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POINTED SEMIBIPRODUCTS OF MONOIDS

NELSON MARTINS-FERREIRA

Abstract. A new notion of a (pointed) semibiproduct is introduced, which, in the
case of groups amounts to an extension equipped with a set-theoretical section. When
the section is a group homomorphism then a pointed semibiproduct is the same as a
group split extension. The main result of the paper is a characterization of pointed
semibiproducts of monoids using a structure that is a generalization of the action that
is used in the definition of a semidirect product of groups.

1. Introduction

Biproducts were introduced by Mac Lane in his book Homology but can be traced back to
his paper on Duality for groups [17]. Biproducts are useful to study split extensions in the
context of abelian categories in the same way that semidirect products are appropriate to
study group split extensions. Although these concepts have been thoroughly developed
over the last decades in the context of protomodular and semi-abelian categories [1, 2,
3, 15], the notion of relative biproduct introduced by Mac Lane to study relative split
extensions seems to have been forgotten (see [18], p. 263). On the other hand, much
work has been done in extending the tools and techniques from groups [19] to monoids
[6, 7, 8, 11, 12, 13, 16, 24, 27] and even more general settings [14]. However, as it
has been observed several times, it is not a straightforward task to take a well-known
result in the category of groups (or any other semi-abelian category) and materialize
it in the category of monoids not to mention in more general situations. We will argue
that a convenient reformulation of relative biproduct (called semibiproduct) can be used to
study group and monoid extensions in a single unified frame work. Even though semidirect
products are suitable to describe all group split extensions, they fail to capture those group
extensions that do not split. The key observation to semibiproducts in reinterpreting
relative biproducts (see [18], diagram (5.2), p. 263 and compare with diagram (2) in
Definition 3.1) is that although an extension may fail to split as a monoid extension or as
a group extension, it necessarily splits as an extension of pointed sets.
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The main result (Theorem 6.2) establishes an equivalence of categories between pointed
semibiproducts of monoids (Definition 3.2) and pointed monoid action systems (Definition
5.1). The 14 classes of non-isomorphic pointed semibiproducts of 2-element monoids are
listed in Section 7. We start with some motivation in Section 2, introduce Mag-extended
categories and semibiproducts in Section 3, restrict to the pointed case in Section 4 while
studying some stability properties and pointing out some differences and similarities be-
tween groups, monoids and unitary magmas. From Section 5 on we work towards the
main result and restrict our attention to monoids.

2. Motivation

It is well known that a split extension of groups

X
k // A

p // B,

with a specified section s : B → A, can be completed into a diagram of the form

X
k
// A

qoo p // B,
s

oo

in which q : A → X is the map uniquely determined by the formula kq(a) = a − sp(a),
a ∈ A. Furthermore, the information needed to reconstruct the split extension as a
semidirect product is encoded in the map φ : B ×X → X, uniquely determined as

φ(b, x) = q(s(b) + k(x)).

When writing the element φ(b, x) ∈ X as b · x we see that k(b · x) is equal to s(b) +
k(x) − s(b) and that the group A is recovered as the semidirect product X ⋊φ B. In
the event that the section s, while being a zero-preserving map, is not necessarily a
group homomorphism, the classical treatment of group extensions prescribes a different
procedure (see e.g. [26], p. 238). However, the results obtained here suggest that non-
split extensions may be treated similarly to split extensions, and moreover the same
approach is carried straightforwardly into the context of monoids. Indeed, when s is not
a homomorphism, in addition to the map φ, we get a map γ : B ×B → X, determined
as γ(b, b′) = q(s(b) + s(b′)) and the group A is recovered as the set X × B with group
operation

(x, b) + (x′, b′) = (x+ φ(b, x′) + γ(b, b′), b+ b′)

defined for every x, x′ ∈ X and b, b′ ∈ B. Note that X needs not be commutative.
However, instead of simply saying that φ is an action and that γ is a factor system, we
have to consider two maps φ and γ which in conjunction turn the set X ×B into a group
with a prescribed operation (Section 5). This is precisely what we call a semibiproduct
of groups. Observe that when s is a homomorphism, it reduces to the usual notion of
semidirect product.
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Almost every step in the treatment of groups is carried over into the context of
monoids. However, while in groups all extensions are obtained as semibiproducts, in
monoids we have to restrict our attention to those for which there exists a section s and
a retraction q satisfying the condition a = kq(a) + sp(a) for all a ∈ A (Section 3). Conse-
quently, in addition to the maps φ and γ obtained as in groups, a new map ρ : X ×B → X,
determined by ρ(x, b) = q(k(x) + s(b)) needs to be taken into consideration. Hence, the
monoid A is recovered as the set {(x, b) ∈ X ×B | ρ(x, b) = x} with operation

(x, b) + (x′, b′) = (ρ(x+ φ(b, x′) + γ(b, b′), b+ b′), b+ b′) (1)

which is defined for every x, x′ ∈ X and b, b′ ∈ B.

3. Mag-extended categories and (pointed) semibiproducts

The notion of an extended category as introduced in [4] is a triple (C, E, ε) where
E : Cop ×C → Set is a functor and ε : homC → E is a natural transformation whose com-
ponents are all injective. This allows to add imaginary morphisms to the morphisms of C.
From an object X to an object Y , we add the elements of E(X, Y ) \ εX,Y (hom(X, Y )).
Further details can be found in [4], p. 324; see also Example 2.1 in [5], p. 281.

In order to introduce the notion of a semibiproduct we need to have an extended
category with imaginary morphisms, that we will simply call maps, for which a binary
operation is defined for every parallel pair of maps (the operation will be denoted addi-
tively, although it is not assumed to be commutative nor even associative). This means
that instead of an extended category we will need to work in a Mag-extended category
where Mag denotes the category of magmas and magma homomorphisms. In general,
any category M with a forgetful functor U : M → Set into the category of sets and maps
gives rise to the notion of an M-extended category. By an M-extended category we
mean a category C together with a bifunctor map: Cop ×C → M and a natural inclu-
sion ε : homC → U ◦map. For example, when M = Mag, if a category C is a concrete
category over sets in which a meaningful map addition is available then a bifunctor map
is obtained as follows. For every pair of objects (A,B) in C, map(A,B) is the magma of
underlying maps from object A to object B equipped with component-wise addition. In
particular map(A,B) contains homC(A,B) as a subset since

εA,B : homC(A,B) → U(map(A,B))

is required to be a natural inclusion. This means that the category Mag is a Mag-
extended category with map(A,B) the magma of all maps from U(A) to U(B) (functions
which need not be morphisms). If f is a magma homomorphism from A to B then
εA,B(f) is nothing but f considered as a map between the underlying sets of A and B.
In the same way the categories of groups, abelian groups, monoids and commutative
monoids are Mag-categories as well. However, there is a significant distinction between
the Ab-enriched category of abelian groups, the linear category of commutative monoids
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and the Mag-extended categories of groups and monoids, which can also be considered,
respectively, as Grp-extended and Mon-extended categories. If A is an object in an
Ab-enriched category then hom(A,A) is a ring. If A is an object in a linear category then
hom(A,A) is a semiring. In contrast, if A is a group (or a monoid) then hom(A,A) is a
subset of the near-ring map(A,A).

3.1. Definition. Let (C,map, ε) be a Mag-extended category. A semibiproduct is a
tuple (X,A,B, p, k, q, s) represented as a diagram of the shape

X
k
// A

qoo p // B
s

oo (2)

in which p : A → B and k : X → A are morphisms in C, whereas q ∈ map(A,X) and
s ∈ map(B,A). Furthermore, the following conditions are satisfied:

ps = 1B (3)

qk = 1X , (4)

kq + sp = 1A. (5)

There is an obvious abuse of notation in the previous conditions. This is justified
because we will be mostly concerned with the case in which C is the category of monoids
and map(A,B) is the set of zero-preserving maps. In more rigorous terms, the condition
ps = 1B should have been written as map(1B, p)(s) = εB,B(1B) whereas condition qk = 1X
should have been written as map(k, 1X)(q) = εX,X(1X). In the same way the condition
map(1A, k)(q) + map(p, 1A)(s) = εA,A(1A) should replace kq + sp = 1A.

We will now particularise the notion of semibiproduct to the pointed case and work
in the concrete context of monoids as a Mon-extended category. Thus we introduce the
category of pointed semibiproducts of monoids, denoted Psb.

3.2. Definition. A pointed semibiproduct of monoids is a tuple (X,A,B, p, k, q, s) that
can also be represented as a diagram of the shape

X
k
// A

qoo p // B
s

oo (6)

in which X, A and B are monoids (not necessarily commutative), p, k, are monoid homo-
morphisms, while q and s are zero-preserving maps. Moreover, the following conditions
are satisfied:

ps = 1B (7)

qk = 1X (8)

kq + sp = 1A (9)

pk = 0X,B (10)

qs = 0B,X . (11)
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A morphism in Psb, say from (X,A,B, p, k, q, s) to (X ′, A′, B′, p′, k′, q′, s′), is a triple
(f1, f2, f3), displayed as

X
k
//

f1
��

A

f2
��

qoo p // B

f3
��

s
oo

X ′
k′
// A′

q′oo p′ // B′
s′
oo

(12)

in which f1, f2 and f3 are monoid homomorphisms and moreover the following conditions
are satisfied: f2k = k′f1, p

′f2 = f3p, f2s = s′f3, q
′f2 = f1q. Composition of morphisms is

done as expected, that is, (f1, f2, f3) ◦ (g1, g2, g3) = (f1g1, f2g2, f3g3).

3.3. Theorem. Let (X,A,B, p, k, q, s) be a pointed semibiproduct of monoids. For every
a, a′ ∈ A the element a+ a′ ∈ A can be written in terms of q(a), q(a′), p(a) and p(a′) as

k(q(a) + q(sp(a) + kq(a′)) + q(sp(a) + sp(a′))) + s(p(a) + p(a′)). (13)

Proof. We observe:

a+ a′ = kqa+ (spa+ kqa′) + spa′ (kq + sp = 1)

= kqa+ kq(spa+ kqa′) + sp(spa+ kqa′) + spa′

= kqa+ kq(spa+ kqa′) + spa+ spa′ (ps = 1, pk = 0)

= kqa+ kq(spa+ kqa′) + kq(spa+ spa′) + sp(spa+ spa′)

= kqa+ kq(spa+ kqa′) + kq(spa+ spa′) + s(pa+ pa′)

= k(qa+ q(spa+ kqa′) + q(spa+ spa′)) + sp(a+ a′).

The previous result suggests a transport of structure from the monoid A into the set
X × B as motivated with formula (1) in Section 2. However, as we will see, in order to
keep an isomorphism with A we need to restrict the set X × B to those pairs (x, b) for
which there exists a ∈ A such that x = q(a) and b = p(a).

Furthermore, we observe that the condition qs = 0B,X has not been used and what
is more, the proof can be carried out straightforwardly from the concrete category of
monoids to any Mon-extended category via generalized elements.

4. Stability properties of pointed semibiproducts

From now on the categoryC is assumed to be either the category of groups or the category
of monoids (occasionally we will refer to the category of unitary magmas) and map(A,B)
is the magma of zero-preserving maps with component-wise addition.

As introduced in the previous section, a pointed semibiproduct is a semibiproduct
satisfying two extra conditions, namely

pk = 0X,B, qs = 0B,X . (14)

However, as it is well known, in the case of groups this distinction is irrelevant.
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4.1. Proposition. Every semibiproduct of groups is pointed.

Proof. We have pk = p1Ak = p(kq + sp)k = pkqk + pspk = pk + pk. And s = 1As =
(kq + sp)s = kqs + sps = kqs + s. Hence we may conclude pk = 0 and kqs = 0. Since k
is a monomorphism qs = 0.

The previous proof also shows that a semibiproduct of monoids is pointed as soon as
the monoid A admits right cancellation. Clearly, this is not a general fact.

4.2. Proposition. Let A be a monoid. The tuple (A,A,A, 1A, 1A, 1A, 1A) is a semibi-
product of monoids if and only if A is an idempotent monoid.

Proof. Condition (5) in this case becomes a = a+ a for all a ∈ A.

Every pointed semibiproduct of monoids has an underlying exact sequence.

4.3. Proposition. Let (X,A,B, p, k, q, s) be a pointed semibiproduct of monoids. The
sequence

X
k // A

p // B

is an exact sequence.

Proof. Let f : Z → A be a morphism such that pf = 0. Then the map f̄ = qf is a
homomorphism

qf(z + z′) = q(fz + fz′) = q(kqf(z) + spf(z) + kqf(z′) + spf(z′))

= q(kqf(z) + 0 + kqf(z′) + 0)

= qk(qf(z) + qf(z′)) = qf(z) + qf(z′)

and it is unique with the property kf̄ = f . Indeed, if kf̄ = f then qkf̄ = qf and hence
f̄ = qf . This means that k is the kernel of p.

Let g : A → Y be a morphism and suppose that gk = 0. It follows that g = gsp,

g = g1A = g(kq + sp) = gkq + gsp = 0 + gsp = gsp,

and consequently the map ḡ = gs is a homomorphism, indeed

gs(b) + gs(b′) = g(sb+ sb′) = gsp(sb+ sb′) = gs(b+ b′).

The fact that ḡ = gs is the unique morphism with the property ḡp = g follows from
ḡps = gs which is the same as ḡ = gs. Hence p is the cokernel of k and the sequence is
exact.
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The following results show that pointed semibiproducts are stable under pullback and
in particular split semibiproducts of monoids are stable under composition.

4.4. Proposition. Pointed semibiproducts of monoids are stable under pullback.

Proof. Let (X,A,B, p, k, q, s) be a pointed semibiproduct of monoids displayed as the
bottom row in the following diagram which is obtained by taking the pullback of p along
an arbitrary morphism h : C → B, with induced morphism ⟨k, 0⟩ and map ⟨sh, 1⟩,

X
⟨k,0⟩

// A×B C

π1

��

qπ1oo π2 // C

h
��

⟨sh,1⟩
oo

X
k

// A
qoo p // B.

s
oo

(15)

We have to show that the top row is a pointed semibiproduct of monoids. By construction
we have π2⟨sh, 1⟩ = 1C , π2⟨k, 0⟩ = 0, qπ1⟨sh, 1⟩ = qsh = 0, qπ1⟨k, 0⟩ = qk = 1X . It
remains to prove the identity

(a, c) = (kq(a), 0) + (sh(c), c) = (kq(a) + sh(c), c)

for every a ∈ A and c ∈ C with p(a) = h(c), which follows from a = kq(a) + sp(a) =
kq(a) + sh(c).

The previous results are stated at the level of monoids but are easily extended to
unitary magmas. The particular case of semidirect products has been considered in [14]
and the notion of composable pair of pointed semibiproducts is borrowed from there.
We say that a pointed semibiproduct (X,A,B, p, k, q, s) can be composed with a pointed
semibiproduct (C,B,D, p′, k′, q′, s′) if the tuple

(A×B C,A,D, p′p, π1, q
′′, ss′),

in which q′′ is such that π1q
′′ = kq + sk′q′p and π2q

′′ = q′p, is a pointed semibiproduct.

A×B C

π1

��

π2 // C

k′

��

⟨sk′,1⟩
oo

X
k

// A
qoo p //

p′p
��

B
s

oo

p′

��
D D.

(16)

Note that in the case of groups the map q is uniquely determined as q(a) = a− sp(a) for
all a ∈ A. However this is not the case for monoids nor for unitary magmas.

4.5. Proposition. A pointed semibiproduct of monoids (X,A,B, p, k, q, s) can be com-
posed with (C,B,D, p′, k′, q′, s′), another pointed semibiproduct of monoids, if and only if
the map s is equal to the map sk′q′ + ss′p′.
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Proof. Let us observe that the tuple (A ×B C,A,D, p′p, π1, q
′′, ss′) is a pointed semibi-

product if and only if π1q
′′+ss′p′p = 1A. Indeed, the kernel of the composite p′p is obtained

by taking the pullback of p along k′, the kernel of p′, as illustrated in diagram (16).
In order to obtain a pointed semibiproduct we complete de diagram with a map q′′

such that π1q
′′ = kq + sk′q′p and π2q

′′ = q′p as illustrated

A×B C

π1

��

π2 // C

k′

��

⟨sk′,1⟩
oo

X
k

// A
qoo

q′′

OO

p //

p′p
��

B
s

oo

p′

��
D

ss′

OO

D.

(17)

The map q′′ is well defined, p(kq+ sk′q′p) = pkq+psk′q′p = k′q′p. Moreover, p′pss′ = 1D,
p′pπ1 = p′k′π2 = 0, q′′ss′ = 0 and we observe

q′′π1 = ⟨kq + sk′q′p, q′p⟩π1

= ⟨kqπ1 + sk′q′pπ1, q
′pπ1⟩

= ⟨kqπ1 + sk′q′k′π2, q
′k′π2⟩

= ⟨kqπ1 + spπ1, π2⟩
= ⟨π1, π2⟩ = 1A×BC .

It remains to analyse the condition π1q
′′ + ss′p′p = 1A. If s = sk′q′ + ss′p′ then we

have π1q
′′ + ss′p′p = kq + sk′q′p + ss′p′p and hence kq + sp = 1A. Conversely, having

π1q
′′ + ss′p′p = 1A we get kq + sk′q′p + ss′p′p = 1A and kqs + sk′q′ps + ss′p′ps = s so

sk′q′ + ss′p′ = s.

Note that associativity is used to convert (kq+sk′q′p)+ss′p′p into kq+(sk′q′p+ss′p′p).
Moreover, if the map s is a homomorphism then condition s = sk′q′ + ss′p′ is trivial. A
pointed semibiproduct (X,A,B, p, k, q, s) in which the map s is a homomorphism is called
a pointed split semibiproduct. This means that pointed split semibiproducts of monoids
are stable under composition.

In spite of the fact that the previous results have been presented in the concrete
categories of groups and monoids (and that Propositions 4.3 and 4.4 are also valid for
unitary magmas), it is clear that Propositions 4.1, 4.4, 4.5 are still valid at the level of
UMag-extended categories, or Mon-extended categories when associativity is required,
or Grp-extended categories when inverses are required as well.

5. The category of pointed monoid action systems

The purpose of this section is to introduce the category of pointed monoid action systems,
which will be denoted as Act. This category is obtained by requiring the existence of a
categorical equivalence between Act and Psb (see Theorem 6.2).
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5.1. Definition. A pointed monoid action system is a five-tuple

(X,B, ρ, φ, γ)

in which X and B are monoids, ρ : X ×B → X, φ : B ×X → X, γ : B ×B → X are
maps such that the following conditions are satisfied for every x ∈ X and b, b′ ∈ B:

ρ(x, 0) = x, ρ(0, b) = 0 (18)

φ(0, x) = x, φ(b, 0) = 0 (19)

γ(b, 0) = 0 = γ(0, b) (20)

ρ(x, b) = ρ(ρ(x, b), b) (21)

φ(b, x) = ρ(φ(b, x), b) (22)

γ(b, b′) = ρ(γ(b, b′), b+ b′) (23)

and moreover the following condition holds for every x, x′, x′′ ∈ X and b, b′, b′′ ∈ B,

ρ(ρ(x+ φ(b, x′) + γ(b, b′), b+ b′) + φ(b+ b′, x′′) + γ(b+ b′, b′′), b′′′) =

= ρ(x+ φ(b, ρ(x′ + φ(b′, x′′) + γ(b′, b′′), b′ + b′′)) + γ(b, b′ + b′′), b′′′) (24)

where b′′′ = b+ b′ + b′′.

A morphism of pointed monoid action systems, say from a pointed monoid action
system (X,B, ρ, φ, γ) to (X ′, B′, ρ′, φ′, γ′) is a pair (f, g) of monoid homomorphisms, with
f : X → X ′ and g : B → B′ such that for every x ∈ X and b, b′ ∈ B

f(ρ(x, b)) = ρ′(f(x), g(b)), (25)

f(φ(b, x)) = φ′(g(b), f(x)), (26)

f(γ(b, b′)) = γ′(g(b), g(b′)). (27)

The composition of morphisms between pointed monoid action systems is as expected,
namely (f, g) ◦ (f ′, g′) = (ff ′, gg′).

5.2. Theorem. There exists a functor R : Act → Mon such that for every morphism in
Act, say (f, g) : (X,B, ρ, φ, γ) → (X ′, B′, ρ′, φ′, γ′), the diagram

X
⟨1,0⟩

//

f

��

R(X,B, ρ, φ, γ)

R(f,g)

��

πXoo πB // B

g

��

⟨0,1⟩
oo

X ′
⟨1,0⟩
// R(X ′, B′, ρ′, φ′, γ′)

πXoo πB // B
⟨0,1⟩
oo

(28)

is a morphism in Psb.

The functor R realizes a pointed monoid action system (X,B, ρ, φ, γ) as a synthetic
semibiproduct diagram

X
⟨1,0⟩

// R
πXoo πB // B

⟨0,1⟩
oo (29)
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in which R = R(X,B, ρ, φ, γ) = {(x, b) ∈ X × B | ρ(x, b) = x} is equipped with the
binary synthetic operation

(x, b) + (x′, b′) = (ρ(x+ φ(b, x′) + γ(b, b′), b+ b′), b+ b′) (30)

which is well defined for every x, x′ ∈ X and b, b′ ∈ B due to condition (21) and is
associative due to condition (24). It is clear that πB is a monoid homomorphism and
due to conditions (18)–(20) we see that the maps ⟨1, 0⟩ and ⟨0, 1⟩ are well defined and
moreover ⟨1, 0⟩ is a monoid homomorphism. Finally, we observe that a pair (x, b) ∈ X×B
is in R if and only if (x, b) = (x, 0) + (0, b).

Further details on the more general situation of (not necessarily pointed) semibiprod-
ucts of semigroups rather than monoids can be found in the preprint [22].

6. The equivalence

In order to establish a categorical equivalence between Act and Psb we need a procedure
to associate a pointed monoid action system to every pointed semibiproduct of monoids
in a functorial manner.

6.1. Theorem. Let (X,A,B, p, k, q, s) be an object in Psb. The system (X,B, ρ, φ, γ)
with

ρ(x, b) = q(k(x) + s(b)) (31)

φ(b, x) = q(s(b) + k(x)) (32)

γ(b, b′) = q(s(b) + s(b′)) (33)

is an object in Act. Moreover, if (f1, f2, f3) is a morphism in Psb then (f1, f3) is a
morphism in Act.

Proof. To see that the system (X,B, ρ, φ, γ) is a well defined object inAct we recall that
q and s are zero-preserving maps and hence conditions (18)–(20) are satisfied. Conditions
(21)–(23) are obtained by applying the map q to both sides of equations

k(x) + s(b) = kq(k(x) + s(b)) + s(b)

s(b) + k(x) = kq(s(b) + k(x)) + s(b)

s(b) + s(b′) = kq(s(b) + s(b′)) + s(b+ b′)

which hold because (X,A,B, p, k, q, s) is a pointed semibiproduct of monoids. Condition
(24) follows from Theorem 3.3 with a = k(x) + s(b), a′ = k(x′) + s(b′) + k(x′′) + s(b′′) on
the one hand whereas on the other hand a = k(x)+s(b)+k(x′)+s(b′), a′ = k(x′′)+s(b′′).
Moreover, the pair (f1, f3) is a morphism of actions as soon as the triple (f1, f2, f3) is a
morphism of semibiproducts, indeed we have

f1(ρ(x, b)) = f1q(k(x) + s(b)) = q′f2(k(x) + s(b))

= q′(k′f1(x) + s′f3(b))) = ρ′(f1(x), f3(b))

and similarly for φ and γ thus proving conditions (25)–(27).
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The previous result describes a functor from the category of pointed semibiproducts
of monoids into the category of pointed monoid action systems, let us denote it by
P : Psb → Act. The synthetic construction of Theorem 5.2 produces a functor in the
other direction, let us denote it Q : Act → Psb. We will see that PQ = 1 whereas
QP ∼= 1. It is clear that both constructions preserve composition and identity morphisms.

6.2. Theorem. The categories Psb and Act are equivalent.

Proof. Theorem 6.1 tells us that the assignment P (X,A,B, p, k, q, s) = (X,B, ρ, φ, γ)
and P (f1, f2, f3) = (f1, f3) is a functor from Psb to Act whereas Theorem 5.2 gives a
functor Q in the other direction. It is clear that Q(X,B, ρ, φ, γ) is the synthetic realiza-
tion (X,R,B, πB, ⟨1, 0⟩, πX , ⟨0, 1⟩) displayed in (29) and hence it is a pointed semibiprod-
uct. Moreover Q(f, g) = (f,R(f, g), g) with R(f, g) illustrated as in (28) and defined as
R(f, g)(x, b) = (f(x), g(b)) is clearly a morphism of semibiproducts.

We observe that PQ(X,B, ρ, φ, γ) = (X,B, ρ, φ, γ) due to conditions (22) and (23).
This proves PQ = 1, in order to prove QP ∼= 1 we need to specify natural isomorphisms
α and β as illustrated

A
αA //

f2
��

RP (X,A,B, p, k, q, s)
βA

oo

R(f1,f3)

��
A′

αA′// RP (X ′, A′, B′, p′, k′, q′, s′)
βA′

oo

(34)

and show that they are compatible with diagrams (12) and (28). Indeed it is a routine
calculation to check that α(a) = (q(a), p(a)) and β(x, b) = k(x) + s(b) are well defined
natural isomorphisms compatible with semibiproducts.

The particular case of groups can be found in more detail in the preprint [22].

7. Examples

Here we list all the possible pointed semibiproducts of monoids (X,A,B, p, k, q, s) in which
X and B are monoids with two elements. This particular case is interesting because it
gives a simple list with all the possible components of an action system (X,B, ρ, φ, γ).
The equivalence of Theorem 6.2 then gives us an easy way of checking all the possibilities.
Let us denote by M and G the two monoids with two elements, M being the idempotent
monoid while G being the group, both expressed in terms of multiplication tables as

M =

(
1 2
2 2

)
, G =

(
1 2
2 1

)
.

Note that we are using multiplicative notation so that 2 · 2 = 2 in M , whereas in G we
have 2 · 2 = 1. Due to restrictions (18)–(20) we have the following two possibilities for
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each component ρ, φ and γ:

ρ0 =

(
1 1
2 2

)
, ρ1 =

(
1 1
2 1

)
,

φ0 =

(
1 2
1 2

)
, φ1 =

(
1 2
1 1

)
,

γ0 =

(
1 1
1 1

)
, γ1 =

(
1 1
1 2

)
.

The following list shows all the possible 14 cases of pointed semibiproducts of monoids
(X,A,B, p, q, k, q, s) in which X and B are either M or G via the equivalence of Theorem
6.2.

1. (G,G, ρ0, φ0, γ0)

2. (G,G, ρ0, φ0, γ1)

3. (G,M, ρ0, φ0, γ0)

4. (G,M, ρ0, φ0, γ1)

5. (G,M, ρ0, φ1, γ0)

6. (G,M, ρ1, φ1, γ0)

7. (M,G, ρ0, φ0, γ0)

8. (M,G, ρ0, φ0, γ1)

9. (M,G, ρ1, φ1, γ1)

10. (M,M, ρ0, φ0, γ0)

11. (M,M, ρ0, φ0, γ1)

12. (M,M, ρ0, φ1, γ0)

13. (M,M, ρ0, φ1, γ1)

14. (M,M, ρ1, φ1, γ0)

Note that the cases with γ0 correspond to split extensions while the cases with ρ0 cor-
respond to Schreier extensions. The cases with ρ1 correspond to R = {(1, 1), (1, 2), (2, 1)}
since (2, 2) fails to be in R because ρ1(2, 2) = 1 ̸= 2. If interpreting φ as an action then
the map φ0 is the trivial action whereas φ1 is a non-trivial action.

8. Conclusion

A new tool has been introduced for the study of monoid extensions from which a new
notion of action has emerged in order to establish the categorical equivalence of Theorem
6.2. A clear drawback to this approach is the necessity of handling morphisms and maps
at the same level. We have solved the problem by extending the hom-functor through an
appropriate profunctor (Definition 3.1) in the fashion of imaginary morphisms [4, 5, 25].
Other possible solutions would consider maps as an extra structure in higher dimensions
[9, 20, 21]. A further development of categorical frameworks in which to study semibiprod-
ucts seems desirable due to several important cases occurring in different settings. For
example, semibiproduct extensions can be studied in the context of preordered monoids
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[23] and preordered groups [10], where the maps q and s are required to be monotone
maps rather than zero-preserving maps. The context of topological monoids [13] should
also be worthwhile studying with q and s required to be continuous maps.
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Jǐŕı Rosický, Masaryk University: rosicky@math.muni.cz
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