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ON THE CONSTRUCTION OF NOETHERIAN FORMS
FOR ALGEBRAIC STRUCTURES

FRANCOIS KOCH VAN NIEKERK

Abstract. A Noetherian form is a self-dual axiomatic context in which the Noether
isomorphism theorems and other homomorphism theorems can be established. These
theorems for group-like algebraic structures (for example groups, rings without unity
and vector spaces) can be obtained by choosing a Noetherian form based on lattices of
subalgebras. In this paper we show that by replacing lattices of subalgebras with some
other lattices, it becomes possible to move beyond group-like structures and encompass
all types of algebraic structures (including sets, monoids, lattices). Moreover, we show
that in a suitable sense, existence of a Noetherian form for a give type of mathematical
structure is intimately linked with algebraicity of structures. The isomorphism theorems
resulting from applying these Noetherian forms recover the isomorphism theorems known
for general algebraic structures in the literature.

1. Introduction

For groups, the Noether isomorphism theorems are results on quotient groups. One
way of establishing these theorems, is by only using properties of the subgroup lattices
together with homomorphisms (see for example [5]). A Noetherian form (see [1] and
[6]) is a self-dual generalization of the context of groups, subgroup lattices and group
homomorphisms. The axioms for a Noetherian form are a sufficient set of conditions
that allows us to establish homomorphism theorems for groups, such as the Noether
isomorphism theorems and homological diagram lemmas. Some of these conditions are:

• for any group homomorphism f : X → Y and subgroup A ⩽ X, we have

f−1fA = A ∨Ker f ;

• surjective group homomorphisms p have the property that if Ker g ⩾ Ker p for any
homomorphism g, then there exists unique h such that g = hp;

• the join of normal subgroups is normal.

For group-like varieties (those varieties whose category is a semi-abelian category), their
subalgebras lattices together with the usual direct- and inverse images gives rise to a
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Noetherian form. But for the non group-like varieties, the substructure lattices do not
necessarily have these properties. For example, the variety of sets together with functions
and subset lattices. In a Noetherian form, the kernel is defined as the inverse image of
the least subobject. So for sets and subset lattices, Ker f = f−1∅ = ∅ for any function f .
So immediately the first point will fail.

Noetherian forms are general enough, that they allow freedom for selecting different
subobject lattices (as long as the axioms are satisfied). Together with Zurab Janelidze,
suitable “subobject lattices” for sets were found (see [7]): For each setX, its new subobject
lattice is

subX = {(A,R) |R is equivalence relation on X, and

A is either an equivalence class of R or empty subset},

where the ordering is component-wise (refer to Section 6 for details). Both the lattice of
subsets and the lattice of equivalence relations of X are sublattices of this new lattice.

For convenience, we can capture this new subobject lattice (together with the direct-
and inverse image maps) as a functor F : A → Set to the category of sets and functions.
More explicitly, we can construct category A and functor F , such that subX ∼= {S ∈
A | FS = X}, for any set X. Likewise, any Noetherian form can be conveniently defined
as a functor having suitable properties. An advantage of representing a Noetherian form
as a functor, is that it simplifies construction of Noetherian forms out of old ones. For
example, if V is the category of a variety together with its homomorphisms, then the
pullback of the Noetherian form F : A → Set along the forget U : V → Set turns out
to also be a Noetherian form (see Corollary 6.2). The resulting subobject lattices for
each algebra will then again be lattices which contain both the subalgebras as well as the
congruences. The Noetherian isomorphism theorems that arise form these Noetherian
forms are almost precisely equivalent to the known isomorphism theorems in universal
algebra. These details are discussed in Section 6.

Since the forgetful functor U : V → Set from the category of any variety to sets is a
right adjoint, the goal of this paper is then to study more generally when a pullback of a
Noetherian form along a right adjoint results in a Noetherian form (Sections 2 – 4). One
of the main results is that if this pullback is Noetherian, then the right adjoint U has to
be monadic. So in particular, this construction of Noetherian forms for varieties will not
hold for topological spaces (whether topological spaces has a Noetherian form, is still an
open question).

2. Noetherian forms

2.1. Definitions and axioms. In this section, we introduce Noetherian and related
forms and all the results which will be used throughout this paper. No further knowledge
of Noetherian forms is required for this paper. Essentially an “orean” form is a category
where every object is equipped with a bounded lattice and every morphism induces a
direct and inverse image between these lattices. While a “Noetherian” form is an orean
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form satisfying three further axioms. The prime example of a Noetherian form is the
category of groups together with its subgroup lattices. Keeping this example in mind, the
new abstract concepts are other ways to generalize the known classical concepts.

2.2. Definition. A form over a category C is a faithful amnestic functor F : B → C,
for some category B.

Recall that a functor is amnestic when the only isomorphisms mapping to the identity
morphisms by the functor are the identity morphisms.

In a form F : B → C, we can define the following structure, for every A ∈ C and
f : A → B in C:

• subA = {S ∈ B | FS = A};

• R ⩾f S if and only if there is k : S → R in B such that Fk = f .

Elements of subA are called subobjects of A.

2.3. Definition. An orean form F over a category C is a form satisfying the following,
for any f : A → B and g : B → C:

• subA under the ordering ⩾1A forms a bounded lattice with top element ⊤A and
bottom element ⊥A;

• {R ∈ subB | R ⩾f S} has a minimum element, which is called the direct image of
S under f and is denoted by f ·F S;

• {S ∈ subA | R ⩾f S} has a maximum element, which is called the inverse image of
R under f and is denoted by R ·F f ;

• we have the following identities, where 1A is the identity morphism:

1A ·F S = S = S ·F 1A, (gf) ·F S = g ·F f ·F S, R ·F (gf) = R ·F g ·F f.

In an orean form, the direct and inverse images form a galois connection. In particular,
we have the following identity:

R ·F f ⩾F S ⇐⇒ R ⩾F
f S ⇐⇒ R ⩾F f ·F S.

We will typically drop the superscripts of F when it is clear in which form F we are
working. Also, ⩽1A will typically be denoted by just ⩽.

This additional structure from an orean form allows us to define the following concepts:

• the kernel and image of a morphism f : A → B are respectively defined as

Ker f = ⊥B ·F f and Im f = f ·F ⊤A;
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• a subobject is normal (or F -normal) if it is a kernel of some morphism, while a
subobject is conormal (or F -conormal) if is the image of some morphism.

Of course, in the example of groups the normal subobjects are precisely the normal
subgroups. The initial goal of Noetherian forms was to find a self-dual context in which
one could establish the Noether isomorphism theorems. In the example of groups, all
subgroups are conormal, but for the sake of self-duality, we will not require all subobjects
to be conormal for a general Noetherian form.

Lastly, we generalize the concept of quotienting out with a normal subgroup and
embedding a (conormal) subgroup as follows:

• morphism m is an embedding of conormal subobject C if Imm = C and for any f
such that Im f ⩽ C, there is a unique h such that mh = f ;

• morphism p is a projection of normal subobject N if Ker p = N and for any g such
that Ker g ⩾ N , there is a unique k such that kp = g.

A diagrammatic display of the embedding m and the projection p:

• •

•

m

h
f

• •

•

p

g k

2.4. Definition. A Noetherian form F over a category C is an orean form satisfying:

(N1) for every morphism f : A → B and subobjects S ∈ subA and R ∈ subB, we have

f · (R · f) = R ∧ Im f and (f · S) · f = S ∨Ker f ;

(N2) every morphism f factorizes as f = mp, where m is an embedding of Im f and p is
a projection of Ker f ;

(N3) the meet of conormal subobjects is conormal, and the join of normal subobjects is
normal.

2.5. Preliminary results. Most of the proofs in this subsection could be found in [1].
The dual of a form F is the opposite functor F op. In particular, R ⩽f S is dual to

R ⩾f S, meet is dual to join, top element is dual to bottom element, inverse images are
dual to direct images, kernel is dual to image, projection is dual to embedding, normal
subobject is dual to conormal subobject. Note an orean form as well as (N1), (N2), (N3)
are self-dual. Consequently, the duals of all the results stated in this subsection will also
be true.

2.6. Lemma. Consider an orean form satisfying (N1) and (N2). A morphism f is a
projection if and only if Im f = ⊤.

Here are some immediate consequences of this lemma and (N2), and also from the
definition.
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2.7. Lemma. In an orean form satisfying (N2),

• any projection is an epimorphism;

• the composite of any two projections is a projection;

• if gf is a projection, then g is a projection, for any two composable morphisms;

• any split epimorphism is a projection;

• any morphism is an isomorphism if and only if it is both an embedding and a pro-
jection.

2.8. Lemma. In an orean form F , consider two conormal subobjects S and R of the same
object A, which have respective embeddings ιS and ιR and whose meet R∧ S is conormal.
The commutative diagram

• A

• •

ιS

π1

π2

d ιR

is a pullback if and only if the diagonal d is an embedding of R ∧ S.

Proof. Suppose d is an embedding of R ∧ S. Consider any two morphism f and g with
the same domain, such that ιSf = ιRg. We readily have that Im(ιSf) ⩽ S ∧ R. Since d
is an embedding of R ∧ S, there is a unique h such that dh = ιSf = ιRg. We have

ιSf = dh = ιSπ1h =⇒ f = π1h,

since any embedding is a mono (dual of the first point of Lemma 2.6). Likewise, g = π2h.
If there was another morphism k such that f = π1k and g = π2k, then

dk = ιSπ1k = ιSf = ιSπ1h = dh =⇒ k = h,

since any embedding is a mono. Consequently, the diagram in the lemma statement is a
pullback.

Conversely, suppose the given diagram is a pullback. Since d factors through ιS and
ιR, Im d ⩽ R ∧ S. Consider any morphism f into A such that Im f ⩽ R ∧ S. Then in
particular, Im f ⩽ S, and thus there exists a unique k such that f = ιSk. Likewise, there
exists a unique l such that f = ιRl. Since the given square is a pullback, there exists a
unique h such that π1h = k and π2h = l. Consequently

f = ιSk = ιSπ1h = dh.

So f factors through d. Since embeddings are monos, and π1 and π2 are jointly monic, it
follows that f uniquely factors through d. Thus, if we can conclude that Im d = R ∧ S,
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then d is an embedding of R ∧ S. From the assumptions, we assumed that R ∧ S is
conormal, thus there is some morphism g such that Im g = R ∧ S. Then, from the
previous arguments, g factors through d, and thus

R ∧ S = Im g ⩽ Im d ⩽ R ∧ S,

and thus Im d = R ∧ S.

3. Lifting orean forms along functors

Consider an orean form NX : B → X over a category X and a functor G : C → X. We can
construct a pullback

A C

B X

NC

F G

NX

where the objects of A are pairs of objects (S,A) ∈ B × C, such that NX(S) = GA
and the morphisms in A are pairs of morphisms (k, f) in B × C such that NX(k) = Gf ,
and the functors F and NC projects on to the first and second component respectively.
Throughout this paper, we will call this specifically constructed NC as “the” pullback of
NX along functor G.

For simplicity, when NC appears as a superscript, we will instead use C. That is,
instead of X ·NC f , we write X ·C f . And instead of X ⩾NC

f Y , we write X ⩾C
f Y .

Similarly, for NX we will use X.

3.1. Lemma. If NX is a form over a category X and G : C → X is a functor, then the
pullback NC of NX along G is a form where

• subC A = {(S,A) ∈ A | S ∈ subX(GA)}, and

• (S,B) ⩾C
f (R,A) ⇐⇒ S ⩾X

Gf R,

for any object A ∈ C, morphism f : A → B in C and subobjects (R,A) and (S,B).

Proof. That NC is a form, readily follows from how NC is defined and that NX is a form.
For any object A ∈ C, by definition of the subobject lattice and NC, we have

subC A = {(S,A) ∈ A | NX(S) = GA} = {(S,A) ∈ A | S ∈ subX(GA)}.

Further, by definition

(S,B) ⩾C
f (R,A) ⇐⇒ ∃k : R→S

(
(k, f) ∈ A

)
⇐⇒ ∃k : R→S(NXk = Gf) ⇐⇒ S ⩾X

Gf R.
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3.2. Notation. For simplicity, we will identify each subobject (S,A) in subC A with S,
so that

subC A = subX(GA).

Also then, for any morphism f in C and subobjects R and S, we have

S ⩾C
f R ⇐⇒ S ⩾X

Gf R.

From this notational convention, we readily have the following result.

3.3. Proposition. If NX is an orean form, then its pullback NC is also orean. In par-
ticular, the following identities are satisfied:

• f ·C R = Gf ·X R and S ·C f = S ·X Gf ;

• R ∧C S = R ∧X S and R ∨C S = R ∨X S;

• ⊤C = ⊤X and ⊥C = ⊥X.

Further, if NX satisfies (N1), then NC also satisfies (N1).

We also readily have the following consequence.

3.4. Corollary. If NX is an orean form satisfying (N1), then NC is also an orean form
satisfying (N1).

The other two axioms of a Noetherian form does not necessarily carry over from NX

to its pullback NC. For example, a subobject N ∈ subX(GA) = subC A that is normal in
NX might not be normal in NC, since normality of a subobject depends on the morphisms
that are in the category, and not just the orean structure. Consequently, (N3) does not
carry over so nicely as (N1). We will explore conditions under which (N2) and (N3) carry
over.

4. Lifting orean forms along right adjoints

Throughout this section we will be working with

• an adjunction ⟨F,G, η, ε⟩ : X → C, and T = GF ,

• where X has an orean form NX,

• and NC denotes the pullback of NX along G.

The proposition below is only for interest sake. Unlike the other propositions, this
proposition will have no further use in this paper.

4.1. Proposition. For any NX-projection p : X → Y in X, the smallest NC-normal sub-
object in subC(FX) = subX(GFX) which contains ηX ·XKerX p is KerC(Fp) = KerX(GFp).
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Proof. From the naturality of η and that inverse images form a monotone Galois con-
nection, we see that

KerX(GF (p)ηX) = KerX(ηY p) ⩾ KerX p =⇒ KerC(Fp) = KerX(GFp) ⩾ ηX ·XKerX p.

Consider any NC-normal subobject N above ηX ·XKer p. Since N is normal, there is some
f in C such that KerC f = KerX(Gf) = N . We have the following diagram

GFX GFY

GM

X Y

GFp

Gf

Gh
ηX

p

g

ηY

Notice that

KerX(Gf) = N ⩾ ηX ·X KerX p =⇒ KerX
(
G(f)ηX

)
⩾ KerX p.

Since p is a projection, there exists a unique g such that the left lower triangle commutes.
Since ηY is a universal arrow to G, there exists a unique h : FY → M such that the right
triangle commutes. And lastly, notice that

G(hFp)ηX = G(h)GF (p)ηX = G(h)ηY p = gp = G(f)ηX .

And since ηX is a universal arrow, hF (p) = f , and consequently the upper trian-
gle commutes as well. From the commutativity of the upper triangle, it follows that
KerX(GFp) ⩽ KerX(Gf) = N , demonstrating that KerX(GFp) = KerC(Fp) is the small-
est NC-normal subobject above ηX ·X KerX p.

4.2. Proposition. Suppose NC has embeddings for any conormal subobject and G pre-
serves embeddings. For any morphism f : X → Y , the smallest NC-conormal in

subC(FY ) = subX(GFY )

which contains ImX(ηY f), is ImC(Ff) = ImX(GFf).

Proof. From the naturality of η, we have

ImX(ηY f) = ImX(GF (f)ηX) ⩽ ImX(GFf) = ImC(Ff).

Consider any NC-conormal subobject C above ImX(ηY f), whose embedding is ιC . We
have the following diagram

GFX GFY

GC

X Y

GFf

Gh GιC

ηX

g

f

ηY
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Since G preserves embeddings, GιC is an embedding, and moreover, ImX(GιC) = ImC ιC =
C. Further, since C is above above ImX(ηY f), there exists a g : X → GC such that the
bottom triangle commutes. Since ηX is a universal arrow to G, there exists a unique arrow
h : FX → C making the left triangle commute. Again it follows from the universality of
ηX that the top triangle commutes. Consequently, C ⩾ ImX(GFf).

4.3. Corollary. If NC has embeddings for any conormal subobject and G preserves
embeddings, then the smallest NC-subobject above ImX ηX is ⊤C = ⊤X.

Proof. Apply the above proposition with f = 1X .

4.4. Proposition. If both NX and NC satisfy (N1) and (N2), then

• G preserves and reflects projections and embeddings;

• F preserves projections.

In particular, f is an NC-embedding of S if and only if Gf is an NX-embedding of S.
Likewise, also for projections.

Proof. From the construction of NC from NX, Im
C f = ImX(Gf) and ⊤C = ⊤X. Thus,

from Lemma 2.6, it follows that f is anNC-projection if and only ifGf is anNX-projection.
In other words, G preserves and reflects projections. Likewise, G will preserve and reflect
embeddings. The last line of the proposition follows likewise from the fact that ImC f =
ImX(Gf) and KerC f = ImX(Gf).

Consider a projection p : X → Y in X. Then ImC(Fp) is the smallest NC-conormal
subobject which contains ImX(ηY p) by Proposition 4.2. Using the above corollary, we
have

ImC(Fp) ⩾ ImX(ηY p) = ηY ·X p ·X ⊤X = ηY ·X ⊤X = ⊤X = ⊤C.

Thus ImC(Fp) = ⊤C, and thus from Lemma 2.6, Fp is a projection.

4.5. Proposition. Suppose both NX and NC satisfy (N1) and (N2). If NX satisfies the
meet part of (N3), then NC also satisfies the meet part of (N3).

Proof. Consider two NC-conormal subobjects R and S of an object C in C, where
ιR and ιS are their respective embeddings. By Proposition 4.4, both GιR and GιS are
embeddings. Then, by Lemma 2.8 there exists a pullback diagram in X

GA GC

P GB

GFP

GιR

p

q

GιSG(εAFp)

G(εBFq)

h



198 FRANCOIS KOCH VAN NIEKERK

where the diagonal of the square is an embedding of R∧S in NX. By the naturality of ε,
we have

ιRεAFp = εCFG(ιR)Fp

= εCF
(
G(ιR)p

)
= εCF

(
G(ιS)q

)
= . . .

= ιSεBFq.

Thus, G(ιR)G(εAFp) = G(ιS)G(εBFq). Since the square is a pullback, there exists a
unique h : GFP → P making the above diagram commute. We further have

phηP = G(εAFp)ηP = G(εA)GF (p)ηP = G(εA)ηGAp = p.

Since p is mono, h is a split epi, thus a projection. Thus

ImC
(
ιRεAF (p)

)
= ImX

(
G(ιRεAF (p)

)
= ImX

(
G(ιR)ph

)
= ImX

(
G(ιR)p

)
= R ∧ S,

which is therefor conormal in NC, and thus, NC satisfies the meet part of (N3).

Notice that, when NC satisfies the meet part of (N3) [together with (N1) and (N2)],
then C will have pullbacks of embeddings. If we assume C had pullbacks of embeddings
as well in the above proposition, the proof becomes much simpler:

Proof Alternative proof of Proposition 4.5. Consider any two NC-conormal
subobjects R and S of an object C ∈ C. Construct their pullback (the left diagram):

A C

P B

ιS

a

b

ιR

GA GC

GP B

GιS

Ga

Gb

GιR

Since G is a right adjoint, G preserves pullbacks. By Proposition 4.4, G preserves em-
beddings as well. Then from Lemma 2.8 it follows that the diagonal G(ιSa) of the right
diagram is an embedding of R ∧ S. In particular,

R ∧ S = ImX
(
G(ιSa)

)
= ImC(ιSa).

Thus, NC satisfies the meet part of (N3).

In Example 5.2, we construct an example where NX is Noetherian, and NC satisfies
(N1) and (N2), but not the join part of (N3).

4.6. Proposition. Suppose NX is Noetherian and NC satisfies (N1) and (N2). Then NC

is Noetherian if and only if C has pushouts of projections and G preserves pushouts of
projections.
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Proof. Suppose C has pushouts of projections and G preserves pushouts of projections.
By Proposition 4.5, NC satisfies the meet part of (N3). The alternative proof of Propo-
sition 4.5 can be dualized to show that NC satisfies the join part of (N3). Thus, NC is
Noetherian.

Suppose NC is a Noetherian form. Then C has pushouts of projections by the dual of
Lemma 2.8. Further, from Lemma 2.8 and Proposition 4.4 it follows that these pushouts
are preserved.

The Crude Tripleability Theorem in [2] states that a right adjoint G : A → X is
monadic if

• G reflects isomorphims,

• A has coequalizers of reflexive pairs, and

• G preserves the coequalizers of reflexive pairs.

A reflexive pair is a parallel pair of morphisms f, g : A → B such that there exists
s : B → A such that fs = 1B = gs.

4.7. Theorem. Given a functor G : C → X which has a right adjoint and a Noetherian
form NX over X. If the pullback of NX along G is a Noetherian form, then G has to be
monadic.

Proof. Note that any split epimorphism is a projection (Lemma 2.7). Further, the
coequalizer of a reflexive pair is essentially the same as the pushout of the reflexive pair.
Then by Proposition 4.6, C will have coequalizers of reflexive pairs and G will preserve
them. Thus, by the Crude Tripleability Theorem above, G is monadic.

5. Characterization theorems

5.1. Theorem. Consider an adjunction ⟨F,G, η, ε⟩ : X → C, where the counit ε is an
isomorphism and X has an orean form NX satisfying (N1), (N2) and the meet part of
(N3). The pullback NC of NX along G satisfies (N1), (N2) and the meet part of (N3) if
and only if T = GF preserves projections.

Proof. By Proposition 4.4, we already have that GF preserves projections if NC satisfies
(N1) and (N2).

Conversely, suppose that T = GF preserves projections. From the construction of
NC, it satisfies (N1). To show (N2), consider any morphism f : A → C in C. Suppose
Gf = em, where m : X → GC is an NX-embedding of ImX Gf and e : GA → X is a
NX-projection of KerX Gf . Since the counit ε is an isomorphism, f factorizes as

f = εCF (m)F (e)ε−1
A .

We have the following commutative diagram
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TGA TX TGC

GA X GC

Te Tm

ηGA

e

ηX

m

ηGC

Since Gε is a natural isomorphism, ηG must also be a natural isomorphism. By assump-
tion Te is a projection, thus ηXe is a projection, and thus ηX is a projection as well.
Furthermore, ηGCm = T (m)ηX is an embedding, thus ηX is an embedding. Consequently,
ηX is an isomorphism. Thus G

(
F (e)ε−1

A

)
= T (e)ηGA is an NX-projection of KerX(Gf) and

G
(
εCF (m)

)
= η−1

GCT (m) is an NX-embedding of ImX(Gf). Consider any g : A → B in C
such that KerC g ⩾ KerC f , that is KerX(Gg) ⩾ KerX(Gf). Thus, there exists a unique
h : GB → TX such that the left diagram commutes:

GA

GB GFX

Gg
G
(
F (e)ε−1

A

)

h

A

B FX

g
F (e)ε−1

A

k

The right adjoint G is full and faithful, since the counit is an isomorphism (Theorem 1
on page 90 in [4]). Thus, there exists a unique k : B → FX such that Gk = h, and this
k will be the unique morphism making the right diagram commute. Thus F (e)ε−1

A is a
projection of KerC f . We can likewise proof that εCF (m) is an embedding of ImC f . Thus,
NC satisfies (N2). We can now use Proposition 4.5 to conclude that NC also satisfies the
meet part of (N3).

If NX is Noetherian and GF preserves projection, then it is not necessarily true that
NC is a Noetherian form, as demonstrated in Example 5.2.

5.2. Example. In this example, we will construct an adjunction ⟨F,G, η, ε⟩ : X → C,
where the counit is an isomorphism, X has a Noetherian form NX, but the pullback NC

of NX along G is not a Noetherian form.
Consider the following lattices A and X seen as categories.

C :

b

a d

c

fp

q g

X :

x

w z t

y

Define functors G : C → X and F : X → C as follows:

Fa = w, Fb = x, Gw = a, Gx = b,
Fc = y, Fd = t, Gy = c, Gz = Gt = d.

Since both categories are preorders, functors are the same as order preserving functions
on the objects, which the above definitions of F and G are. The functor G is the right
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adjoint of F , such that the counit is an isomorphism (all components of the counit are
identity morphisms). We can construct a Noetherian form NX over X such that

subX(u) =↑ u, f ·X s = s ∨ v, r ·X f = r.

for any object u, morphism f : u → v, and subobjects s ∈ subX(u) and r ∈ subX(v). Let
NC be the pullback of NX along G. By construction of NC, sub

C(u) = subX(Gu), and
KerC(h) = KerX(Gh). Then all possible normal subobjects of a are

KerC p = x, KerC 1a = w,
KerC q = y, KerC(fp) = KerC(gq) = t.

But x ∨C y = z, which is not normal. Thus NC is not Noetherian. Lastly, all morphisms
in both C and X projections, thus GF will trivially preserve projections.

5.3. Proposition. If ⟨F,G, η, ε⟩ : X → C is an equivalence of categories, then X has a
Noetherian form if and only if C has a Noetherian form. In particular, the pullback of a
Noetherian form over X along G is a Noetherian form over C.
Proof. Suppose X has a Noetherian form NX, and NC is the pullback of NX along G.
Consider an NX-projection p : X → Y in X. Since η is an isomorphism

GF (p) = ηY pη
−1
X .

is a projection as well. Then, by Proposition 5.1, NC satisfies (N1), (N2) and the meet
part of (N3).

To show that the join part of (N3) holds in NC, consider any two NC-normal subobjects
R and S of C ∈ C. We will use a very similar argument as in the proof of Proposition 4.5
to conclude that R∨S is NC-normal. Since NC satisfies (N2), R and S have NC-projections
πR and πS. By Proposition 4.4, both GπR and GπS are projections. Then by the dual of
Lemma 2.8, there exists a pushout diagram in C

GA GC

P GB

GFP

pG
(
F (p)ε−1

A

)
GπR

GπS

h

q

G
(
F (p)ε−1

B

)
where the diagonal of the square is a projection of R∨S in NX. By the naturality of ε−1,
we have

F (p)ε−1
A πR = F (p)FG(πR)ε

−1
C

= F
(
pG(πR)

)
ε−1
C

= F
(
qG(πS)

)
ε−1
C

= . . .

= F (p)ε−1
B πS.
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Thus G
(
F (p)ε−1

A

)
G(πR) = G

(
F (p)ε−1

B

)
G(πS). Since the square is a pushout, there exists

a unique h making the diagram commute. We further have

η−1
P hp = η−1

P GF (p)G(ε−1
A ) = pη−1

GAG(ε−1
A = p.

Since p is an epi, h is a split mono (in fact iso), thus an embedding. Thus

KerC
(
F (p)ε−1

A πR

)
= KerX

(
GF (p)G(ε−1

A )GπR

)
= KerX(hpGπR) = KerX(pGπR) = R∨S,

which is therefor normal in NC, and thus, NC satisfies the join part of (N3).

For a monad T in a category X, XT will denote the category of T -algebras and
GT : XT → X will denote the forgetful functor.

5.4. Theorem. Consider a monad ⟨T, µ, η⟩ in a category X which has a Noetherian
form NX. The pullback NT of NX along the forgetful functor GT : XT → X is an orean
form satisfying (N1) and (N2) if and only if T preserves projections. Furthermore, NT is
Noetherian if and only if T preserves pushouts of projections.

Proof. By construction NT will be orean satisfying (N1). If NT satisfy (N2), then by
Proposition 4.4 both GT and its left adjoint F T will preserve projections, consequently
T = GTF T preserves projections. Furthermore, by Proposition 4.6, we have that if NT is
Noetherian, then GT preserves projections and preserves pushouts of projections. Since
F T preserves pushouts as well as projections, the composite T = GTF T will preserve
pushouts of projections.

Conversely, suppose T preserves projections. By the construction of NT,

subT⟨X, h⟩ = subX X, f ·T S = f ·X S, R ·T f = R ·X f.

So readily NT satisfies (N1). To show (N2), consider any morphism f : ⟨X, hX⟩ → ⟨Y, hY ⟩
of T -algebras. In NX, f decomposes as projection-embedding f = mp. We have the
following diagram

TX TZ TY

X Z Y

Tp

hX

Tm

hZ hY

p m

By assumption, Tp is a projection. We have

Ker(phX) = Ker(mphX) = Ker(hY T (m)T (p)) ⩾ Ker(Tp).

Thus there exists a unique morphism hZ such that the left square commutes. Since Tp
is in particular an epimorphism, the right square also commutes. Since m is a mono and
⟨Y, hY ⟩ is a T -algebra, it follows that ⟨Z, hZ⟩ is a T -algebra. Thus both p and m are
morphisms in XT . Further, similar arguments could be used to demonstrate that if kp is
in XT , then so is k, and if ml is in XT , then so is l. From this, it readily follows that p is an
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NT-projection and m an NT-embedding. Thus (N2) holds in NT. From Proposition 4.5,
NT satisfies the meet part of (N3).

Suppose that T preserves pushouts of projections. To show the join part of (N3),
consider any object ⟨X, hX⟩ in XT and any two normal subobjects B and C in NT with
NT-projections b : X → Y and c : X → Z. Consider the following diagram in X, where
the inner square is the pushout of b and c in X:

TX TZ

X Z

Y W

TY TW

Tb

hX

Ta

hZ

Tq

b

a q

p

hY

Tp

hW

Since the outside square is a pushout, there exists a unique hW making the lower and right
rectangles commute. From T 2p and Tp being epimorphisms, it follows that ⟨W,hW ⟩ is a
T -algebra such that p and q are morphisms of T -algebras. Consequently, A∨B = Ker(pa)
is normal in NT.

Combining, Theorem 4.7,Theorem 5.4 and Proposition 5.3, we get the following the-
orem.

5.5. Theorem. Consider a category X which has a Noetherian form NX, and consider
a functor G : A → X which has a left adjoint F . The pullback NA of NX along G is
a Noetherian form over A if and only if G is monadic and GF preserves pushouts of
projections.

6. Varieties of Universal Algebras

We start of with the most important result in this section.

6.1. Theorem. Consider a forgetful functor between two varieties U : V → W. If Nw

is a Noetherian from over W where the surjections are precisely the projections, then the
pullback Nv is a Noetherian form over V.

Proof. It is known that U is a right adjoint. Therefore, by Theorem 5.5, it suffice
to verify that U preserves pushouts of projections. But by construction of pushouts of
surjections in any variety, U will preserve such pushouts, which completes the proof.
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One Noetherian form over the category of abelian groups Ab is the form where subA
is the lattice of subgroups, and direct and inverse images are the usual ones. Then, by the
theorem above rings with unity Rng1 has a Noetherian form where the subobject lattices
are the (additive) subgroups, since Ab is a reduct of Rng1. Likewise, from the above
theorem it follows that any pointed variety has a Noetherian form where the subobjects
are equivalence relations.

The more important consequence is that if we can construct a Noetherian form over
Set, then all varieties will have a Noetherian form. One Noetherian form is described as
follows:

• subobjects of a set X are pairs (A,R), where R is an equivalence relation on X,
and A is either an equivalence class of R or the empty set;

• for any function f : X → Y , (A,R) ∈ subX and (B, S) ∈ subY ,

(B, S) ⩾f (A,R) ⇐⇒ A ⊆ f−1(B), R ⩽ f−1(S).

For a given subset A of X, let αA denote the least equivalence relation on X where all
of A is identified. Further, if R is an equivalence on X, let A ∗ R be the union of all
equivalence classes of R which intersects with A. With not much effort, one can verify
that NSet is a Noetherian form, where

(A,R) · f =
(
f−1A, f−1R

)
, (A,R) ∧ (B, S) = (A ∩B,R ∩ S),

f · (A,R) =
(
fA ∗ fR, fR ∨ α(fA)

)
,

(A,R) ∨ (B, S) =
(
(A ∪B) ∗ (R ∨ S), R ∨ S ∨ α(A ∪B)

)
.

Further,

• the projections are exactly the surjections, while the embeddings are exactly the
injections;

• ⊥X =
(
∅, α(∅)

)
and ⊤X = (X,αX);

• Im f =
(
fX, α(fX)

)
where f is any function f : X → Y . Consequently, the conor-

mals are of the form (A,αA), where A is a subset;

• Ker f = (∅,Kf), where Kf = {(x, y) ∈ X2 | f(x) = f(y)}. Consequently, the
normal subobjects are of the form (∅, R), where R is an equivalence relation on X.

The conormals are essentially the subsets, while the normals are essentially the equivalence
relations.

With this Noetherian form NSet, by Theorem 6.1, we have the following corollary.
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6.2. Corollary. For any variety V, the pullback NV of NSet along the forgetful functor
is a Noetherian form. The subobjects of an algebra X are pairs (A,R), where R is an
equivalence relation on X and A is an equivalence class of R or the empty subset. The
conormals are of the form (A,αA), where A is a subalgebra, and the normals are (∅, R),
where R is a congruence. Lastly, the projections in NV are the surjective homomorphism,
while the embeddings are the injective homomorphisms.

The isomorphism theorems from [1] applied to these Noetherian formsNV, gives almost
the same known isomorphism theorems in Universal Algebra. First, we formalize what
we mean by quotiening in a Noetherian form, but the definition is not surprising.

6.3. Notation. For an object X and normal subobject R in a Noetherian form, X/R is
the codomain of the projection πR of R.

In the Noetherian form NV, the object X/R as defined above is (up to isomorphism)
the same as quotiening the algebra X by the congruence R, that is, X/R is equivalent to
its usual meaning in Universal Algebra.

The following theorem is a special case of Theorem 4.4 in [1].

6.4. Theorem. [Double-Quotient isomorphism theorems] In a Noetherian form, consider
two normal subobjects R and S of an object X, where S ⩽ R. Then, where πS is the
projection of S,

G/R ∼= (G/S)/πS(R).

For convenience, denote the normal subobjects (∅, R) in NV just by the congruence R.
For two normal subobjects R and S of the same object, where S ⩽ R, we have

πS(R) = {(πSx, πSy) | (x, y) ∈ R}.

In Universal Algebra, R/S is defined exactly as πS(R). With this observation, the above
Double-Quotient Isomorphism Theorem in NV is precisely the known Double-Quotient
Isomorphism Theorem in Universal Algebra.

The Diamond Isomorphism Theorem for Noetherian forms, as stated in [1], for the
form NV is almost the same as the one in Universal Algebra; some initial assumptions
will differ. We instead generalize the Diamond Isomorphism Theorem from [1]. The same
proof for Theorem 4.3 in [1] will hold for the (slightly) generalized version.

6.5. Theorem. [Diamond Isomorphism Theorem] In any Noetherian form, consider a
conormal subobject B and a subobject R, such that

• there exists a largest conormal subobject B ∨R below B ∨R,

• R · ιB∨R is normal, where ιB∨R is the embedding of B ∨R,

• B ∨ (R ∧ (B ∨R)) = B ∨R.
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Then R · ιB is normal, and

B/(R · ιB) ∼= B ∨R/(R · ιB∨R).

Again, we look at what this is in NV. For the special case when R is a congruence,
the second point will immediately be satisfied. Further,

B ∨R = B ∗R = BR

is the union of all equivalence classes of R which intersects B,

R · ιBR = R ∩
(
BR

)2
= R↾BR and R · ιB = R ∩B2 = R↾B .

The conclusion of the theorem is then that B/R ↾B∼= BR/R ↾BR , which is the known
Diamond Isomorphism Theorem in Universal Algebra.
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