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THE OPLAX LIMIT OF AN ENRICHED CATEGORY

In memory of our colleague Marta Bunge

SOICHIRO FUJII AND STEPHEN LACK

Abstract. We show that 2-categories of the form B-Cat are closed under slicing, pro-
vided that we allow B to range over bicategories (rather than, say, monoidal categories).
That is, for any B-category X, we define a bicategory B/X such that B-Cat/X ∼=
(B/X)-Cat. The bicategory B/X is characterized as the oplax limit of X, regarded as a
lax functor from a chaotic category to B, in the 2-category BICAT of bicategories, lax
functors and icons. We prove this conceptually, through limit-preservation properties
of the 2-functor BICAT → 2-CAT which maps each bicategory B to the 2-category
B-Cat. When B satisfies a mild local completeness condition, we also show that the
isomorphism B-Cat/X ∼= (B/X)-Cat restricts to a correspondence between fibrations
in B-Cat over X on the one hand, and B/X-categories admitting certain powers on the
other.

1. Introduction

It is well-known that for any monoidal category V and monoid M = (M, e : I → M,
m : M ⊗M → M) therein, the slice category V /M has a canonical monoidal structure;
the unit is e and the monoidal product of objects (s : S → M) and (t : T → M) is

S ⊗ T M ⊗M M .
s⊗ t m

Moreover, there is a canonical isomorphism of categories

Mon(V /M) ∼= Mon(V )/M.

This paper originated from a natural generalization of this, replacing the notion of
monoid in V by that of V -category. That is, for any V -category X, there is an appropriate
“base” V /X admitting a canonical isomorphism of 2-categories

(V /X)-Cat ∼= V -Cat/X. (1)

Here, the “base” V /X is in general not a monoidal category but a bicategory. Enriched
category theory over bicategories is developed in, e.g., [BCSW83, Str83]. We recall that,
for a bicategory B, a B-category X is given by
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• a set ob(X);

• a function |−| : ob(X) → ob(B) (|x| is called the extent of x);

• for all x, x′ ∈ ob(X), a 1-cell X(x, x′) : |x| → |x′| in B;

• for all x ∈ ob(X), a 2-cell

|x| |x|

1|x|

X(x, x)

jx

in B, where 1|x| is the identity 1-cell on |x|; and

• for all x, x′, x′′ ∈ ob(X), a 2-cell

|x|
|x′|

|x′′|

X(x, x′) X(x′, x′′)

X(x, x′′)

Mx,x′,x′′

in B,

subject to the associativity and identity laws, generalizing the usual axioms for a category.
Since the isomorphism (1) already forces us to consider enrichment over bicategories,

it is natural to wonder whether there is a generalization of the isomorphism involving a
bicategory B in place of the monoidal category V . Indeed this turns out to be the case:
for any bicategory B and B-category X, there is a bicategory B/X with a canonical
isomorphism of 2-categories (B/X)-Cat ∼= B-Cat/X. Thus 2-categories of the form
B-Cat are closed under slicing, provided that we allow B to range over bicategories.

The construction of B/X is simple enough to carry out at this point; see also Re-
mark 4.8 for a more abstract point of view. We set ob(B/X) = ob(X) and, for all
x, x′ ∈ ob(B/X), the hom-category (B/X)(x, x′) is the slice category B(|x|, |x′|)/X(x, x′).
The identity 1-cell at x is jx, and the composite of 1-cells (s : S → X(x, x′)) : x → x′ and
(t : T → X(x′, x′′)) : x′ → x′′ is the pasting composite

|x| |x′| |x′′|.

S T

X(x, x′) X(x′, x′′)

X(x, x′′)

Mx,x′,x′′

s t

Of course, when both B and X have only one object, the construction of B/X reduces
to that of the slice of a monoidal category over a monoid.

This observation allows one to view (enriched) functors as (enriched) categories, and
suggests new perspectives even on notions which are not directly related to enrichment.
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For example, for any (Set-)category X, there is a bicategory Set/X with an isomorphism
(Set/X)-Cat ∼= Cat/X. Thus we can view functors into X as enriched categories (see Ex-
ample 4.6 below and [Gar14] for a related construction), and we may potentially interpret
properties of functors via enriched categorical terms. Indeed, we shall show that a functor
Y → X is a Grothendieck fibration if and only if the corresponding Set/X-category Y
has powers by a certain class of 1-cells in Set/X, as well as a B-enriched version of this
result.

The notation B/X is justified by its characterization as the oplax limit of a 1-cell in a
suitable 2-category. To explain this, recall that a B-category X can be given equivalently
as a lax functor X : Xc → B, where Xc is the chaotic category with the same set of
objects as X.1 Thus we can view the B-category X as a 1-cell in the 2-category BICAT
of bicategories, lax functors and icons [Lac10]. The bicategory B/X is the oplax limit of
this 1-cell in BICAT:

B/X

Xc

B.

X

(Although BICAT is not complete, it does have oplax limits of 1-cells [Lac05, LS12].)
This generalizes the characterization of the slice monoidal category V /M as the oplax
limit of the monoid M in V , regarded as a lax monoidal functor from the terminal
monoidal category to V , in the 2-category of monoidal categories, lax monoidal functors
and monoidal natural transformations.

In this paper, we study properties of the 2-functor Enr : BICAT → 2-CAT mapping
each bicategory B to the 2-category B-Cat, in order to understand the isomorphism
(B/X)-Cat ∼= B-Cat/X conceptually, as well as to establish further closure properties
of 2-categories of the form B-Cat. To this end, it is useful to factorize Enr as

BICAT

2-CAT/Enr(1)

2-CAT,

Enr1

Enr

forgetful

where 1 is the terminal bicategory. The 2-functor Enr1 maps each bicategory B to
B-Cat equipped with the 2-functor Enr(!) : B-Cat → Enr(1) induced from the unique
lax functor ! : B → 1. The underlying category of Enr(1) is Set, and Enr(!) can be
regarded as ob(−), mapping each B-category X to its set of objects ob(X). (Although
Enr is usually denoted simply as (−)-Cat, we adopted the current notation in order to
avoid the potentially misleading expression 1-Cat.)

In our main theorem (Theorem 2.1), we show that Enr1 : BICAT → 2-CAT/Enr(1)
preserves any limit which happens to exist in BICAT. This implies that Enr preserves

1Lax functors of this form were studied by Bénabou [Bén67] under the name polyad; for the connection
with enriched categories see [Str83].
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any limit which happens to exist in BICAT and is preserved by the forgetful 2-functor
2-CAT/Enr(1) → 2-CAT; the latter condition is satisfied whenever the limit in question
is small enough to exist in 2-CAT and is created by the forgetful 2-functor. In ordi-
nary category theory, the limits created by the forgetful functors from slice categories
are precisely the connected limits. In Section 3 we generalize this to 2-categories (or
in fact to V -categories where V is any complete and cocomplete cartesian closed cate-
gory), introducing the class of Cat-connected limits with several characterizations. Thus
Enr : BICAT → 2-CAT preserves any Cat-connected limit which happens to exist in
BICAT. This includes Eilenberg–Moore objects of comonads, for example. Although
oplax limits of 1-cells are not Cat-connected, the isomorphism (B/X)-Cat ∼= B-Cat/X
is explained via the limit-preservation property of Enr and a 2-categorical argument in
Section 4.

Finally, in Section 5, we investigate (internal) fibrations in the 2-category B-Cat of
B-categories. Specifically, we show that (assuming a mild local completeness condition
on B) a B-functor Y → X is a fibration in B-Cat if and only if the corresponding
B/X-category Y admits certain powers.

We intend to revisit the results of this paper in the future, in the context of enrichment
over pseudo double categories.

2. The limit-preservation theorem

Size does not play a significant role in this paper; nonetheless we make a few comments
here about the issues which arise and our approach to them. The typical monoidal
categories over which one enriches, such as Set, Cat, or Ab, have small hom-sets but are
not themselves small. Thus the corresponding bicategories will not even have small hom-
categories. We do still need some control of the size of these bicategories, and therefore
fix two Grothendieck universes U0 and U1 with U0 ∈ U1. Sets, categories, etc. in U0 and
U1 are called small and large respectively.

LetBICAT be the 2-category of large bicategories, lax functors and icons [Lac10, The-
orem 3.2], and 2-CAT be the 2-category of large 2-categories, 2-functors and 2-natural
transformations. We have a 2-functor Enr : BICAT → 2-CAT sending each bicategory
B to the 2-category B-Cat of all small B-categories, B-functors and B-natural transfor-
mations. It is the limit-preservation properties of this 2-functor Enr that is our main focus.
The limits in question will be 2-limits weighted by 2-functors of the form F : D → CAT,
where D is a large 2-category and CAT is the 2-category of large categories.

The bicategory 1 with a single 2-cell is the terminal object of BICAT, and hence Enr
induces the 2-functor Enr1 : BICAT → 2-CAT/Enr(1), where 2-CAT/Enr(1) denotes
the (strict) slice 2-category of 2-CAT over Enr(1) ∈ 2-CAT. The 2-category Enr(1) is the
locally chaotic 2-category whose underlying category is Set. More precisely, the objects
of Enr(1) can be identified with the small sets, and for each pair of small sets X and Y
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we have Enr(1)(X, Y ) = Set(X, Y )c, where (−)c appears in the string of adjunctions

SET CAT0.

π0

(−)d

ob

(−)c

⊢
⊢

⊢

(2)

Here, SET and CAT0 denote the categories of large sets and of large categories respec-
tively. The (finite-product-preserving) functors in (2) induce 2-adjunctions

CAT 2-CAT.

(π0)∗

(−)ld

(−)0

(−)lc

⊢
⊢

⊢

Thus we shall write the 2-category Enr(1) as Setlc.
Explicitly, the 2-functor Enr1 : BICAT → 2-CAT/Setlc maps each bicategory B to

the 2-category B-Cat equipped with the 2-functor ob(−) : B-Cat → Setlc which extracts
the set of objects of a B-category.

2.1. Theorem. The 2-functor Enr1 : BICAT → 2-CAT/Setlc preserves all weighted
limits which happen to exist in BICAT.

Proof. We shall show the following.

(a) The set G of all objects of 2-CAT/Setlc of the form (22 → Setlc), where 22 de-
notes the free 2-category on a single 2-cell, is a strong generator of the 2-category
2-CAT/Setlc.

(b) For each object A ∈ G, the 2-functor 2-CAT/Setlc(A,Enr1(−)) : BICAT → CAT
is a 2-limit of representable 2-functors, and hence preserves all weighted limits which
happen to exist in BICAT.

From these, the main claim follows. Indeed, let D be a large 2-category, F : D → CAT be
a 2-functor (the weight) and S : D → BICAT be a 2-functor such that the weighted limit
{F, S} exists in BICAT. Then the weighted limit {F,Enr1 ◦ S} exists in 2-CAT/Setlc,
because 2-CAT/Setlc has all (large) weighted limits. We have a comparison 1-cell
M : Enr1{F, S} → {F,Enr1 ◦ S} in 2-CAT/Setlc. Now for each A ∈ G, the functor

2-CAT/Setlc(A,M) : 2-CAT/Setlc(A,Enr1{F, S}) → 2-CAT/Setlc(A, {F,Enr1 ◦ S})

is an isomorphism by (b), from which we conclude that M is an isomorphism by (a).
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G is a strong generator of 2-CAT/Setlc because, given any 1-cell T : (X → Setlc) →
(Y → Setlc), i.e., a 2-functor T : X → Y between 2-categories X and Y over Setlc,
the condition that 2-CAT/Setlc(A, T ) be an isomorphism for all A ∈ G means that T is
bijective on 2-cells.

To show (b), observe that a 2-functor 22 → Setlc corresponds to a parallel pair of
functions f0, f1 : X → Y . Such a 2-functor can be seen as an object of 2-CAT/Setlc.
Given ((f0, f1) : 22 → Setlc) where f0, f1 : X → Y , first consider the category 2 × Xc

where 2 = {0 < 1} is the two-element chain. We regard 2 ×Xc as a bicategory as well.
We have the projection functor π : 2 × Xc → Xc and the functor [f0, f1] : 2 × Xc → Yc

defined by [f0, f1](i, x) = fi(x); these can also be regarded as lax functors, i.e., morphisms
in BICAT. The 2-functor

2-CAT/Setlc((f0, f1),Enr1(−)) : BICAT → CAT

is the comma object (in [BICAT,CAT]) as in

2-CAT/Setlc((f0, f1),Enr1(−))

BICAT(Yc,−)

BICAT(Xc,−)

BICAT(2×Xc,−).

BICAT(π,−)

BICAT([f0, f1],−)

Indeed, for any bicategory B ∈ BICAT, an object of the comma category of the functors
BICAT([f0, f1],B) and BICAT(π,B) consists of lax functors C : Xc → B and D : Yc →
B together with an icon

2×Xc

Yc

Xc

B.

π

C[f0, f1]

D

α

This corresponds to B-categories C and D with ob(C) = X and ob(D) = Y such that
|x|C = |fi(x)|D for all x ∈ X and i ∈ {0, 1}, together with a 2-cell α(i,x),(i′,x′) : C(x, x′) →
D(fi(x), fi′(x′)) in B for all (i, x), (i′, x′) ∈ 2×Xc with i ≤ i′, satisfying some equations.
These latter data in turn correspond to B-functors F0 : C → D and F1 : C → D (with
ob(Fi) = fi) together with a B-natural transformation α : F0 → F1. (We record in
Lemma 2.2 below an observation which is useful for the verification.)

This gives a bijective correspondence on objects of 2-CAT/Setlc((f0, f1),Enr1(B))
and the comma category of BICAT([f0, f1],B) and BICAT(π,B), which routinely ex-
tends to an isomorphism of categories natural in B.
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2.2. Lemma. Let B be a bicategory, C,D be B-categories and T, S : C → D be B-
functors. To give a B-natural transformation α : T → S, i.e., a family of 2-cells

|x| |x|

1|x|

D(Tx, Sx)

αx

in B for all x ∈ C, satisfying the naturality axiom saying that for all x, x′ ∈ C,

C(x, x′)

1|x′|.C(x, x′)

C(x, x′).1|x|

D(Tx′, Sx′).D(Tx, Tx′)

D(Sx, Sx′).D(Tx, Sx)

D(Tx, Sx′)

∼=

αx′ .Tx,x′

MD
Tx,Tx′,Sx′

∼=

Sx,x′ .αx

MD
Tx,Sx,Sx′

(3)

commutes, is equivalent to giving a family of 2-cells

|x| |x′|
C(x, x′)

D(Tx, Sx′)

αx,x′

in B for all x, x′ ∈ C, such that for all x, x′, x′′ ∈ C,

C(x′, x′′).C(x, x′)

D(Sx′, Sx′′).D(Tx, Sx′)

C(x, x′′)

D(Tx, Sx′′)

MC
x,x′,x′′

αx,x′′Sx′,x′′ .αx,x′

MD
Tx,Sx′,Sx′′

C(x′, x′′).C(x, x′)

D(Tx′, Sx′′).D(Tx, Tx′)

C(x, x′′)

D(Tx, Sx′′)

MC
x,x′,x′′

αx,x′′αx′,x′′ .Tx,x′

MD
Tx,Tx′,Sx′′

and

commute; the correspondence is given by mapping (αx) to (αx,x′) whose component at
(x, x′) is the composite (3).

As observed in [Lac10, Section 6.2], the 2-category BICAT can be seen as the 2-
category of strict algebras, lax morphisms, and algebra 2-cells for a 2-monad T on a
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certain locally presentable 2-category of CAT-enriched graphs, and so by [Lac05] has
oplax limits, Eilenberg–Moore objects of comonads, and limits of diagrams containing
only strict morphisms; this last class includes in particular products and powers. It also
has various other sorts of limits where certain parts of the diagram are required to be
pseudofunctors. For a more precise characterization see [LS12].

The case of oplax limits of 1-cells is our motivating example, and is formalized in
Section 4, specifically in Theorem 4.5. The case of Eilenberg–Moore objects of comon-
ads is treated in Example 3.9. As a final example, we consider products. In this case,
Theorem 2.1 says that, for bicategories B and C , the diagram

(B × C )-Cat C -Cat

B-Cat Setlc

ob

ob

is a pullback of 2-categories. In particular, to give a B × C -category is equivalent to
giving a B-category and a C -category with the same set of objects.

2.3. Remark. It is possible to remove any size-related conditions on the notion of
weighted limit in Theorem 2.1. That is, for any (possibly larger than “large”) 2-category
D and a weight F : D → CAT′, where CAT′ is a 2-category of categories in a universe
containing U1, Enr1 preserves all F -weighted limits which happen to exist in BICAT.
Indeed, let S : D → BICAT be a 2-functor such that {F, S} exists in BICAT. Then,
although a priori we do not know if {F,Enr1 ◦ S} exists in 2-CAT/Setlc or not, we can
certainly consider a large enough variant 2-CAT′/Setlc in which it does. Then by the
above discussion we have Enr1{F, S} ∼= {F,Enr1 ◦ S} in 2-CAT′/Setlc. Since the fully
faithful 2-functor 2-CAT/Setlc → 2-CAT′/Setlc reflects limits, and Enr1 does land in
2-CAT/Setlc, we see that the limit {F,Enr1 ◦ S} actually exists in 2-CAT/Setlc.

3. Weighted limits created by forgetful 2-functors K /A → K

Theorem 2.1 implies that the 2-functor Enr : BICAT → 2-CAT preserves all weighted
limits preserved by the forgetful 2-functor 2-CAT/Setlc → 2-CAT. We now investigate
these.

A large part of this section (until the end of Example 3.7) is devoted to the study
of this class of limits, which we shall call Cat-connected. Since this notion does not
require two separate universes, and since it may be of interest in other contexts, we work
with a single universe U , whose elements we call small sets. (We temporarily ignore
U0 introduced at the beginning of Section 2.) When we later return to the study of
BICAT and 2-CAT/Setlc, we apply our results in the case U = U1, and so speak of
CAT-connected limits.
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In the literature there are (at least) two definitions of creation of limit. Given 2-
functors F : D → Cat, S : D → A , and G : A → B, the phrase “G creates the F -
weighted limit of S” could mean either of the following.

• For any F -weighted limit ({F,GS}, µ : F → B({F,GS}, GS−)) of GS, there exists
a unique F -cylinder (L, ν : F → A (L, S−)) over S in A such that {F,GS} = GL
and µ = GL,S− ◦ ν hold. Moreover, (L, ν) is an F -weighted limit of S.

• For any F -weighted limit ({F,GS}, µ) of GS, there exists an F -cylinder (L, ν) over
S in A such that the mediating 1-cell GL → {F,GS} is an isomorphism. Moreover,
such an F -cylinder (L, ν) is always an F -weighted limit of S.

These two conditions are equivalent when G is the forgetful 2-functor K /A → K from
a slice 2-category, since such 2-functors reflect identities and lift invertible 1-cells.

In the following, 1 and 1 denote the terminal category and the terminal 2-category,
respectively.

3.1. Theorem. Let D be a small 2-category and F : D → Cat be a 2-functor. Then the
following are equivalent.

(1) All F -weighted limits are created by the forgetful 2-functor K /A → K for any
locally small 2-category K and A ∈ K .

(2) All F -weighted limits commute with copowers in Cat. In other words, F -weighted
limits are preserved by the 2-functor X × (−) : Cat → Cat for any X ∈ Cat.

(3) The F -weighted limit of the unique 2-functor D → 1 is preserved by any 2-functor
1 → Cat: that is, X ∼= [D ,Cat](F,∆X) for any X ∈ Cat.

(4) The F -weighted limit of the unique 2-functor D → 1 is preserved by any 2-functor
1 → K : that is, A ∼= {F,∆A} for any locally small 2-category K and A ∈ K .

(5) F ∗ (−) : [Dop,Cat] → Cat preserves the terminal object. In other words, the F -
weighted colimit of ∆1: Dop → Cat is the terminal category: F ∗∆1 ∼= 1.

(6) The (conical) colimit of F is the terminal category: ∆1 ∗ F ∼= 1.

Proof. [(1) =⇒ (2)] For anyX ∈ Cat, copowers byX are given byX×(−) : Cat → Cat,
which is the composite of the right adjoint 2-functor X × (−) : Cat → Cat/X and the
forgetful 2-functor Cat/X → Cat.

[(2) =⇒ (3)] Note that we have 1 ∼= {F,∆1} in Cat. Since X × (−) : Cat → Cat
preserves the F -weighted limit {F,∆1}, we have X ∼= {F,∆X}.

[(3) =⇒ (4)] For any B ∈ K we have K (B,A) ∼= [D ,Cat](F,∆K (B,A)). This
shows that A ∈ K is the weighted limit {F,∆A}.
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[(4) =⇒ (1)] Let T : D → K /A be a 2-functor, with the corresponding oplax cone

D

1

K .
S

Aγ

In particular, S is the composite of T and the forgetful 2-functor K /A → K . Suppose
that the weighted limit {F, S} exists in K . We have a 1-cell {F, γ} : {F, S} → {F,∆A} ∼=
A in K . We claim that the object ({F, γ} : {F, S} → A) ∈ K /A is the limit {F, T} in
K /A. For any (p : B → A) ∈ K /A, the hom category (K /A)((B, p), ({F, S}, {F, γ}))
is given by the equalizer

(K /A)((B, p), ({F, S}, {F, γ})) K (B, {F, S}) K (B,A),
K (B, {F, γ})

∆p

which is easily seen to be canonically isomorphic to [D ,Cat](F, (K /A)((B, p), T−)).
[(4) =⇒ (5)] Applying (4) to 1 : 1 → Catop, we obtain F ∗∆1 ∼= 1 in Cat.
[(5) =⇒ (3)] For any X ∈ Cat, we have

X ∼= [1, X] ∼= [F ∗∆1, X] ∼= [D ,Cat](F, [∆1(−), X]) ∼= [D ,Cat](F,∆X).

[(5) ⇐⇒ (6)] By F ∗∆1 ∼= ∆1 ∗ F .

A 2-functor F : D → Cat is called Cat-connected if F satisfies the equivalent con-
ditions of Theorem 3.1. Similarly, a weighted limit is Cat-connected if its weight is so.
Note that F : D → Cat is connected (in the sense that [D ,Cat](F,−) : [D ,Cat] → Cat
preserves small coproducts) if and only if [D ,Cat](F,∆X) ∼= X for any small discrete
category X, or equivalently just for X = 1 + 1; on the other hand it is Cat-connected if
this holds for all small categories X.

3.2. Remark. Theorem 3.1 can be proved more generally for categories enriched over a
complete and cocomplete cartesian closed category V in place of Cat, indeed the proof
carries over essentially word-for-word upon replacing each instance of Cat by V .

We now give a few simple results about Cat-connected weights in order to clarify the
scope of the notion.

3.3. Proposition. If D has a terminal object, then F : D → Cat is Cat-connected if
and only if F preserves the terminal object.

Proof. If D has a terminal object 1 then the colimit of F is F (1).

3.4. Proposition. Let C be a small ordinary category, and G : C → Set a functor. This
determines a 2-functor Gd : Cld → Cat, where now Cld is regarded as a locally discrete 2-
category. This Gd sends an object C to the discrete category G(C)d with object-set G(C).
Then Gd is Cat-connected if and only if the corresponding G is connected.

Proof. Since the functor (−)d : Set → Cat0 preserves colimits, colim(Gd) = colim(G)d.
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3.5. Proposition. ∆1: D → Cat is Cat-connected if and only if D0 is connected.

Proof. The colimit of ∆1: D → Cat is the discrete category corresponding to the set
of connected components of D0.

3.6. Example. Equifiers are Cat-connected: here it is easiest to verify directly that
equifiers in Cat commute with copowers. Similarly, one verifies that Eilenberg–Moore
objects of monads and of comonads are Cat-connected. Equalizers and pullbacks are
Cat-connected by Proposition 3.5.

3.7. Example. Non-trivial products are not Cat-connected: they are not even con-
nected. Powers by a category X are limits weighted by X : 1 → Cat; since the colimit of
such a weight is just X, powers by X are Cat-connected if and only if X = 1. Inserters,
comma objects and oplax limits of 1-cells are not Cat-connected: in particular they are
not preserved by the 2-functor N : 1 → Cat which picks out the additive monoid N of
natural numbers. More generally, inserters are not preserved by X : 1 → Cat if X has
a non-identity endomorphism, while comma objects and oplax limits of 1-cells are not
preserved by X : 1 → Cat unless X is discrete.

As anticipated at the beginning of the section, we now take U to be U1, and use
the resulting notion of CAT-connected limit, involving a large 2-category D and a 2-
functor F : D → CAT as weight. Since the inclusion Cat → CAT preserves small limits
and small colimits, Cat-connected limits are also CAT-connected. As an immediate
consequence of Theorems 2.1 and 3.1, we have:

3.8. Corollary. The 2-functor Enr: BICAT → 2-CAT preserves all CAT-connected
limits which happen to exist in BICAT.

3.9. Example. Eilenberg–Moore objects of comonads are Cat-connected (as well as
CAT-connected), and exist in BICAT by the results of [Lac05, LS12], thus they are
preserved by Enr. In more detail, a comonad G in BICAT on a bicategory B consists of
a comonad G = Ga,b on each hom-category B(a, b), together with 2-cells G2 : Gg.Gf →
G(gf) for all f : a → b and g : b → c, and 2-cells G0 : 1Ga → G1a for all objects a, subject
to various conditions, which say that the Ga,b, the G2 and the G0 can be assembled
into an identity-on-objects lax functor B → B, in such a way that the counits and
comultiplications for the comonads become icons. The Eilenberg–Moore object BG is the
bicategory with the same objects as B, and with hom-category BG(a, b) given by the
Eilenberg–Moore category B(a, b)Ga,b of Ga,b. Corollary 3.8 then says that BG-Cat is the
Eilenberg–Moore 2-category for the induced 2-comonad on B-Cat.
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4. Oplax limits and fibrations

A 1-cell f : A → B in a 2-category K is called a fibration, when K (C, f) : K (C,A) →
K (C,B) is a Grothendieck fibration for each C ∈ K , and

K (C,A) K (D,A)

K (C,B) K (D,B)

K (c, A)

K (D, f)K (C, f)

K (c, B)

is a morphism of fibrations for each c : D → C in K , in the sense that K (c, A) sends
cartesian morphisms (with respect to K (C, f)) to cartesian morphisms (with respect to
K (D, f)). If q : F → B and p : E → B are fibrations in K with the common codomain
B, then a 1-cell r : (F, q) → (E, p) in K /B is a morphism of fibrations if for each C ∈ K ,
K (C, r) is a morphism of fibrations, i.e., preserves cartesian morphisms.

As explained by Street [Str74], these notions can be reformulated if the 2-category K
has oplax limits of 1-cells, as we shall henceforth suppose. Recall that the oplax limit of
a 1-cell f : A → B in K is the universal diagram

B/f

A

B

uf

vf

fλf

wherein we often drop the subscripts f unless multiple oplax limits are being used.
If K = Cat, then these oplax limits are comma categories, as the notation suggests.

On the other hand, we have:

4.1. Example. Let X be a small set, seen as a chaotic bicategory Xc (that is, (Xc)ld
or equivalently (Xc)lc). To give an Xc-enriched category is just to give a set of objects
with a map into X. Similar calculations involving Xc-enriched functors and natural
transformations show that the diagram

Xc-Cat

1

Setlc
ob

X

is an oplax limit in 2-CAT; in other words, the 2-category Xc-Cat is isomorphic to the
slice 2-category Setlc/X; this in turn is isomorphic to (Set/X)lc.
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The fibrations in K with codomain B can be understood in terms of a 2-monad TB

on K /B whose underlying 2-functor maps f : A → B to vf : B/f → B; the component
at f : A → B of its unit is the unique map d = df : A → B/f with ud = 1A, vd = f ,
and λd equal to the identity 2-cell on f . This 2-monad is colax idempotent (has the dual
of the “Kock–Zöberlein property”), and so an object f : A → B of K /B admits the
structure of a pseudo TB-algebra if and only if d : (A, f) → (B/f, vf ) has a right adjoint
in K /B; and this in turn is the case if and only if f is a fibration. See for example [Str74,
Proposition 3(a)] and [Web07, Theorem 2.7].

Also, if q : F → B and p : E → B are fibrations in K , then a 1-cell r : (F, q) → (E, p)
in K /B admits the structure of a (pseudo) morphism of pseudo TB-algebras if and only
if the mate of the identity 2-cell

(B/q, vq)

(F, q)

(B/p, vp)

(E, p)

TBr

dpdq

r

is invertible; and this in turn is the case if and only if r is a morphism of fibrations.
Likewise, the strict TB-algebras are the split fibrations in K : those f : A → B for

which each K (C, f) : K (C,A) → K (C,B) is a split fibration, and each K (c, A) :
K (C,A) → K (D,A) preserves the chosen cartesian lifts.

In particular, v : B/f → B is a split fibration for any f : A → B, and d exhibits
v : B/f → B as the free (split) fibration on f . Thus if p : E → B is a fibration, and
g : A → E defines a morphism (A, f) → (E, p) in K /B, there is an essentially unique
morphism of fibrations r : (B/f, v) → (E, p) extending g.

4.2. Proposition. The 2-functor Enr1 : BICAT → 2-CAT/Setlc factors through the
locally full sub-2-category of 2-CAT/Setlc having

• the fibrations in 2-CAT to Setlc as objects, and

• the fibration morphisms as 1-cells.

Proof. First we describe fibrations in 2-CAT explicitly. Given a 2-functor F : Y → X
between 2-categories, a 1-cell h : y′ → y in Y is called cartesian (with respect to F ) if

Y (z, y′) Y (z, y)

X (Fz, Fy′) X (Fz, Fy)

Y (z, h)

Fz,yFz,y′

X (Fz, Fh)
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is a pullback in CAT for each z ∈ Y . Then F is a fibration if and only if, for each object
y ∈ Y and each 1-cell g : x → Fy in X , there is a cartesian morphism g : g∗y → y in Y
with Fg = g; such a g is called a cartesian lifting of g to y. Moreover, given fibrations
F : Y → X and G : Z → X over X , a 2-functor H : Y → Z satisfying F = G ◦H is a
morphism of fibrations if and only if H preserves cartesian 1-cells. (This is a special case
of Proposition 5.3 below, whose proof does not depend on the current proposition.)

For any B ∈ BICAT, a B-functor S : Y′ → Y is called fully faithful when the 2-cell
Sy,y′ : Y(y, y′) → Y′(Sy, Sy′) in B is invertible for all y, y′ ∈ Y. It is easy to see that a
B-functor is cartesian with respect to ob(−) : B-Cat → Setlc if it is fully faithful, and
indeed by essential uniqueness of cartesian lifts the reverse implication also holds. The
claim follows at once.

4.3. Remark. In the above proposition, we used fibrations in the 2-category 2-CAT,
called 2-categorical fibrations in [Gra74, I.2.9]. These were also called 2-fibrations in
[Gra74], but for the purposes of this remark we shall save that name for the more restrictive
notion studied by Hermida [Her99]; see also [Bak, Buc14]. In general, ob(−) : B-Cat →
Setlc is not a 2-fibration in the sense of [Her99]. Indeed, a 2-fibration is a 2-functor
which among other things is locally a fibration, but the forgetful functor B-Cat(X,Y) →
Setlc(ob(X), ob(Y)) induced by ob(−) is rarely a fibration of categories.

In general, oplax limits of 1-cells are not preserved by the projection K /B → K , but
to some extent fibrations can be used to remedy this, as the following result shows.

4.4. Proposition. Let p : A → B be a fibration in K , and consider a morphism g in
K /B into p, and the (essentially unique) induced morphism r of fibrations, as below

C

A

Bg

pg

p

B/pg

A

B.r

vpg

p

Then the oplax limit of g in K is the oplax limit of r in K /B.

Proof. As usual we write A/g for the oplax limit of g in K . We also write (A, p)/r for
the oplax limit of r in K /B.

A morphism D → A/g consists of morphisms a : D → A, c : D → C, and a 2-cell
α : a → gc.

A morphism D → B/pg consists of morphisms b : D → B, c : D → C, and a 2-cell
β : b → pgc, and composing with r gives the domain of the cartesian lifting β : β∗gc → gc
of β. A morphism (D, b) → (A, p)/r in K /B consists of (b, c, β) : D → B/pg, a : D → A,
and a 2-cell α′ : a → β∗gc with pα′ equal to the identity on pa = b. But by the fibration
property of p, to give such an α′ is equivalently to give α : a → gc with pα = β.

This shows that the one-dimensional aspect of the universal properties of A/g and
(A, p)/r agree, and similarly the two-dimensional aspects also agree.
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We can use this to prove the following key result, already stated in the introduction.

4.5. Theorem. Let B be a bicategory and X a B-category. Then the slice 2-category
B-Cat/X is isomorphic to (B/X)-Cat for a bicategory B/X.

Proof. If we regard X as a lax functor X : Xc → B, where X = ob(X), we may take its
oplax limit

B/X

Xc

B

X

in BICAT. Explicitly, ob(B/X) = ob(X) = X, while the hom (B/X)(x, x′) is given by
the slice category B(|x|, |x′|)/X(x, x′) for all x, x′ ∈ X.

It follows by Theorem 2.1 that (B/X)-Cat is the oplax limit

(B/X)-Cat

Xc-Cat

B-Cat

SetlcEnr(X)

ob

ob

in 2-CAT/Setlc.
Now ob(−) : Xc-Cat → Setlc is the free fibration on X : 1 → Setlc by Example 4.1,

while Enr(X) is the morphism of fibrations induced by X : 1 → B-Cat by Proposition 4.2,
and so by Proposition 4.4 the diagram

(B/X)-Cat

1

B-Cat

X

is an oplax limit in 2-CAT. But this says precisely that (B/X)-Cat ∼= B-Cat/X.

4.6. Example. In particular, when B is the cartesian monoidal category Set regarded
as a one-object bicategory, we have for each (Set-)category X the bicategory Set/X
whose set of objects is ob(X) and whose hom-category (Set/X)(x, x′) is the slice category
Set/X(x, x′). Each functor F : Y → X corresponds to a Set/X-category Y given as
follows: the objects of Y are the same as those of Y, the extent of y in Y is Fy, and the
hom Y(y, y′) is Fy,y′ : Y(y, y′) → X(Fy, Fy′). Note that since Set/X(x, x′) ≃ SetX(x,x

′),
Set/X is (biequivalent to) the free local cocompletion of X regarded as a locally discrete
bicategory, as pointed out to us by Ross Street.
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A variant of Set/X is the free quantaloid PX over X. Specifically, PX is also a
bicategory with the same objects as X, but whose hom-category (PX)(x, x′) is the pow-
erset lattice P(X(x, x′)), which is equivalent to the full subcategory of the slice category
Set/X(x, x′) consisting of the injections to X(x, x′). Accordingly, the PX-categories cor-
respond to the faithful functors Y → X [Gar14, Proposition 3.5].

4.7. Example. Let B be a bicategory with all right liftings. Then for each b ∈ B, we
have a B-category Bb whose objects are the 1-cells f : x → b in B with codomain b, with
extent |(x, f)| = x, and whose hom Bb((x, f), (y, g)) : x → y is the right lifting of f along
g:

x y

b.

Bb((x, f), (y, g))

f g

(See [GP97, Section 2] for the dual construction.) Given a B-category X, the B-functors
X → Bb correspond to the B-presheaves on X with extent b. Hence if we consider the
bicategory B/Bb, then a B/Bb-category can be identified with a B-category equipped
with a B-presheaf with extent b.

By the universality of right liftings, the bicategory B/Bb is canonically isomorphic to
the lax slice bicategory B�b: this has 1-cells with codomain b as objects, and diagrams
of the form

x y

b

f g

as 1-cells from f to g. Unlike Bb, this lax slice bicategory B�b can be defined even when
B does not have right liftings, and it is true in general that a B�b-category corresponds
to a B-category equipped with a B-presheaf with extent b. (For a general bicategory B,
the notion of B-presheaf can be defined in terms of actions; see [Str83] for a definition of
the more general notion of module.)

4.8. Remark. The bicategory B/X can be obtained from X via a change-of-base pro-
cess for bicategories enriched in a tricategory. Since the theory of tricategory-enriched
bicategories, let alone change-of-base for them, has not really been developed in detail,
we merely sketch the details. (See [GS16, Section 13] for change-of-base for bicategories
enriched over monoidal bicategories.)

We regard B as a tricategory with no non-identity 3-cells, and we regard the cartesian
monoidal 2-category Cat as a one-object tricategory Σ(Cat). There is a lax morphism of
tricategories Θ: B → Σ(Cat) sending each object b ∈ B to the unique object of Σ(Cat),
and sending a 1-cell f : b → b′ in B to the category B(b, b′)/f . Composition with Θ
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then sends each B-enriched bicategory to a Σ(Cat)-enriched bicategory. Since B has no
non-identity 3-cells, a B-enriched bicategory is just a B-enriched category; on the other
hand, a Σ(Cat)-enriched bicategory is just a bicategory in the ordinary sense. Applying
this to the B-category X gives the bicategory B/X.

5. Variation through enrichment

In the paper [BCSW83], the authors showed how fibrations with codomain X can be
seen as certain categories enriched over a bicategory W (X) depending on the category X.
In this section we give a result of the same type, although it differs in several important
respects. The bicategory we use is Set/X (see Example 4.6), which is like W (X) in having
as objects the objects of X: see Remark 5.1 below for the relationship between the two
bicategories. Then we show that fibrations over X can be identified with Set/X-categories
which have certain powers.

5.1. Remark. Given objects x, x′ ∈ X, a 1-cell in W (X) from x to x′ consists of a
presheaf E on X equipped with maps to X(−, x) and X(−, x′); in other words, it consists
of a span of presheaves from X(−, x) to X(−, x′). Now a 1-cell S → X(x, x′) in Set/X
from x to x′ determines, via Yoneda, a map S · X(−, x) → X(−, x′) of presheaves, where
S · X(−, x) denotes the copower of X(−, x) by S: the coproduct of S copies of X(−, x).
On the other hand there is the codiagonal S ·X(−, x) → X(−, x), and so we obtain a span

X(−, x) X(−, x′)S · X(−, x)

of presheaves; that is, a 1-cell in W (X) from x to x′. This defines the 1-cell part of
a homomorphism of bicategories Set/X → W (X) which is the identity on objects and
locally fully faithful. Just as we characterize fibrations over X as Set/X-categories with
certain limits, so in [BCSW83] these fibrations are seen as W (X)-categories with certain
limits; one key difference is that in the case of W (X) the limits in question are absolute.

In fact we work not just with fibrations of ordinary categories, but rather fibrations
in the 2-category B-Cat of B-enriched categories, as in Section 4. One recovers the case
of ordinary categories upon taking B to be the one-object bicategory Σ(Set). We have
seen in Theorem 4.5 that, for a B-category X, B-functors with codomain X correspond
to B/X-enriched categories. We shall see in this section that a B-functor F : Y → X is a
fibration in B-Cat if and only if the corresponding B/X-category Y has certain powers.

First, however, we give an elementary characterization of fibrations in B-Cat. To do
this, we start with the fact that every B-category X has an underlying ordinary category
X0 with the same objects; a morphism x → x′ in X0 can exist only if x and x′ have the
same extent (|x| = |x′|), in which case it amounts to a 2-cell 1|x| → X(x, x′) in B.2 We

2The assignment X 7→ X0 is the object-part of a 2-functor B-Cat → Cat, arising via change-of-
base with respect to a lax functor from B to the cartesian monoidal category Set, seen as a one-object
bicategory. The lax functor sends each object b to this unique object; it sends a 1-cell f : b → c to the
set B(b, c)(1b, f) if b = c and the empty set otherwise; with the evident action on 2-cells.
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shall sometimes refer to such morphisms in X0 simply as morphisms in X. If f : x′ → x′′

is a morphism in X and x is an object, there is an induced 2-cell X(x, f) : X(x, x′) →
X(x, x′′) defined by pasting f : 1|x′| → X(x′, x′′) together with the composition 2-cell
Mx,x′,x′′ : X(x′, x′′).X(x, x′) → X(x, x′′).

5.2. Definition. Let F : Y → X be a B-functor. A morphism h : y′ → y in Y0 is said
to be cartesian with respect to F if the square

Y(z, y′) Y(z, y)

X(Fz, Fy′) X(Fz, Fy)

Y(z, h)

Fz,yFz,y′

X(Fz, Fh)

is a pullback in B(|z|, |y|) for all objects z in Y.

This implies in particular that h is cartesian with respect to the ordinary functor
F0 : Y0 → X0, but in general is stronger than this.

5.3. Proposition. Suppose that the bicategory B has pullbacks in each hom-category
B(a, b). A B-functor F : Y → X is a fibration in B-Cat if and only if, for each object
y ∈ Y and each morphism g : x → Fy in X there is a cartesian morphism g : g∗y → y
in Y with Fg = g. Given fibrations F : Y → X and G : Z → X, a B-functor H : Y → Z
with F = G ◦H is a morphism of fibrations if and only if H : Y → Z preserves cartesian
morphisms.

Proof. The pullbacks in the hom-categories of B can be used to construct oplax limits
in B-Cat, as we shall now show. Let F : Y → X be a B-functor; then the oplax limit
L = X/F has:

• objects given by pairs (g, y), with y ∈ Y and g : x → Fy in X0

• the extent of (g, y) equal to the extent of y (which is also the extent of x)

• homs given by pullbacks as in

L((g′, y′), (g, y)) Y(y′, y)

X(x′, x)

X(Fy′, Fy)

X(x′, Fy)

U(g′,y′),(g,y)

Fy′,y

X(g′, Fy)

V(g′,y′),(g,y)

X(x′, g)
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• projections V : L → X and U : L → Y sending an object (g, y) to x and to y, and
defined on homs as in the diagram above.

The diagonal B-functor D : Y → L sends an object z ∈ Y to (1Fz, z) ∈ L. Taking
(g′, y′) = Dz in the above diagram gives a pullback

L(Dz, (g, y)) Y(z, y)

X(Fz, x) X(Fz, Fy).

U

Fz,yV

X(Fz, g)

Now F is a fibration just when D has a right adjoint in B-Cat/X. Such an adjoint is
given on objects by a lifting of g : Fx → y to some g : g∗y → y, and the universal property
says that this lifting is cartesian.

We now turn to the characterization of fibrations of B-categories in terms of B/X-
categories. First recall that if W is a bicategory and Z is a W -category then powers in Z
involve an object y of Z and a 1-cell v : x → |y| in W with codomain the extent of y. The
power of y by v consists of an object v ⋔ y of Z with extent |v ⋔ y| = x, together with a
2-cell

|v ⋔ y| |y|

v

Z(v ⋔ y, y)

η

such that for all z ∈ Z and all

|z|

|v ⋔ y|

|y|

b

Z(z, y)

v

α

there exists a unique γ making the pasting composite

|z|

|v ⋔ y|

|y|

b

Z(z, v ⋔ y)

Z(z, y)

v

Z(v ⋔ y, y)

M

γ η
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equal to α. (In other words, the pasting of η and M exhibits Z(z, v ⋔ y) as the right
lifting of Z(z, y) along v.)

We consider this in the case where W = B/X and Z is the B/X-category Y corre-
sponding to a B-functor F : Y → X. Then an object y of Y is just an object of Y, and
the extent of y, as an object of B/X, is the object Fy of X. A general 1-cell x → Fy in
B/X has the form

|x| |Fy|,

v

X(x, Fy)

w

but we shall only consider the special case where |x| = |Fy| and v = 1|x|, so that in
fact we are dealing with a morphism w : x → Fy in X0. In general, we call a 1-cell
(w : v → X(x, x′)) : x → x′ in B/X a singleton 1-cell if |x| = |x′| and v = 1|x|. Note
that the category X0 can be regarded as a sub-bicategory of B/X whose 1-cells are the
singleton 1-cells. When B = Set, a 1-cell x → x′ in Set/X corresponds to a set v
equipped with a function w : v → X(x, x′); in this case, the singleton 1-cells in Set/X can
be identified with those 1-cells with v a singleton, whence the name singleton.

A power of y by w : 1 → X(x, Fy) then consists of an object w ⋔ y of Y with F (w ⋔ y)
= x together with a morphism w : w ⋔ y → y in Y0 with Fw = w — that is, a lifting w
of w — subject to the universal property stating that for all z ∈ Y, b : |z| → |y|, α, and
β making

|z|

|x|

|y|

b 1

Y(z, y)

X(Fz, Fy)

α

Fz,y = |z|

|x|

|y|,

b

X(Fz, x)

X(Fz, Fy)

1

X(x, Fy)

M

β w

there exists a unique γ making the pasting composites

|z|

|w ⋔ y|

|y|

b 1

Y(z, w ⋔ y)

X(Fz, x)

γ

Fz,w⋔y |z|

|w ⋔ y|

|y|

b

Y(z, v ⋔ y)

Y(z, y)

1

Y(w ⋔ y, y)

M

γ w



410 SOICHIRO FUJII AND STEPHEN LACK

equal respectively to β and α. But this says exactly that if the exterior of the diagram

Y(z, w ⋔ y) Y(z, y)

X(Fz, x) X(Fz, Fy)

b

Y(z, w)

Fz,yFz,w⋔y

X(Fz,w)

α

β

γ

in B(|z|, |y|) commutes, then there is a unique γ making the triangular regions commute;
in other words, that the internal square is a pullback. This in turn says that w is a
cartesian lifting of w. This now proves:

5.4. Proposition. Let B be a bicategory in which each hom-category has pullbacks. A
B-functor F : Y → X is a fibration if and only if the corresponding B/X-category Y has
powers by morphisms in X0; that is, powers by singleton 1-cells.

We conclude by strengthening this correspondence to an isomorphism between suitable
2-categories. Let W be a bicategory andH : Z → Z′ a W -functor. Suppose that the power
v ⋔ y of y ∈ Z by v : x → |y| exists in Z, with the associated 2-cell η : v → Z(v ⋔ y, y).
Then H is said to preserve the power v ⋔ y if the 2-cell Hv⋔y,y ◦ η : v → Z′(H(v ⋔ y), Hy)
exhibits H(v ⋔ y) as the power v ⋔ Hy in Z′.

5.5. Theorem. Let B be a bicategory in which each hom-category has pullbacks. The
canonical isomorphism of 2-categories (B/X)-Cat ∼= B-Cat/X restricts to an isomor-
phism between the locally full sub-2-category of (B/X)-Cat having

• the B/X-categories with powers by singleton 1-cells as objects, and

• the B/X-functors preserving these powers as 1-cells,

and the locally full sub-2-category of B-Cat/X having

• the fibrations to X as objects, and

• the fibration morphisms as 1-cells.
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[Bak] Igor Baković. Fibrations of bicategories. Preprint available at http://www.
irb.hr/korisnici/ibakovic/groth2fib.pdf.

http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf
http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf


THE OPLAX LIMIT OF AN ENRICHED CATEGORY 411

[BCSW83] Renato Betti, Aurelio Carboni, Ross Street, and Robert Walters. Variation
through enrichment. J. Pure Appl. Algebra, 29(2):109–127, 1983.

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Cate-
gory Seminar, pages 1–77. Springer, Berlin, 1967.

[Buc14] Mitchell Buckley. Fibred 2-categories and bicategories. J. Pure Appl. Algebra,
218(6):1034–1074, 2014.

[Gar14] Richard Garner. Topological functors as total categories. Theory Appl. Categ.,
29(15):406–422, 2014.

[GP97] R. Gordon and A. J. Power. Enrichment through variation. J. Pure Appl.
Algebra, 120(2):167–185, 1997.

[Gra74] John W. Gray. Formal category theory: adjointness for 2-categories. Lecture
Notes in Mathematics, Vol. 391. Springer-Verlag, Berlin-New York, 1974.

[GS16] Richard Garner and Michael Shulman. Enriched categories as a free cocom-
pletion. Adv. Math., 289:1–94, 2016.

[Her99] Claudio Hermida. Some properties of Fib as a fibred 2-category. J. Pure
Appl. Algebra, 134(1):83–109, 1999.

[Lac05] Stephen Lack. Limits for lax morphisms. Appl. Categ. Structures, 13(3):189–
203, 2005.

[Lac10] Stephen Lack. Icons. Appl. Categ. Structures, 18(3):289–307, 2010.

[LS12] Stephen Lack and Michael Shulman. Enhanced 2-categories and limits for lax
morphisms. Adv. Math., 229(1):294–356, 2012.

[Str74] Ross Street. Fibrations and Yoneda’s lemma in a 2-category. In Category
Seminar (Proc. Sem., Sydney, 1972/1973), Lecture Notes in Math., Vol. 420,
pages 104–133. Springer, Berlin, 1974.

[Str83] Ross Street. Enriched categories and cohomology. Repr. Theory Appl. Categ.,
(14):1–18, 2005. Reprinted from Quaestiones Math. 6 (1983), no. 1-3, 265–283,
with new commentary by the author.

[Web07] Mark Weber. Yoneda structures from 2-toposes. Appl. Categ. Structures,
15(3):259–323, 2007.



412 SOICHIRO FUJII AND STEPHEN LACK

School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Aus-
tralia
Email: s.fujii.math@gmail.com

steve.lack@mq.edu.au

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Giuseppe Metere, Università degli Studi di Milano Statale: giuseppe.metere (at) unimi.it

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosický, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@unige.it
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