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KZ-PSEUDOMONADS AND KAN INJECTIVITY

Dedicated to the memory of Marta Bunge (1938-2022)

IVAN DI LIBERTI, GABRIELE LOBBIA, AND LURDES SOUSA

Abstract. We introduce the notion of Kan injectivity in 2-categories and study its
properties. For an adequate 2-category K, we show that every set of morphisms H
induces a KZ-pseudomonad on K whose 2-category of pseudoalgebras is the locally
full sub-2-category of all objects (left) Kan injective with respect to H and morphisms
preserving Kan extensions. The main ingredient is the construction of a (pseudo)chain
whose appropriate “convergence” is ensured by a small object argument.

Introduction

A classical problem in category theory goes under the name of the orthogonal subcategory
problem. For H a class of maps in a category C, we ask whether the full subcategory of
orthogonal objects H⊥

is reflective in C, that is, H⊥
is the category of algebras of an

idempotent monad.
There are several reasons to study orthogonal subcategories and their reflectivity,

because many situations in mathematics can be reduced to an orthogonality class of
objects. For example, the set H of maps that specifies the orthogonality class can be
understood as a set of axioms that the objects in the orthogonality class must satisfy
(see [AHS06] for a theoretical approach to this motto, or [AR94, 1.33] for some practical
examples of how it functions). Thus, orthogonality offers a categorical tool to axiomatise
convenient subcategories.

The orthogonal subcategory problem has a longstanding tradition and was approached
by several authors. Peter Freyd and Max Kelly [FK72] provided what later became a
standard reference on the topic. In [Kel80], Kelly unified the work of earlier authors,
by providing a beautiful solution for this problem in a broad setting by means of the
colimit of a transfinite sequence. This construction is quite in the same spirit of the
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celebrated small object argument. In a more recent account, the work of Jǐŕı Adámek and
Jǐŕı Rosický [AR94, Chap. 1.C] gives a detailed description of the transfinite sequence in
locally presentable categories. Their technique is very influential for our treatment.

The aim of this paper is to establish a similar result for a 2-dimensional variation
of the orthogonal subcategory problem which captures many relevant constructions of
2-dimensional category theory. We will direct our study to the interplay between Kan-
injectivity and lax-idempotent pseudomonads (i.e. KZ-pseudomonads). They are natural
substitutes for orthogonality and idempotent monads when working in 2-categories.

This work generalises the work of [ASV15] and introduces Kan injectivity in 2-categories.
An object X is (left) Kan injective with respect to a map h if every f ∶ dom(h) //X can
be extended to the codomain of h through a 2-cell

A A
′

X

h

f
f/h

ξf

and such an extension is universal among the possible extensions; more precisely, (f/h, ξf)
is the (left) Kan extension of f along h. Given a class H of 1-cells, we can form the locally
full sub-2-category of all objects left Kan injective with respect to H and 1-cells preserving
the corresponding Kan extensions. There are two natural notions of Kan injectivity, the
strongest one demanding that ξf is invertible. We will show how they relate to each
other in subsection 1.13, concluding that both notions give rise to the same Kan injective
sub-2-categories. It is known that some relevant 2-categories can be described via Kan
injectivity (Example 1.6). We aim to push this observation and show that a vast class of
interesting 2-categories can be described via Kan injectivity axioms. To do so, we will link
Kan injective sub-2-categories to KZ-pseudomonads.

The concept of KZ-pseudomonad in a 2-category (also known as lax-idempotent
pseudomonad or KZ-doctrine), presented by Anders Kock in [Koc95] and by Zöberlein in
[Zöb76] generalises the one of idempotent monad in ordinary categories. In [BF06] Marta
Bunge and Jonathan Funk characterised the 2-adjunctions giving rise to KZ-pseudomonads.
In [MW12], Francisco Marmolejo and Richard Wood showed that a KZ-pseudomonad
in a 2-category and its algebras may be presented in terms of left Kan extensions. In
particular, their results can essentially be summarised as in Theorem 2.3. This theorem
was previously shown for the particular case of order-enriched categories in [CS11], and is
an important tool in the proof of Theorem 4.3.

Our main result (Theorem 4.3) shows that, in a locally small 2-category with small
bicolimits, if all objects satisfy a convenient notion of smallness (see Definition 4.1),
then for every set H of morphisms of K the inclusion of the corresponding Kan-injective
sub-2-category LInj(H)

LInj(H) ↪ K

is the right adjoint 2-functor of a KZ-adjunction. To this end, we construct, for each
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object X, a transfinite (pseudo)chain (see Section 3) leading to the components of the
unit of the KZ-adjunction. LInj(H) is then essentially the corresponding category of
(pseudo)algebras. This chain generalizes the Kan injective reflection chain presented
in [ASV15] for order-enriched categories. Here, the main factor allowing us to take off
from the locally thin context of [ASV15] is the use of a special colimit, which we call
coequinserter.

The structure of the paper goes as follows. In Section 1 we start by introducing
weak Kan injectivity and Kan injectivity (Definition 1.2). We put the notions into context,
making the due comparison to the literature and proving the closedness under (bi)limits of
LInj(H) (Proposition 1.4), a soundness result towards the main theorem. In Proposition
1.14, we show that, in any 2-category with bicocomma objects, for every class of maps H
there exists a class of maps H̄ such that WLInj(H) = LInj(H̄), where WLInj(H) refers
to the weak Kan-injective sub-2-category. We also show that every class of morphisms
saturated under Kan-injectivity contains all lari 1-cells and is closed under composition,
bicocomma, bipushouts and wide bipushouts (Proposition 1.17).

The subsequent three sections build the technology needed to prove our main theorem.
In Section 2, after recalling some results due to Marmolejo and Wood on the structure
of KZ-pseudomonads, we formulate the result (Theorem 2.3) which will serve as a basis
for the proof of our main theorem. We finish this section with Corollary 2.8 stating
that, for every class of 1-cells H, if the inclusion LInj(H) ↪ K is the right part of a
KZ-adjunction, then the 2-category of pseudoalgebras of the corresponding KZ-monad is
essentially LInj(H).

Section 3 gives an explicit construction of a pseudochain (Construction 3.4) which
provides the candidate left pseudoadjoint to the forgetful functor LInj(H) ↪ K. It is
shown that in this pseudochain (xij)i≤j every x0i belongs to the Kan injective saturation
of H.

Section 4 contains our main theorem, which is the following:

Theorem (4.3) Let K be a locally small 2-category with small bicolimits and such that all
objects are small. Then, for any set H of 1-cells in K, the inclusion 2-functor LInj(H) ↪ K
is the right part of a KZ-adjunction. Moreover, LInj(H) is the corresponding Eilenberg–
Moore 2-category, up to equivalence of 2-categories.

Section 5, our last section, applies the machinery developed in the paper to study a
broad class of 2-categories defined over Lex, the 2-category of categories with finite limits.
The main result (Theorem 5.10) of the section relates Kan injectivity with the theory
of lex-colimits by Garner and Lack [GL12] and offers an alternative characterization of
Φ-exactness.

1. Kan injectivity

1.1. Left Kan injectivity – weak and strong. Let K be a 2-category, and f ∶A //X
and h∶A // A

′
two 1-cells in K. Recall that the left Kan extension of f along h is
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defined as a 1-cell f/h∶A′ //X together with a 2-cell,

A A
′

X

h

f
f/h

ξf (1)

such that for any other 1-cell g∶A′ //X with a 2-cell α∶ f ⇒ g ◦ h there exists a unique
2-cell α∶ f/h ⇒ g such that we have the equality α = (ᾱ ◦ h) ⋅ ξf :

A A
′

A A
′

=

X X

h

f

f/h

g g

h

f

ξf
ᾱ α

Of course, such a 1-cell f/h is defined up to isomorphism.
A 1-cell p∶X // X

′
preserves the left Kan extension (f/h, ξf) if the pair

(p(f/h), p ◦ ξf) forms a left Kan extension of pf along h, i.e. there is an invertible
2-cell (pf)/h ≅ p ◦ f/h satisfying the following equation.

A A
′

A A
′

X = X

X
′

X
′

h

(pf)/h

p◦f/h

h

f

p

f/h

f

p

ξf
ξpf

≅

Throughout the paper we will make use of the notion of left Kan injectivity given
below. We also present the notion of weakly left Kan injectivity, which will be discussed
in this section.

1.2. Definition.

1. An object X ∈ K is weakly left Kan injective with respect to a family of 1-cells H
if, for all h∶A //A

′
in H and any f ∶A //X in K the left Kan extension (f/h, ξf)

of f along h exists, see (1).

By the general theory of Kan extensions, this amounts to say that the representable
functor K(−, X)∶K //Cat maps every 1-cell of H to a right adjoint 1-cell.
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2. We say that X ∈ K is left Kan injective with respect to H if it is weakly left Kan
injective and, moreover, the 2-cells ξf are invertible. This amounts to say that the
representable functor K(−, X) maps every 1-cell of H to a rali in Cat (i.e. a right
adjoint with invertible unit).

1

3. A 1-cell p∶X //X
′
of K is (weakly) left Kan injective with respect to H if its

domain and codomain are so and p preserves left Kan extensions along 1-cells in H.

4. We can form a locally full sub-2-category WLInj(H) of K with objects all weakly
left Kan injectives with respect to H and 1-cells between them which preserve left
Kan extensions along maps in H. Similarly, we define

LInj(H)

restricting objects to left Kan injectives with respect to H.

Bunge and Funk [BF99] studied certain KZ-doctrines, called admissible, and charac-
terised their algebras in terms of weakly left Kan injectivity, considering pointwise left Kan
extensions (see also [Str81]). As we will see in the next section, we may characterise the
algebras of any KZ-doctrine in terms of left Kan injectivity, and this fact is an important
tool in our paper.

1.3. Remark. Consider the diagram below, where X and X
′
are left Kan injective

with respect to h∶A // A
′
, and hX ∶= (−)/h is the left adjoint of K(h,X). A 1-cell

p∶X //X
′
preserves left Kan extensions along h if and only if it satisfies an appropriate

Beck–Chevalley condition, namely, the canonical natural transformation below is invertible.

K(A′
, X)

K(A′
,p) ⟸
��

K(A,X)hXoo

K(A,p)
��

X

p

��

K(A′
, X

′) K(A,X ′)
hX ′

oo X
′

This characterization concerning Kan injectivity leads to a nice behaviour of Kan
injective sub-2-categories with respect to bilimits and pseudolimits, which we describe in
the following proposition.

1.4. Proposition. The inclusion 2-functor LInj(H) ↪ K creates bilimits and pseudolim-
its.

1
rali stands for right adjoint left inverse; analogously, lari stands for left adjoint right inverse, i.e. a

left adjoint with invertible unit. Similarly, we write lali and rari for left/right adjoints with invertible
counit.
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Proof. Let us consider a pseudofunctor D∶ I // LInj(H) (with I a small 2-category)
and a weight W ∶ I //Cat (strict 2-functor).

1. For any object i ∈ I, Di ∈ LInj(H), i.e. K(h,Di) =∶ hDi
∗
is a rali (let us denote

with hDi ⊣ hDi
∗
the adjunction).

2. For any 1-cell u∶ i // j ∈ I, Du is Kan injective, i.e.

K(A,Di) K(B,Di)

K(A,Dj) K(B,Dj)

hDi

Du◦− Du◦−

hDj

≅

Let us note that these isomorphisms make hD− into a pseudonatural transformation,
the composition and the other axioms follow by the universal property of Kan
extensions.

It is easy to check that also hD−
∗
is a pseudonatural transformation. In particular we

have hD− ⊣ hD−
∗
in the 2-category [I,Cat] of pseudofunctors, pseudonatural transforma-

tions and modifications (which also makes hD−
∗
a rali). It is well-known that hom-functors

into Cat preserve adjunctions (see [Gra74, Proposition I,6.3]). Then, setting H ∶= hD− ◦−
and H

∗ ∶= hD−
∗ ◦ −, we get an adjunction

[I,Cat](W,K(A,D−)) [I,Cat](W,K(B,D−))
H

H
∗

⊥ in Cat.

Now, let us assume that the W -weighted bi/pseudolimit of D exists in K, i.e.

1. Pseudolimit: There exists an object Lp ∈ K such that

K(A,Lp) ≅ [I,Cat](W,K(A,D−))

is an isomorphism of categories for any A.

2. Bilimit: There exists an object Lb ∈ K such that

K(A,Lb) ≃ [I,Cat](W,K(A,D−))

is an equivalence of categories for any A.

Since both isomorphisms and equivalences of categories preserve adjunctions, in both
cases we get a lali (for L = Lp or L = Lb)

K(A,L) K(B,L)
h

−◦h

⊥



436 IVAN DI LIBERTI, GABRIELE LOBBIA, AND LURDES SOUSA

Let us consider projections l
i
w∶L //Di, i.e. the image of the object w ∈ Wi under

the i-component of the universal pseudonatural transformation Wi //K(L,Di) (the one
corresponding to 1L). Let us consider the diagram below

K(A,L) K(B,L)

[W,K(A,D−)] [W,K(B,D−)]

K(A,Di) K(B,Di)

hL

l
i
w◦− l

i
w◦−

∼ ∼

hDi

ei,wei,w

H
≅ ≅

(2)

(1)

where ei,w is the functor taking a pseudonatural transformation α∶W //K(A,D−) and
evaluates its i-component at the object w ∈ Wi (see below)

ei,w∶α ⟼ αi(w) ∈ K(A,Di)

and we wrote [W,K(A,D−)] for the category [I,Cat](W,K(A,D−)). Let us recall that
H sends a pseudonatural transformation α∶W //K(A,D−) to

W K(A,D−) K(B,D−).hD−α

Hence, it is straightforward to check that the diagram (2) commutes and so the whole

diagram above (since diagram (1) commutes by definition of hL). This shows that each l
i
w

is left Kan injective.

All of this reasoning works also when we have − ◦ h only a left adjoint and not a
lali, hence also WLInj(H) is closed under weighted bi/pseudolimits. This also follows
from the fact shown below that every weakly left Kan injective sub-2-category is left Kan
injective (Proposition 1.14).

Next we list some examples concerning Kan injective sub-2-categories.

1.5. Example. [Categories with finite colimits are weakly Kan injective] Let Rex be the
2-category of small categories with finite colimits and functors preserving them. Define, in
Cat,

H = {⊤∶D // 1 ∣ D is a finite category}.
It then follows from [ML13, X.7.1] that Rex ≃ WLInj(H). Of course, because finite
colimits are generated by finite coproducts and coequalizers, H can be reduced to three
arrows D // 1, with

D = 0, a • •b , • →
→ • ,

determining the existence of an initial object, binary coproducts and coequalizers, re-
spectively. For any class D of finite categories, using a similar argument, we can get the
category of categories with any colimit of shape in D.
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1.6. Example. [Categories with finite colimits are Kan injective] Similarly to the previous
discussion, we will describe Rex as a left Kan injective sub-2-category of Cat. In order to
do so, for all finite categories D, call D̂ the category obtained from D by freely adding a
terminal object and call ιD∶D // D̂ the canonical inclusion. Define,

H = {ιD∶D // D̂ ∣ D is a finite category}.

It then follows from [Rie17, 3.1.8, 6.3.10] that Rex ≃ LInj(H). Naturally, as in the
above example, H can be reduced to a class containing only three arrows.

1.7. Remark. [Pointwise Kan extension] In the spirit of the previous example, a significant
variation of this problem has been studied in the literature, for the special case of 2-
categories of prestacks and pointwise Kan extensions. In [Str81, Theorem 9.3, Corollary 9.5],
Street provides a result in K = [Cop

,Cat], for C a small bicategory, that is similar to our
Theorem 4.3.

1.8. Example. [Orthogonality] In the context of ordinary categories, that is, locally
discrete 2-categories, the notion of Kan-injectivity is just the classical definition of orthogo-
nality. In this case, LInj(H) is the full subcategory of all objects orthogonal to H usually
denoted by H⊥

.

1.9. Example. [Other cameos: Factorization systems] In the general theory of algebraic
weak factorization systems developed by Bourke and Garner, a variation of Kan injectivity
emerges in a stricter form. Indeed, in [BG16, Example 29 (iii)] they essentially present
our example 1.5, but where there is a specified data of colimits. On a similar note, [CF16,
Section 9] discusses strict extensions in the context of factorization systems.

1.10. Example. [Fullness] If H is made of lax epimorphisms (i.e. for every h∶A // A
′

in H and every X, the functor K(h,X)∶K(A′
, X) // K(A,X) is fully faithful), then

LInj(H) is a full sub-2-category. Indeed, for every map p between Kan injective objects,
from the fact that ((pf)/h)h ≅ pf ≅ p(f/h)h, it will follow that (pf)/h ≅ p(f/h). A
detailed study on lax epimorphisms may be seen in [NS22].

1.11. Example. [Order-enriched categories] Known examples abound in the 2-category
of posets and other order-enriched categories. For instance, in the category Top0 of T0

topological spaces and continuous maps, the category of continuous lattices and maps
preserving directed suprema and infima is RInj(H) for H the class of (topological)
embeddings, where RInj referes to right Kan injectivity in the expected sense. In the
category Loc of locales and localic maps, the category of stably locally compact locales
with convenient maps is LInj(H) for H the class of flat embeddings (see [Joh02]). These
and other examples may be encountered in [ASV15] and [CS17].
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1.12. Remark. [A comparison with enriched weakness] In [LR12], Lack and Rosický
introduce a very interesting notion of injectivity, which is parametric with respect to a class
of maps. Let us recall it and briefly to compare it with our notion. Let V be a reasonably
nice category to enrich in and let E be a class of maps in V . Let K be a category enriched
over V and H be a class of 1-cells; then they define

InjE(H)

to be the full subcategory of K of those objects X such that K(−, X) maps H to E . This
definition resonates with ours. Indeed, let us consider the particular choice V = Cat and
E = ra, rali, where ra and rali stand for the classes of right adjoints and of right adjoint left
inverses, respectively.

It is clear that on the level of objects, Injra(H) and Injrali(H) coincide with our notions
of Kan injectives. Yet, there is a huge difference on the choice of the 1-cells, which, in our
case, leads to a, in general, non-full sub-2-category.

1.13. A comparison between weak Kan-injectivity and Kan-injectivity. The
following proposition allows us to restrict to left Kan injectivity without losing generality.

1.14. Proposition. Let H be a class of maps in a 2-category K with bicocomma objects,
then there exists a class of maps H such that WLInj(H) = LInj(H).
The mapping cone trick. Concerning examples 1.5 and 1.6, we can guess a construction
of H from H. Indeed, in that case, from each arrow ⊤ ∶ D // 1 one can obtain the
mapping cone ιD∶D // D̂ via the (bi-)cocomma object below.

D 1

D D̂

⊤

j

ιD

ρ

We show in the proof of Proposition 1.14 that this is an instance of a general property. A
very similar idea and result appears in [Str14, Section 2].

Proof of Proposition 1.14. For every map h ∈ H, we construct the mapping cone
C(h) over h as the bicocomma object below.

A A
′

A C(h)

h

j

ih

ρ

Then, we define H to be the class of all ih with h ∈ H. Let us now show that an object X
is weakly left Kan injective with respect to H if and only if it is left Kan injective with
respect to H. In particular, we will show that an object X is weakly left Kan injective to
a h ∈ H if and only if it is left Kan injective to ih.
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1. We start by showing that if X is left Kan injective with respect to ih, then it is
weakly left Kan injective with respect to h.

Let f ∶A //X be a 1-cell in K. Since X is left injective with respect to ih, there
exists the left Kan extension f/ih with the associated 2-cell ξ

ih
f an isomorphism.

Then, we can set f/h ∶= f/ih ◦ j and ξ
h
f as the pasting diagram below:

A A
′

C(h)

X

j

h

ih

f

f/ih

ρ

ξ
ih
f

Now, we will show that f/h and ξ
h
f defined in this way satisfy the universal property

of the left Kan extension. Let g∶A′ //X be a 1-cell in K together with a 2-cell

A A
′

X

h

g
f

β =

A A
′

A X
f

h

g
β

By the universal property of the bicocomma object, the 2-cell β is equivalent to

a 1-cell g∶C(h) //X and invertible 2-cells

A
′

A C(h) C(h)

X Xf
g

g

ih

j
g

≅

≅

whose pasting with ρ gives β. Then, using the universal property of the left Kan
extension f/ih, we get that these data is equivalent to have

a 1-cell g∶C(h) //X such that g ◦ j ≅ g and
a 2-cell β∶ f/ih // g such that

A C(h)

X

gf/ih

ih

β
=

A C(h)

C(h) X

f

ih

gih

f/ih

ξ
ih
f

−1
≅
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Let us notice that this means that βih is completely determined by the universal
2-cell ξ

ih
f and the isomorphism f ≅ g ◦ ih. Then, using the 2-dimensional property

of the bicocomma object we get that β corresponds to the two 2-cells βih and βj.
Therefore, the data above corresponds to

a 1-cell g∶C(h) //X with g ◦ j ≅ g and
a 2-cell βj∶ f/ih ◦ j // g ◦ j such that

A A
′

A A
′

A C(h) = A C(h) C(h)

C(h) X X

g

ih

f

h

j

ih

f/ih

h

j

ih

f/ih

j

g

βj

ξ
ih
f

−1
≅

ρ ρ

Putting together all of these steps we get that, given a 1-cell g∶A′ //X and a 2-cell
β∶ f // g ◦ h, there exists a unique 2-cell β̃∶ f/h // g (with β̃ the composition of β̄j

with the isomorphism ḡj ≅ g above) such that

A A
′

A A
′

A = A C(h)

X X.

f

h h

j

ih

f/ih
f

g g

ρ

ξ
ih
f

β̃β

2. Now we show that if X is weakly left Kan injective with respect to h, then it is left
Kan injective with respect to ih.

Let f ∶A //X be a 1-cell in K. Since X is weakly left injective with respect to h,
there exists the left Kan extension (f/h, ξhf ). Then, by the universal property of the
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bicocomma object, there exists a unique (up-to-isomorphism) f/ih such that

A A
′

A A
′

A = A C(h)

X X,f

h h

j

ih

∃!f/ih
f

f/h f/h

ρ

ξ
ih
f

≅

ξ
h
f

where also ξ
ih
f is an isomorphism. Let us prove now that f/ih and ξ

ih
f have the

universal property of a left Kan extension.

Let t∶C(h) //X be a 1-cell. We want to show that to give a 2-cell γ∶ (f/ih)ih ⇒ tih
is equivalent to give a 2-cell γ∶ f/ih ⇒ t with γ ◦ ih = γ. By the universal property
of the bicocomma object, to have a 2-cell γ∶ f/ih ⇒ t is equivalent to give 2-cells
γih(= γ) and γj such that

A A
′

A A
′

A C(h) = A C(h) C(h)

C(h) X X.

h h

j

ih

f/ih

j

ih

t
ih

f/ih

j

t

γj

γih

ρ ρ

We show that this is equivalent to give a 2-cell γ = γih with γih = γ, by showing that
γj is determined by γih . This will complete the proof that X is left Kan injective

with respect to ih. Indeed, pasting with ξ
ih
f , expanding the identity on f/ih ◦ j

through the isomorphism f/ih ◦ j ≅ f/h, and using the definition of f/ih, we obtain
the following equality

A A
′

A A
′

A C(h) = A C(h) C(h)

C(h)

X X

h h

j

ih

t
ih

f/ih

j

t

j

f/ih

f/h

f

f

γj

ρ

≅

γih

ξ
ih
f

ξ
h
f
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showing that γj is determined by γ = γih via the universality of the left Kan extension
of f along h.

Finally, using the description of the Kan extensions given above, we can see the equality
for 1-cells as well.

Let p∶X // Y be left Kan injective with respect to H. Then, for any h∶A //A
′
∈ H

and f ∶A //X ∈ K,

p ◦ f/h ≅ p ◦ f/ih ◦ j (by construction above)

≅ (pf)/ih ◦ j (because p ∈ LInj(H))
≅ (pf)/h (by construction above).

On the other hand, let us consider p∶X // Y ∈ WLInj(H). For any ih ∈ H and any
f ∶A //X ∈ K, through the universal property of the co-comma object C(h),

p ◦ f/ih corresponds to p ◦ f/h
and (pf)/ih to (pf)/h.

Since p ∈ WLInj(H), we get p ◦ f/h ≅ (pf)/h and therefore p ◦ f/ih ≅ (pf)/ih.
1.15. Saturated classes. Kan injectivity determines a Galois connection between
locally full sub-2-categories and classes of 1-cells. More precisely, given a locally full
sub-2-category A, denote by ALInj

the class of all 1-cells with respect to which all objects
and 1-cells of A are left Kan injective. Then, we have that A ⊆ B implies BLInj

⊆ ALInj
;

we also have that H ⊆ I implies LInj(I) ⊆ LInj(H), and

ALInj
⊆ H if and only if A ⊆ LInj(H).

These considerations justify the definition below.

1.16. Definition. The saturation of H with respect to Kan-injectivity is defined by,

Hsat
∶= (LInj(H))LInj .

It follows from the previous discussion that we have LInj(Hsat) = LInj(H). The
following proposition shows that Hsat

is closed under certain constructions. This result
will be used along the paper, in particular, in Lemma 3.5 and Proposition 5.5.

1.17. Proposition. Hsat
is closed under the following constructions:

1. (Laris) Any lari 1-cell l∶A //B belongs to Hsat
.

2. (Isomorphisms) If h ∈ Hsat
and there exists an isomorphism h ≅ h

′
, then h

′
∈ Hsat

.

3. (Compositions) Given a pair of composable 1-cells f ∶A // B and g∶B // C, if
f, g ∈ Hsat

, then gf ∈ Hsat
.
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4. (Reflections) If h ∈ Hsat
and there are pseudocommutative squares

A B

A
′

B
′

hs

l1

l2

≅ and

A B

A
′

B
′

hs

r1

r2

≅ (2)

where l1 and l2 are laris with right adjoints r1 and r2, respectively, then s ∈ Hsat
.

5. (Bicocomma objects and bipushouts). If in

A A
′

B C

h

h

r s (3)

h ∈ Hsat
, then h ∈ Hsat

, provided that (3) is a bicocomma object or an invertible
2-cell forming a bipushout.

6. (Wide bipushouts). If the diagram

A

h

≅

��

hi // Ai

di~~
B

represents a wide bipushout of a family of 1-cells hi with all of them in Hsat
, then

h ∈ Hsat
.

Proof.

1. Laris: For any X ∈ K and any lari 1-cell l∶A //B, we want to show that X is Kan
injective with respect to l, i.e. K(l, X) is rali. This is true because the 2-functor
K(−, X) send lari 1-cells to rali 1-cells (see [Gra74, Remark I,6.5]).

2. Isomorphisms: Clearly, for any X ∈ K, if h ≅ h
′
, then also K(h,X) ≅ K(h′

, X).
Hence, if X is Kan injective with respect to h, then X is also Kan injective with
respect to h

′
.

3. Composition: This follows since the composition of ralis is a rali.

4. Reflections: Let us consider the pseudocommutative squares (2), and let X be left
Kan injective with respect to h, i.e. h

∗ ∶= K(h,X) is a rali. We want to show that
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K(s,X) is a rali as well. Applying K(−, X) to the pseudocommutative square with
l1 and l2 we get the pseudocommutative square below.

K(A,X) K(B,X)

K(A′
, X) K(B ′

, X)

h
∗

s
∗

l1
∗

l2
∗

(−)/h=∶h

r1
∗

r2
∗

? ≅ ⊢

⊤

⊥

We want to find a left adjoint to s
∗
with invertible unit. We claim that r2

∗ ◦ h ◦ l1
∗

is the required left adjoint. Let us consider two maps g∶A //X and g
′∶A′ //X,

then,

r2
∗ ◦ h ◦ l1

∗
g ⟶ g

′

hl1
∗
g ⟶ l2

∗
g
′

l1
∗
g ⟶ h

∗
l2

∗
g
′

l1
∗
g ⟶ l1

∗
s
∗
g
′

g ⟶ s
∗
g
′

We note that in this chain of bijections we used two adjunctions, the isomorphisms
l1

∗
s
∗
≅ h

∗
l1

∗
and that since r1 is rari, then l1

∗
is fully faithful. Clearly this bijection

is natural, so we have left to check only that the unit of this adjunction is invertible.
Setting g

′ ∶= r2
∗
hl1

∗
g, following the bijections above we obtain

g // s
∗
r2

∗
hl1

∗
g ≅ r1

∗
h
∗
hl1

∗
g (by r2s ≅ hr1)

≅ r1
∗
l1

∗
g (by h

∗
rali)

≅ g (by r1 rari).

5. Bipushouts: Consider the diagram below, we want to show that if X is Kan
injective with respect to h, and the square (3) is a bipushout, then X is also Kan
injective with respect to k. The diagram shows how to construct the candidate Kan
extension of s using the universal property of the bipushout.
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A • A • A •

A
′ • A

′
A

′ •

X X X

h

f

k

g

s

f

h

s

(sf)/h

kh

f

(sf)/h

s

s/k

≅ ≅

≅

≅

≅

If we follow this approach to show the univeral property of the Kan extension the
proof would be very technical. Instead, we follow a more formal approach. In
the diagram below, the situation above is formulated in terms of h

∗
having a left

adjoint. Recall that the diagram in the middle must be a bipullback, and we can
thus construct the dashed functor on the right.

K(B,X)

A B K(B ′
, X) K(B,X) K(B ′

, X) K(B,X)

A
′

B
′ K(A′

, X) K(A,X) K(A′
, X) K(A,X)

h

f

k

g

h
∗

k
∗

f
∗g

∗

(−)/h

⌟
⌟

id

h
∗

f
∗

k
∗

g
∗(−)/h◦f∗

⊣

We now want to show that the dashed arrow provides a left adjoint for k
∗
. We shall

call (−)//k the dashed functor. By the universal property of the bipullback, we
already have the invertible map 1 //k

∗◦(−)//k, which will be our unit. To construct
the counit, we consider the diagram below, and use the 2-dimensional part of the
universal property of the bipullback to obtain the desired 2-cell (−)//k ◦ k

∗ // 1.

K(B ′
, X) K(B ′

, X)

K(B,X) K(B,X) K(A′
, X) K(B ′

, X) K(B,X)

K(B ′
, X) K(B,X) = K(A,X)

K(A′
, X) K(A,X) K(B ′

, X) K(A′
, X) K(A,X)

k
∗

h
∗

f
∗

k
∗

g
∗

k
∗

(−)//k

id

k
∗

f
∗g

∗

k
∗

g
∗

(−)//k

f
∗

(−)/h

g
∗

h
∗

ϵh◦g
∗

h
∗

η
−1
k ◦k∗

≅

≅

Moreover, given a 1-cell p ∶ X //X
′
which is left Kan injective with respect to h,

using the construction above of (−)/k ∶= (−)//k and Remark 1.3, we conclude that
p is also left Kan injective with respect to k.
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Bicocomma objects: We follow the same argument of the second part of Proposi-
tion 1.14. Indeed, in the notation of that proposition, if X was Kan injective with
respect to h (as opposed to weak Kan injective) the result is true a fortiori. Also, in
the proof we never use the fact that the 1-cell A // A is the identity, it could be
any 1-cell. This delivers the proof.

6. Wide bipushouts: The proof is completely similar to the one for bipushouts. Using
the left Kan injectivity of X with respect to all hi by means of the hom-functor
K(−, X), we obtain a wide bipullback and, as a consequence, a left adjoint of K(h,X)
making it a rali:

K(Ai, X) K(hi,X) // K(A,X)

K(B,X)

K(di,X)
88

K(h,X)
ff

K(A,X)
(−)/hi

RR

id

LL

(−)/h
OO

That is, for each s ∶ B //X, the 1-cell s/h is obtained by the universality of the
wide bipushout:

A Ai

B

X

hi

s s/hi

h

s/h

di
≅

≅ ≅
(4)

2. KZ-pseudomonads presented via Kan-injectivity

Idempotent monads over a category C are precisely those whose categories of algebras
are full reflective subcategories of C. Thus, an idempotent monad may be presented
by orthogonality with respect to the family (δX∶X // X̄)X∈C of reflections into the
corresponding reflective subcategory. In this section, we see that, analogously, a KZ-monad
may be presented by left Kan injectivity with respect to a family of 1-cells (δX∶X //X̄)X∈K,
where every X̄ is essentially a pseudoalgebra. These facts will have an important role in
Section 4.

We recall from [Koc95] that a KZ-pseudomonad, also known as a lax-idempotent
pseudomonad or KZ-doctrine, can be described as a pseudomonad with unit δ and
multiplication µ such that µ is a right adjoint to Tδ (and a left adjoint to δT ) with
convenient coherence relations. By a KZ-adjunction we mean a biadjunction whose
induced pseudomonad is a KZ-pseudomonad.
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The next theorem is essentially contained in [MW12], as we explain in the proof. For
the particular case of order-enriched categories, it was given in [CS11, Theorem 3.4].
Concerning the notion of density for 1-cells used in that result, we give the following
lemma.

2.1. Lemma. Let K be a 2-category and f ∶X // Y a 1-cell in K. Then, the following
are equivalent:

(1) There exists an invertible 2-cell ξ∶ f ⇒ f making (1Y , ξ) a Kan extension of f along
itself.

(2) The pair (1Y , 1f) is a Kan extension of f along itself.

Proof. One can check that (1) is saying that there exists an invertible 2-cell ξ making
the composite function below bijective, while (2) means that the first function is such.

K(Y, Y )[1Y , g] K(X, Y )[f, gf] K(X, Y )[f, gf]−◦f −⋅ξ

Clearly (2) implies (1). For the other implication, we just need to notice that, since ξ is
invertible, the function − ⋅ ξ is a bijection. From this it follows that − ◦ f is bijective as it
can be written as composite of bijective maps.

2.2. Definition. We call a 1-cell dense if it satisfies any of the two equivalent conditions
in Lemma 2.1.

2.3. Theorem.

(1) Let A be a locally full (and locally replete) sub-2-category of the 2-category K, and let

dX∶X //DX, X ∈ K,

be a family of 1-cells with A ⊆ LInj({dX∶X //DX ∣ X ∈ K}) and such that:

(a) For all X ∈ K, DX ∈ A, and, for every f ∶X // A with A ∈ A, f/dX ∈ A.

(b) Every dX is dense.

Then, the inclusion A ↪ K is the right part of a KZ-adjunction in K.

(2) Conversely, every KZ-pseudomonad D may be induced by the data in (1) where
d∶ IdK //D is the unit.

2.4. Remark. Under assumption (a), condition (b) is equivalent to the following condition
used in [CS11] in the Ord-enriched case:

(b
′
) (fdX)/dX ≅ f for all f ∶DX // A in A.

Indeed, assuming (b), with f ∈ A, we have that (fdX)/dX ≅ f(dX/dX) ≅ f .
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Proof of Theorem 2.3.

(1) Recall, from [MW12, Definition 3.1], that a left Kan pseudomonad D consists of the
following data:

(a) for every X ∈ K, a 1-cell
dX∶X //DX;

(b) for every 1-cell f ∶X //DY , a left Kan extension of f along dX

X DX

DY

dX

f
f
D

Df

with Df invertible;

(c) for every f ∶X // Y and g∶Z //DX, (fD ◦ g)D ≅ f
D ◦ g

D
;

(d) every dX is dense.

Marmolejo and Wood proved in [MW12, Theorem 4.1] that this data induces a
KZ-pseudomonad D = (D, d,m).2 Following the proof of their theorem, we see that
the given D is extended to the endo-pseudofunctor D∶K //K, and d is extended to
a strong transformation which is the unit of the pseudomonad. It is clear that, under
the hypotheses of our Theorem 2.3, the family dX , X ∈ K, fulfils the conditions
defining a left Kan pseudomonad, where f

D
is an existing left Kan extension f/dX .

For (c), observe that (fD ◦ g)D ≅ (f/dX ◦ g)/dZ ≅ (f/dX) ◦ (g/dZ) ≅ f
D ◦ g

D
, the

second isomorphism due to f/dX belonging to A ⊆ LInj({dX ∣ X ∈ K}). The
pseudofunctor D∶K // K is defined on 1-cells by Df = (dY ◦ f)D ≅ (dY ◦ f)/dX ,
which lies in A. Thus, D admits a corestriction DA to A. Moreover, from Remark 2.4,
for every f ∶X //A with A ∈ A, the morphism f/dX∶DX //A is the unique 1-cell
of A, up to isomorphism, such that (f/dX) ◦ dX ≅ f . Since, for every f ∶X // A
with A ∈ A, f/dX belongs to A, we obtain, via Kan extensions, an adjunction
between the hom-categories K(X,A) and A(DX,A). The unit and counit of this
adjunction are invertible, the first one by definition of Kan injectivity, the second
one by condition (b

′
) described in Remark 2.4. Thus, the adjunction is indeed an

equivalence (pseudonatural in X and A), and we have a biadjunction between A
and K. More precisely, the inclusion functor of A into K is the right 2-functor of a
KZ-adjunction

A K
DA

⊥

whose induced pseudomonad is D.

(2) This is [MW12, Theorem 4.2].

2
Marmolejo and Wood studied the dual situation: right Kan and colax-idempotent pseudomonads.
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2.5. Remark. We underline that in [MW12, Definition 3.1] Marmolejo and Wood use
the definition of density with the identity 2-cell as part of the Kan extension, whereas in
our main result (Theorem 4.3) we are going to use condition (2) of Lemma 2.1.

The next theorem describes the category of pseudoalgebras of a KZ-pseudomonad by
means of left Kan injectivity. We will make use of the following lemma (proved in [CS11,
Proposition 2.13] for the particular case of order-enriched categories), which shows how
Kan injectivity interacts with lali 1-cells.

2.6. Lemma. Every sub-2-category LInj(H) is closed under lalis, that is: for any pseudo-
commutative diagram

A B

X Y,

f

g

l1 l2≅

with f a 1-cell of LInj(H) and l1, l2 lalis, then also g belongs to LInj(H).
Proof. We first show that X belongs to LInj(H). Given any h∶C // C

′
in H and any

p∶C // X, we need to prove that there exists a Kan extension p/h with an invertible
universal 2-cell. Since A is left Kan injective with respect to h we can consider the following
2-cell, where l ∶= l1 ⊣ r and ϵ is the counit of the adjunction (which is an isomorphism
since l is a lali).

C C
′

X

A

X

h

p

rp

l

(rp)/h

ϵ
−1

ξ
h
rp

The pasting diagram makes l ◦ (rp)/h a left Kan extension of p along h (with universal

2-cell invertible, since ξ
h
rp is so):

l ◦ (rp)/h ≅ (lrp)/h (since left adjoints preserves left Kan extensions)
≅ p/h (since l lali, so lr ≅ 1).

Let us now consider the pseudocommutative square (with li ⊣ ri for i = 1, 2)

A B

X Y.

f

g

l1 l2≅



450 IVAN DI LIBERTI, GABRIELE LOBBIA, AND LURDES SOUSA

By the first part we already know that X and Y are left Kan injective with respect to H.
We have left to prove that g preserves Kan extensions, i.e. for any h∶C // C

′
in H and

any t∶C //X, then g ◦ t/h ≅ (gt)/h. Indeed,

g ◦ t/h ≅ g ◦ l1 ◦ (r1t)/h (by first part applied to X)
≅ l2 ◦ f ◦ (r1t)/h (by the pseudocommutativity of the square)
≅ l2 ◦ (fr1t)/h (because f ∈ LInj(H))
≅ (l2fr1t)/h (because left adjoints preserve Kan extension)
≅ (gl1r1t)/h (by gl1 ≅ l2f)
≅ (gt)/h (by l1r1 ≅ 1).

2.7. Theorem. ([CS11], [MW12], see also [KR77] and [BF99]) The 2-category of pseudoal-
gebras and homomorphisms of a KZ-pseudomonad is, up to 2-equivalence, the sub-2-category
LInj(U) where U is made of all components of the unit of the pseudomonad.

Proof. For order-enriched categories, this was proven in [CS11]. For the general context
it follows from [MW12], by combining the description made by Marmolejo and Wood, in

Section 3 of that paper, of the 2-category of algebras D-Alg for D a left Kan pseudomonad,
and the fact, given by them in Section 5, Theorem 5.1, that it is, up 2-equivalence, the
2-category of algebras of the lax -idempotent pseudomonad determined by D. Indeed, we
can rephrase the description of D-Alg given in [MW12, Section 3] (after Remark 3.2),
using left Kan extensions instead of right ones, as follows:

(i) the objects of D-Alg are all X in K which are left Kan injective with respect to U
and such that, for every A and every f ∶A //X, the 1-cell data f/dA of the Kan
extension belongs to LInj(U);

(ii) the morphisms of D-Alg are precisely those in LInj(U).

Thus, we just need to show that, in (i), the condition that f/dA belongs to LInj(U) is
redundant.

We start proving that, given X ∈ LInj({dX ∣ X ∈ K}), then 1X/dX∶DX //X is a
lali, in particular 1X/dX ⊣ dX . We set ϵ as the inverse of the universal 2-cell

ϵ
−1 ∶=

X DX

X

dX

1X/dX
≅

Moreover, we can define η∶ 1DX ⇒ dX ◦ 1X/dX using that 1DX is a Kan extension (since
dX is dense). More precisely, we define η as the 2-cell corresponding to the 2-cell η

′
defined

below.
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X DX

DX

dX

dX
dX◦1/dX

η
′

∶=
X DX

X DX

dX

1/dX
dX

ϵ
−1

One triangle identity follows directly from the definitions of ϵ and η and the second one
from the (2-dimensional) universal property of 1X/dX . Then, since DX ∈ LInj(U), by
Lemma 2.6 we get that also X ∈ LInj(U) and 1X/dX is a morphism of LInj(U).

Finally, let us consider f ∶A //X and show that f/dX belongs to LInj(U). Indeed,
since 1X/dX does, we have that

f/dA ≅ (1Xf)/dA ≅ (1X/dX ◦ dX ◦ f)/dA ≅ (1X/dX) ◦ ( (dXf)/dA ).

By Theorem 2.3, we know that (dXf)/dA lies in LInj(U), thus, being isomorphic to the
composition of two morphisms in LInj(U), f/dA is also in LInj(U).

We have just seen that the 2-category of pseudoalgebras of a KZ-pseudomonad is
essentially a Kan injective sub-2-category of K. A natural question is: When is a
Kan injective sub-2-category 2-equivalent to the 2-category of pseudoalgebras for a KZ-
pseudomonad? For ordinary categories this reduces to the famous Orthogonal Subcategory
Problem (introduced in [FK72]) asking when is an orthogonal subcategory the category of
algebras of an idempotent monad. For order-enriched categories, an answer of the Kan
Injective Subcategory Problem was given in [ASV15]. The next two sections are dedicated
to give an answer in the general 2-dimensional context.

We end this section by showing that a Kan injective sub-2-category of K whose inclusion
into K is the right part of a KZ-adjunction is always KZ-monadic, that is, the 2-category
of pseudoalgebras of the corresponding KZ-pseudomonad, up to 2-equivalence.

2.8. Corollary. For every class of 1-cells H, if the inclusion LInj(H) ↪ K is the
right part of a KZ-adjunction, then the 2-category of pseudoalgebras of the corresponding
KZ-pseudomonad is 2-equivalent to LInj(H).
Proof. By Theorems 2.3 and 2.7, and using their notation, we have just to prove that
LInj({dX ∣ X ∈ K}) is contained in LInj(H). For every object X in LInj({dX}), the
morphism 1X/dX∶DX //X is a lali, as shown in the proof of Theorem 2.7. By Lemma 2.6,
since DX belongs LInj(H), we get that also X belongs to LInj(H). Moreover, given
u∶X // Y in LInj({dX}), we can consider the diagrams

X Y DX Y

DX Y X Y

dX

u

u/dX

u/dX

1X/dX

u

≅ ≅

which are mates. Then, since u/dX ∈ LInj(H), using again Lemma 2.6, we get that also
u ∈ LInj(H).
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2.9. Remark. For a KZ-pseudomonad, let U be the class of the units. Between the sub-
2-category of all pseudoalgebras and its full sub-2-category consisting of all free algebras
we may encounter several relevant sub-2-categories. This is the topic of the paper [HS17],
dealing with the order-enriched context.

3. The pseudochain construction

The transfinite chain described here is a 2-dimensional enhancement of the orthogonal
reflection construction [AR94, 1.37]. The Pos-enriched version analogue of this chain was
presented in [ASV15, Construction 5.2].

The archetype of a transfinite construction of this kind is the one of Quillen’s Small
Object Argument. A deep general study on transfinite constructions of free algebras on
ordinary categories was made in [Kel80]. In the transfinite construction of [ASV15], besides
the conical colimits used in the ordinary case, coinserters were applied. Here, we use a
new ingredient, named coequinserter, whose definition (in its strict version) is given next.
It is a special 2-colimit which may be obtained as the composition of a coinserter with a
coequifier.

3.1. Definition. Given a 2-cell

B

A C,

B

h

h

f

g

γ

a coequinserter of γ consists of a 1-cell i∶C //Q and a 2-cell

C

B Q

C

f

g

i

i

ϕ

such that

B C

A C Q = A B Q

B C

f

g

i

i

ϕ
hi

h

h

f

g

γ

with the following universal properties:
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(1) For any other 1-cell u∶C //R and 2-cell ϵ∶uf ⇒ ug such that uγ = ϵh, there exists
a unique t∶Q //R such that ti = u and tϕ = ϵ.

(2) For any pair of 1-cells u, v∶Q //R and 2-cell θ∶ui ⇒ vi such that

C C Q

B Q R = B Q R,

C Q C

i

i

u

vg

f i

ϕ

θ

f

g

i

i

ϕ

i

u

v

θ

then there exists a unique 2-cell θ∶u ⇒ v with θi = θ.

3.2. Remark. [Coequinserters from coinserters and coequifiers] In a 2-category with
(bi)coinserters and (bi)coequifiers, we can construct a (bi)coequinserter as follows. First,
we consider the (bi)coinserter of f, g∶B // C,

C

B D.

C

f

g

e

e

χ

Then, let q∶C //Q be the (bi)coequifier of χ ◦ h and e ◦ γ:

B C

A D.

B Cg

e

e◦γ

f

e

h

h

χ◦h

One can check that the (bi)coequinserter is given by the 1-cell qe∶C //Q and the 2-cell
q ◦ χ∶ (qe)f ⇒ (qe)g.
3.3. Notation. [Pseudochains] For any ordinal i, let i be the ordered set of all ordinals
j < i looked as a locally discrete 2-category. By an i-pseudochain in a 2-category K we
mean a normal pseudofunctor

X∶ i //K .
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We denote X(j ≤ k) by xj,k∶Xj → Xk; in particular, by the normality assumption,
xjj = 1Xj

. For any j ≤ k ≤ l, we denote with

Xk

Xj Xl

xj,k xk,l

xj,l

x
k
j,l

the compositor isomorphism given by the pseudofunctoriality of X; in particular, by the
normality assumption, x

j
jk = 1xj,k

= x
k
jk.

When clear from the context, we might omit super/subscripts and write x∶Xj
//Xk

for X(j ≤ k) and x = x
k
j,l∶xk,lxj,k ⇒ xj,l for the compositor isomorphisms.

For any j ≤ k1 ≤ . . . ≤ kn ≤ l, the axioms of a pseudofunctor ensure that all possible
pasting of compositor isomorphisms are equal. We will denote any of these with the
following notation.

Xk1 . . . Xkn

Xj Xl

xj,k1

xj,l

xkn,l

xk1,k2 xkn−1,kn

x
k1,...,kn
j,l =x

Analogously, we may consider a pseudochain indexed by all ordinals, considering a
pseudofunctor from the category Ord.

In a 2-category K with (weighted) bicolimits, given a set of 1-cells H, we are going
to construct, for every object X ∈ K, a pseudochain which will allow us (in Section
4) to obtain the free pseudoalgebras of a KZ-pseudomonad induced by the inclusion
LInj(H) ↪ K.

3.4. Construction. [The Kan injective pseudochain] Let K be a locally small 2-category
with small (weighted) bicolimits and let H be a set of 1-cells in K. Given an object X
we construct a pseudochain of objects Xi (i ∈ Ord). As in Notation 3.3, we denote

the connecting maps by xji∶Xj
// Xi and the compositor isomorphisms by x

k
jl, for all

j ≤ k ≤ i. In each step i, we obtain an (i+1)-pseudochain which extends the previous
(j+1)-pseudochains, j < i.

The first step is the given object X0 ∶= X.

Limit steps. For i a limit ordinal, Xi is a bicolimit of the i-pseudochain (Xj)j<i. The

connecting maps xji∶Xj
//Xi are the corresponding coprojections, and the 2-cells x

k
ji are

the isomorphisms given by the definition of bicolimit.

Isolated steps. Given Xi with i even, we define both Xi+1 and Xi+2. The idea is that
the i + 1 step approximates the 1-dimensional property of a Kan injective object and the
i + 2 step the 2-dimensional one.
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1. To define Xi+1 and the connecting map xi,i+1∶Xi
//Xi+1, consider the diagram

A A
′

Xi

• •

h ∈ H

∈ H
f ∈ K

∈ K

(5)

indexed by all spans Xi

f
←− A

h
−→ A

′
with h ∈ H and f arbitrary. We take the conical

bicolimit of this diagram. It may be obtained as a wide bipushout of all bipushouts of
f along h, each (f, h) as in (5).

We set xi,i+1 and f//h the coprojections of the bicolimit, and the 1-cell xi,i+1 is the

required new connecting map in the pseudochain. We denote by ξ̃
h
f the corresponding

isomorphisms:

A A
′

Xi Xi+1

f

h

f//h

xi,i+1

ξ̃
h
f (6)

For every j < k < i + 1, the new 2-cells x
k
j,i+1 are given by the composition of the

identity on xi,i+1 with x
k
j,i. In particular, x

i
j,i+1 is the identity.

2. Here we define Xi+2 and the connecting map xi+1,i+2∶Xi+1
//Xi+2. The 2-dimensional

property of a Kan injective object involves existence and uniqueness. Accordingly,
we make use of two bicolimit constructions: bicoequinserters for the existence (in
(a)) and bicoequifiers for the uniqueness (in (b)). Then, part (c) will put everything
together.

(a) For every 2-cell γ of the form

A A
′

Xj Xi+1

h

f g

xj,i+1

γ

with h ∈ H and j even, we consider the 2-cell

A A
′

A
′

Xj Xi+1

Xj+1

h

f g

xj,i+1

xj+1,i+1

h

xj,j+1
f//h

(ξ̃hf )−1

x
j+1
j,i+1

γ
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and its bicoequinserter Xi+1

cγ // Cγ with universal 2-cell

Xj+1 Xi+1

A
′

Cγ

Xi+1

g

f//h

xj+1,i+1

cγ

cγ

χγ .

(b) For every γ = {σ, τ}3 where σ and τ are 2-cells as below such that σ ◦h = τ ◦h,

Xj+1

A A
′

Xi+1

xj+1,i+1f//h

g

h σ τ

we consider the bicoequifier of σ and τ denoted with the 1-cell

Xi+1

cγ // Cγ .

(c) We define the morphism xi+1,i+2∶Xi+1
//Xi+2 through the wide bipushout of

all cγ with γ ∈ Γ, where Γ consists of all γ described either in part (a) or (b).
Hence xi+1,i+2 comes equipped with canonical isomorphisms δγ as below, for any
γ ∈ Γ.

Xi+1 Cγ

Xi+2

cγ

dγxi+1,i+2

δγ (7)

Similarly to the previous isolated step, we define the new 2-cells x
k
j,i+2 by

composition of x
k
j,i+1 with the identity on xi+1,i+2.

In the following lemma, which is going to be useful in the proof of Theorem 4.3, we
show that, for every ordinal i, x0i belongs to the Kan injectivity saturation Hsat

(see
Subsection 1.15).

3
We use here the same letter γ that was used in the previous part for a 2-cell, although referring to a

different situation. This will be useful in part (c) and in later proofs.
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3.5. Lemma. Let H be a set of 1-cells in a locally small 2-category with small bicolimits.
In the Kan injective pseudochain, for every ordinal i, the sub-2-category LInj(H) is left
Kan injective with respect to x0i∶X0

//Xi, i.e.

LInj(H) ⊆ LInj({x0i ∣ X ∈ K}).

This determines, for each p0∶X0
// P with P ∈ LInj(H), a pseudococone given by 1-cells

pi∶Xi
// P and invertible 2-cells pi,j∶ pi ⇒ pjxi,j such that (pi,p0i) is a Kan extension

of p0 along x0i, i.e. with our notation

pi ≅ p0/x0i.

Proof. The proof is by transfinite induction on ordinals.

Limit step. Assume the property holds for all i < κ, where κ is a limit ordinal. Then,
by construction of Xκ (as a bicolimit), there is a unique (up-to-iso) 1-cell pκ∶Xκ

// P
equipped with, for any i < κ, invertible 2-cells pi,κ∶ pi ⇒ pκxi,κ such that the equation
below holds.

Xi Xκ Xi Xκ

= Xj

P P

pi pκ pi pj

xi,κxi,j

pκ

xi,κxi,κ

pi,j

x
j
i,κ

pj,κ

pi,κ
(8)

We want to show that (pκ,p0κ) is a Kan extension of p0 along x0κ. Given a 1-cell r
and a 2-cell α as below, for every i < κ, since pi ≅ p0/x0i by inductive hypothesis, we have
a unique 2-cell αi∶ pi ⇒ rxiκ such that the following equality holds.

Xi

X0 Xκ

P

p0

r

x0i xiκ

x0κ

α

(xi
0,κ)−1

=

X0 Xi Xκ

P

x0i

p0 pi

r

xiκ

αi

p0,i

Moreover, using the universal property of pj as a Kan extension, we can prove that for
any j < i we get the following equality.



458 IVAN DI LIBERTI, GABRIELE LOBBIA, AND LURDES SOUSA

Xi

Xj Xκ

P

pj

r

xji xiκ

xjκ

(xi
j,κ)−1

αj

=

Xj Xi Xκ

P

xji

pj pi

r

xiκ

αi

pj,i

This implies that, using the 2-dimensional aspect of the universality of the bicolimit of
the pseudochain (Xi)i<κ, there exists a unique 2-cell α∶ pκ ⇒ r, with

αi =

Xi Xκ

P

pi

xiκ

pκ

r

α

pi,κ for every i < κ and in particular α =

X0 Xκ

P

p0

x0κ

pκ

r

α

p0,κ .

For the unicity of α we notice that this 2-cell was uniquely determined by the αi’s which
are defined using only α.

4
Consequently, (pκ,p0κ) is a Kan extension of p0 along x0κ.

Moreover, let us consider u∶P //Q in LInj(H) and p0∶X0
// P in K. By induction

hypothesis we assume that u is left Kan injective with respect to xiκ for all i < k, i.e.
(up)/x0i ≅ u(p/x0i). We want to show that u is also in LInj({x0κ}).

((up)/x0k)xik ≅ (up)κxik ≅ (up)i ≅ (up)/x0i (by part above for up)
≅ u(p/x0i) (by induction hypothesis)
≅ u(p/x0k)xik (by part above for p).

Hence, by the universal property of the bicolimit, (up)/x0k ≅ u(p/x0k).
Isolated step. Let i be an even ordinal such that every x0j, with j ≤ i, belongs to the Kan
injective saturation of H. We treat the two cases of the construction, i + 1 and i + 2 for i
even, separately.

(1) As seen in the construction of the pseudochain, xi,i+1∶Xi
//Xi+1 is a wide bipushout

of bipushouts of morphisms along 1-cells of H. Then, by Proposition 1.17, P is Kan
injective with respect to xi,i+1. Here we see in detail how to prove that pi+1 ≅ pi/xi,i+1.
Combining this with the inductive hypothesis on x0i, we get pi+1 ≅ p0/x0,i+1 as
required.

Recall the bicolimit diagram (6) used in the construction of the pseudochain. Since
for any h ∈ H and f ∶A // Xi ∈ K we have an isomorphism, given by the Kan

4
More precisely: Let β be another 2-cell such that α = (β ◦ x0κ) ⋅p0κ. Then, by the universal property

of the Kan extension pi, we have that (β ◦xiκ) ⋅p0κ = αi since they both correspond to α (modulo pasting

with x
i
0,κ). Hence, by the universal property of the bicolimit, β = α.
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extension,

A A
′

Xi

P,

h

f

pi

(pif)/h
ξ
h
pif

then, by the universal property ofXi+1, we get a unique (up-to-iso) 1-cell pi+1∶Xi+1
//P

equipped with invertible 2-cells pi,i+1∶ pi ⇒ pi+1xi,i+1 and π∶ pi+1f//h ⇒ (pif)/h
such that

ξ
h
pif =

A A
′

Xi Xi+1

P.

h

f f//h

xi,i+1

pi

pi+1

(pif)/h

pi,i+1

π

ξ̃
h
f

(9)

We want to show that (pi+1,pi,i+1) is a left Kan extension of pi along xi,i+1, i.e.
pi+1 ≅ pi/xi,i+1.

To do so, consider a 1-cell r∶Xi+1
// P and a 2-cell α∶ pi ⇒ rxi,i+1. Let α̃ be the

composition

α̃ ∶= ( pi+1xi,i+1 pi rxi,i+1

pi,i+1
−1

α ) .

For every span (h, f), let ᾱhf be the unique 2-cell for which we have the following

equality, determined by the universality of the Kan extension (ξhpif , (pif)/h),

A A
′

Xi Xi+1

P

h

f

pi
(pif)/h

f//h

r

ᾱhf

ξ
h
pif

=

A A
′

Xi Xi+1

P

h

f

xi,i+1

f//h

pi
r

α

ξ̃
h
f

and set
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α̃hf ∶=

Xi+1

A
′

P

Xi+1

(pif)/h

f//h r

f//h pi+1

ᾱhf

π

The 2-cells α̃ and α̃hf satisfy the conditions under which we can apply the 2-
dimensional aspect of the universality of the bicolimit given by (6). Consequently,
there is a unique ᾱ∶ pi+1 ⇒ r with ᾱxi,i+1 = α̃ and ᾱ(f//h) = α̃hf .

Hence, taking into account the definition of α̃ and using the property of ᾱhf , we see
that α satisfies also the following equation

α =

Xi Xi+1

P

pi+1

r

xi,i+1

pi α

pi,i+1

and that it is unique.

Concerning 1-cells, let u∶P // Q be in LInj(H) and set q ∶= up. Adding u to
diagram (9), we have (upi)/h ≅ u(pi/h), and upi ≅ qi. Thus upi+1 and qi+1 take
isomorphic values when composed with xi,i+1 and f//h. Consequently, qi+1 ≅ upi+1,
i.e. (up)/x0,i+1 ≅ u(p/x0,i+1).

(2) First, we consider each γ ∈ Γ (see part 2.(c) of Construction 3.4) and we construct a
1-cell pγ∶Cγ

// P equipped with an invertible 2-cell p
c
γ∶ pi+1 ⇒ pγ ◦ cγ associated

to γ. We divide the two different kinds of γ in the parts (a) and (b) below.

(a) Let γ be the following 2-cell, with j even and j ≤ i:

A A
′

A
′

Xj+1 Xi+1.

h

h

f//h xj+1,i+1

s
γ

Since pj+1(f//h) ≅ (pjf)/h is a left Kan extension, see diagram (9), there
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exists a unique 2-cell γ̄∶ pj+1(f//h) ⇒ pi+1s such that

A A
′

Xj A
′

Xj+1 Xi+1

P

h

h

f//h
xj+1,i+1

s

pi+1

pj+1

f

xj,j+1

ξ̃
h
f

pj

γ

pj,j+1

pj+1,i+1

=

A A
′

Xj Xj+1 Xi+1

P

s

pj+1
pi+1

f//h

h

γ

f

xj,j+1

pj

ξ̃
h
f

pj,j+1
(10)

Therefore, by the 1-dimensional aspect of the universality of the bicoequinserter,
there is a unique (up-to-iso) 1-cell pγ∶Cγ

//P with invertible 2-cells p
c
γ∶ pi+1 ⇒

pγcγ such that

Xj+1 Xi+1

A
′

Cγ P

Xi+1

s

f//h

xj+1,i+1

cγ

cγ

pγ

pi+1

pi+1

χγ

(pc
γ)−1

p
c
γ

=

Xj+1 Xi+1

A
′

P

Xi+1

xj+1,i+1

pi+1

pj+1

pi+1s

f//h

γ

pj+1,i+1

(11)

(b) Let γ = {σ, τ} with σ and τ two 2-cells as in 2.(b) of Construction 3.4, thus
σ ◦ h = τ ◦ h.

Xj+1

A A
′

Xi+1 P
h

f//h

s

pi+1

xj+1,i+1

σ τ

Then, pi+1◦σ◦h = pi+1◦τ◦h, and, since (pjf)/h ≅ pj+1(f//h) ≅ pi+1xj+1,i+1(f//h),
it follows that pi+1 ◦ σ = pi+1 ◦ τ . Consequently, for γ = {σ, τ}, by the 1-
dimensional universality of the bicoequifier, there is a unique (up-to-iso) 1-cell
pγ∶Cγ

// P with an invertible 2-cell p
c
γ∶ pi+1 ⇒ pγcγ:

Xi+1 Cγ

P

cγ

pi+1
pγ

p
c
γ (12)
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Combining (a), see (11), and (b), we have a diagram as in (12) for every γ ∈ Γ. Hence,
by the universal property of the wide bipushout Xi+2, we get a unique (up-to-iso)
morphism pi+2∶Xi+2

// P with invertible 2-cells pi+1,i+2∶ pi+1 ⇒ pi+2xi+1,i+2 and

p
d
γ∶ pi+2dγ ⇒ pγ such that

p
c
γ =

Xi+1 Cγ

Xi+2

Ppi+1

cγ

pγ
dγ

pi+2

pi+1,i+2

p
d
γ

δγ

(13)

Put p0,i+2 = (pi+1,i+2◦x0,i+1)⋅p0,i+1. We now would like to conclude that (pi+2,p0,i+2)
is a Kan extension of p0 along x0,i+2 and so pi+2 ≅ p0/x0,i+2. In order to do so, we
consider any 2-cell (r, µ) as below:

X0 Xi+2 X0 Xi+2

P P

pi+2
p0

x0i x0,i+2

p0
r

µp0,i+2

Since pi+1 ≅ p0/x0,i+1, there is a unique 2-cell µ∶ pi+1 ⇒ rxi+1,i+2 such that

X0 Xi+1

Xi+2

P

x0,i+1

xi+1,i+2

p0

pi+2

µ
=

X0 Xi+1

Xi+2

P

x0,i+1

xi+1,i+2

p0

pi+2

pi+1
µ

p0,i+1

(14)

So, for every γ ∈ Γ, we obtain a 2-cell µ̃ defined as the pasting diagram below.

µ̃ ∶=

Cγ

Xi+1 P

Cγ Xi+2

cγ

cγ

pγ

pi+1

r

dγ

x

(pc
γ)−1

δγ

µ̄

(15)

First, in (a
′
) and (b

′
) below, we are going to prove that, for every γ ∈ Γ, there is a

unique 2-cell µ̂γ∶ pγ ⇒ rdγ such that µ̃ = µ̂γ ◦ cγ.
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(a
′
) For γ a 2-cell as in (a), we want to show that µ̃ satisfies the required condition
for the 2-dimensional universal property of the bicoequinserter, i.e. to prove
that the two pasting diagrams below are equal.

A
′

Xi+1

Xi+1 Cγ

Cγ P

cγ

cγ

pγ

rdγ

x(f//h)

s

cγχγ

µ̃

A
′

Xi+1 Cγ

Xi+1 Cγ P

cγ

cγ
pγ

rdγcγ

x(f//h)

s µ̃χγ

Since these two 2-cells have as domain

pγcγxj+1,i+1(f//h) ≅ pi+1xj+1,i+1(f//h) ≅ pj+1(f//h) ≅ (pjf)/h

which is a left Kan extension, then to show that they are equal it sufficies to
show that precomposing with h we obtain the same 2-cell. Indeed, the next
three pasting diagrams give all the same 2-cell, by the definition of χγ applied
twice:

A B Xi+1

Xi+1 Cγ

Cγ P

cγ

cγ

rdγ

pγ

h

cγ

x◦f//h

s

µ̃

χγ

A Xj

B Xi+1 Cγ

Cγ P

cγ

cγ

rdγ

pγ

h

s

f

x

µ̃

γ

A B Xi+1 Cγ

Xi+1 Cγ P.

cγ

cγ

rdγ

pγ

h x◦f//h

s

cγ

µ̃χγ

Consequently, we may apply the 2-dimensional aspect of the universality of
each bicoequinserter cγ, obtaining a unique 2-cell µ̂γ such that µ̂γ ◦ cγ = µ̃.
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(b
′
) For γ = {σ, τ} as in (b), cγ is the bicoequifier of the two 2-cells σ and τ .
Thus, the 2-dimensional aspect of its universality ensures that there is a unique
µ̂γ∶ pγ ⇒ rdγ such that

µ̃ = µ̂γ ◦ cγ. (16)

Combining (a
′
) and (b

′
), the equality µ̂γ ◦ cγ = µ̃ holds for all γ ∈ Γ. Hence, taking

into account the pasting diagram

Xi+2

Cγ P

rdγ

pγ

dγ pi+2

µ̂γ

p
d
γ

and the 2-dimensional universal property of the wide bipushout, there exists a unique

•
µ∶ pi+2 ⇒ r

such that
•
µ ◦dγ = µ̂γ ⋅ p

d
γ. Consequently, using this last equality and the equalities

(13), (14), (15) and (16), we obtain:

(
•
µ ◦x0,i+2) ⋅ p0,i+2 = (((

•
µ ◦xi+1,i+2) ⋅ pi+1,i+2) ◦ x0,i+1) ⋅ p0,i+1

= (((r ◦ δγ) ⋅ ((µ̂γ ⋅ p
d
γ) ◦ cγ) ⋅ (pi+2 ◦ δ

−1
γ ) ⋅ pi+1,i+2) ◦ x0,i+1) ⋅ p0,i+1

= (µ̄ ◦ x0,i+1) ⋅ p0,i+1 = µ.

The unicity of
•
µ is a routine check.

Concerning the Kan injectivity of 1-cells, let u∶P //Q be in LInj(H) and set q ∶= up.
We want to show that upi+2 ≅ qi+2. For each 2-cell γ of type 2.(a), in diagram (10), put
γ̄P ∶= γ̄ and, analogously, use the notation γ̄Q for the γ̄ corresponding to Q, instead of P .
Since u∶P //Q preserves left Kan extensions along maps in H, and upi+1 ≅ qi+1, we have
that uγ̄P coincides with γ̄Q up to an invertible 2-cell. Then, as pasting diagram (11) with
u the equation still holds, we get that (upγ, upc

γ) satisfies the same property that (qγ,qc
γ)

does. Hence, upγ ≅ qγ . This equality is also verified for γ = {σ, τ} as in 2.(b); this follows
immediately from the definition of pγ and qγ in this case. Since the equality holds for all
γ, by the universality of the wide bipushout (7), we conclude that upi+2 ≅ qi+2.

4. KZ-monadicity via the pseudochain

In this section we consider a fixed 2-category K with (weighted) bicolimits. A key
requisite in the classical Small Object Argument and Orthogonal Subcategory Problem is
a convenient concept of smallness for objects. Here we make use of the notion below.
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4.1. Definition. An object A is λ-small, for λ an infinite regular cardinal, if the
2-functor

K(A,−)∶K //Cat

preserves bicolimits of λ-pseudochains.
Explicitly: For every λ-pseudochain (Xi)i<λ, with bicolimit coprojections li∶Xi

// L,
we have:

1. every morphism a∶A // L factorises through some Xi (up-to-iso);

L

A

a

≅

>>

a
′
// Xi

li

OO

2. for every 2-cell of the form

Xi

A L

Xi′

f

g

li

li′

α

there is some j ≥ i, i
′
and a 2-cell α such that

Xi

A Xj L

Xi′

f

g

α lj

li

li′

≅

≅

= α.

3. For every equality of 2-cells

A Xi L = A Xi′ L

f

g

li li′
f
′

g
′

α β

there is j ≥ i, i
′
such that xij ◦ α = xi′j ◦ β:

A Xi Xj = A Xi′ Xj.

f

g

xij xi′j

f
′

g
′

α β

An object X in K is said to be small if it is λ-small for some infinite regular cardinal λ.
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4.2. Remark. An example of λ-small object is given by the notion of λ-bipresentable
object studied in great detail in [DLO22]. Recall that an object A of K is said to be
λ-bipresentable if the 2-functor K(A,−)∶K //Cat preserves filtered bicolimits in the
sense of [DLO22, 2.1.3]. Notice that in 1-dimensional category theory the two notions
collapse due to [AR94, 1.6]. The 2-dimensional aspects of such a result are unknown at
the current state of art.

Other generalisations of the notion of presentable object have been studied in [Str76,
Kel82], we refer the interested reader to [DLO22, Remark 3.1.9] for a more detailed analysis.

4.3. Theorem. Let K be a locally small 2-category with small bicolimits and such that all
objects are small. Then, for any set H of 1-cells in K, the inclusion 2-functor

LInj(H) ↪ K

is the right part of a KZ-adjunction. Moreover, LInj(H) is 2-equivalent to the corresponding
Eilenberg-Moore 2-category.

Proof. Since H is a set and every object of K is small, there is some infinite regular
cardinal κ such that all domains and codomains of morphisms of H are κ-small.

We will use Theorem 2.3, setting A ∶= LInj(H), DX ∶= Xκ and dX as the 1-cells
x0,κ∶X = X0

//Xκ, to prove that the inclusion 2-functor

LInj(H) ↪ K

is the right part of a KZ-adjunction. In Lemma 3.5, we have already proved that LInj(H)
is a sub-2-category of LInj({x0κ ∣ X ∈ K}). Therefore, we just need to prove the following
two properties:

(1) For all X ∈ K, Xκ ∈ LInj(H) and, for any p∶X // P with P ∈ LInj(H), the
morphism p/x0,κ belongs to LInj(H).

(2) Every x0,κ is dense (see Definition 2.2).

Let us prove these properties.

(1) First, we will prove that Xκ ∈ LInj(H). Given h∶A //A
′
∈ H and f ∶A //Xκ, since

A is κ-small and Xκ = bicolimj<κXj, there is some even ordinal i and an invertible

2-cell ϕ
f
ik∶ f ⇒ xi,κ ◦ f

′
with f

′∶A //Xi. We claim that f/h ∶= xi+1,κ ◦ f
′//h and

the invertible 2-cell (see (6))

ξ
h
f ∶=

A A
′

Xi Xi+1

Xκ

h

f
′

xi,i+1

f
′//h

xi+1,κ
xi,κ

f

ϕ
f
ik

ξ̃
h

f ′

(xi+1
i,κ )−1
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provides a left Kan extension of f along h. To prove this, let us consider a 2-cell

A A
′

Xκ.

h

f
g

β

Since A
′
is κ-small, g factorises through some Xj, i.e. there is an ordinal j and an

invertible 2-cell ϕ
g
jk∶ g ⇒ xj,κg

′
with g

′∶A′ //Xj . Without loss of generality, we may

assume that this j is even and i ≤ j. This way, we can consider the 2-cell β
′
given

by the pasting below.

β
′
∶=

Xi Xj

A Xκ

A
′

Xj

h

g
′

xj,κ

f
′

xi,j

xj,κ

g

f

β

xiκ(ϕf
ik)

−1

ϕ
g
jk

x
j
iκ

(17)

Therefore, since A is κ-small, there is some m ≥ j (which we may assume even) and

a 2-cell β such that (see part 2 of Definition 4.1)

β
′
=

Xi Xj

A Xm+1 Xκ

A
′

Xj

xi,j

xj,m+1

xj,m+1

g
′

h

f
′

x

xj,κ

xj,κ

x
x
−1

x

β

x

The 2-cell β is of the form of the 2-cells γ considered in 2.(a) of Construction 3.4
for obtaining Xm+2, so let us consider the bicoequinserter associated to it, which we
denote with

Xi+1 Xm+1

A
′

Cβ

Xj Xm+1

cβ

cβ

f//h

g
′

xj,m+1

xi+1,m+1

χβ



468 IVAN DI LIBERTI, GABRIELE LOBBIA, AND LURDES SOUSA

We set β̃ ∶= (ϕg
jκ)−1 ⋅ β ′′∶xi+1,κ ◦ f

′//h ⇒ g where we define β
′′
as the pasting below.

β
′′
∶=

Xi+1 Xm+1

A
′

Cβ Xm+2 Xκ

Xj Xm+1

cβ

cβ

f
′//h

g
′

x

x

dβ x

x

x

xi+1,κ

xj,κ

δβ

δβ
−1

x
−1

x

χβ

Now, we need to prove that β̃ is the only 2-cell such that (β̃ ◦ h) ⋅ ξhf = β; to see the

last equality, we equivalently show that β
′′
satisfies the following equation:

A A
′

Xi Xi+1 Xj

Xκ

f
′//h

x

h

f
′

xi,κ

g
′

xj,κ

β
′′

x
−1

ξ̃
h

f ′

=

A A
′

Xj

Xi Xκ

f

h

g

g
′

xj,κ

f
′

xi,κ

(ϕf
iκ)

−1

β
ϕ
g
jκ (18)

Starting from the left hand side above, we get, by successively using the definitions
of χβ and β:

Xi Xi+1 Xm+1

A A
′

Cβ Xm+2 Xκ

Xj Xm+1

cβ

cβ

f//h

g
′

xi+1,m+1

dβ x

xm+1,m+2

xm+1,m+2

h

f
′

x

ξ̃
h
f

xi,κ

δβ

δβ
−1

χβ

x
−1

x

=
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Xi Xi+1

A Xm+1 Cβ Xm+2 Xκ

A
′

Xj

cβ

g
′

xi+1,m+1

dβ x

x

h

f
′

x

xj,κ

xi,κ

xm+1,m+2xj,m+1

δβ

x
−1

δβ
−1

x

β =

Xi Xi+1

A Xm+1 Xκ

A
′

Xj
g
′

xi+1,m+1

h

f
′

x

xj,κ

xi,κ

xj,m+1

xm+1,κ

x
−1

x

β = β
′ ⋅ ((xj

i,κ)−1 ◦ f
′).

Using the definition of β
′
(17), we see β

′ ⋅ (xj
i,κ ◦ f

′) is exactly the right hand side of
the equation (18).

To conclude that (ξhf , xi+1,κ ◦ f
′//h) is a Kan extension, it remains to prove that β̃

is the unique 2-cell satisfying the equality (β̃ ◦ h) ⋅ ξhf = β; this is to say that, given
two 2-cells

Xi+1

A
′

Xκ

Xj

xi+1,κf
′//h

g
′ xjκ

σ1 σ2

such that
(σ1 ◦ h) ⋅ ξhf = (σ2 ◦ h) ⋅ ξhf (19)

then σ1 = σ2. Indeed, with the two 2-cells σ1 and σ2 as above, since A
′
is κ-

small, by part 2 of Definition 4.1, there is some n ≥ j, i + 1 in κ and 2-cells
σ̄1, σ̄2∶xi+1,n ◦ f

′//h ⇒ xjn ◦ g
′
such that each σr is just the composition of xkn with

σ̄r, up to isomorphism:

σr = (xn
jκ ◦ g

′) ⋅ (xnκ ◦ σ̄r) ⋅ ((xn
i+1,κ)−1 ◦ (f ′//h)), r = 1, 2. (20)

Hence, the equality (19) and the κ-smallness of A imply that, using part 3 of
Definition 4.1, there is an even p between n and κ such that

xn,p+1 ◦ σ̄1 ◦ h = xn,p+1 ◦ σ̄2 ◦ h.
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The two 2-cells xn,p+1◦ σ̄r, r = 1, 2, are of the type considered in 2.(b) of Construction
3.4. Thus, by the definition of the connecting map xp+1,p+2 (recall that xp+1,p+2 ≅ dγcγ ,
for cγ the bicoequifier of the two 2-cells), we have that xp+1,p+2 ◦ xn,p+1 ◦ σ̄1 =

xp+1,p+2 ◦ xn,p+1 ◦ σ̄2. Therefore, using (20), we obtain σ1 = σ2.

Second, let us consider a 1-cell p∶X0
// P with P ∈ LInj(H). We know that p

gives rise to a pseudococone pi∶Xi
// P satisfying the conditions in Lemma 3.5.

Now, we want to show that the morphism pκ∶Xκ
// P belongs to LInj(H), i.e. for

every f ∶A //Xκ and h∶A // A
′
∈ H

pκ ◦ f/h ≅ (pκf)/h.

Since A is κ-small, there is some even ordinal i and f
′∶A //Xi such that f ≅ xi,κf

′
.

From the first part, we know that f/h ≅ xi+1,κ ◦ f
′//h. Therefore,

pκ ◦ f/h ≅ pκ ◦ xi+1,κ ◦ f
′//h

≅ pi+1 ◦ f
′//h (by pseudococone condition)

≅ (pif ′)/h (by construction of pi+1, see diagram (9))
≅ (pκxi,κf

′)/h (by pseudococone condition)
≅ (pκf)/h (by f ≅ xi,κf

′).

(2) Let us now consider Xκ, which is in LInj(H) as we proved in the previous point.
Setting p0 ∶= x0,κ and P ∶= Xκ, by Lemma 3.5, we get a pseudococone pi∶Xi

//Xκ

with pi ≅ p0/x0,i. We will show that, for any i < κ, we can choose pi ∶= xi,κ in the
construction of Lemma 3.5, which implies that pκ ≅ 1Xκ

and 1Xκ
≅ x0,κ/x0,κ. As

usual, we will proceed inductively.

Limit step. It follows directly by bicolimit properties.

Step i + 1. We recall that by construction, pi+1 is the unique (up-to-iso) 1-cell
equipped with invertible 2-cells pi,i+1∶ pi // pi+1xi,i+1 and π∶ pi+1 ◦ f//h ⇒ (pif)/h
such that

A A
′

ξ
h
pif = Xi Xi+1

P = Xκ.

h

f//h

pi+1

f

x

pi

(pif)/h
ξ̃
h
f

π

pi,i+1

Now, we will prove that xi+1,κ has the same universal property of pi+1. Let us recall
that in point (1) we proved that xi+1,κ ◦ f//h together with the 2-cell below is a
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Kan extension of xiκf along h.

A A
′

ξ
h
xi,κf = Xi Xi+1

Xκ

h

f//h

xi+1,κ

f

x

xi,κ

(xi,κf)/h
ξ̃
h
f

x
−1

=

Since by inductive hypothesis we have pi = xi,κ, we can set pi,i+1 ∶= (xi+1
i,κ )−1 and

π = 1 and the diagram above shows that xi+1,κ satisfies the same universal property
as pi+1.

Step i + 2. We need to show that following the construction of Lemma 3.5 we can
choose pi+2 ∶= xi+2,κ. We recall that pi+2 is defined through the universal property
described in (13). By inductive hypothesis we have pi+1 = xi+1,κ and if we show that

(xi+2,κdγ, (xi+2
i+1,κ)−1 ⋅ (xi+2,κ ◦ δγ) ) has the universal property of (pγ, pc

γ), then we
can assume pγ = xi+2,κdγ and in particular

Xi+1

Cγ Xi+2 Xκ.

cγ

xi+1,κ

dγ x

p
c
γ =

Xi+1

Cγ Xi+2 Xκ.

cγ

xi+1,κ

dγ x

x
δγ

x
−1

This would show that (xi+2,κ, (xi+2
i+1,κ)−1, 1) has the same universal property as

(pi+2,pi+1,κ,p
d
γ) and so we could conclude that we can choose pi+2 = xi+2,κ.

We consider the two cases for γ, one leading to a bicoequinserter, the other to a
bicoequifier. For the first case, let us now show that

(xi+2,κdγ, (xi+2
i+1,κ)−1 ⋅ (xi+2,κ ◦ δγ) )

satisfy the wanted property, i.e. (11). This equation becomes the one below, which
is true by definition of Xi+2 and pseudofunctoriality of the pseudochain.

Xj+1 Xi+1

A
′

Cγ Xi+2 Xκ

Xi+1

s

f//h

xj+1,i+1

cγ

cγ

pi+1=xi+1,κ

χγ
dγ x

x

x pi+1=xi+1,κ

δγ
x
−1

x

δγ
−1

=

Xj+1 Xi+1

A
′

Xκ

Xi+1

xj+1,i+1

pi+1

xj+1,κ

xi+1,κs

f//h

γ

x
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Regarding the second case, with γ = {σ, τ} as in 2.(b) of Construction 3.4, the univer-

sal property of (pγ,pc
γ) is given by diagram (12), and it is clear that (xi+2,κ, (xi+2

i+1,κ)−1)
also satisfies the same property.

This concludes the proof of the first part of the theorem, i.e. the inclusion 2-functor
LInj(H) ↪ K is the right part of a KZ-adjunction.

Finally, it follows from Corollary 2.8 that LInj(H) is the corresponding 2-category of
pseudoalgebras of the induced KZ-pseudomonad.

5. Lex colimits, distributive laws and Kan injectivity

In this section we are given a pseudomonad (S, s,m) and a KZ-pseudomonad (T, t, n) on
a 2-category K with weighted bicolimits and a pseudodistributive law

d∶ST ⇒ TS.

The aim of this section will be to study and compare some natural Kan injectivity
classes that arise in this context, motivated mostly by the theory of KZ-pseudomonads.

For the theory of pseudodistributive laws over KZ doctrines, we refer to [Wal19, Mar99].
Recall that, as shown in [Wal19, Thm. 35 (a)(b), or Cor. 50], this amounts to a lift
(T̂ , t̂, n̂) of T to the category of pseudoalgebras for S as in the diagram below.

S-Alg S-Alg

K K
T

T̂

Moreover T̂ is KZ too and its unit t̂ coincides with the unit of T . Furthermore, because
we are assuming that T is KZ, there is at most one such a d [Wal19, Def 33, Thm. 44 and
Cor. 49] and it has to coincide with the left Kan extension below.

T

ST TS

Ts

d≡Ts/sT

sT

This situation is pretty common in practice. Our guiding example is that in which S
is the free completion under finite limits in Cat, while T is a completion under a family of
colimits. The reader might observe that in this specific example S is coKZ, and we have
not listed this one as a working assumption. We will come back to this later.
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5.1. Definition. [Three interesting classes of maps] Consider the diagrams below collecting
the data of the distributivity law d between the pseudomonads S and T .

1 T S

S T ST TS ST TS

s t Ts

d

sT

d

St tS

We can then define three classes of maps in S-Alg.

1. HSt contains the maps St ∶ S // ST .

2. HtS contains the maps tS ∶ S // TS. Notice that those coincide with the unit t̂ on
free S-algebras and thus are in the 2-category S-Alg.

3. Ht̂ contains the maps t̂ ∶ 1 // T̂ .

5.2. Remark. On a technical level, the rest of the section will be devoted to discuss the
diagram below, that is to discuss the relation between the 2-categories of Kan injectives
with respect to these classes of 1-cells.

LInj(HSt) LInj(HtS) LInj(Ht̂) T̂ -Alg

S-Alg

d
∗

≃

As hinted by the diagram we will show that d yields a forgetful functor from LInj(HSt)
to LInj(HtS) and that the two classes HSt and Ht̂ specify the relatable 2-categories of
Kan injectives. Already at this stage we can infer that LInj(Ht̂) is equivalent to T̂ -Alg.
Indeed, the lift of a KZ monad will be KZ and thus its category of pseudoalgebras coincides
with the Kan injectives with respect to the unit as observed in Theorem 2.7.

5.3. Proposition. The precomposition with d defines a forgetful 2-functor

d
∗
∶LInj(HtS) // LInj(HSt).

Proof. The key aspect of this proof is to show that in the diagram below, when X is Kan
injective with respect to tS, the precomposition with d gives us the left Kan extension
f/St.

S ST

TS

X

d

St

tS

f
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Indeed, if we show this, we have that every LInj(HtS) lies in LInj(HSt) and we will
see that a routine idea delivers the functoriality on the spot. Now, recall that by [Wal19,
Thm 44, Cor. 49] d must coincide with tS/St. We are thus left with the composition

(f/tS) ◦ (tS/St)

and we want to show that it coincides with f/St. But recall that tS is the unit of T̂ on a
free algebra, and that T̂ is KZ. We can thus apply the Kancellation rule [DL23, Rem 2.20]
and deduce that

(f/tS) ◦ (tS/St) ≅ f/St,
which is the thesis. Notice that to apply [DL23, Rem 2.20], we need St to be admissible
in the sense of Bunge and Funk [BF06, Def 4.3.2], this is true by [Wal19, Lemma 41].

5.4. Remark. BecauseHtS ⊂ Ht̂, it follows from subsection 1.15 that we have LInj(Ht̂) ⊆
LInj(HtS).
5.5. Proposition. If S is KZ, then LInj(HtS) = LInj(Ht̂).
Proof. Together with the previous remark, it is enough to show that Ht̂ ⊂ Hsat

tS . By
inspecting the diagram below, that is witnessing the fact that every S-algebra is reflective
in its free completion,

Y SY

TY TSY

sY

a

TsY

Ta

t̂Y =tY tSY

⊣
⊣

We see that t̂ can be obtained from tS via one of the steps that saturates HtS in
Proposition 1.17 and thus the two classes have the same saturation.

5.6. Lex colimits. The technology of lex colimits was introduced by Garner and Lack
[GL12] to describe a large class of structures where colimits interact with limits lex -ly.
The paradigmatic example of this behavior is Grothendieck topoi, where this phenomenon
is called descent.

Let us recall very briefly their definitions to set the notation of the subsection and
introduce the reader to the topic. We work in Cat, the 2-category of small (but possibly
large) categories, functors between them and natural transformations. This choice will
rule out the very interesting case of Grothendieck topoi, and could be avoided by paying
the price of a very detailed foundational analysis. We prefer to stick to small categories
because the treatment will be largely cleaner.
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5.7. Construction. For Φ a set of weights W ∶ Iop → Set and C a category, we can con-
sider the category Φl(C) as the full subcategory of the presheaf category Psh(C) consisting
of all Φ-weighted colimits of representables (see [GL12, Sec. 3]). This construction defines
a KZ-pseudomonad on Cat, which lifts to a KZ-pseudomonad over Lex, the 2-category of
small categories with finite limits and functors preserving them.

Lex Lex

Cat Cat
Φl

Φ̂l

Of course, this perfectly fits with the narrative of the previous subsection, indeed Lex is
coKZ doctrinal over Cat.

5.8. Definition. [Φ-lex-cocompleteness, [GL12]] C is Φ-lex-cocomplete if it is lex and
has colimits of shape Φ, i.e. if it is lex and is a Φl algebra. This gives us the 2-category
Φ-LexAlg, of lex categories supporting a Φl structure and functors preserving both finite
limits and Φ-colimits.

5.9. Definition. [Φ-exactness, [GL12]] Now a Φ-lex-cocomplete category is said to be
Φ-exact if its algebra structure Φl(C) // C is lex, which amounts to saying that C bears
a structure of pseudoalgebra for the pseudomonad Φl on Lex. This gives us the 2-category
Φ-Ex, which is another name for Φ̂l-Alg.

Of course, it is easy to see that we have a fully faithful forgetful 2-functor which is
only acknowledging that the requirement of being Φ-exact is stronger than being lex and
Φ-cocomplete.

Φ-LexAlg Φ-Ex

Lex

U

We are now ready to apply our machinery to this situation, and get the following
theorem.

5.10. Theorem. The following are equivalent.

1. C is Φ-exact.

2. C is Kan injective in Lex to all the maps D // Φl(D).
5.11. Remark. This theorem follows directly from the previous subsection, but we shall
compare it with the content of [GL12, 3.4]. The theorem above may seem to say the same
thing of [GL12, 3.4]. But their Kan extensions are taken in Cat, while in our paper we
compute them in Lex. The forgetful functor from Lex to Cat does not seem to preserve
left Kan extensions in general, their result is thus surprising from this point of view.
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5.12. Theorem. Φ-LexAlg is equivalent to LInj(HSt) and the forgetful functor U is
precisely d

∗
.
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