cl

1Cl
∈ Gl(x)⊠

Cl

Cl

is Sl-linear and natural in x. To show that the map is surjective, pick a basic tensor

ζ ⊠
Cl

1Cl
∈ Gl(x) ⊠

Cl

Cl; note that it can be expressed as the image of
∑
σ∈Sl

ζ ◦ σ ⊠
Al

ϕ
(l)
1

(
σ†)

where Sl is as in Remark 3.7 and ϕ
(l)
1 : Hl → Sl is the isomorphism mentioned in

Proposition 3.4. This concludes natural commutativity of S2. Now, the adjoint of the
functors • ⊠

Cl

Cl : RCl
→ RSl

and • ⊠
Al

Sl : RAl
→ RSl

(appearing in the square S1)

are given by • ⊠
Sl

Cl : RSl
→ RCl

and • ⊠
Sl

Al : RSl
→ RAl

respectively; this can be

achieved by solving the conjugate equations using the set Sl again and the conditional

expectations. Thus, dualizing the square S2, we get F l ◦
(
•⊠

Sl

SlAl

)
∼= Gl ◦

(
•⊠

Sl

ClCl

)
.

Now, using the fact that Fl is an adjoint equivalence and using Rl = FlGl, we get Rl ◦(
•⊠

Sl

ClCl

)
∼=
(
•⊠

Sl

SlAl

)
. Using this natural isomorphism and natural commutativity

of the square S1, we obtain natural commutativity of

RSl
RAl

RSl∩Cl−1
RAl−1

•⊠
Sl

Sl

• ⊠
Sl∩Cl−1

Sl

Rl−1◦
(
• ⊠
Sl∩Cl−1

Cl−1

)
Σl

.

Finally, using the isomorphism ϕ
(l)
2 : Sl → Hl (as in Proposition 3.4), we get our desired

natural commutativity of S. Set WΛ

l to be a natural unitary implementing commutativity
of S.
Case k ≥ l: To define W

Λ

k+1, we will need the solutions to conjugate equations for Λk

and Λk for each k ≥ l. We will use the following pictorial notations:

Λk := and Λk := for each k ≥ 0

4.11. Definition.
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(i) : IdRHk
→ ΛkΛk is the natural transformation defined as:

V
: V → V ⊠

Hk

Hk ⊠
Ak

Hk is given by q 7−→
∑

σ∈Sk

q ⊠
Hk

σ ⊠
Ak

σ† where V ∈ RHk

and Sk is as in Remark 3.7.

(ii) : ΛkΛk → IdRHk
is the natural transformation defined as :

V
: V ⊠

Hk

Hk ⊠
Ak

Hk → V is given by q ⊠
Hk

ξ1 ⊠
Ak

ξ2 7−→ q.(ξ1 · ξ2) where V ∈ RHk
.

(iii) : IdRAk
→ ΛkΛk is the natural transformation defined as :

V
: V → V ⊠

Ak

Hk ⊠
Hk

Hk is given by q 7−→ q ⊠
Ak

1Hk
⊠
Hk

1Hk
where V ∈ RAk

.

(iv) : ΛkΛk → IdRAk
is the natural transformation defined as :

V
: V ⊠

Ak

Hk ⊠
Hk

Hk → V is given by q⊠
Ak

ξ1⊠
Hk

ξ2 7−→ q.⟨ξ2, ξ†1⟩Ak
where V ∈ RAk

.

4.12. Lemma.

(i) , , , satisfy conjugate equations for Λk,Λk for each k ≥ l .

(ii) Also,
( )∗

= and
( )∗

= .

(iii) = idIdRHk
.

Proof. (i) We have, for every V ∈ RAk
, q ∈ V and ξ ∈ Hk,

V

(
q ⊠ ξ

)
=

V

(
q ⊠ ξ ⊠ 1Hk

⊠ 1Hk

)
= q ⊠ ξ.

Therefore, we get = . We have, for every V ∈ RAk
, q ∈ V and ξ ∈ Hk,

V

(
q ⊠

Ak

ξ
)
=

V

(∑
σ∈Sk

q ⊠
Ak

ξ ⊠
Hk

σ ⊠
Ak

σ†
)

=
∑
σ∈Sk

q.⟨σ, ξ†⟩Ak
⊠
Ak

σ† =
∑
σ∈Sk

q ⊠
Ak

⟨σ, ξ†⟩Ak
σ† = q ⊠

Ak

ξ.



1142 MAINAK GHOSH

The last equality follows from Equation (4). Therefore, we get
=
. The other

equations can be proved similarly.
(ii) The proof is similar to that of (i).
(iii) It follows easily from Definition 4.11(i) and Definition 4.11(ii).

Pictorially, we denoteWΛ
k by Λk−1

Σk

∆k

Λk

,
(
WΛ

k

)∗
by Σk

Λk−1

Λk

∆k

,W
Λ

k by
Λk−1

∆k

Σk

Λk

and
(
W

Λ

k

)∗
by

∆k

Λk−1

Λk

Σk
for each k ≥ 1 . We have already defined all WΛ

k ’s and W
Λ

k

for 1 ≤ k ≤ l in the above two cases. Now, for k ≥ l, we define

W
Λ

k+1 =
Λk

∆k+1

Σk+1

Λk+1
:=

Σk+1

∆k+1

and
(
W

Λ

k+1

)∗
=

∆k+1

Λk

Λk+1

Σk+1
:=

Σk+1

∆k+1

which turn out to be natural unitaries by the following remark.

4.13. Remark. For each k ≥ l and V ∈ RHk
, q ∈ V , ξ ∈ Hk, α ∈ Ak+1, η, ζ ∈ Hk+1 the

element
(
W

Λ

k+1

)
V

(
q ⊠

Hk

ξ ⊠
Ak

α

)
can be expressed as

Σk+1

∆k+1

V

(
q ⊠

Hk

ξ ⊠
Ak

α
)
=

Σk+1

∆k+1

V

(
q ⊠

Hk

ξ ⊠
Ak

α ⊠
Ak+1

1Hk+1
⊠

Hk+1

1Hk+1

)

=

∆k+1

V

(
q ⊠

Hk

ξ ⊠
Ak

1Hk
⊠

Ak+1

α ⊠
Hk+1

1Hk+1

)
= q.ξ ⊠

Hk

α ⊠
Hk+1

1Hk+1
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and
(
W

Λ

k+1

)∗
V

(
q ⊠

Hk

η ⊠
Hk+1

ζ

)
can be expressed as

V

Σk+1

∆k+1

(
q ⊠

Hk

η ⊠
Hk+1

ζ

)
=

V

Σk+1

∆k+1

(∑
σ∈Sk

q ⊠
Hk

σ ⊠
Ak

σ† ⊠
Hk

η ⊠
Hk+1

ζ

)

=

V

Σk+1 (∑
σ∈Sk

q ⊠
Hk

σ ⊠
Ak

1Ak+1
⊠

Ak+1

σ† · η ⊠
Hk+1

ζ

)

=
∑
σ∈Sk

q ⊠
Hk

σ ⊠
Ak

⟨ζ, η† · σ⟩Ak+1
.

It is a straightforward verification that each
(
W

Λ

k+1

)
V
is a unitary and natural in V .

Thus, we have defined a 1-cell
(
Λ•,W

Λ

•

)
in UC from ∆• to Σ•. We need to prove

that
(
Λ•,W

Λ

•

)
is dual to

(
Λ•,W

Λ
•
)
. In order to define the solution to conjugate equation

(which is in fact a pair of 2-cells in UC), we have the liberty to ignore finitely many terms
and define them eventually (by Remark 2.14).

By Lemma 4.12, we see that there are solutions to conjugate equations for Λk and
Λk for each k ≥ l . So, we are only left with showing exchange relations of solutions
eventually.

We now verify that and satisfy exchange relations for k ≥ l .

4.14. Remark. The solutions to conjugate equations for Λk and Λk+1 (as in Definition

4.11) satisfy exchange relation eventually for all k with respect to WΛ
• and W

Λ

• . This

directly follows from the fact WΛ
k ’s and W

Λ

k ’s are unitaries. Nevertheless, we still furnish
a proof below. Note that

Σk+1
Λk

∆k+1

Λk+1

Σk+1

Λk

Λk+1

=

Σk+1

∆k+1

=

Σk+1

∆k+1 = Σk+1
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and

∆k+1
Λk

Σk+1

Λk+1

∆k+1

Λk

Λk+1

=
Σk+1

∆k+1

=
∆k+1 .

Hence,
(
Λ•,W

Λ
•
)
: Σ• → ∆• is a dualizable 1-cell in UC with dual

(
Λ•,W

Λ

•

)
as

described above.
We are now in a position to describe our desired dualizable 1-cell (X•,W•) which will

split (Q•,m•, i•) as Q-system.

Define (X•,W•) := Λ• ⊠ F• =


{ΛkFk}k≥0 ,

 Λk−1Fk−1∆k

Σk

ΓkΛk Fk


k≥1


∈ UC1 (Γ•,∆•).

Pictorially, we denoteXk by , Xk by ,Wk by Xk−1

Γk

∆k

Xk

andW ∗
k by Γk

Xk−1

Xk

∆k

.

Define W k :=
Xk−1

∆k

Γk

Xk
:=

Γk

∆k

and
(
W k

)∗
:=

∆k

Xk−1

Xk

Γk
:=

Γk

∆k

Thus, we arrive at our desired 1-cell (X•,W•) ∈ UC1(Γ•,∆•). We list some of the
properties of (X•,W•).

4.15. Lemma.

(i) (X•,W•) is a dualizable 1-cell in UC .

(ii) (X•,W•) has a unitarily separable dual in UC .

Proof. (i) (X•,W•) being a composition of two dualizable 1-cells
(
Λ•,W

Λ
•
)
and

(
F•,W

F
•
)

concludes the result .
(ii) This is immediate from Remark 2.14 and (iii) of Lemma 4.12 .

4.16. Isomorphism of Q-systems.
In this subsection, we build an isomorhpism between X• ⊠X• and Q•. We construct

unitaries γ(k) : XkXk → Qk for each k ≥ l which intertwines the mutliplication and unit
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maps. In the next subsection, we verify the exchange relation of γ(k) for each k ≥ l, thus
implementing isomorphism of the aforementioned Q-systems in UC.

For k ≥ l and for each x ∈ Ob(Mk), define a map β
(k)
x : ΛkΛkFk(x) → FkQk(x) as

follows :

Fk(x) ⊠
Ak

Hk ⊠
Hk

HkAk
∋ u⊠ ξ1 ⊠ ξ2

β
(k)
x7−→

· · ·

· · ·
Γk Γ1

m0

m0

Qk
x
u

ξ1 · ξ2 ∈ FkQk(x)

It is easy to see that, each β
(k)
x is an isometry. Since, Ak

Hk ⊠
Hk

HkAk
is unitarily isomorhpic

to Ak
HkAk

and by application of Lemma 4.6, we see that ΛkΛkFk(x) and FkQk(x) has

same dimension (as a vector space). Hence, surjectiveness will follow. Thus, each β
(k)
x is

a unitary. Also, it easily follows that each β
(k)
x is a natural in x. Thus, we get a unitary

natural transformation β(k) : ΛkΛkFk → FkQk .

Define γ(k) :=
β(k)

Qk

FkΛkΛk

F k

: XkXk → Qk. We show that γ(k) is an isomorphism of

Q-systems XkXk and Qk for k ≥ l. Each γ(k) is a unitary because each β(k) is so and
each Fk is an adjoint equivalence (see Remark 4.5). We need to show that γ(k) intertwines

the multiplication and unit maps. We need to show that

•

=γ(k) γ(k) γ(k)
and

γ(k)
=

•
for k ≥ l. This is what we prove next.

4.17. Proposition. For k ≥ l, γ(k) : XkXk → Qk is an isomorphism of Q-systems.
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Proof. It easily follows that,

•

=γ(k) γ(k) γ(k)
if and only if

•

=β(k)

β(k)

β(k)

.

Now the map,

•

β(k)

β(k)

: Fk(x) ⊠
Ak

Hk ⊠
Hk

Hk ⊠
Ak

Hk ⊠
Hk

Hk → FkQk(x) given as

follows:

•

β(k)

β(k)

(
u⊠ ξ1 ⊠ ξ2 ⊠ ξ3 ⊠ ξ4

)
=

· · ·

· · ·

· · ·

•
u

ξ1 · ξ2

ξ3 · ξ4
=

· · ·

· · ·

u

(ξ1 · ξ2) · (ξ3 · ξ4)

for every u ∈ Fk(x) and ξ1, ξ2, ξ3, ξ4 ∈ Hk . It is straightforward to show that

β(k)

(
u⊠ ξ1 ⊠ ξ2 ⊠ ξ3 ⊠ ξ4

)
=

· · ·

· · ·

u

(ξ1 · (ξ2 · ξ3)) · ξ4 =
· · ·

· · ·

u

(ξ1 · ξ2) · (ξ3 · ξ4)

for every u ∈ Fk(x) and ξ1, ξ2, ξ3, ξ4 ∈ Hk . The last equality follows because of associa-
tivity of Hk as shown in Proposition 3.4. Thus, γ(k) intertwines the multiplication maps
for each k ≥ l.

Also, it is easy to see that γ(k)
=

•
if and only if

β(k)

=

•
. Now, the
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map
β(k)

: Fk(x) → FkQk(x) is given as follows :

β(k) (
u
)
= β(k)

(∑
σ∈Sk

u⊠ σ⊠ σ†
)
=

•
· · ·
u

=

•

(
u
)

for every u ∈ Fk(x)

where Sk ⊂ Hk is as given in Remark 3.7 . Thus, γ(k) intertwines the unit maps for each
k ≥ l . This concludes the proposition.

4.18. Exchange relation of γ(k)’s.
To achieve isomorphism in UC, we still have to show that γ(k)’s satisfy exchange

relation for k ≥ l. This will establish ‘splitting’ of (Q•,m•, i•) ∈ UC1(Γ•,Γ•) by
(X•,W•) ∈ UC1(Γ•,∆•).

4.19. Remark. In order to show that γ(k)’s will satisfy exchange relation for k ≥ l, it
is enough to show that β(k)’s also does so because solutions to conjugate equations for
Fk’s and F k’s satisfy exchange relations for each k ≥ l. So instead of showing exchange
relation of γ(k)’s we will show that β(k)’s satisfy exchange relation for k ≥ l.

We now proceed to show that β(k)’s satisfy exchange relation for k ≥ l.

4.20. Proposition. For k ≥ l, β(k)’s satisfy exchange relation.

Proof. For x ∈ Ob(Mk) the map,

β(k+1)

Qk+1

FkΛkΛk

Σk+1

=

Σk+1

x

β(k+1)

: Fk(x) ⊠
Ak

Hk ⊠
Hk

Hk ⊠
Ak

Ak+1 → Fk+1Qk+1Γk+1(x)

is given as follows:
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Σk+1

x

β(k+1)

(
u ⊠

Ak

ξ1 ⊠
Hk

ξ2 ⊠
Ak

α
)
=

∆k+1

x

β(k+1)

(
u ⊠

Ak

ξ1 · ξ2 ⊠
Hk

α ⊠
Hk+1

1Hk+1

)

Σk+1

x

β(k+1)

(
u⊠
Ak

1Ak+1
⊠
Hk

(ξ1·ξ2)α ⊠
Hk+1

1Hk+1

)
=

(ξ1 · ξ2)α

u
· · ·

· · ·
Γk+1 Γk Γ1

Qk+1

m0

x
Γk+1

=

ξ1 · ξ2

u

α

· · ·

· · ·

· · ·
Γk+1 Γk Γ1

Qk+1

m0

x
Γk+1

for every u ∈ Fk(x), ξ1, ξ2 ∈ Hk, α ∈ Ak+1 . Also, it will easily follow from the definition
of β(k)’s that for every u ∈ Fk(x), ξ1, ξ2 ∈ Hk, α ∈ Ak+1 we have,

β(k)

Qk+1Fk+1

FkΛkΛk

Σk+1

Γk+1

(
u ⊠

Ak

ξ1 ⊠
Hk

ξ2 ⊠
Ak

α
)
=

ξ1 · ξ2

u

α

· · ·

· · ·

· · ·
Γk+1 Γk Γ1

Qk+1

m0

x
Γk+1

Thus, β(k)’s satisfy exchange relation for k ≥ l .

From Remark 2.14, Proposition 4.17, Remark 4.19 and Proposition 4.20 we get the
following theorem.

4.21. Theorem. (Q•,W
Q
•) is isomorphic to


{
XkXk

}
k≥0

,


Xk Xk

Xk+1

Xk+1

Γk+1

Γk+1


k≥1


as Q-systems in UC .
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Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
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