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BIRKHOFF SUBFIBRATIONS OF THE CODOMAIN FIBRATION

Dedicated to the memory of Marta Bunge

A. S. CIGOLI AND S. MANTOVANI

Abstract. Slice categories of a semi-abelian category C have a regular epireflection to
their subcategories of internal Mal’tsev algebras. These are Birkhoff reflections, hence
admissible with respect to regular epis in the sense of Janelidze’s categorical Galois the-
ory. We prove that when C is moreover peri-abelian, these reflections form an admissible
Galois structure for a larger class of morphisms, called proquotients. Starting from a
careful investigation of the previous situation, we prove that all regular epireflective sub-
fibrations in Fib(C) of the codomain fibration of C can be constructed from a reflective
subcategory M0 of C whose unit morphisms have characteristic kernel. The fibres of
such reflective subfibrations are admissible with respect to proquotients precisely when
M0 is a Birkhoff subcategory of C.

1. Introduction

One of the main examples of applications of Janelidze’s categorical Galois theory [14] is
the characterization of central extensions of groups as coverings. This is based on the
observation that abelian groups form a subvariety of the variety of groups. In categorical
terms, the inclusion of the category Ab of abelian groups in the category Gp of groups
yields a regular epireflection

Ab � � ⊥ // Gp.
aboo

(1)

This means that in the adjunction above, the unit components are regular epimorphisms.
Hence Ab is closed in Gp under subobjects. Furthermore, it is closed under quotients.
So we are in presence of a Birkhoff subcategory of Gp, which is an exact Mal’tsev cate-
gory, hence we obtain an admissible Galois structure with respect to the class of regular
epimorphisms, as explained in [15].

The adjunction (1) can be generalized at different levels. First of all, the same situation
occurs in a pointed exact Mal’tsev category C with coequalizers: its full subcategory
Ab(C) of internal abelian objects is again Birkhoff. Actually, this holds also in the non-
pointed case (such as Gp/B for a given group B), provided we replace Ab(C) with the
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full subcategory Mal(C) of internal Mal’tsev algebras, i.e. objects X in C endowed with a
morphism p : X ×X ×X → X such that p(x, x, y) = y and p(x, y, y) = x (see [9]).

In this context, the objects ofMal(C) are also characterized in terms of Smith-Pedicchio
commutator of equivalence relations (see [20]). Namely, X is a Mal’tsev algebra if and
only if [∇X ,∇X ] = ∆X , where ∇X and ∆X denote the indiscrete and discrete relations,
respectively. Notice that in the pointed case this is equivalent to asking that [X,X] = 0,
where [−,−] denotes the Higgins commutator [19]. The latter equation actually provides
a characterization of abelian objects in C, and Ab(C) = Mal(C) (see [1] for further de-
tails). The reflection of an object X into Mal(C) can be performed by taking the quotient
X/[∇X ,∇X ] (or also X/[X,X] in the pointed case).

The first goal of the present work is to show that, under suitable circumstances,
the subcategories Mal(C/B) of C/B satisfy a property stronger than being Birkhoff and
yield an admissible Galois structure with respect to a class P of morphisms, here called
proquotients, larger than the one of regular epimorphisms, and described in Section 3.
In Proposition 4.2 we prove the admissibility of Mal(C/B) with respect to proquotients,
for the case where C is a semi-abelian category which is also peri-abelian in the sense of
[4]. Notice that this last condition ensures that the units of the reflection always have
characteristic kernels. Example 4.5 shows that the latter property is essential to get
admissibility. The coverings corresponding to this Galois structure are characterized in
Proposition 4.3 when C is moreover a Schreier variety, such as groups or Lie algebras (see
[17]). This last characterization allows us to interpret crossed modules (of groups) as
covering proquotients, providing with Corollary 4.4 a generalization of central extensions
of groups as covering regular epis.

Since the adjunctions considered in the first part of the paper involve categories which
are fibres of some fibrations, the second part of the paper focuses on fibrational aspects of
such adjunctions. The first result in this direction is given by Proposition 5.2 where we
provide a characterization of reflective subfibrations (see Definition 5.1) in the 2-category
Fib(C) of cloven fibrations over a fixed category C. This leads us to the main result of
Section 5, Theorem 5.5, where we characterize regular epireflective subfibrations of the
codomain fibration Cod: Arr(C) → C of a semi-abelian category C. A deeper insight shows
(see Corollary 5.6) that, in fact, all regular epireflective subfibrations of the codomain
fibration can be constructed starting from a regular epireflection

M0 � � ⊥
H0

// C
I0oo

whose units have characteristic kernels, precisely as in the leading example Ab(C) with C
peri-abelian.

If, in addition, M0 is a Birkhoff subcategory, we also recover admissibility. Namely,
for each B in C, thanks to Proposition 6.4, the adjunction IB ⊣ HB induced on the fibre
over B is admissible with respect to proquotients.
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2. Main Example

Throughout this section, C denotes a semi-abelian category [16]. Moreover, we ask that
C is peri-abelian in the sense of [4]. Examples of such are the categories of groups, (not
necessarily unitary) rings, associative algebras or Lie algebras over a field amongst others.
Several equivalent conditions characterizing peri-abelian categories among semi-abelian
ones can be found in [11, Proposition 2.5]. In particular, C is peri-abelian if and only if
for each normal subobject L�X the equality

[L,L] = [L,L]UX (2)

holds, where [L,L]UX denotes the Ursini commutator [18] of L in X. In this context,
the latter coincides with the normal subobject of X associated with the Smith-Pedicchio
commutator [R,R], where R is given by the kernel pair of the cokernel X → X/L. Let
us observe that [L,L] is then a characteristic subobject (see [6]) of L for each L. This in
turn is equivalent to the following property (see [5]):

L�X =⇒ [L,L]�X. (3)

We are interested here in the category C/B for a fixed object B of C. It is no longer
pointed, unless B = 0, but still exact, finitely cocomplete and protomodular, hence it is
a Mal’tsev category (see [1]). As a consequence, Mal(C/B) is a Birkhoff subcategory of
C/B as proved in [9].

Let us now describe the corresponding adjunction

Mal(C/B) � � ⊥
H
// C/B,

Ioo
(4)

where H denotes the inclusion functor and will be often omitted. Let us denote an
object x : X → B of C/B by (X, x), and the kernel functor by K : C/B → C. Since
∇(X,x) in C/B is represented by the kernel pair Eq(x) of x in C, (X, x) is a Mal’tsev
object if and only if [Eq(x),Eq(x)] = ∆X . Thanks to (2), this reduces to asking for
[K(X, x), K(X, x)] = 0, and the reflector I can be described as follows: I(X, x) =
(X/[K(X, x), K(X, x)], x), where x is the factorization map induced by the quotient
η(X,x) : X → X/[K(X, x), K(X, x)]:

X
η(X,x) //

x   

X/[K(X, x), K(X, x)]

x
vv

B.

I acts on arrows in the obvious way, and the arrow η(X,x) : (X, x) → I(X, x) is indeed the
unit component at (X, x).
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From the description above, by 3× 3 Lemma in C (see [3]), we get that the restriction
of η(X,x) to kernels yields the abelianization of K(X, x) in C:

[K(X, x), K(X, x)] � ,2 // K(X, x) � ,2
_��

��

K(X, x)/[K(X, x), K(X, x)]
_��

��
[K(X, x), K(X, x)] � ,2 //

��

X
η(X,x) � ,2

_��

X/[K(X, x), K(X, x)]

_��
0 // X/K(X, x) X/K(X, x).

Since every slice category C/B is indeed the fibre over B with respect to the codomain
fibration Cod: Arr(C) → C, one can wonder how the adjunctions (4) for each B interact
with change-of-base functors. The property (3) turns out to be crucial in this context.

Let β : B′ → B be a morphism in C. The image of η(X,x) via the change-of-base functor
β∗ : C/B → C/B′ can be displayed by the following commutative diagram:

Q

β∗(x)

��

// X/[K(X, x), K(X, x)]

x

��

P

β∗(x) ��

β∗(η(X,x))

/ 3;

// X

x

��

η(X,x)

/ 3;

B′ β // B,

where the three squares are pullbacks. Hence K(P, β∗(x)) ∼= K(X, x), so that the unit
component at (P, β∗(x)) is given by the quotient map η(P,β∗(x)) : P → P/[K(X, x), K(X, x)].
On the other hand, Ker(β∗(η(X,x))) ∼= Ker(η(X,x)) ∼= [K(X, x), K(X, x)]. As a consequence
β∗(η(X,x)) ∼= η(P,β∗(x)). In other words, the units of the adjunctions (4) for each B are sta-
ble under change of base. As we will see later on, this is part of the features characterizing
reflections in Fib(C) (see Proposition 5.2)

It is clear that, beside units, change-of-base functors preserve (but do not reflect) all
regular epimorphisms. Here, we are going to enlarge the class of regular epimorphisms
by taking the class P of morphisms obtained by reflecting them along change-of-base
functors. Such morphisms will be called proquotients. Namely, a morphism f in C/B is a
proquotient if there exists an arrow β : B′ → B in C such that β∗f is a regular epi. Notice
that, since C is pointed regular, P reduces to the class of morphisms f such that K(f)
is a regular epi. In fact, the following characterization of proquotients in a homological
category will let us define them in any regular category. Recall that a homological category
is a pointed regular protomodular category (see [1]), and that any semi-abelian category
is homological.

2.1. Proposition. Let f : (X, x) → (Y, y) be a morphism in C/B, with C homological.
Then f belongs to P if and only if

1(X,x) × f : (X, x)2 → (X, x)× (Y, y),
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or equivalently f × 1(X,x), is a regular epimorphism.

Proof. Let us make the objects in the statement more explicit. (X, x)2 is the object
(Eq(x), xπ1) of C/B, where Eq(x) is the kernel pair of x and π1 its first projection,
(X, x) × (Y, y) is the object (X ×B Y, xπ1), and 1(X,x) × f is represented by the arrow
⟨π1, fπ2⟩ : Eq(x) → X ×B Y . We are going to show that the latter is a regular epi if and
only if f belongs to P . Consider the following diagram in C:

N � ,2 // K(X, x)
K(f) //

_��

��

K(Y, y)
_��

��
N � ,2 //

��

Eq(x)
⟨π1,fπ2⟩//

π1
_��

X ×B Y

π1
_��

0 // X X.

First observe that the right upper square is a pullback, so that the arrows K(f) and
⟨π1, fπ2⟩ have the same kernel N . Moreover, the three columns are short exact sequences,
as is the bottom row. By 3× 3 Lemma, the upper row is exact if and only if the middle
row is exact. As a consequence, K(f) is a regular epi if and only if so is ⟨π1, fπ2⟩.

3. Proquotients in a regular category

According to the previous result, we introduce the following definition.

3.1. Definition. Let E be a regular category. A morphism f : X → Y in E is called a
proquotient if 1X × f : X2 → X × Y (or equivalently f × 1X) is a regular epi.

3.2. Remark. Actually, for a morphism f : X → Y in E , 1×f can be obtained by means
of the following pullback

X2 1×f //

π2

��

X × Y

π2

��
X

f // Y,

so that, when E is a regular category, regular epimorphisms are always proquotients. On
the other hand, when all product projections are regular epi, as for example when E
is pointed, then proquotients coincide with regular epi. However, this does not hold in
general: consider, for example, a proper subterminal object m : X ↣ 1, then the above
pullback becomes

X2 = X
1X //

π2=1X
��

X × 1 = X
��
π2=m

��
X // m // 1,
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so that m is a proquotient, but it is far from being a regular epi.

The class P enjoys some useful properties.

3.3. Proposition. Let E be a regular category. The following properties hold for the
class P of proquotients:

1. it is closed under composition;

2. it is stable under pullback;

3. if g · f is in P and f is a regular epi, then g is in P.

Proof. All statements follow easily from the properties of regular epimorphisms in E .
Now let us come back to the adjunction (4). The class P of proquotients in C/B is of

special interest in this context. When C is peri-abelian, an object (A, a) of C/B belongs to
Mal(C/B) if and only if K(A, a) is abelian. Now, for any proquotient f : (A, a) → (A′, a′)
in C/B, K(f) is a regular epi. Then (A′, a′) is an internal Mal’tsev algebra as soon as
(A, a) is, since Ab(C) is closed under quotients in C.

K(A, a)
_��

��

K(f) � ,2K(A′, a′)
_��

��
A

f //

a ""

A′

a′{{
B.

We will say that Mal(C/B) is closed under proquotients in C/B. This property suggests
the following definition.

3.4. Definition. Let E be a regular category and let X be a regular epireflective subcat-
egory of E:

X � � ⊥
H
// E .

Ioo

Moreover, let F be a class of morphisms in E containing all regular epimorphisms.
We say that X is an F-Birkhoff subcategory of E when it is closed under F-images,

i.e. if for each f : X → Y in F , Y belongs to X as soon as X does.

Notice that the term “strongly F -Birkhoff” has been used in [8, Definition 2.5] with a
different meaning, in particular with F requested to be a class of regular epimorphisms.
The two definitions coincide, reducing to the usual notion of Birkhoff subcategory, when
F is the class of regular epimorphisms and E is an exact Mal’tsev category.

When the class F satisfies some suitable additional properties, we can give a charac-
terization of F -Birkhoff subcategories generalizing the one given in [15] for the classical
case, i.e. when F is the class of regular epimorphisms.
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3.5. Proposition. Let E be a regular category and let F be a class of morphisms in E
such that:

1. F contains all regular epimorphisms;

2. F is closed under post-composition with regular epimorphisms;

3. If g · f is in F and f is a regular epi, then g is in F .

Under these assumptions, a regular epireflective subcategory X of E is F-Birkhoff if and
only if for each f : X → Y in F the naturality square

X
f //

ηX_��

Y

ηY_��
HI(X)

HI(f) // HI(Y )

is a pushout.

Proof. Suppose X is an F -Birkhoff subcategory of E , and consider the commutative
diagram of solid arrows

X
f //

ηX_��

Y

ηY_��

e′

� �'
HI(X)

HI(f) //

e
�  )

HI(Y ) e // Z ′
��
m′

��
Z // m //

t

;;

U,

where (e,m) and (e′,m′), respectively, are the (regular epi, mono) factorizations of two
generic arrows making the external diagram commute. By diagonalization property, there
exists a unique arrow t such that m′ · t = m and t · e · ηX = e′ · f . Now, if f is in F , then
e′ ·f = t ·e ·ηX is in F thanks to 2. From 3 it follows that t ·e is in F . Therefore Z ′ is in X ,
since so is HI(X). By the universal property of the unit ηY , there exists a unique arrow
e in X such that e · ηY = e′. Finally, notice that m′ · e ·HI(f) · ηX = m · e · ηX and hence
m′ · e ·HI(f) = m · e, since ηX is an epimorphism. On the other hand m′ · e · ηY = m′ · e′
and m′ · e is the unique morphism making the last two equalities hold, so the upper left
square is a pushout.

Vice versa, if f is in F , then the naturality square above is a pushout by assumption.
If X is in X , then ηX is an isomorphism, then so is ηY , hence Y is in X .

Let us come back to the adjunction (4), and consider the class P of proquotients. Since
Mal(C/B) is closed in C/B under P-images, it is a P-Birkhoff subcategory, according to
Definition 3.4. Moreover, thanks to Proposition 3.3, by Proposition 3.5 we get that for
each proquotient f in C/B, the corresponding naturality square is a pushout.



308 A. S. CIGOLI AND S. MANTOVANI

3.6. Example. Let E be a regular category. Then subterminal objects of E , i.e. objects
whose corresponding terminal arrow is a mono, form a regular epireflective subcategory
Sub1(E). In fact, when E is protomodular, we can see that Sub1(E) is a P-Birkhoff
subcategory of E , where P is the class of proquotients. Let S be a subterminal object, then
any arrow of domain S is a mono. If f : S → X is a proquotient, then 1×f : S×S → S×X
is a regular epi. But 1× f is also a mono, being a pullback of f , hence an isomorphism.
As a consequence, the square

S × S
f×f //

π2

��

X ×X

π2

��
S

f // X

is a pullback. Now, π2 : S × S → S is an isomorphism since S is subterminal, then by
protomodularity so is π2 : X ×X → X, hence X is subterminal.

3.7. Example. A special case of the previous example follows. Let E be a regular cat-
egory and consider the category GpdX(E) of internal groupoids in E with fixed object
of objects X. Then Sub1(GpdX(E)) is just the subcategory EqRelX(E) of internal equiva-
lence relations on X. By Theorem 3.4.1 of [1], GpdX(E) is a protomodular category, hence
EqRelX(E) is a P-Birkhoff subcategory. In this context, one can see that proquotients can
be characterized as those internal functors f : G → H between groupoids over X that
induce a regular epimorphism Π1(f) : Π1(G) → Π1(H), where Π1 denotes the functor
sending each groupoid G to the equalizer of ⟨d, c⟩ : G → X ×X.

4. Admissibility

A Galois structure (X , E , I,H, η, ϵ,F ,Φ) (in the sense of [14]) is a system satisfying the
following properties:

1. I ⊣ H is an adjunction with unit η : 1E → HI and counit ϵ : IH → 1X ;

2. F and Φ are subclasses of arrows in E and in X , respectively, such that

(i) I(F) ⊆ Φ and H(Φ) ⊆ F ;

(ii) C admits pullbacks along arrows in F , and F is pullback stable,
X admits pullbacks along arrows in Φ, and Φ is pullback stable;

(iii) F and Φ contain all isomorphisms and are closed under composition.

For each object B in E , we denote by F(B) the full subcategory of the slice category E/B
whose objects are in the class F , and similarly Φ(I(B)) will denote the full subcategory
of X/I(B) whose objects are in Φ. Then there is an induced adjunction

F(B)
IB

⊥
//
Φ(I(B))

HB
oo , ηB : 1F(B) → HBIB, ϵB : IBHB → 1Φ(I(B)),
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where IB is defined by the image under I, and HB by the pullback along ηB of the image
under H.

The object B is said to be admissible if ϵB is an isomorphism. We shall say that the
Galois structure (E ,X , I,H, η, ϵ,F ,Φ) is admissible if each B in E is admissible.

A morphism p : E → B in F is said to be a monadic extension if the pullback functor
p∗ : F(B) → F(E) is monadic. An object f : A → B in F(B) is said to be a trivial
covering when the diagram

A

f

��

ηA // HI(A)

HI(f)

��
B

ηB // HI(B)

is a pullback. An object f : A → B in F(B) is said to be a covering if there exists a
monadic extension p such that p∗(A, f) is a trivial covering. One can also express this
property by saying that “(A, f) is split by p”.

Here we are interested in those Galois structures where, moreover, H, I present X as
a full reflective subcategory of E , or, equivalently, where ϵ : IH → 1X is an isomorphism.
An important consequence of this assumption is that admissibility amounts then to asking
that in a pullback of the form

B ×HI(B) H(X)
π2 //

π1

��

H(X)

H(ϕ)

��
B

ηB // HI(B)

with ϕ in Φ, the arrow π2 is the B ×HI(B) H(X)-component of the unit of the adjunction
(up to isomorphism). It was proved in [15] that Birkhoff subcategories of exact Goursat
categories always provide an admissible Galois structure (with respect to the classes of
regular epimorphisms). It is natural then to investigate whether P-Birkhoff subcategories
are admissible at least in a suitable context. Actually, we provide later a counterexample
showing that not every P-Birkhoff subcategory of a semi-abelian category is admissible
with respect to proquotients, but we show that this is true for the examples considered
in the previous section. Let us start with the easiest one.

4.1. Example. Let E be a regular protomodular category, and consider its P-Birkhoff
subcategory Sub1(E). Let us first observe that any morphism f : S → T in Sub1(E) is a
proquotient, since S × S ∼= S and T × T ∼= T , so the square

S × S
f×f //

π2

��

T × T

π2

��
S

f // T

is a pullback, and consequently 1× f : S × S → S × T is an isomorphism.
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Moreover, Sub1(E) is admissible with respect to proquotients. Indeed, for each ob-
ject X in E and for each morphism f : S → I(X) in Sub1(E) (which is necessarily a
proquotient) the arrow π2 in the left hand pullback

X ×HI(X) H(S)
π2 � ,2

π1

��

H(S)

H(f)

��

""

""
X

ηX � ,2HI(X) // // 1

is a unit component, since it provides the regular epi part of the factorization of the
terminal arrow.

As a particular case, we get that the adjunction

EqRelX(E) � � ⊥
H
// GpdX(E)

Ioo
,

for any regular category E and any object X in E , is admissible with respect to proquo-
tients.

As explained in the previous section, Mal(C/B) is a P-Birkhoff subcategory of C/B.
It is easy to see that it is also admissible.

4.2. Proposition. Let C be a semi-abelian category which is also peri-abelian and B an
object of C. The adjunction

Mal(C/B) � � ⊥
H
// C/B.

Ioo

is admissible with respect to proquotients.

Proof. Let (X, x) be an object of C/B and f : (A, a) → I(X, x) a proquotient in
Mal(C/B). We have to show that the arrow π2 in the pullback

(P, p)
π2 //

π1

��

(A, a)

f

��
(X, x)

η(X,x) // I(X, x)

is the (P, p)-component η(P,p) of the unit (up to isomorphism). To this end, it suffices to
apply the functor K : C/B → C to obtain the pullback

K(P, p)
π2 � ,2

π1
_��

K(A, a)

K(f)
_��

K(X, x)
K(η(X,x))� ,2 ab(K(X, x)),
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where K(η(X,x)) precisely gives the abelianization of K(x) since C is peri-abelian. Now,
since f is a proquotient, K(f) is a regular epi. Moreover Ab(C) is a Birkhoff subcategory
of C, hence admissible with respect to the class of regular epimorphisms, then π2 is a
component of the unit, i.e. K(A, a) ∼= ab(K(P, p)). Finally, consider the diagram

[K(P, p), K(P, p)] � ,2 // K(P, p) � ,2
_��

��

K(A, a)
_��

��
[K(P, p), K(P, p)] � ,2 // P

π2 � ,2

p

��

A

a

��
B B.

(5)

The upper right square is a pullback, hence the two upper rows are exact sequences. As
a consequence, π2 : (P, p) → (A, a) is isomorphic to η(P,p).

In order to apply Janelidze’s categorical Galois theory to the admissible Galois struc-
ture of Proposition 4.2, the next step is to characterize the corresponding coverings. We
work out the details in the case of groups, but the result holds more in general adding to
the hypotheses of Proposition 4.2 the request that C has enough (regular) projectives that
are stable under normal subobjects. These hypotheses hold, for example, in any Schreier
variety (e.g. Lie algebras, see for example [17]).

4.3. Proposition. Let B be a group, and f : (X, x) → (Y, y) a proquotient in Gp/B.
The following are equivalent:

1. f is a covering with respect to the admissible adjunction

Mal(Gp/B) � � ⊥
H
// Gp/B;

Ioo

2. K(f) is a central extension of groups;

3. [Ker(f),Ker(x)] = 0.

Proof. The above adjunction is admissible with respect to proquotients by Proposition
4.2. Let us first characterize trivial coverings. By definition, a proquotient f : (X, x) →
(Y, y) in Gp/B is a trivial covering if and only if the naturality square

(X, x)
η(X,x)� ,2

f
��

I(X, x)

I(f)
��

(Y, y)
η(Y,y)� ,2 I(Y, y)

(6)
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is a pullback. Now consider the commutative diagram

K(X, x)

K(f) � !)

� ,2
_��

��

ab(K(X, x))
_��

��

ab(K(f))=K(I(f))

((
K(Y, y) � ,2

_��

��

ab(K(Y, y))
_��

��

X
η(X,x) � ,2

f
&&

X
I(f)

((
Y

η(Y,y) � ,2 Y .

Since the vertical arrows are the kernels of the corresponding arrows to B, then all vertical
squares are pullbacks. This means that the bottom square is a pullback if and only if
the top square is (the “if” implication follows from protomodularity, see Proposition
13 in [2]). Hence f is trivial if and only if K(f) is a trivial extension with respect
to the admissible Galois structure induced by the abelianization functor ab : Gp → Ab.
Thanks to Proposition 4.2 in [15], we can deduce that f is trivial if and only if Ker(f) ∩
[Ker(x),Ker(x)] = 0.

Now we are ready to characterize coverings. By definition, a proquotient f is a covering
if and only if there exists a regular epi p : (Z, z) → (Y, y) such that the proquotient f in
the pullback

(W,w)
f //

p
_��

(Z, z)

p
_��

(X, x)
f // (Y, y)

is a trivial covering. Suppose we are in such a situation, then by restricting to kernels,
we get the pullback

K(W,w)
K(f)� ,2

K(p)
_��

K(Z, z)

K(p)
_��

K(X, x)
K(f)� ,2K(Y, y)

where K(f) is a trivial extension, and then K(f) is a covering, with respect to ab : Gp →
Ab. In other words, K(f) is a central extension of groups, as proved in [14].

Vice versa, let K(f) be a central extension of groups. Take a free presentation of
Y , given by a surjective homomorphism p : F → Y , with F a free group. It induces a
morphism p : (F, yp) → (Y, y) in Gp/B. Consider the pullback

(W,w)
f //

p
_��

(F, yp)

p
_��

(X, x)
f // (Y, y).
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Its restriction to kernels

K(W,w)
K(f)� ,2

K(p)
_��

K(F, yp)

K(p)
_��

K(X, x)
K(f) � ,2K(Y, y)

is a pullback as well. By assumption, K(f) is a central extension. Then there exists some
regular epi q : Q → K(Y, y) such that the pullback of K(f) along q is a trivial extension.
Moreover K(F, yp) is a free group, hence projective. As a consequence K(p) factorizes
through q, so K(f) is the pullback of a trivial extension, hence a trivial extension as well.
By the characterization given above, it follows that f is a trivial covering. This provides
the equivalence between 1. and 2.

The equivalence between 2. and 3. relies on the fact that Ker(x) = K(X, x) and
Ker(f) = Ker(K(f)).

Having in mind the fact that central extensions of groups, besides being coverings
with respect to abelianization and regular epis, are also a special case of crossed modules
(see [22]), thanks to the previous proposition we may extend to crossed modules the same
interpretation as coverings, but with respect to proquotients.

4.4. Corollary. For any crossed module (∂ : H → G, ξ), and a fixed cokernel q : G → B
of ∂, the arrow ∂ : (H, 0H,B) → (G, q) in Gp/B is a covering with respect to the Galois
structure considered in Proposition 4.3.

Proof. The restriction K(∂) of ∂ : (H, 0H,B) → (G, q) to kernels

H
K(∂)� ,2K(G, q)

_��

��
H

∂ // G

provides the (regular epi, mono) factorization of the arrow ∂, so that K(∂) is a central
extension. Hence ∂ : (H, 0H,B) → (G, q) is not only a proquotient but also a covering by
Proposition 4.3.

As announced at the beginning of this section, here follows a counterexample showing
that the result of Proposition 4.2 is no longer true when, for an object L, [L,L] fails to
be characteristic, or equivalently the condition (3) characterizing peri-abelian categories
does not hold.

4.5. Example. Let NARng be the category non-associative rings [12] whose objects are
abelian groups with an additional binary operation ∗ which distributes over addition and
whose morphisms are group homomorphisms preserving ∗. This category is well known
to be semi-abelian and also strongly protomodular. However, condition (3) does not hold
in NARng.
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Let X be the object in NARng with abelian group structure the free abelian group on
{x, y, z}, endowed with a distributive product with the following multiplication table:

∗ x y z
x x 0 y
y 0 0 x
z y x z

The subobject L generated by x and y is normal in X, whereas the commutator [L,L],
which is the subobject generated by x, is not, since it is not closed under multiplication
with external elements: x ∗ z = y ̸∈ [L,L]. This explains that NARng is not peri-abelian,
and [L,L] is different from [L,L]UX . By strong protomodularity, the latter coincides with
the normal closure of [L,L] in X, i.e. L itself.

Let p : X → B be the cokernel of the inclusion l : L ↣ X as an object of NARng/B.
Its reflection in Mal(NARng/B) is given by (B, 1B), since [L,L]UX = L as observed above.
More precisely, η(X,p) = p : (X, p) → (B, 1B). Moreover, the initial arrow iB : 0 → B in
NARng yields a proquotient iB : (0, iB) → (B, 1B) in Mal(NARng/B). Now, consider the
pullback

(L, 0L,B)
tL //

k
��

(0, iB)

iB
��

(X, p)
p=η(X,p)// (B, 1B)

in NARng/B, where 0L,B denotes the trivial morphism from L to B, whose kernel is L
itself, and tL : L → 0 is the terminal arrow of L. Since [L,L] ̸= L, the upper horizontal
arrow is clearly not the (L, 0L,B)-component of the unit of the adjunction, despite the fact
that it is the pullback of η(X,p) along a proquotient. Hence the reflection of NARng/B in
Mal(NARng/B) is not admissible with respect to proquotients.

5. Fibred aspects

As observed in Example 2, the examples we have considered so far are P-Birkhoff subcat-
egories of fibres of some fibrations. Moreover, the class P of proquotients is obtained by
reflecting regular epimorphisms along change-of-base functors. The first natural question
to ask is if we are dealing with reflections in the 2-category Fib(C) of cloven fibrations over
a fixed category C, i.e. fibrations over C equipped with a chosen cleavage. Let us make
this notion explicit.

Recall that a subfibration (X , F ) of (Y , G) in Fib(C) can be described as a replete
subcategory X of Y , where the inclusion functor yields a morphism H : (X , F ) → (Y , G)
in Fib(C) (see [21]).
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5.1. Definition. A reflection in Fib(C) is just an adjunction I ⊣ H

X

F ��

� � ⊥
H

// Y
Ioo

G��
C

in Fib(C) where H makes (X , F ) a full subfibration of (Y , G). More explicitly, I and H
are cartesian functors, I ⊣ H is an adjunction in Cat whose unit and counit components
are vertical over C.

As for Cat, we speak of a regular epireflection in Fib(C) when the unit components are
regular epimorphisms.

The following proposition provides a characterization of reflections in Fib(C).

5.2. Proposition. Let H : (X , F ) → (Y , G) be a full subfibration. The following are
equivalent:

1. H has a left adjoint in Fib(C);

2. i) for each B in C, the restriction HB : XB → YB has a left adjoint IB;

ii) for each Y in YB and each cartesian arrow k : X → IB(Y ), the pullback of
the Y -component ηY of the unit along H(k) is again a unit component (up to
isomorphism).

Proof. 1. ⇒ 2. If H has a left adjoint I in Fib(C), then unit and counit components are
vertical morphisms, hence the adjunction restricts to fibres, i.e. i) holds. Now consider
the diagram

P
ηY
//

k
��

ηP
**

H(X)

H(k)
��

HI(P )
H(u)
oo

HI(k)
��

Y
ηY // HI(Y ) HI(Y ).

(7)

where the left hand square is a pullback and u is induced by the universal property of the
unit ηP . The arrow k : P → Y is cartesian, since it is a pullback of the cartesian arrow
H(k) : H(X) → HI(Y ). Since I is a cartesian functor, HI(k) is a cartesian arrow, so
the right hand square is a pullback as well. As a consequence H(u), and hence u, is an
isomorphism. Notice, in addition, that by the universal property of ηP , I(k) = k ·u, since
H is fully faithful.

2. ⇒ 1. Let us first construct a functor I : Y → X . For each B in C, we put I = IB
when restricted to objects and arrows in the fibre over B. Now it suffices to define I on
cartesian arrows. The way to do this is suggested by the argument of the previous proof.
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For each cartesian arrow k : Y ′ → Y , take a cartesian lifting k′ : X → I(Y ) of F (k) at
I(Y ). Then H(k′) is cartesian, so we get the pullback

Y ′ v //

k

��

H(X)

H(k′)
��

Y
ηY // HI(Y ),

where v is induced by cartesianness of H(k′). By the universal property of ηY ′ , there
exists a unique u : I(Y ′) → X such that H(u) · ηY ′ = v. Hence, without using assumption
2.ii), as expected we define I(k) as the composite k′ · u. One can check that this extends
to a functor I : Y → X with F · I = G. By construction of I, for each arrow f : Y ′ → Y
in Y , the square

Y ′ ηY ′ //

f

��

HI(Y ′)

HI(f)

��
Y

ηY // HI(Y ).

is commutative, i.e. the collection of (vertical) η’s is a natural transformation IdY ⇒ HI
which makes I a left adjoint to H in Cat. In order to have an adjunction in Fib(C) we
just need I to be a cartesian functor. Thanks to assumption 2.ii), and the fact that H is
fully faithful, the arrow u constructed above is an isomorphism, which means that I(k) is
cartesian.

5.3. Remark. It is clear from the proof that condition 2.i) is equivalent to the fact that
H has a left adjoint I in Cat with vertical unit. We make use of this observation in the
statement of the next proposition.

5.4. Proposition. Let H : (X , F ) → (Y , G) be a full subfibration, with Y a regular
category. Let X be a regular epireflective subcategory of Y, with reflector I. The adjunction
I ⊣ H gives rise to a regular epireflection in Fib(C) if and only if the unit components are
vertical and for each cartesian arrow k : Y ′ → Y in Y, the naturality square

Y ′ ηY ′ //

k

��

HI(Y ′)

HI(k)

��
Y

ηY // HI(Y ).

is a pullback.

Proof. The “only if” part is obvious. Let us prove the “if” part. Since unit components
are vertical, it follows that F · I = G and the adjunction I ⊣ H restricts to the fibres, so
that counit components are vertical. We just need to show that I is cartesian. To this
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end, consider a cartesian arrow k and take the factorization k′ · v of HI(k), where k′ is a
cartesian arrow and v is vertical. Now consider the diagram

Y ′

k

��

ηY ′ // //

(1)

HI(Y ′)

HI(k)
��

v //

(2)

X

k′

��
Y

ηY // // HI(Y ) HI(Y ).

The square (1) is a pullback by assumption. The rectangle (1)+ (2) is a pullback as well,
since k′, k are cartesian and v · ηY ′ , ηY are vertical. Proposition 2.7 in [15] ensures that
(2) is also a pullback, hence HI(k) is cartesian and so is I(k), since H is a fully faithful
cartesian functor.

As a special case of the previous situation, we consider a full subfibration of the
codomain fibration Cod: Arr(C) → C of a semi-abelian category C.

5.5. Theorem. Let C be a semi-abelian category and H : (M, F ) → (Arr(C),Cod) a full
subfibration. Then the following are equivalent:

1. H has a left adjoint that gives rise to a regular epireflection in Fib(C);

2. (a) The restriction H0 : M0 → C/0 ∼= C has a left adjoint I0, such that each unit
component is a regular epi with characteristic kernel.

(b) For each B in C, the square

MB
� � HB //

i∗B
��

C/B
i∗B
��

M0
� � H0 // C

is a pullback in Cat.

Proof. 1. ⇒ 2. Suppose I is a left adjoint toH and let η denote the unit of the adjunction.
By assumption its components are vertical, so a regular epireflection is induced on each
fibre. Consider an object X in C ∼= C/0 and let νX : N(X) → X denote the kernel of
ηX : X → HI(X) in C. We want to show that νX is characteristic, which amounts to
showing that for each normal mono j, the composite j · νX is a normal mono as well (see
[5]). So let j : X → Y be a normal mono and denote by q : Y → B its cokernel, so that
j = ker q. Then X ∼= i∗B(Y, q), where iB : 0 → B is the initial arrow; moreover j is a
cartesian lifting of iB. By Proposition 5.4, the square

X

j

��

ηX � ,2HI(X)

HI(j)
��

(Y, q)
η(Y,q)� ,2HI(Y, q) = (Y , q)
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is a pullback in Arr(C), so the underlying square

X

j

��

ηX � ,2HI(X)

HI(j)
��

Y
η(Y,q) � ,2 Y

in C is a pullback as well. As a consequence, the composite j · νX is a kernel of η(Y,q),
hence it is a normal mono. This proves that νX is characteristic.

In order to prove (b), by fullness of H we only have to show that an object (X, x)
in C/B is in MB if i∗B(X, x) is in M0. So take a kernel k : K → X of x and suppose
K ∼= i∗B(X, x) is in M0. This means that ηK is an isomorphism and iK : 0 → K is a kernel
of ηK . By Proposition 5.4, the square

K

k
��

ηK � ,2HI(K) ∼= K

HI(k)
��

(X, x)
η(X,x)� ,2HI(X, x) = (X, x)

is a pullback in Arr(C), so the underlying square in C is a pullback as well, so k · iK =
iX : 0 → X is a kernel of η(X,x) in C, hence η(X,x) is an iso and (X, x) is in MB.

2. ⇒ 1. Suppose I0 : C → M0 is a left adjoint to H0 and unit components have
characteristic kernels. For each B in C and each object (X, x) of C/B, consider a kernel
k : K → X of x in C, and take the unit ηK : K → H0I0(K). Its kernel νK : N(K) → K is
characteristic by assumption, so the composite k ·νK is a normal mono. Now the cokernel
p(X,x) : X → X of k · νK yields a morphism

X

x
��

p(X,x) � ,2X

x��
B

in C/B. First of all, let us prove that (X, x) is in MB. The commutative square

K

k

��

ηK � ,2H0I0(K)

k
��

X
p(X,x) � ,2X,

where k is the unique comparison arrow induced by the cokernel ηK , is a pullback in C
by protomodularity, since the horizontal arrows are regular epi with isomorphic kernels.
Now consider the commutative diagram

K

k
��

ηK � ,2H0I0(K)

k
��

// 0

��
X

x

44
p(X,x) � ,2X x // B.
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The whole rectangle and the left hand square are pullbacks and p(X,x) is a regular epi, so

again by Proposition 2.7 in [15] the right hand square is a pullback as well, and then k
is a kernel of x. Hence i∗B(X, x) ∼= H0I0(K) is in M0. By assumption (b), this suffices to
prove that (X, x) is in MB. Hence, we can define a functor IB : C/B → MB by putting
HBIB(X, x) = (X, x). The definition of IB on morphisms is based on the fact that I0
is a functor and each p(X,x) is a cokernel. Now p(X,x) serves as a unit component for the
adjunction IB ⊣ HB: its universal property follows from the universal property of the unit
ηK and again by the fact that p(X,x) is a cokernel.

The condition, appearing in 2.(a), that each unit component has a characteristic kernel,
was already investigated in [7] under the name of “condition (N)”.

The next result shows that, in fact, all regular epireflective subfibrations of the codomain
fibration can be constructed starting from a regular epireflection of C whose unit compo-
nents have characteristic kernels.

5.6. Corollary. Let C be a semi-abelian category, and

M0 � � ⊥
H0

// C
I0oo

a regular epireflection such that the unit components have characteristic kernels. Then
the adjunction I0 ⊣ H0 extends to a regular epireflection

M

F ��

� � ⊥
H

// Arr(C)
Ioo

Cod
||

C

(8)

in Fib(C), whose restriction to the fibre over 0 is I0 ⊣ H0.

Proof. For each B in C, by means of the pullback

MB
� � HB //

i∗B
��

C/B
i∗B
��

M0
� � H0 // C

in Cat, we define a category MB and functors HB : MB → C/B and i∗B : MB → M0.
Notice that HB is fully faithful, as a pullback of the fully faithful functor H0. By the
universal property of pullbacks, for each β : B′ → B in C, there is an induced functor
β∗ : MB → MB′ such that HB′ · β∗ ∼= β∗ · HB. Again by universal property of the
pullbacks, one can check that these assignments define a pseudofunctor Cop → Cat that,
via Grothendieck construction, gives rise to a subfibration F : M → C of the codomain
fibration. By Theorem 5.5, it is a regular epireflective subfibration.
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6. Birkhoff and admissible subfibrations

We start here from the hypotheses of Corollary 5.6 and we explore the situation where, in
addition, M0 is a Birkhoff subcategory of our semi-abelian category C. Following the steps
used in Section 3 for the case of Mal(C/B), we get that the induced regular epireflection
(8) in Fib(C) has an additional property which we express in the following definition.

6.1. Definition. Given a regular epireflection

M

F ��

� � ⊥
H

// Arr(C)
Ioo

Cod
||

C

in Fib(C), (M, F ) is called a P-Birkhoff subfibration of (Arr(C),Cod) if for each B in C,
the restriction

MB � � ⊥
HB

// C/B
IBoo

(9)

of I ⊣ H to the fibre over B makes MB a P-Birkhoff subcategory of C/B, where P is the
class of proquotients.

Summing up, we have the following.

6.2. Proposition. Each Birkhoff reflection

M0 � � ⊥
H0

// C
I0oo

whose unit components have characteristic kernels determines (up to iso) a unique P-
Birkhoff reflection

(M, F ) � � ⊥
H
// (Arr(C),Cod)

Ioo

in Fib(C), whose restriction to the fibre over 0 is I0 ⊣ H0.

6.3. Example. By means of the above proposition, we can obtain examples of P-Birkhoff
subfibrations of (Arr(C),Cod) by taking

1. C an abelian category and M0 any Birkhoff subcategory of C.

2. C = Gp and M0 any subvariety; here we are using the fact that characteristic
subgroups are precisely the subgroups closed under automorphisms, and so are the
kernels of the units of an adjunction.

3. C a semi-abelian category which is also peri-abelian and M0 = Ab(C). In which
case, for each B, MB = Mal(C/B).
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4. C a semi-abelian category satisfying (NH) and (SH) and M0 its subcategory of n-
nilpotent or n-solvable objects, for any n > 0 (see [13]). Here the condition (NH)
(see [5]) guarantees that for an object X, the iterated Higgins commutators{

[X,X]Nil
0 = X

[X,X]Nil
n+1 = [X, [X,X]n] for n ≥ 0 (nilpotent case){

[X,X]Sol0 = X

[X,X]Soln+1 = [[X,X]n, [X,X]n] for n ≥ 0 (solvable case)

are characteristic subobjects of X.

5. C = Hopfk,coc, the category of cocommutative Hopf algebras over a field k, and
M0 any Birkhoff subcategory of C. This example is borrowed from [10, Example
4.8], where the authors show that any regular epireflection in this context satisfies
condition (N) of [7], which is equivalent to the request that the unit components
have characteristic kernels.

6.4. Proposition. Let C be a semi-abelian category and let (M, F ) be a P-Birkhoff
subfibration of (Arr(C),Cod). Then, for each B in C, the restriction

MB � � ⊥
HB

// C/B
IBoo

of I ⊣ H to the fibre over B is an admissible Galois structure with respect to proquotients.

Proof. In order to prove that the adjunction IB ⊣ HB is admissible with respect to
proquotients, again one can copy verbatim the arguments we used in the case of the
reflection of C/B to Mal(C/B) (see Proposition 4.2).

6.5. Remark. The previous result could be a convenient starting point to introduce and
study a still to be defined notion of Galois structure in Fib(C).

Acknowledgment

The authors would like to thank the anonymous referee for providing helpful suggestions
and comments.

References

[1] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian cat-
egories, Math. Appl., vol. 566, Kluwer Acad. Publ., 2004.



322 A. S. CIGOLI AND S. MANTOVANI

[2] D. Bourn, Normalization equivalence, kernel equivalence and affine categories,
Springer LNM 1488, 1991, 43–62.

[3] D. Bourn, 3 × 3 Lemma and protomodularity, J. Algebra 236 (2001) 778–795.

[4] D. Bourn, The cohomological comparison arising from the associated abelian object,
preprint arXiv:1001.0905v2.

[5] A. S. Cigoli, J. Gray, and T. Van der Linden, On the normality of Higgins commu-
tators, J. Pure Appl. Algebra 219 (2015) 897–912.

[6] A. S. Cigoli and A. Montoli, Characteristic subobjects in semi-abelian categories,
Theory Appl. Categ. 30 (2015) 206–228.

[7] T. Everaert, M. Gran, Monotone-light factorization systems and torsion theories,
Bull. Sci. Math. 137 (2013) 996–1006.

[8] T. Everaert, M. Gran, and T. Van der linden, Higher Hopf formulae for homology
via Galois Theory, Adv. Math. 217 (2008) 2231–2267.

[9] M. Gran, Central extensions and internal groupoids in Mal’tsev categories, J. Pure
Appl. Algebra 155 (2001) 139–166.

[10] M. Gran and J. Scherer, Conditional flatness, fibrewise localizations, and admissible
reflections, J. Austr. Math. Soc. (2023).

[11] J. Gray and T. Van der Linden, Peri-abelian categories and the universal central
extension condition, J. Pure Appl. Algebra 219 (2015) 2506–2520.

[12] P. J. Higgins, Groups with multiple operators, Proc. London Math. Soc. (3) 6 (1956)
366–416.

[13] S. A. Huq, Commutator, nilpotency, and solvability in categories, Quart. J. Math.
19 (1968) 363–389.

[14] G. Janelidze, Pure Galois theory in categories, J. Algebra 132 (1990) 270–286.

[15] G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension,
J. Pure Appl. Algebra 97 (1994) 135–161.

[16] G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, J. Pure Appl. Al-
gebra 168 (2002) 367–386.

[17] J. Lewin, On Schreier varieties of linear algebras, Trans. Amer. Math. Soc. 132 (1968)
553–562.

[18] S. Mantovani, The Ursini commutator as normalized Smith-Pedicchio commutator,
Theory Appl. Categ. 27 (2012) 174–188.



BIRKHOFF SUBFIBRATIONS OF THE CODOMAIN FIBRATION 323

[19] S. Mantovani and G. Metere, Normalities and commutators, J. Algebra 324 (2010)
2568–2588.

[20] M. C. Pedicchio, A categorical approach to commutator theory, J. Algebra 177 (1995)
647–657.

[21] T. Streicher, Fibred categories à la Jean Bénabou, arXiv:1801.02927.
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