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CATEGORICAL ASPECTS OF CONGRUENCE DISTRIBUTIVITY

MICHAEL HOEFNAGEL AND DIANA RODELO

Abstract. We study a categorical condition on relations, which is a categorical for-
mulation of Jónsson’s characterisation of congruence distributive varieties. Categories
satisfying these conditions need not be varieties; for instance, the dual of the categories
of topological spaces, ordered sets, G-sets, and the dual of any (pre)topos all provide us
with examples.

1. Introduction

A variety of universal algebras V is congruence distributive [30] if the congruence lattice
on any algebra in V is a distributive lattice. These varieties occupy an extremal situation
in universal algebra created by the modular commutator, namely, when it is as large
as possible. On the other end, when it is as small as possible, we have the abelian
varieties — a topic which categorical algebra is well suited for. However, there has been
comparably less attention given to congruence distributivity, from the categorical point of
view. One possible reason for this, is that there are several categorical conditions arising
from equivalent characterisations of congruence distributivity for varieties, each with their
advantages and disadvantages. Moreover, these categorical conditions are not necessarily
equivalent, as are their varietal counterparts.

Congruences in a variety of universal algebras are just internal equivalence relations
in the variety, so the most direct categorical distributivity condition is the notion of an
equivalence distributive category given in [14]: a finitely complete category C is called
equivalence distributive when the meet semilattice EqpAq of equivalence relations on A is
a distributive lattice: for any R, S, T P EqpAq, we have

R ^ pS _ T q � pR ^ Sq _ pR ^ T q. (1)

However, this notion has several drawbacks. For one thing, its definition relies on the
existence of suprema of equivalence relations — a condition not guaranteed by familiar
categorical contexts such as finite completeness, regularity [1], or even Barr-exactness [1].
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Moreover, the definition of equivalence distributive category excludes categories such the
variety of (distributive) lattices equipped with a term of countable arity (see [26]). How-
ever, this category is categorically quite similar to the category of lattices — the proto-
typical example of a congruence distributive variety.

A condition which does not involve such an inductive requirement as the existence
of suprema of equivalence relations, is a categorical version of the so called trapezoid
lemma [9]. This condition captures (and is, thus, equivalent to) congruence distributivity
in much the same way as H. P. Gumm’s shifting lemma captures congruence modular-
ity [15]. A variety of universal algebras V satisfies the trapezoid lemma if for every three
congruences R, S, T on any algebra A in V the following diagrammatic condition holds:

R ^ S ¤ T ñ

u

S

T
v

x

T

R
y.

S
(2)

More precisely, if R^S ¤ T and elements x, y, u, v of A are such that xSu, uTv, ySv, xRy,
then we can deduce that xTy. This condition on equivalence relations can be formulated
internally to any category using standard techniques involving the Yoneda embedding, so
that we can discuss categories satisfying the trapezoid lemma (see Definition 3.1). Then
a variety satisfies this categorical version of the trapezoid lemma if and only if it satisfies
the trapezoid lemma in the above sense. It is easy to prove that any regular equivalence
distributive category satisfies the trapezoid lemma (Proposition 3.2). We do not know if
the converse is true or not (supposing we are in a categorical context where suprema of
equivalence relations exist). The main disadvantage in the trapezoid lemma approach is
finding convenient equivalence relations R, S, T , with R^S ¤ T , to which we can actually
apply the property of the diagram in (2).

In this paper, we introduce and study another possible categorical generalisation of
congruence distributive varieties. This generalisation is motivated by B. Jónsson’s charac-
terisation of congruence distributive varieties [30], which states that a variety of universal
algebras V is congruence distributive if and only if there exist an n ¥ 1 and ternary terms
p1, . . . , pn in the theory of V such that the equations

pipx, y, xq � x, for all i,
p1px, x, yq � x,
pipy, x, xq � pi�1py, x, xq, for i odd,
pipx, x, yq � pi�1px, x, yq, for i even,
pnpx, x, yq � y, if n even,
pnpy, x, xq � x, if n odd,

hold. This condition can not be directly formulated in a categorical way, since it is
a Mal’tsev condition, and the basic language of categories does not deal with terms.
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However, the existence of the n Jónsson terms above in a variety V is equivalent to the
requirement that for any three congruences R, S, T on any algebra in the variety, we have

R ^ pS � T q ¤ pR ^ Sq � pR ^ T q � pR ^ Sq � � � �
l jh n

pn�1q times

. (3)

This property can be formulated categorically with respect to equivalence relations, and
in the context of a regular category. A regular category C is called a Jónsson category of
order n when any three equivalence relations R, S, T on any object in C satisfies (3). The
advantages of this generalisation is that it does not require the existence of suprema of
equivalence relations and the property on equivalence relations (3) is easier to check than
that of the trapezoid lemma.

The aim of this paper is to show that several properties of congruence distributive
varieties extend to properties of Jónsson categories of some order n. We will also compare
other categorical properties which are associated to congruence distributive varieties, such
as the notion of a majority category [16, 18], the notion of a locally anticommutative
category in the sense of [20], as well as a categorical counterpart of the trapezoid lemma
in the sense of [10] (see also [9]).

2. Preliminaries

In this section we recall the notions of subobject, internal relation, as well as the notion
of regular category and their properties. For the reader who is already familiar with these
notions, we recommend taking note of the notation and conventions described in 2.1.1
below and skipping to Section 3.

2.1. Subobjects and relations in categories. If m : M0 ↣ X and n : N0 ↣ X
are monomorphisms in a category C, then we write m ¤ n if m factors through n, i.e., if
there exists ϕ : M0 Ñ N0 such that nϕ � m. This defines a preorder on MonopXq, the
class of all monomorphisms in C with codomain X. The posetal reflection of MonopXq
is called the poset of subobjects of X, and is denoted by SubpXq. Explicitly, a subobject
S P SubpXq is an equivalence class of monomorphisms with codomain X, where two
monomorphisms n,m P MonopXq are equivalent if and only if n ¤ m and m ¤ n. If
s : S0 ↣ X is a member of S, then we will say that S is the subobject represented by s in
what follows.

In any category C the pullback of a monomorphism along any morphism is again a
monomorphism, which is to say that if the diagram:



��

n

��

// 

��
m

��



f
// 
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is a pullback diagram in C, and m is a monomorphism, then so is n. Given that C
has pullbacks of monomorphisms along monomorphisms and A,B P SubpXq are any
subobjects represented by a : A0 ↣ X and b : B0 ↣ X respectively, then we write A^B
for the subobject of X represented by the diagonal monomorphism in any pullback

pA^Bq0

p2
��

p1 //
$$

$$

A0
��
a

��
B0

//
b

// X.

2.1.1. Notation and conventions. The notional conventions given here will be used
without mention throughout the rest of the text. Let A be a subobject of an object X
and consider a morphism x : S Ñ X in a category C, then:

• if x factors through one representative of A, then it factors through all representat-
ives of A;

• we write x PS A if x factors through a representative of A

X

S //

x

>>

A0;

OO a

OO

• if C has pullbacks and B is a subobject of X, then we have x PS A^B if and only
if x PS A and x PS B;

• if e : E ↠ S is a regular epimorphism in C, then xe PE A if and only if x PS A. In
fact, this holds if e is a strong epimorphism, as it relies only on the diagonal fill in
property of strong epimorphisms.

2.2. Definition. Let C be a category with finite products, then an (internal) n-ary rela-
tion R between objects X1, X2, ..., Xn in C is simply a subobject of X1 �X2 � � � � �Xn.

We will adopt a standard abuse of notation, namely, we will use the same R to denote
the domain of the monomorphism which represents the relation, i.e., a relation R as above
is denoted by R ↣ X1�� � ��Xn. Also, if pr1, r2q : R ↣ X�Y is a relation from X to Y ,
the opposite of R, denoted Rop, is the relation from Y to X given by pr2, r1q : R ↣ Y �X.
For a binary relation R, and morphisms x : S Ñ X, y : S Ñ Y in C, we will write xRy if
and only if px, yq PS R.

The notation introduced above allows for a simple translation of the familiar properties
of binary relations. Given a relation R on an object A (i.e. a relation from A to A), we
say that R is:

• reflexive if for any morphism x : S Ñ A in C we have xRx. This is equivalent to the
requirement that ∆A ¤ R, where ∆A is the diagonal relation on A, i.e., the identity
relation represented by the monomorphism p1A, 1Aq : A ↣ A� A;



CATEGORICAL ASPECTS OF CONGRUENCE DISTRIBUTIVITY 535

• symmetric when Rop ¤ R;

• transitive when for any morphisms x, y, z if xRy and yRz then xRz;

• an equivalence relation when it is reflexive, symmetric and transitive;

• an effective equivalence relation when it is a kernel pair equivalence relation, i.e., R
is the kernel pair of some morphism f , denoted R � Eqpfq.

2.3. Regular categories. Recall the definition and main properties of regular cat-
egories [1] which will be used throughout this work.

2.4. Definition. A category C is called regular if:

(i) C has finite limits and coequalisers of kernel pairs.

(ii) The class of regular epimorphisms in C is pullback stable, i.e., if the diagram


 //

p
����




f
����


 // 


is a pullback in C, and f is a regular epimorphism, then so is p.

The following are important consequences of Definition 2.4, and will be used without
mention in what follows:

• every morphism f : X Ñ Y in C factors as f � me where e : X ↠ Q is a regular
epimorphism and m : Q ↣ Y a monomorphism. The factorisation f � me is
sometimes called an image factorisation of f . Note that such image factorisations
are unique up to isomorphism;

• the composite gf of two regular epimorphisms f : X ↠ Y and g : Y ↠ Z in C is a
regular epimorphism;

• if the composite gf of two morphisms f : X Ñ Y and g : Y Ñ Z in C is a regular
epimorphism, then g is a regular epimorphism.

Given a regular category C, it is possible to define the composition of relations in
C. Indeed, let R be a relation between objects X and Y , and S a relation between
objects Y and Z in a regular category C. Suppose that r � pr1, r2q : R ↣ X � Y and
s � ps1, s2q : S ↣ Y � Z. Consider the diagram:

P
p1

��

p2

��
R

r2

��

r1

~~

S
s1

��

s2

��
X Y Z
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where pP, p1, p2q is a pullback of s1 along r2. The composite R�S is the relation represented
by the monomorphism part of any image factorisation of pr1p1, s2p2q : P Ñ X � Z as in
the diagram:

P

pr1p1,s2p2q

33
e // // pR � Sq //r�s // X � Z.

It is well-known that the composition of relations in a regular category is associative (see
[1, 3]).

2.5. Proposition. [7] Let R be a relation from X to Y and S a relation from Y to Z.
Given any morphisms x : S Ñ X and z : S Ñ Z then xpR �Sqz if and only if there exists
a regular epimorphism e : E ↠ S and a morphism y : E Ñ Y such that xeRy and ySze.

From the proposition above it is easy to see that a relation R on an object A is
transitive if and only if R �R ¤ R.

2.6. n-permutability. Let EqpAq denote the meet semilattice of equivalence relations
on an object A in a regular category C. Given R, S P EqpAq, we follow the notation
introduced in [7]

pR, Sqn � R � S �R � � �
l jh n

n

;

in particular, pR, Sq0 � ∆A (the identity relation on A), pR, Sq1 � R, pR, Sq2 � R � S,
pR, Sq3 � R � S � R, and so on. The relation pR, Sqn, n ¥ 2, is not an equivalence
relation in general (although it is always reflexive and it is symmetric when n is odd). It
is known from [7] that pR, Sqn is an equivalence relation, for some n ¥ 2, precisely when
the category C is n-permutable.

2.7. Definition. A regular category C is called n-permutable, where n ¥ 2, when the
equivalence relations in C are n-permutable, that is, given any R, S P EqpAq, for any
object A of C, we have pR, Sqn � pS,Rqn.

A 2-permutable category is usually called a regular Mal’tsev category [8] and a 3-per-
mutable category is usually called a Goursat category [7] (a Goursat category is regular
by definition). It is easy to check that an n-permutable category is always k-permutable,
for any k ¥ n; the converse is false (see [36]).

When C is n-permutable, C admits joins of equivalence relations on A: for R, S P EqpAq

R _ S � pR, Sqn; (4)

consequently, EqpAq is a lattice, for any object A of C. There are several other nice
properties of (equivalence) relations in n-permutable categories (see [7], [29] and [31], for
example).
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3. Main results

We begin this section by exploring the link between equivalence distributivity and the
trapezoid lemma.

Recall from the Introduction that a variety of universal algebras V satisfies the trape-
zoid lemma if given congruences R, S, T on any algebra A in V, the diagrammatic condition
(2) holds. Categorically, we have the following:

3.1. Definition. A category C is said to satisfy the trapezoid lemma when for any three
equivalence relations R, S, T on any object A in C with R^S ¤ T , if morphisms x, u, v, y
are such that xSu, uTv, ySv, xRy, then we can deduce that xTy.

An alternative formulation of the trapezoid lemma, which makes use of the context
of a regular category C, is simply the following requirement on the equivalence relations
R, S, T on any object A in C:

R ^ S ¤ T ñ R ^ pS � T � Sq ¤ T. (5)

This follows easily from Definition 3.1 and Proposition 2.5.
Recall also from the Introduction, that an equivalence distributive category is a finitely

complete category in which the lattice of equivalence relations EqpAq on any object A
forms a distributive lattice (see [14]).

3.2. Proposition. Let C be a regular equivalence distributive category. Then the trape-
zoid lemma holds in C.

Proof. Given any equivalence relations R, S, T on the object A such that R^ S ¤ T ,
we have

R ^ pS � T � Sq ¤ R ^ pS _ T q
(1)
� pR ^ Sq _ pR ^ T q ¤ T,

which gives (5).

Regular Mal’tsev or Goursat categories satisfying the categorical versions of the tra-
pezoid lemma and of the triangular lemma [10] were studied in [14]. There the authors
explored the link between these lemmas and equivalence distributivity in the context of
regular Mal’tsev or Goursat categories. In what follows, we will establish some basic
properties of categories satisfying the trapezoid lemma.

Let C be a regular category. Recall from [11] Freyd’s modular law : given relations
R ↣ A�B, S ↣ B � C and T ↣ A� C we have

pR � Sq ^ T ¤ pR ^ pT � Sopqq � S. (6)

3.3. Proposition. Let C be a regular category satisfying the trapezoid lemma. Given any
equivalence relations R, S, T on any object A in C such that S �T ¤ R�S and R^S ¤ T ,
then T permutes with S.
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Proof. Given the relations as in the statement, we have

S � T ¤ pR � Sq ^ pS � T q (assumption)
(6)
¤ pR ^ pS � T � Sopqq � S
� pR ^ pS � T � Sqq � S (S is symmetric)
(5)
¤ T � S.

Recall that a regular category C is called factor permutable [12] if for any equivalence
relation E on an object A we have E � Eqppq � Eqppq � E where p : A Ñ X is a product
projection of A.

3.4. Proposition. A regular category C satisfying the trapezoid lemma is factor permut-
able.

Proof. Given any product diagram

X
p1ÐÝ A

p2ÝÑ Y

we note that Eqpp1q ^ Eqpp2q � ∆A and Eqpp1q � Eqpp2q � ∇A, which denotes the largest
equivalence relation on A. Now given any equivalence relation E on A and applying
Proposition 3.3 in the case R � Eqpp1q and S � Eqpp2q and T � E, we get the desired
result.

3.5. Jónsson categories. In this subsection we introduce the notion of a Jónsson
category of order n as a categorical generalisation of varieties admitting n Jónsson terms
for n ¥ 1. A usual procedure to obtain such kind of generalisation is to consider a
characteristic property on relations of the variety being studied, when such a property
can be expressed categorically. We note here that a general class of properties which allow
for the translation of Mal’tsev conditions into their corresponding categorical conditions
has been given in [28]. In particular, it was shown in that paper how the linear Mal’tsev
conditions (see [37]) can be interpreted as a property determined by an extended matrix
of variables.

3.6. Definition. A regular category C is said to be a Jónsson category of order n (where
n P Nq if for any equivalence relations R, S, T on any object A of C, we have

R ^ pS � T q ¤ pR ^ S,R ^ T qn�1. (7)

3.7. Remark. A variety of universal algebras V admits n Jónsson terms if and only if it
is a Jónsson category of order n. The proof of this is implicitly in [30], and for this reason
we omit it.

3.8. Remark. A Jónsson category of order 1 is precisely a regular majority category
(see Theorem 3.1 in [18]). Note also, that the notion of majority category [16] does not
require the base category to be regular and has been defined as a property which may be
formulated with respect to any category.
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3.9. Theorem. Let C be a regular category. The following statements are equivalent for
n ¥ 1:

(i) C is a Jónsson category of order n;

(ii) Given an equivalence relation R and reflexive relations S, T on any object A of C,
we have

R ^ pS � T q ¤ p pR ^ Sopq � pR ^ Sq, pR ^ T q � pR ^ T opq qn�1 . (8)

The property (ii) in the theorem above has been extracted from [30] (see equation (4)
therein). The proof of the implication (ii) ñ (i) is straightforward by using the symmetry
of S an T , and the transitivity of R^ S and R^ T . Moreover, for n � 1, the implication
(i) ñ (ii) follow from Theorem 3.1 in [18]. The proof of the implication (i) ñ (ii) for the
general case when n ¥ 2 is a bit technical. For this reason, we decided to postpone its
proof to the end of this work (Section 3.20), while focussing now on the nice consequences
and properties that can be extracted from Theorem 3.9.

3.10. Corollary. If C is a Jónsson category of order n, then it is a Jónsson category
of order k, for any k ¥ n.

Proof. This follows immediately from Definition 3.6 and the fact that pR^S,R^T qn�1 ¤
pR ^ S,R ^ T qk�1, since R, S and T are reflexive relations.

Under the assumption that the base category C is n-permutable (so that suprema of
equivalence relations on a same object A exist in C, and hence EqpAq is a lattice), we shall
prove in Proposition 3.12 that the notion of equivalence distributive category coincides
with that of a Jónsson category (of order n� 1).

3.11. Proposition. Let C be an n-permutable category (n ¥ 2) and a Jónsson category
of any order. Given equivalence relations R, S, T on any object A of C, we have

R ^ pS, T qj ¤ pR ^ Sq _ pR ^ T q, for any j ¥ 1.

Proof. Suppose that C is a Jónsson category of order k ¥ 1. We can suppose that
k ¥ n � 1 by Corollary 3.10. Since k ¥ n � 1, then C is also pk � 1q-permutable. For
j � 1, the inequality is obvious. We prove the above inequality by induction on j ¥ 2.
For j � 2, we have

R ^ pS, T q2 � R ^ pS � T q
¤ pR ^ S,R ^ T qk�1 (by Definition 3.6)
� pR ^ Sq _ pR ^ T q ( pk � 1q-permutability).
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Suppose now that R ^ pS, T qj ¤ pR ^ Sq _ pR ^ T q, for some j ¥ 2. When j is odd

R ^ pS, T qj�1 � R ^ ppS, T qj � T q
(8)
¤ p pR ^ pS, T qjq � pR ^ pS, T qjq, R ^ T qk�1 (pS, T qopj � pS, T qj, T op � T )
¤ p ppR ^ Sq _ pR ^ T qq � ppR ^ Sq _ pR ^ T qq, R ^ T qk�1 (induction assumption)
� p pR ^ Sq _ pR ^ T q, R ^ T qk�1 (pR^Sq_pR^T q transitive)
� ppR ^ Sq _ pR ^ T qq _ pR ^ T q ( pk � 1q-permutability)
� pR ^ Sq _ pR ^ T q.

When j is even

R ^ pS, T qj�1 � R ^ ppS, T qj � Sq
(8)
¤ p pR ^ pT, Sqjq � pR ^ pS, T qjq, R ^ S qk�1, (pS, T qopj � pT, Sqj, Sop � S)
¤ p ppR ^ Sq _ pR ^ T qq � ppR ^ Sq _ pR ^ T qq, R ^ S qk�1 (induction assumption)
� p pR ^ Sq _ pR ^ T q, R ^ S qk�1 (pR^Sq_pR^T q transitive)
� ppR ^ Sq _ pR ^ T qq _ pR ^ Sq ( pk � 1q-permutability)
� pR ^ Sq _ pR ^ T q.

3.12. Proposition. Let C be an n-permutable category (n ¥ 2). Then C is equivalence
distributive if and only C is a Jónsson category (of order n� 1).

Proof. Note that for n � 2, the statement claims the known fact: a regular Mal’tsev
category is equivalence distributive if and only if it is a majority category (Corollary 3.2
in [18]).

Let R, S, T be equivalence relations on any object A of C. Suppose that C is a Jónsson
category (of any order, in this implication). By Proposition 3.11 we get

R ^ pS _ T q
(4)
� R ^ pS, T qn ¤ pR ^ Sq _ pR ^ T q.

Conversely, if C is equivalence distributive, then

R ^ pS � T q ¤ R ^ pS, T qn
(4)
� R ^ pS _ T q

(1)
� pR ^ Sq _ pR ^ T q

(4)
� pR ^ S,R ^ T qn.

By Definition 3.6, C is a Jónsson category of order n� 1.

3.13. Proposition. If C is a Jónsson category of any order, then C satisfies the trapezoid
lemma.

Proof. Suppose that C is a Jónsson category of order n. Let R, S, T P EqpAq, for some
object A of C, such that R ^ S ¤ T . We may apply (7) to get that

R ^ pS � T q ¤ pR ^ S,R ^ T qn�1 ¤ T,
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the last inequality following from the property that both R^ S and R^ T are contained
in T . Similarly, we have that R ^ pT � Sq ¤ T . We prove (5)

R ^ ppS � T q � Sq
¤ ppR ^ pT � Sqq � pR ^ pS � T qq, R ^ Sqn�1 (by (8), pS � T qop � T � S, Sop � S)
¤ T.

Recall from [15] that a variety of universal algebras V satisfies the shifting lemma if for
every three congruences R, S, T on any algebra A in V the diagrammatic condition similar
to that of (2) holds, where uTv is replaced with upR^ T qv. Finitely complete categories
satisfying (the categorical version of) the shifting lemma are called Gumm categories, and
were introduced in [6]. Any regular Mal’tsev or Goursat category satisfies the shifting
lemma [8, 7], so they are examples of Gumm categories. Furthermore, it is shown in [13]
that regular Mal’tsev or Goursat categories can be characterised by stronger variations
of the shifting lemma. The shifting lemma is implied by the trapezoid lemma (even for
finitely complete categories), so that every Jónsson category C is necessarily a Gumm
category (by Proposition 3.13). It then follows from Proposition 2.12 in [17] that binary
products commute with coequalisers locally (in the sense of [17]) in C, and that C is
locally anticommutative in the sense of [20] (see Corollary 2.18 and Remark 2.17 of [20]).

3.14. Remark. There are examples of Gumm categories that are not Jónsson categories.
Indeed, any regular Mal’tsev category which is not equivalence distributive, is not a
Jónsson category of any order. This follows from the proof of Proposition 3.12. As
examples, we have the (quasi)varieties Ab of abelian groups, Grp of groups or Rng of
rings.

3.15. Definition. Let A be an object in a category C, then a factor relation F on A is
any equivalence relation on A of the form Eqppq where X

p
ÐÝ A

p1

ÝÑ Y is a product diagram.
The factor relation F 1 � Eqpp1q will be called a complementary factor relation of F .

3.16. Proposition. For any Jónsson category C of any order, given equivalence relations
F, S, T on any object A of C, where F is a factor relation, we have

pF � Sq ^ pF � T q � F � pS ^ T q.

Proof. Suppose that C is Jónsson of order n for some n ¥ 1. Note that since C is factor
permutable, the relation F � S is an equivalence relation, so that we have

pF � Sq ^ pF � T q
¤ ppF � Sq ^ F, pF � Sq ^ T qn�1 (by (7))
¤ pF, pF ^ T, S ^ T qn�1qn�1 (pF � Sq ^ F ¤ F , (7) applied to pF � Sq ^ T )
¤ pF, pF, S ^ T qn�1qn�1 (F ^ T ¤ F )
� F � pS ^ T q, (F � pS ^ T q � pS ^ T q � F and F is transitive)

The inclusion F � pS ^ T q ¤ pF � Sq ^ pF � T q is trivial.
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3.17. Proposition. If C is a Barr-exact Jónsson category of any order, then the set of
factor relations FpAq, for any object A of C, forms a Boolean algebra under ^ and �.

Proof. Let C be Jónsson of order n ¥ 1 and suppose that F,G P FpAq. Then we show
that F ^G and F 1 �G1 are complementary factor relations. By (7), we have

pF ^Gq ^ pF 1 �G1q ¤ pF ^G^ F 1, F ^G^G1qn�1 ¤ pF ^ F 1, G^G1qn�1 � ∆A,

since F ^ F 1 � ∆A � G ^ G1, as complementary factor relations. Moreover, applying
Proposition 3.16 we have

pF ^Gq � pF 1 �G1q � ppF ^Gq �F 1q �G1 � ppF �F 1q ^ pG �F 1qq �G1 � G �F 1 �G1 � ∇A,

since F � F 1 � ∇A � G � G1, as complementary factor relations. Therefore we have that
F ^G and F 1 �G1 complementary factor relations, so that FpAq is closed under ^ and �,
and then by Proposition 3.16 it is a complemented distributive lattice under these terms.

3.18. Remark. The above proposition shows that in any Barr-exact Jónsson category,
every object with global support is projection coextensive in the sense of [19].

3.19. Examples of Jónsson categories. Any regular majority category is a Jónsson
category of order 1 (see [16] for details). We also know that a regular Mal’tsev (=2-
permutable) category is a majority category if and only if it is equivalence distributive
(Proposition 3.12 for n � 2). We have the following list of examples, where we also add
whether the category is a Mal’tsev category or an equivalence distributive category, or not,
when such is known. Note that, in the varietal context equivalence distributive is usually
called congruence distributive. Also, a Mal’tsev and congruence distributive variety is
called an arithmetical variety and a Barr-exact Mal’tsev equivalence distributive category
is called an arithmetical category [5] (dropping the existence of coequalisers given in the
original definition [35]).
Varietal examples:

• Lat, the variety of lattices (it is not a Mal’tsev category, but it is congruence dis-
tributive);

• lGrp, the variety of lattice-ordered groups (it is an arithmetical variety [2]);

• Heyt, the variety of Heyting algebras (it is an arithmetical variety);

• Bool, the variety of Boolean algebras (it is an arithmetical variety);

• any Mal’tsev variety equipped with a k-ary near unanimity term, k ¥ 1 (it is an
arithmetical variety [33]).

Non-varietal examples:

• any quasivariety of those listed above;
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• the variety of distributive lattices equipped with an additional term of countable
arity (it is not Mal’tsev nor an equivalence distributive category [26]);

• pppreqtoposqop, the dual of any (pre)topos (it is an arithmetical category [7, 34]);

• Topop, the dual of the category of topological spaces (it is not a Mal’tsev cat-
egory [38]);

• pMet8q
op, the dual of the category of (extended) metric spaces (it is not a Mal’tsev

category [38]);

• NReg, the category of von Neumann regular rings (it is an arithmetical category [16]);

• NRegpTopq, the category of topological von Neumann regular rings (it is a regular
Mal’tsev and congruence distributive category [18]);

• BoolpTopq, the category of topological Boolean rings (it is a regular Mal’tsev and
congruence distributive category [18]);

• the category of topological lattices [16].

A Goursat (i.e. 3-permutable) category is a Jónsson category of order 2 (but not of
order 1) if and only if it is equivalence distributive (Proposition 3.12 for n � 3). For
example, the variety Imp of implication algebras [32] since it is known that such a variety
is 3-permutable (not 2-permutable) and congruence distributive. As shown in [33] every
variety which admits a k-ary near unanimity term [33] will be an example of a Jónsson
category of order 2k � 5 (see [33]).

Finally, if C is a Jónsson category of order n and X is an object in C, then so are
the comma categories C{X, X{C, the category PtXpCq of points over X [4] or the functor
category CD, for any category D (see [16] for details when n � 1; similar arguments hold
for n ¥ 2).

3.20. Proof of Theorem 3.9. We prove the implication (i) ñ (ii) of Theorem 3.9
when n ¥ 2.

Let a, c : X Ñ A be morphisms such that pa, cq PX R ^ pS � T q. From pa, cq PX S � T
there exists a regular epimorphism e1 : E1 ↠ X and a morphism b : E1 Ñ A such that
pae1, bq PE1 S and pb, ce1q PE1 T and also pae1, ce1q PE1 R. We define a ternary relation D
on A as the image ρpW q, where W is the quaternary relation on A represented by w as
in the diagram

D
��

d

��

W //
��

��

vv

w

vv

poooo S �R � T
��
s�r�pt2,t1q

��
A3 A4

ρ�pπ1,π3,π2q
oo R � A2

π�pr1π1,π3,π2,π3,r2π1,π3q
//oo

r�1A2

oo A6.
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Each πi denotes an i-th product projection. In set-theoretical terms, ρpx, z, y, wq �
px, y, zq and πpxRz, y, wq � px,w, y, w, z, wq.

Given x, y, z, w : B Ñ A, we have

px, z, y, wq PB W ô px, zq PB R, py, wq PB R, px,wq PB S, pw, zq PB T,
px, y, zq PB D ô Du : C ↠ B, v : C Ñ A such that

px, zq PB R, pyu, vq PC R, pxu, vq PC S, pv, zuq PC T.

We have

• pae1, ae1, ae1q PE1 D, since there exist 1E1 : E1 ↠ E1 and ae1 : E1 Ñ A such that
pae1, ae1q PE1 R, S, T ;

• pae1, b, ce1q PE1 D, since there exist 1E1 : E1 ↠ E1 and b : E1 Ñ A such that
pae1, ce1q PE1 R, pb, bq PE1 R, pae1, bq PE1 S, pb, ce1q PE1 T ;

• pce1, ae1, ce1q PE1 D, since there exist 1E1 : E1 ↠ E1 and ce1 : E1 Ñ A such that
pce1, ce1q PE1 R, pae1, ce1q PE1 R, pce1, ce1q PE1 S, pce1, ce1q PE1 T .

We consider the equivalence relations on D defined by the kernel pairs of the pro-
jections di : D Ñ A: D1 � Eqpd1q, D2 � Eqpd2q and D3 � Eqpd3q. We can apply our
assumption to these equivalence relations

D2 ^ pD1 �D3q ¤ pD2 ^D1, D2 ^D3qn�1.

In what follows we use a slight abuse of notation. From pae1, ae1, ae1q, pae1, b, ce1q,
pce1, ae1, ce1q PE1 D, there exist morphisms α, β, γ : E1 Ñ D such that dα � pae1, ae1, ae1q,
dβ � pae1, b, ce1q, and dγ � pce1, ae1, ce1q. Since d2α � d2γ, we may conclude that
pα, γq PE1 D2. To be easier to keep track of the original morphisms, we shall write
ppae1, ae1, ae1q, pce1, ae1, ce1qq PE1 D2 instead. Similar notation will be used in the rest of
the proof. Accordingly, we have

ppae1, ae1, ae1q, pce1, ae1, ce1qq PE1 D2,
ppae1, ae1, ae1q, pae1, b, ce1qq PE1 D1 and ppae1, b, ce1q, pce1, ae1, ce1qq PE1 D3;
it follows that ppae1, ae1, ae1q, pce1, ae1, ce1qq PE1 D2 ^ pD1 �D3q.

From the inequality above, we conclude that

ppae1, ae1, ae1q, pce1, ae1, ce1qq PE1 pD2 ^D1, D2 ^D3qn�1. (9)

When n is odd, the sequence (9) ends with a D2^D3. So, there exists a regular epimorph-
ism e2 : E2 ↠ E1 and morphisms z1, � � � , zn�1 : E2 Ñ A such that the relations on the left
part of the following table hold. Thus, there exist e3 : E3 ↠ E2 and d1, � � � , dn : E3 Ñ A
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such that the relations on the right part of the following table hold

1 pae1e2, ae1e2, z2q PE2 D pae1e2, z2q PE2 R pae1e2e3, d1q PE3 R
pae1e2e3, d1q PE3 S pd1, z2e3q PE3 T

2 pz1, ae1e2, z2q PE2 D pz1, z2q PE2 R pae1e2e3, d2q PE3 R
pz1e3, d2q PE3 S pd2, z2e3q PE3 T

3 pz1, ae1e2, z4q PE2 D pz1, z4q PE2 R pae1e2e3, d3q PE3 R
pz1e3, d3q PE3 S pd3, z4e3q PE3 T

...
...

...
...

n� 2 pzn�4, ae1e2, zn�1q PE2 D pzn�4, zn�1q PE2 R pae1e2e3, dn�2q PE3 R
pzn�4e3, dn�2q PE3 S pdn�2, zn�1e3q PE3 T

n� 1 pzn�2, ae1e2, zn�1q PE2 D pzn�2, zn�1q PE2 R pae1e2e3, dn�1q PE3 R
pzn�2e3, dn�1q PE3 S pdn�1, zn�1e3q PE3 T

n pzn�2, ae1e2, ce1e2q PE2 D pzn�2, ce1e2q PE2 R pae1e2e3, dnq PE3 R
pzn�2e3, dnq PE3 S pdn, ce1e2e3q PE3 T

We may deduce the following relations from the right side of the table

(a) pdi, di�1q PE3 R, @i P t1, � � � , n� 1u, because pae1e2e3, diq PE3 R, @i P t1, � � � , nu and
R is symmetric and transitive;

(b) pdi, zi�1e3q PE3 T (line i) and pzi�1e3, di�1q PE3 T op (line i � 1), @i P t1, � � � , n � 2u
and i odd;

(c) pdi, zi�1e3q PE3 Sop (line i) and pzi�1e3, di�1q PE3 S (line i � 1), @i P t2, � � � , n � 1u
and i even.

Using the symmetry and transitivity of R we also get

(d) pdi, zi�1e3q PE3 R and pzi�1e3, di�1q PE3 R, @i P t1, � � � , n � 2u and i odd. For
example, when i � 1, we get pd1, z2e3q PE3 R from the relations pd1, ae1e2e3q PE3 R
and pae1e2e3, z2e3q PE3 R in the first line of the table above; also pz2e3, d2q PE3 R
follows from pz2e3, d1q PE3 R (by the previously shown and symmetry of R) and
pd1, d2q PE3 R from (a);

(e) pdi, zi�1e3q PE3 R and pzi�1e3, di�1q PE3 R, @i P t2, � � � , n � 1u and i even. For
example, when i � 2, we get pd2, z1e3q PE3 R from the relations pd2, z2e3q PE3 R,
when i � 1, and pz2e3, z1e3q PE3 R which follows from the second line of the table
above; also pz1e3, d3q PE3 R follows from pz1e3, d2q PE3 R (by the previously shown
and symmetry of R) and pd2, d3q PE3 R from (a).

Note that (d) is equal to (b) by replacing T with R and (e) is equal to (c) by replacing
S with R. Combining the above we obtain the following relations (next we write � � �W � � �



546 MICHAEL HOEFNAGEL AND DIANA RODELO

to denote p� � � , � � � q PE3 W , for a relation W )

ae1e2e3 pR ^ Sopq ae1e2e3 pR ^ Sq d1 pR ^ T q z2e3 pR ^ T opq d2
d2 pR ^ Sopq z1e3 pR ^ Sq d3 pR ^ T q z4e3 pR ^ T opq d4
...

dn�3 pR ^ Sopq zn�4e3 pR ^ Sq dn�2 pR ^ T q zn�1e3 pR ^ T opq dn�1

dn�1 pR ^ Sopq zn�2e3 pR ^ Sq dn pR ^ T q ce1e2e3 pR ^ T opq ce1e2e3;

so
pae1e2e3, ce1e2e3q PE3 ppR ^ Sopq � pR ^ Sq, pR ^ T q � pR ^ T opq qn�1.

Since e1e2e3 : E3 ↠ X is a regular epimorphism, we obtain

pa, cq PX ppR ^ Sopq � pR ^ Sq, pR ^ T q � pR ^ T opq qn�1.

When n is even (n ¥ 2), the proof is similar except that the sequence in (9) ends with
a D2 ^D1. Now we get the table

1 pae1e2, ae1e2, z2q PE2 D pae1e2, z2q PE2 R pae1e2e3, d1q PE3 R
pae1e2e3, d1q PE3 S pd1, z2e3q PE3 T

2 pz1, ae1e2, z2q PE2 D pz1, z2q PE2 R pae1e2e3, d2q PE3 R
pz1e3, d2q PE3 S pd2, z2e3q PE3 T

3 pz1, ae1e2, z4q PE2 D pz1, z4q PE2 R pae1e2e3, d3q PE3 R
pz1e3, d3q PE3 S pd3, z4e3q PE3 T

...
...

...
...

n� 2 pzn�3, ae1e2, zn�2q PE2 D pzn�3, zn�2q PE2 R pae1e2e3, dn�2q PE3 R
pzn�3e3, dn�2q PE3 S pdn�2, zn�2e3q PE3 T

n� 1 pzn�3, ae1e2, znq PE2 D pzn�3, znq PE2 R pae1e2e3, dn�1q PE3 R
pzn�3e3, dn�1q PE3 S pdn�1, zne3q PE3 T

n pce1e2, ae1e2, znq PE2 D pce1e2, znq PE2 R pae1e2e3, dnq PE3 R
pce1e2e3, dnq PE3 S pdn, zne3q PE3 T

Similarly, we may deduce

• pdi, di�1q PE3 R, @i P t1, � � � , n� 1u;

• pdi, zi�1e3q PE3 pR ^ T q and pzi�1e3, di�1q PE3 pR ^ T opq, @i P t1, � � � , n � 1u and i
odd;

• pdi, zi�1e3q PE3 pR ^ Sopq and pzi�1e3, di�1q PE3 pR ^ Sq, @i P t2, � � � , n � 2u and i
even (these do not hold when n � 2).

Combining the above we obtain the following relations

ae1e2e3 pR ^ Sopq ae1e2e3 pR ^ Sq d1 pR ^ T q z2e3 pR ^ T opq d2
d2 pR ^ Sopq z1e3 pR ^ Sq d3 pR ^ T q z4e3 pR ^ T opq d4
...

dn�2 pR ^ Sopq zn�3e3 pR ^ Sq dn�1 pR ^ T q zne3 pR ^ T opq dn
dn pR ^ Sopq ce1e2e3 pR ^ Sq ce1e2e3;
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so
pae1e2e3, ce1e2e3q PE3 ppR ^ Sopq � pR ^ Sq, pR ^ T q � pR ^ T opq qn�1.

Since e1e2e3 : E3 ↠ X is a regular epimorphism, we obtain

pa, cq PX ppR ^ Sopq � pR ^ Sq, pR ^ T q � pR ^ T opq qn�1.

This completes the proof.

3.21. Remark. Part of the proof of Theorem 3.9 follows the procedure introduced in [29].
In [29] the authors translate varietal proofs into categorical ones by using an appropriate
matrix property corresponding to the ground categorical context.

3.22. Remark. As a general remark on the translation of varietal conditions into categor-
ical ones, we note a difference between the categorical conditions being studied here and
their varietal counterparts. A variety of algebras which admits a so-called near unanimity
term is always congruence distributive (see [33]). The translation of the condition that a
variety admits a near unanimity term is a closedness property of internal relations [27],
or a matrix property for short. Finitely complete categories satisfying the near unanimity
matrix property (and implications between such conditions) have been introduced and
studied in [21] (see also [22, 23, 24, 25]) for the general study of implications between
matrix properties). Now, given a variety V of algebras which satisfies a near unanimity
matrix condition which is not the majority matrix condition, if V is Mal’tsev then V is
arithmetical. However, the corresponding statement for finitely complete categories is not
generally true (see Section 5 of [21] for the details).
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