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BI-DIRECTIONAL MODELS OF
‘RADICALLY SYNTHETIC’ DIFFERENTIAL GEOMETRY

MATÍAS MENNI

Abstract. The radically synthetic foundation for smooth geometry formulated in
[Law11] postulates a space T with the property that it has a unique point and, out of
the monoid TT of endomorphisms, it extracts a submonoid R which, in many cases, is
the (commutative) multiplication of a rig structure. The rig R is said to be bi-directional
if its subobject of invertible elements has two connected components. In this case, R
may be equipped with a pre-order compatible with the rig structure. We adjust the
construction of ‘well-adapted’ models of Synthetic Differential Geometry in order to
build the first pre-cohesive toposes with a bi-directional R. We also show that, in one
of these pre-cohesive variants, the pre-order on R, derived radically synthetically from
bi-directionality, coincides with that defined in the original model.

1. Introduction

The origin of Synthetic Differential Geometry (SDG) may be traced back to certain 1967
lectures by Lawvere, later summarized in [Law79]. That summary includes, between
brackets, some remarks based on developments that occurred since the original lectures.
It postulates a locally catesian closed category X , a ring R therein, and an isomorphism
RD ∼= R×R, where D → R denotes the subobject of elements of square 0. Between
brackets, it is observed that such isomorphism could be interpreted to mean that the
canonical R×R→ RD is invertible, as had been done in several papers by Kock. See
[Koc77] where this interpretation is introduced and where rings satisfying the resulting
‘Kock-Lawvere (KL)’ axiom are called of line type.

The summary also sketches the construction of models, including the role of the al-
gebraic theories of real-analytic and of C∞ functions. Between brackets, it is mentioned
that, in 1978, Dubuc succeeded in constructing a model of the axioms containing the
category of real C∞-manifolds. See [Dub79] where C∞-rings play the prominent role.

The first book on SDG appeared in 1981 and it was reprinted as a second edition in
[Koc06]. Several other books have appeared since 1990 giving respective accounts of the
development of the subject [MR91, Lav96, Bel98, Koc10] and [BGSLF18].
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Much can be done with the KL-axiom alone but, for some purposes, (e.g. integration),
a pre-order on a ring of line type R, compatible with the ring structure, is also postulated.
The typical models are ‘gros’ toposes such as those arising in classical Algebraic Geometry
[Koc06] and those intentionally built to produce ‘well-adapted’ models embedding the
category of manifolds [Dub79, Koc06, MR91]. See also [Men21a] for more recent examples,
similar to those in Algebraic Geometry over C, but over the simple rig with idempotent
addition.

The ‘gros’ vs ‘petit’ distinction among toposes appears already in [AGV72] but the
idea to axiomatize toposes ‘of spaces’ is from the early ‘80s [Law05]. See also [Law07]
for a more recent formulation and [Men14] or [Men21b] for the definition of pre-cohesive
geometric morphism. For instance, the ‘gros’ Zariski topos E determined by the field C of
complex numbers is a well-known model of SDG and the canonical geometric morphism
E → Set is pre-cohesive. The same holds for some of the models in [Men21a]. On the
other hand, the well-adapted models of SDG are intuitively toposes of spaces but, as far as
I know, very little work has been done to relate them with Axiomatic Cohesion. Perhaps
the only exception are the results in [MR91] noting that the well-adapted models discussed
there are local, which is one of the requirements in [Law05] (and also in the definition
of pre-cohesive map). Another requirement is that the inverse image of a pre-cohesive
geometric morphism E → S must have a finite-product preserving left adjoint E → S
which, intuitively, sends a space X to the associated set π0X of connected components of
X. This cannot be true for the canonical geometric morphism from the ‘smooth Zariski
topos’ [MR91, VI] to the topos of sets because, in constrast with the classical cases over
a field, where every affine scheme is a finite coproduct of connected ones, there are affine
C∞-schemes with infinite coproduct decompositions.

The paragraph above does not imply that ‘well-adaptation’ is incompatible with Co-
hesion. We will show in Sections 2 and 4 how to modify the techniques to construct
well-adapted models of SDG so that they produce very simple (presheaf) pre-cohesive
toposes (over Set) with rings of line type. Moreover, these pre-cohesive toposes also
model something more radical.

The radically synthetic foundation for smooth geometry formulated in [Law11] (and
briefly recalled in Section 3) postulates a space T with the property that it has a unique
point and, out of the monoid T T of endomorphisms of T , it extracts a submonoid R
which, in many cases, is the (commutative) multiplication of a rig structure. The rig R
is said to be bi-directional if its subgroup U of invertible elements is such that π0U = Z2

the multiplicative group with two elements. In this case, R may be equipped with a pre-
order compatible with the rig structure. As explained loc.cit., this is ‘radically synthetic’
in the sense that all algebraic structure is derived from constructions on the geometric
spaces rather than assumed. (See also [Law] which is unpublished but freely available
from Lawvere’s webpage.)

We remark that no explicit models of bi-directional Radical SDG are considered in
[Law11]. It is clear that the objects D arising in SDG can play the role of T and that they
will give the expected result, but the issue of bi-directionality is more subtle. On the one
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hand, R is not bidirectional in the models coming from Algebraic Geometry; on the other
hand, we don’t know which of the known well-adapted models of SDG have a ‘π0’ functor.
Nevertheless, many well-adapted models at least satisfy that the subobject of invertibles
in R is not connected; in fact, in these cases, U is representable by the C∞-ring of smooth
R-valued functions on the non-connected manifold (−∞, 0) + (0,∞) so, at least, they
are ‘bi-directional’ in this sense. Essentially the same phenomenon implies that, in our
pre-cohesive models, bi-directionality holds in the sense of the previous paragraph.

Finally we show in Section 5 that, in one of the pre-cohesive models, the pre-order on
R, derived radically synthetically from bi-directionality, coincides with the pre-order that
is defined in the analogous model of SDG.

2. The coextensive category of C∞-rings

Let Ring be the coextensive category of rings so that the slice R/Ring is the category of
R-algebras. We next recall the algebraic theory of C∞-rings [Koc06, III.5]. For any finite
set n, the n-ary operations are the smooth functions Rn → R. The associated algebraic
category of C∞-rings will be denoted by C∞-Ring. There is an evident algebraic functor
C∞-Ring→ R/Ring that has the following not quite so evident property.

2.1. Lemma. [Koc06, Proposition III.5.4] Let A be a C∞-ring and let I ⊆ A be an ideal
in the usual ring-theoretic sense. Then the R-algebra A/I carries a unique structure of
C∞-ring such that the quotient A→ A/I is a morphism of C∞-rings. Hence, as map in
C∞-Ring, it is the universal map from A with kernel I ⊆ A.

As an application we prove the following (folk?) basic fact.

2.2. Proposition. The category C∞-Ring is coextensive.

Proof. We show that coextensivity lifts from R/Ring along C∞-Ring→ R/Ring. It is
enough to check that this functor preserves and reflects both finite products and pushouts
along product projections. The issue of finite products is easy because any algebraic
functor creates limits so it also preserves and reflects them.

Consider now a product projection π : A→ B in C∞-Ring. It is well-known that,
as a map in R/Ring, it may be identified with A→ A/(e) for some idempotent e ∈ A.
Then so is the case in C∞-Ring by Lemma 2.1. Hence, for any f : A→ C in C∞-Ring
the square below

A

f

��

// A/(e)

��
C // C/(fe)

is a pushout both in C∞-Ring and in R/Ring. It is then clear that C∞-Ring→ R/Ring
both preserves and reflects these pushouts.
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Let (C∞-Ring)fg → C∞-Ring be the full subcategory of finitely generated C∞-rings.

2.3. Corollary. The essentially small category (C∞-Ring)fg is coextensive and the full
inclusion (C∞-Ring)fg → C∞-Ring preserves finite products.

Proof. It is enough to show that the full subcategory (C∞-Ring)fg → C∞-Ring is closed
under finite products and direct factors. Closure under direct factors follows from their
description in terms of idempotents as in the proof of Proposition 2.2. So it remains to
prove that finitely generated C∞-rings are closed under binary product. It is enough to
check that C∞(Rm)× C∞(Rn) is finitely generated for all finite m,n. Using (smooth)
Tietze one may show that a simple C∞(Rm+n+1)→ C∞(Rm)× C∞(Rn) is surjective.

In contrast with Lemma 2.1 the forgetful C∞-Ring→ R/Ring does not create the
universal solution to inverting an element. This will be of key importance throughout the
paper.

Also, in contrast with the case of k-algebras for a field k: it is not the case that
every finitely generated C∞-ring is finitely presentable [Koc06, Example III.5.5], and it
is not the case that every finitely generated C∞-ring is a finite direct product of directly
indecomposable ones. Moreover, by the Nullstellensatz, every non-final finitely generated
C-algebra has a (co)point, but see [Koc06, p. 165] for an example of a non-final finitely
generated C∞-ring without points.

Let AffC∞ be the (extensive) opposite of the category of finitely generated C∞-rings.
Its objects might be called affine C∞-schemes.

3. Radically Synthetic Differential Geometry

Euler’s observation that real numbers are ratios of infinitesimals is the topic of [Law11]. To
make that observation rigorous, Lawvere suggests some basic properties of the underlying
category of spaces and postulates the existence of an object ‘of infinitesimals’ with the
sole property that it has a unique point. Then he shows how some simple axioms of
geometric nature allow to construct a pre-ordered ring ‘of Euler reals’. In this section, we
briefly recall some of these ideas and relate them to SDG.

Let E be an extensive category with finite limits and let 0 : 1→ T be a pointed object
in E such that T is exponentiable. For any object X in E , XT is called the tangent bundle
of the space X, with evaluation at 0 inducing the bundle map ev0 : X

T → X.

3.1. Definition. The subobject R→ T T of Euler reals is defined by declaring

R

��

// T T

ev0

��
1

0
// T

to be a pullback in E .
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The exponential T T carries a canonical monoid structure determined by composition
in E . This monoid structure restricts to R and is called multiplication. The transposition
1→ T T of the evident composite T → 1→ T factors as a map 0 : 1→ R followed by the
inclusion R→ T T . In this way, R has the intrinsic structure of a monoid with 0.

We are mainly interested in categories of spaces that are toposes, but some of the
ideas may be directly illustrated at the level of sites.

3.2. Example. [Affine k-schemes.] Let k be a field and let Affk be the (cartesian and
extensive) opposite of the category of finitely presentable k-algebras. If A is one such
then SpecA denotes the corresponding object in Affk. In particular, let k[ϵ] = k[y]/(y2)
and let T = Spec(k[ϵ]). Clearly T has a unique point and a direct calculation shows that
T T = Spec(k[ε, x]/(ϵx)) = Spec(k[x, y]/(xy, y2)) and that R = Spec(k[x]), the affine line.
The subobject R→ T T corresponds to the unique map k[ε, x]→ k[x] that sends x to x
and ϵ to 0. Also, the multiplication morphism R×R→ R in Affk corresponds to the
morphism k[x]→ k[x]⊗k k[x] = k[y, z] that sends x to yz. It is well-known that this
multiplication is the multiplicative structure of a ring of line type.

The preservation properties of the Yoneda functor imply that, in the topos of presheaves
on Affk, the monoid of Euler reals determined by the presheaf representable by T is rep-
resentable by R. On the other hand, Affk → Âffk does not preserve finite coproducts.

3.3. Example. [The Gaeta topos determined by field.] Still assuming that k is a field,

extensivity of Affk allows us to consider the Gaeta subtopos Gk → Âffk of finite-product
preserving presheaves. The Yoneda embedding factors through this subtopos and that
the factorization Affk → Gk preserves not only limits but also finite coproducts. As in the
presheaf case, the monoid of Euler reals determined by T coincides with R.

3.4. Remark. [On the complex Gaeta topos.] Essentially by the Basis Theorem, every
object in Affk is a finite coproduct of connected objects. It follows that the Gaeta topos Gk
is a equivalent the topos of presheaves on the subcategory of connected objects in Affk. If
k = C, every connected object in Affk has a point, so the Gaeta topos of C is pre-cohesive
over Set. We make this remark because the experience of the Complex Gaeta topos will
lead us to consider other sites of connected objects that have a point.

The similarity between the intuitions about T and about the object D in SDG is no
accident. To give a rigorous comparison we prove the following result which has surely
been known since the mid 60’s although I don’t think it appears explicitly in [Law79] or in
[Koc06]. An ‘external’ form of the result is mentioned in the paragraph before Section 4
in [Ros84]. The present form is suggested in the last paragraph of p. 250 of [Law11] and
it is stated explicitly just before Corollary 5.5 in [CC14].

3.5. Proposition. [KL implies E.] If R is a ring of line type then the multiplicative part
of R is the monoid of Euler reals determined by 0 : 1→ D.
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Proof.The mapR×R→ RD used in KL axiom makes the inner triangle below commute

1×R

��

0×R // R×R

pr0
##

∼= // RD

ev0

��

R

⟨!,id⟩ ∼=
��

j // DD

iD

��
1

0
// R 1×R

0×R
// R×R ∼=

// RD

(where pr0 is the obvious product projection) and the supplementary inner polygon is
a pullback so the left rectangle above is a pullback. Also, if we let i : D → R be the
evident subobject then the square on the right above commutes where the top map j is
the transposition of restricted multiplication R×D → D; so the rectangle is a pullback.
Stacking the pullbacks we obtain that R→ DD is the inverse image of 0 : 1→ R along
(ev0)(i

D) : DD → RD. As the square on the left below commutes

DD

ev0

��

iD // RD

ev0

��

R

��

// DD

ev0

��
D

i
// R 1

0
// D

and 0 : 1→ R factors through i : D → R, it follows that the right square above is a
pullback.

It remains to check that j preserves multiplication, in other words, that the diagram
on the left below commutes

R×R

·
��

j×j // DD ×DD

◦
��

R×R×D

·×D

��

R×· // R×D

·
��

R
j

// DD R×D ·
// D

but, via transposition, this reduces to the commutativity of the diagram on the right
above.

3.6. Remark. [Alternative proof of 3.5.] For comparison we sketch below a proof using
generalized elements suggested by A. Kock (private communication). The KL-axiom im-
plies that maps D → R may be identified with affine endomaps ϵ 7→ a+ bϵ with a, b ∈ R.
If we denote such a map by (a, b) then it follows that (a, b) ◦ (c, d) = (a+ bc, bd). Such an
affine map takes D into D if and only if (a+ bϵ)2 = 0 for every ϵ ∈ D. This is equivalent
to the conjunction of a2 = 0 and, for all ϵ ∈ D, 2abϵ = 0; and we may cancel the univer-
sally quantified ϵ. So we have identified the monoid of endos of D as that of affine maps
(a, b) such that a2 = 0 and 2ab = 0. Such an affine map preserves 0 if and only if a = 0.
In other words, the monoid of Euler reals may be identified with that of affine maps of
the form (0, b) with b ∈ R and, clearly, (0, b) ◦ (0, c) = (0, bc).

In any case, regardless of the preferred style of proof, Proposition 3.5 shows, roughly
speaking, that the ‘radical’ and the ‘conservative’ versions of SDG are compatible.
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3.7. Example. [Affine C∞-schemes.] Let AffC∞ be the opposite of the category of finitely
generated C∞-rings. As in the case of algebras over a field, for A a finitely generated
C∞-ring we let SpecA be the corresponding object in AffC∞ . It is well-known that
Spec(C∞(R)) is a ring of line type in AffC∞ , so its underlying multiplicative monoid is a
monoid of Euler reals by Propostion 3.5.

Recall that, in an extensive category, an object is said to be connected if it has exactly
two complemented subobjects. For instance, the rings of line type in Examples 3.2 and
3.7 are connected. On the other hand:

3.8. Example. [Rings of line type need not be connected.] It is known that the ring R
of line type in the Weil topos determined by a field k is a coproduct indexed by k. See
[Koc06, Exercise III.11.4] pointing at the existence of non-constant endomorphisms f of R
such that f ′ = 0. See also [MM19, Proposition 6.3] where it is evident that, in the complex
Weil topos, the set of points of R is isomorphic to its set of connected components.

(A different approach to connectedness is that in [MR91, Section III.3] using internal
topological spaces in well-adapted models of SDG, but we will not deal with that here.)

Even assuming that R is connected, the subobject U → R of invertibles may or may
not be connected.

3.9. Example. [U may be connected.] For any field k, U = Spec(k[x−1]) in Affk, which is
connected. We stress that k need not be algebraically closed. In particular, U is connected
in AffR. This may appear counter-intuitive but, in some sense, Algebraic Geometry over
a field k is not just about k but also about its finite extensions so, intuitively, we might
expect that Affk displays some traits of the separable or algebraic closure of k.

In contrast, consider the following.

3.10. Example. [U may be disconnected.] It follows from [Koc06, Proposition III.6.7]
that the embedding of manifolds into AffC∞ preserves the pullback

(−∞, 0) + (0,∞)

��

// 1

1

��
R× R ·

// R

and, since the embedding sends R2 to R2 and R to R, we may conclude that

U = Spec(C∞(−∞, 0)× C∞(0,∞)) = Spec(C∞(−∞, 0)) + Spec(C∞(0,∞))

which is not connected in the extensive AffC∞ .

In order to continue our discussion it is convenient to recall the following restricted
version of [Yet87, Definition 0.2].
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3.11. Definition. An object X in E is T -discrete if ev0 : X
T → X is an isomorphism.

To capture the idea of a ‘discrete space of connected components’, the suggestion in
[Law11] is to use a full reflective subcategory of E of T -discrete objects and such that the
left adjoint preserves finite products. We will not make emphasis on T -discrete objects.
We will simply assume that we have a reflective subcategory S → E whose left adjoint
π0 : E → S preserves finite products. Given such a reflective subcategory we may say that
an object X in E is connected if π0X = 1.

3.12. Example. [Decidable affine k-schemes.] For a fixed base field k, the full subcate-
gory Dec(Affk)→ Affk of decidable objects has a finite-product preserving left adjoint π0

[DG70, I,§4, no 6]. In terms of algebras, the adjoint sends a finitely generated k-algebra
to its largest separable subalgebra. It follows that R is connected in Affk (i.e. π0R = 1).

Example 3.12 may be lifted to toposes as in [Men14]. Again, see [Men21a] for analogous
examples in the context of algebras with idempotent addition.

To recapitulate, let E be an extensive category with finite limits and let S → E be a
full subcategory with finite-product preserving left adjoint π0. Let 0 : 1→ T be a pointed
object in E with exponentiable T and let R be the associated monoid of Euler reals.

3.13. Proposition. [Law11, Proposition 1] If R is connected then, for every X in E,
π0ev0 : π0(X

T )→ π0X is an isomorphism. If T is connected and R→ T T has a retraction,
the converse holds.

Proof. Internal composition provides XT with a ‘pointed’ action XT × T T → XT and
it is straightforward to check that it restricts to a pointed action XT ×R→ XT . As π0

preserves finite products it sends pointed actions (of R) in E to pointed actions (of π0R)
in S. If R is connected then 0 = 1 in the monoid π0R so the result follows. In more detail,
the condition saying that 1 ∈ R acts as the identity means that the triangle on the right
below commutes. ‘Pointedness’ means that the left square below commutes

XT × 1

pr0
��

id×0 // XT ×R

��

XT × 1
id×1oo

pr0
uu

XT
ev0

// X // XT

where X → XT is the canonical section of ev0, that is, the transposition of the projection
X × T → X. As π0 preserves finite products, the diagram below

π0(X
T )× 1

pr0
��

id×π00 // π0(X
T )× π0R

��

π0(X
T )× 1

id×π01oo

pr0tt
π0(X

T ) π0ev0
// π0X // π0(X

T )
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commutes in S. If R is connected (i.e. π0R = 1) then the following diagram commutes

π0(X
T )

π0ev0

��

id

%%
π0X // π0(X

T )

so the retraction π0ev0 : π0(X
T )→ π0X is an isomorphism.

For the converse we have that π0(T
T ) ∼= π0T = 1 by hypothesis. That is, T T is con-

nected and, since retracts of connected objects are connected, the result follows.

In other words, under mild assumptions, R is connected if and only if, for every space
X, the tangent bundle of X has the same connected components as X. (Notice that if R
is a ring of line type then the subobject R→ DD appearing in the proof of Proposition 3.5
has a retraction needed to define derivatives.)

Rings of line type have always been commutative. Concerning monoids of Euler reals
[Law11] says that “To justify that commutativity seems difficult, though intuitively it is
related to the tinyness of T , in the sense that even for slightly larger infinitesimal spaces,
the (pointed) endomorphism monoid is non-commutative”.

Also, [Law11] briefly discusses two ways to insure that monoids of Euler reals have a
unique addition. One via Integration, the other via trivial Lie algebras. The first one is
to consider the subobject Φ(X) = HomR(R

X , R)→ R(RX) of the functionals ϕ such that
ϕ(λf) = λ(ϕf) for every λ ∈ R, and then require that Φ(1+ 1) = (Φ1)2, so that addition
“emerges as the unique homogeneous map R×R→ R which becomes the identity when
restricted to both 0-induced axes R→ R×R.” The second one is to consider the kernel
Lie(R)→ RT of ev0 : R

T → R which has a binary operation that may be called addition;
“the space of endomorphisms of Lie(R) for that operation is a rig that contains (the right
action of) R as a multiplicative sub-monoid, so that if we postulate that R exhausts the
whole endomorphism space, then R inherits a canonical addition”.

Assuming that the monoid R underlies a ring structure, the simple result below is
applied to derive, from a subgroup of R, a pre-order on R, meaning a subrig M of ‘non-
negative quantities’.

3.14. Proposition. [Law11, Proposition 2] Given a subobject P ⊆ K of a rig K, let

A = {a ∈ K | a+ P ⊆ P} ⊆ K and M = {λ ∈ K | λA ⊆ A} ⊆ K.

Then A ⊆ K is an additive submonoid and so M ⊆ R is a subrig. If 1 ∈ A then M ⊆ A.
If P ⊆ R is a multiplicative subgroup then P ⊆M .

For example, if P ⊆ C is the subobject of invertible elements thenA = {0} andM = C.
On the other hand, if P = (0,∞) ⊆ R then M = A = [0,∞) ⊆ R.
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3.15. Lemma. For P,M,A ⊆ K as in Proposition 3.14 the following hold:

1. If K is a ring, 1 ∈ A and −1 ∈M then 0 ∈ P .

2. If 1 ∈ A then, the inclusion M ⊆ A is an equality of subobjects if and only if A is
closed under multiplication.

Proof. If 1 ∈ A then M ⊆ A by Proposition 3.14 so, if −1 ∈M then −1 ∈ A and hence
−1 + 1 = 0 ∈ P . One direction of the second item is trivial. For the other, assume that
A is closed under multiplication. Then, for every a ∈ A, aA ⊆ A so a ∈M .

Let U → R be the subobject of invertible elements and let the following square

U+

��

// π01

π01

��
U // π0U

be a pullback, where 1 : 1→ U is the unit of R as a subobject of U . Since U is a subgroup
of R, and π0 preserves products, π0U is also a group and U+ → U is the kernel of the
group morphism U → π0U .

The map π01 : 1→ π0U may be an isomorphism and, in this case, U+ → U is also an
isomorphism, of course. We are mainly interested in contexts where this is not the case.

3.16. Definition. The monoid R is bi-directional if π0U = 1+ 1.

So, assuming that the monoid R of Euler reals underlies a ring, we may apply Proposi-
tion 3.14 to the subgroup U+ ⊆ R in order to obtain a subrig M ⊆ R. The ‘real’ intuition
suggests that it is not unnatural to require or expect that 1 + U+ ⊆ U+; in other words,
1 ∈ A ⊆ R. Then the first item of Lemma 3.15 implies that −1 ̸∈M , unless 0 = 1 in R.

Readers are invited to compare the above with the efforts in [Koc06, MR91] to prove
that the pre-orders defined on certain rings of line type there are compatible with the
ring operations. We should also remark that some of those efforts will play a role below
when the time comes to give a simple description of the subrigs M → R derived radically
synthetically.

4. A bi-directional monoid of Euler reals

Let p : E → S be a geometric morphism. Recall that p is hyperconnected if p∗ : S → E is
fully faithful and the counit β of p∗ ⊣ p∗ is monic. Intuitively, E is a category of spaces, p∗

is the full subcategory of discrete spaces, and the right adjoint p∗ : E → S sends a space
to the associated discrete space of points. For a space X, the monic βX : p∗(p∗X)→ X
may be thought of as the discrete subspace of points.

In perspective, we may say that p is pre-cohesive if it is hyperconnected, p∗ is cartesian
closed and p∗ preserves coequalizers. It follows [Men21b] that p∗ has a (necessarily fully
faithful) right adjoint p! and that p∗ has a left adjoint p! : E → S that preserves finite
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products. Hence, p is pre-cohesive if and only if p∗ ⊣ p∗ extends to a string of adjoints
p! ⊣ p∗ ⊣ p∗ ⊣ p! such that p∗ is fully faithful, the counit of p∗ ⊣ p∗ is monic and the leftmost
adjoint p! preserves finite products. It follows that the reflector σX : X → p∗(p!X) = π0X
is epic. Sometimes we say that E is pre-cohesive over S.

For any pre-cohesive p, the fact that the canonical p∗σ : p∗ → p∗p
∗p! ∼= p! is an epi-

morphism is consistent with the intuition that every connected component has a point.
In particular, if p∗X = 1 then p!X = 1. In other words, if the space X has a unique point
then it is connected.

The purpose of this section is to build a pre-cohesive topos p : E → Set and a (neces-
sarily connected) object T in E such that p∗T = 1, and such that the resulting monoid R
of Euler reals is bi-directional. Moreover, it will be evident from the construction that R
underlies a ring of line-type.

Pre-cohesion will follow from the next result borrowed from [Joh11]. (See also [Men14,
Proposition 2.10] for a statement consistent with our terminology.)

4.1. Proposition. Let C be a small category with terminal object. Then Ĉ → Set is
pre-cohesive if and only if every object in C has a point.

Now recall Remark 3.4 and let C → AffC∞ be the full subcategory of connected objects
that have a point. The category C is essentially small but contains many objects of interest.
It certainly has a terminal object. Also, germ-determined C∞-rings have a copoint almost
by definition ([Koc06, Exercise III.7.1]), so every non-trivial germ-determined finitely-
generated C∞-ring with exactly two idempotents determines an object in C.

In particular, for any manifoldM , C∞(M) is finitely-presentable and germ-determined
(in fact, point-determined) by [Koc06, Theorem III.6.6 and Corollary III.5.10]. Moreover,
if M is connected then C∞(M) has exactly two idempotents by the Intermediate Value
Theorem. Altogether, for any connected manifold M , C∞(M) determines an object of C.

Also, every Weil algebra (over R) is a finitely presentable C∞-ring by [Koc06, Propo-
sition III.5.11] and hence determines an object in C.

Let T be the object in C determined by the Weil algebra R[ϵ]. Of course, it has a
unique point, and we denote it by 0 : 1→ T .

4.2. Lemma. For any X in C, the product X × T in AffC∞ is also in C.

Proof. The forgetful functor C∞-Ring→ R/Ring reflects coproducts with Weil al-
gebras by [Koc06, Theorem III.5.3]. More precisely, if A is a C∞-ring and W is a
Weil algebra then there is a unique C∞-ring structure on A⊗R W extending its R-
algebra structure such that A→ A⊗R W ← W is a coproduct in C∞-Ring. In particular,
A⊗∞ R[ϵ] = A[ϵ]. So, if A is finitely generated, or has exactly two idempotents, or has
a copoint, then so does A[ϵ]. Therefore, if A determines an object in C then so does the
coproduct A⊗∞ R[ϵ].

By the remarks above, the object R = Spec(C∞(R)) is in the subcategory C → AffC∞ .
The product

R×R = Spec(C∞(R)⊗∞ C∞(R)) = Spec(C∞(R2))
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is also in C, so R is a ring object in C.

4.3. Proposition. The canonical Ĉ → Set is pre-cohesive and the monoid of Euler re-
als determined by T in Ĉ is bi-directional. Moreover, that monoid coincides with (the
multiplicative part of) the ring R which is connected and satisfies the KL-axiom.

Proof. By definition, the category C has a terminal object and every object in it has a
point, so Ĉ → Set is pre-cohesive by Proposition 4.1.

The quotient C∞(R)→ R[ϵ] in C∞-Ring determines a monomorphism T → R in C.
In fact, it is the subobject of elements of square zero. Moreover, by Lemma 4.2 we can
repeat the usual proof that the KL-axiom holds. Indeed, for any SpecA in C,

Ĉ(SpecA,RT ) ∼= Ĉ((SpecA)× T,R) ∼= Ĉ(Spec(A[ϵ]), R) ∼=

C∞-Ring(C∞(R), A[ϵ]) ∼= A× A ∼= C∞-Ring(C∞(R), A)× C∞-Ring(C∞(R), A) ∼=
∼= Ĉ(SpecA,R)× Ĉ(SpecA,R) ∼= Ĉ(SpecA,R×R)

as usual. Proposition 3.5 implies that the monoid of Euler reals determined by T coincides
with the multiplicative part of R. Moreover, R is connected because it is representable.

As observed in Example 3.10, the subobject U → R of invertibles in AffC∞ coincides
with Spec(C∞(−∞, 0)) + Spec(C∞(0,∞))→ SpecR = R. The domain of this subobject
is not an object in C, but the summands are. Then

U = Spec(C∞(−∞, 0)) + Spec(C∞(0,∞))

in Ĉ. So p!U = p![Spec(C
∞(−∞, 0)) + Spec(C∞(0,∞))] = 1+ 1 because U in Ĉ is a co-

product of two representables.

It is clear from the proof of Proposition 4.3 that U+ = Spec(C∞(0,∞)) in Ĉ. Then
1 + U+ ⊆ U+ and so, by the remarks following Lemma 3.15, we obtain a subrig M ⊆ R
inside the complement of −1 : 1→ R. I have not found an illuminating expression of this
subrig though. In the next section we consider a smaller topos, also with a bi-directional
R, but where M ⊆ R has a simple description.

5. W-determination and the Positiv-stellen-satz

In this section we construct another bi-directional ring of line type but in a topos where
the induced pre-order is easier to describe explicitly in terms of the site.

A C∞-ring A is W-determined if the family of maps A→ W in C∞-Ring with Weil
codomain is jointly monic.

W-determined C∞-rings are called near-point determined in [MR91].
Let CW → C be the full subcategory induced by the objects in C that are W-determined

as C∞-rings. It follows from the discussion following [Koc06, Theorem III.9.4] that every
connected manifold with boundary determines an object in CW . Moreover, this assignment
is functorial.
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5.1. Proposition. The canonical ĈW → Set is pre-cohesive and the monoid of Euler
reals induced by T in Ĉ is bi-directional. Moreover, this monoid coincides with (the mul-
tiplicative part of) the ring R which is connected and satisfies the KL-axiom.

Proof. It is enough to check that CW has all the properties needed to mimic Proposi-
tion 4.3. It certainly contains all the objects induced by connected manifolds and also
those induced by Weil algebras. In particular, it contains the object T . So the main
problem is to extend Lemma 4.2 by showing that CW is closed under products with T ,
but this follows from [MR91, Proposition I.4.6 and Lemma II.1.15].

Let C∞[0,∞) = C∞(R)/I where I ⊆ C∞(R) is the ideal of functions that vanish on
[0,∞) ⊆ R.

5.2. Proposition. [Positiv-Stellen-Satz.] Let m be a finite set and let q : C∞(Rm)→ A
be a regular epimorphism in C∞-Ring with W-determined codomain. If we let J ⊆ Rm

be the kernel of q then, for any smooth g : Rm → R, the following are equivalent:

1. The restriction of the smooth g : Rm → R to Z(J) ⊆ Rm factors through [0,∞) ⊆ R,
where Z(J) = {x ∈ Rm | (∀f ∈ J)(fx = 0)}.

2. The composite

C∞(R) C∞g // C∞(Rm)
q // A

factors through C∞(R)→ C∞[0,∞).

Proof. Use the proof of [Koc06, Lemma III.11.4].

The C∞-ring C∞[0,∞) is W-determined by the remarks in [Koc06, p.185]. The corre-
sponding object in CW will be denoted by H. So the quotient C∞(R)→ C∞[0,∞) induces
a monomorphism H → R in CW .

Let Γ = CW (1,−) : CW → Set be the usual ‘points’ functor.

5.3. Corollary. For every v : X → R in CW , v factors through the subobject H → R if
and only if Γv : ΓX → ΓR = R factors through [0,∞)→ R.

Proof. The object X equals SpecA for some finitely generated and W-determined C∞-
ring A. So there is a finite set m and a regular epimorphism q : C∞(Rm)→ A. The map
v corresponds to a map v : C∞(R)→ A and, since the domain of this map is projective,
there exists a smooth g : Rm → R such that the following triangle

C∞(R)

v //

C∞g // C∞(Rm)

q

��
A

commutes in C∞-Ring. By Proposition 5.2, v factors through C∞(R)→ C∞[0,∞) if and
only if the restriction of g to Z(J) ⊆ Rm factors through [0,∞) ⊆ R where J is the kernel
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of q. But this holds if and only if the left-bottom composite below

Z(J) = ΓX

��

// [0,∞)

��
ΓRm = Rm

g
// R

factors through the right subobject as depicted above, so the result follows.

For a connected manifold M we let M = Spec(C∞(M)). To complete our calculation
we need another standard result that we reformulate as follows.

5.4. Lemma. For any connected manifold M , the product of M and H exists in CW and it
corresponds to C∞(M × R)/J where J is the ideal of functions that vanish on M × [0,∞).

Proof. This follows from the proof of [Koc06, Theorem III.9.5] (and the fact that, for
connected M , C∞(M × R)/J has exactly two idempotents).

Recall that U → R is the subobject of invertibles, that U+ → U is the kernel of
U → π0U and that M ⊆ R is the subrig determined by bi-directionality of R.

5.5. Theorem. In the topos ĈW , the subrig M → R coincides with H → R.

Proof.Consider firstA = {a ∈ R | a+ U+ ⊆ U+} = {a ∈ R | (∀u ∈ U+)(a+ u ∈ U+)} → R.
To check that H ≤ A is enough, by Lemma 5.4, to show that the composite

U+ ×H // R×R
+ // R

factors through U+ → R, but this follows from the embedding of connected manifolds
with boundary in CW and the fact that the composite

(0,∞)× [0,∞) // R× R + // R

factors through (0,∞) ⊆ R there.

To prove that A ≤ H let C in CW and let γ : C → R in ĈW factor through A→ R. It
follows that, for every c : 1→ C and r : 1→ U+, the composite

1
⟨r,c⟩ // U+ × C

U+×γ // U+ ×R
+ // R

factors through U+ → R. In other words, the composite

(0,∞)× ΓC
(0,∞)×Γγ // (0,∞)× ΓR = (0,∞)× R + // R

factors through (0,∞)→ R. Then Γγ : ΓC → ΓR = R factors through [0,∞)→ R. So
γ factors through H → R by Corollary 5.3. This completes the proof that A = H as
subobjects of R.
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Certainly, 1 : 1→ R factors through H = A→ R so, by Lemma 3.15, it only remains
to check that the subobject H → R is closed under multiplication. That is, we need to
prove that the composite

H ×H // R×R
· // R

factors through H → R. So let C in C and let u, v : C → H in ĈW . Then the composite

ΓC
⟨Γu,Γv⟩ // ΓH × ΓH = [0,∞)× [0,∞) // R× R · // R

clearly factors through [0,∞)→ R, because the restricted multiplication [0,∞)× [0,∞)→ R
does. Hence, for every u, v as above, the composite

C
⟨u,v⟩ // H ×H // R×R · // R

factors through H → R in ĈW by Corollary 5.3. Therefore the composite

H ×H // R×R
· // R

does factor through H → R as we needed to prove.
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