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FACTORIZATION SYSTEMS AND DOUBLE CATEGORIES

MILOSLAV ŠTĚPÁN

Abstract. We show that factorization systems, both strict and orthogonal, can be
equivalently described as double categories satisfying certain properties. This provides
conceptual reasons for why the category of sets and partial maps or the category of small
categories and cofunctors admit orthogonal factorization systems. The theory also gives
an explicit description of various lax morphism classifiers and explains why they admit
strict factorization systems.

1. Introduction

Both double categories and factorization systems are widespread in category theory. In
this paper, we will study the relationship between them. A double category consists of
objects, vertical morphisms, horizontal morphisms and squares just like the one pictured
below:

a b

c d

g

vu

h

α

In a general double category you cannot compose vertical morphisms with horizontal
ones, but if you could, you might interpret the above square α as telling us that the
morphism v � g (horizontal followed by vertical) can be factored as h �u (vertical followed
by horizontal) – this is reminiscent of ordinary factorization systems on a category.

Taking this philosophy to heart, we assign to a double category X a certain cate-
gory of corners CnrpXq (a concept introduced by Mark Weber in [Weber15]), in which
composition of vertical and horizontal morphisms is possible, and for which squares in
X turn into commutative squares in CnrpXq. Regarding the double category as a dia-
gram X : ∆op Ñ Cat, producing CnrpXq amounts to taking the codescent object of X, a
2-categorical colimit that is an analogue of ordinary coequalizers.
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Because the usage of codescent objects is related to the classification of pseudo/lax
morphisms between strict algebras for a 2-monad (see [Lack02]), the category of corners
construction gives us an explicit description of lax morphism classifiers for a certain class
of 2-monads.

The paper is organized as follows:

� In Section 2 we recall the basic notions of double category theory and define a
slight generalization of crossed double categories of [Weber15]. We also describe
the category of corners construction for this class of double categories and mention
some examples.

� In Section 3 we establish two equivalences: the first is the equivalence between strict
factorization systems and double categories for which every top right corner can be
uniquely filled into a square:

a b

c

g

u

The second is the equivalence between orthogonal factorization systems and a special
kind of a crossed double category.

� In Section 4 we recall codescent objects and use the category of corners construction
to give explicit descriptions for various (co)lax morphism classifiers.

Prerequisities. We assume basic familiarity with double categories and factorization
systems. For Section 4 we further assume that the reader is familiar with lax/colax
morphisms between strict T -algebras for a 2-monad, as defined in [BKP89, Section 1.2].

Acknowledgements. I want to thank my Ph.D. supervisor John Bourke for his guid-
ance and careful readings of all the drafts of this paper.

2. Double categories

2.1. Basic notions.

2.2. Notation. A double category X is an internal category in Cat. In particular it
consists of the following diagram in Cat:

X2 X1 X0s

d1

d0

d1

d0

d2
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We call objects of X0 the objects of X, morphisms of X0 the vertical morphisms, objects
of X1 the horizontal morphisms, the morphisms of X1 squares :

a b

c d

u

g

v

h

α

We refer to the composition in the category X1 as vertical square composition, the hor-
izontal composition of horizontal morphisms as well as squares is given by the functor
d1 : X2 Ñ X1. Similarly, an identity morphism in X1 will be called a vertical identity
square, and a horizontal identity square on a vertical morphism u will be given by spuq.
By an identity square in X we mean a square that is either a vertical or a horizontal
identity. Objects and horizontal morphisms form a category that we will denote by hpXq.

Double categories together with double functors form a category that we will denote
by Dbl.

Here we recall some definitions from [GP99] that will make an appearance in the paper:

2.3. Definition. [Duals and transposes] Any double category X has its transpose XT

obtained by switching vertical and horizontal morphisms and compositions. Any double
category X has its vertical dual which we denote by Xv. It is defined by putting:

pXvqi � Xop
i for i P t0, 1, 2u.

Similarly, domain and codomain functors for Xv are obtained by applying p�qop on those
for X.

There is also a notion of a horizontal dual Xh, which is a double category obtained
from X by switching d0’s and d1’s.

2.4. Definition. A double category X is flat if any square α is uniquely determined by
its boundary.

2.5. Definition. A double category X is (strictly) horizontally invariant if for any two
invertible horizontal morphisms g, h and every vertical morphism u there exists a unique
square filling the picture1:

a b

c d

g�

u

h�

D!λ

Such a square is necessarily horizontally invertible. We say that X is (strictly) vertically
invariant if its transpose XT is horizontally invariant. A double category that is both
horizontally and vertically invariant will be called (strictly) invariant.

1This definition differs from the one in [GP99] in that we require the filler square to be unique.
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2.6. Example. Let C be a category. There is a double category SqpCq such that:

� objects are the objects of C,

� vertical morphisms are those of C,

� horizontal morphisms are those of C,

� squares are commutative squares in C.

2.7. Example. There is a sub-double category PbSqpCq � SqpCq with the same objects
and morphisms, whose squares are the pullback squares in C.

Another example is a sub-double category MPbSqpCq � PbSqpCq with the same objects
and horizontal morphisms whose vertical morphisms are monomorphisms in the category
C.

2.8. Example. Let E be a category with pullbacks. There is a double category BOFibpEq
such that:

� objects are internal categories2 in E ,

� vertical morphisms are internal functors that are discrete opfibrations, that is, in-
ternal functors F : AÑ B such that the following square is a pullback in E :

A1 B1

A0 B0

ss

F1

F0

{

� horizontal morphisms are internal functors F : AÑ B that are bijections on objects,
i.e. the object part morphism F0 : A0 Ñ B0 is an isomorphism in E ,

� a square in BOFibpEq is a commutative square in CatpEq (which is automatically a
pullback square).

Note that all of the above examples are flat and invariant.

2.9. Crossed double categories. Crossed double categories (a generalization of
crossed simplicial groups of [FL91]) were introduced by Mark Weber in [Weber15] to
calculate various internal algebra classifiers. For instance, if S is the free symmetric strict
monoidal category 2-monad on Cat, the bar construction (also called a resolution, see
Definition 4.9) Resp�q of a terminal S-algebra � has the structure of a crossed double
category.

2As defined in [Borceux94, 8.1] for instance.
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In that paper, any crossed double category can be turned into a category “in the
best possible way” – this is called the category of corners construction. In the case of
Resp�q the category of corners construction produces the free symmetric strict monoidal
category containing a commutative monoid, which happens to be the category FinSet of
finite ordinals and all functions between them.

In this paper we consider a slight generalization of crossed double categories, obtained
by dropping the “splitness” assumption on the opfibration that appears in the definition.
This allows us to consider a bigger class of examples – the ones for which there is no
canonical choice of “opcartesian lifts”. We then present an analogue of the category of
corners construction for this wider class of double categories and prove some of its key
properties. All of this is in preparation for Section 3 where we show that under some
conditions the category of corners admits a strict or an orthogonal factorization system.

2.9.1. Definition and examples.

2.10. Definition. A double category X is said to be crossed if d0 : X1 Ñ X0 is an
opfibration and d1 : X2 Ñ X1, s : X0 Ñ X1 are morphisms of opfibrations3:

X0 X1 X2

X0

s0 d1

d0
d20

In elementary terms, this is to say the following:
A square κ (as below left) is said to be opcartesian (by which we mean d0-opcartesian

if regarded as a morphism in X1) when given any square α (below right):

a b a b

pb c d c

g

pu u

g

w x

pg h

κ α

and a factorization of x as vu : b Ñ c Ñ e, there exists a unique square β so that the
following equality of squares holds:

a b a b

pb c � c

d c d c

g

upu

pg

v

w

g

hh

θ

u

w

v

α

D!β

κ

(1)

3Note that the map d20 � d0 � d0 : X2 Ñ X0 is an opfibration since it is a composite of an opfibration
and a pullback of an opfibration.
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To say that d0 : X1 Ñ X0 is an opfibration is to say that any tuple pg, fq of a “composable”
pair of a horizontal and a vertical morphism (as pictured below) can be filled to an
opcartesian square:

a b

c

g

f (2)

Such tuples will be referred to as (top-right) corners.
Finally, to say that d1 : X2 Ñ X1 and s : X0 Ñ X1 are morphisms of opfibrations is to

say that the opcartesian squares are closed under horizontal composition and that every
horizontal identity square is opcartesian.

We will denote by Crossed the full subcategory of Dbl spanned by crossed double
categories.

2.11. Remark. [Split version] Crossed double categories studied by Mark Weber ([We-
ber15]) are defined as in Definition 2.10, except it is required that d0 : X1 Ñ X0 is a split
opfibration and the maps d1, s are morphisms of split opfibrations.

This amounts to, for every top-right corner pg, fq, having a choice of opcartesian
square κg,f filling the corner, and requiring that identity squares are chosen opcartesian,
and moreover vertical and horizontal composition of chosen opcartesian squares is chosen
opcartesian. In this paper we will call them split crossed to emphasize the presence of
chosen filler squares.

2.12. Remark. [Dual version] There is a dual version of a crossed double category that
we will call co-crossed ; it is obtained by replacing “opfibration” by “fibration” everywhere.
Note then that the double category X is co-crossed if and only if Xv is crossed.

2.13. Remark. The requirement that every corner can be filled into an opcartesian
square is equivalent to saying that every corner can be filled into a pre-opcartesian
square and vertical composition of pre-opcartesian squares is pre-opcartesian. By a pre-
opcartesian square we mean a square satisfying (1) only for squares for which v is the
identity. This equivalence is proven in [Borceux94, Proposition 8.1.7] for a general fibra-
tion.

2.14. Example. If C is a category with pullbacks, the double category SqpCq is co-
crossed: a square is cartesian (with respect to the codomain functor
d0 : C2 Ñ C) if and only if it is a pullback square in C. Clearly, vertical and horizon-
tal composition of pullback squares yields a pullback square, and identity squares are
pullbacks.

For similar reasons, the following double categories are all co-crossed. In each of these,
every square is cartesian:

� PbSqpCq,
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� MPbSqpCq,

� BOFibpEq.

2.15. Example. Let pL,Rq be an algebraic weak factorization system ([BG16, 2.2]) on a
category C with pullbacks. There is an associated double category R-Alg of R-algebras.
It can be shown that the codomain functor of this double category is a fibration ([BG16,
Proposition 8]) and moreover, d1, s are morphisms of fibrations. Thus R-Alg is a co-
crossed double category.

Of note is that it is not these examples that will play a role later on, but rather their
vertical duals (that are crossed).

2.16. Example. Assume pT,m, iq is a 2-monad on a 2-category K and let pA, aq be a
strict T -algebra. By its resolution, denoted RespA, aq, we mean the following diagram in
T-Algs:

T 3A T 2A TATiA

Ta

mAmT2A

TmTA

T 2a

For a cartesian4 2-monad T , RespA, aq is (the truncated nerve of) a category internal in
T-Algs.

Let now S be the free symmetric strict monoidal category 2-monad on Cat. Recall that
for a category A, SA has objects the tuples of objects of A, and a morphism pa1, . . . , anq Ñ
pb1, . . . , bnq is a tuple ppf1, . . . , fnq, ρq, where ρ is a permutation on the n-element set and
fi : ai Ñ aρpiq are morphisms in A.

Denote by � the terminal S-algebra. Since S is cartesian, Resp�q is a double category.
Moreover, it is (split) crossed by [Weber15, Example 4.4.5]. This double category has
finite ordinals as objects, order-preserving maps as horizontal morphisms, permutations
as vertical morphisms and squares being commutative squares in Set.

Analogous results hold if we instead consider the free braided strict monoidal category
2-monad on Cat.

A special class of the crossed double category will be of interest to us:

2.16.1. Codomain-discrete double categories.

2.17. Definition. A double category X will be called codomain-discrete if every top-right
corner can be uniquely filled into a square:

a b


 c

g

uD!

4T preserves pullbacks and the naturality squares for m, i are pullbacks
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This property amounts to the codomain functor d0 : X1 Ñ X0 being a discrete op-
fibration. In that case, d1, s are automatically morphisms of opfibrations and thus any
codomain-discrete double category is crossed.

We denote by CodDiscr � Dbl the full subcategory spanned by codomain-discrete
double categories.

2.18. Remark. Codomain-discrete double categories first appeared in [FL91, 2.3] as
double categories satisfying the star condition.

Of note is the fact that every codomain-discrete double category is flat but not neces-
sarily invariant as the following example demonstrates:

2.19. Example. Let A,B be categories. There is a double category XA,B such that:

� Objects are the objects of A� B,

� vertical morphisms are morphisms in A� B of form pf, 1bq.

� horizontal morphisms are morphisms in A� B of form p1a, gq,

� a square is a commutative square in A� B.

This double category is clearly codomain-discrete and thus flat. It is not invariant because
for example if we have θ, ψ distinct isomorphisms in A, the following can not be filled
into a square:

pa, bq pa1, bq

pa, b1q pa1, b1q

pθ,1bq

p1a1 ,fq

pψ,1b1 q

2.20. Example. Given a 2-monad T on Cat of form CatpT 1q for T 1 a cartesian monad on
Set, the transpose of the resolution RespA, aq of a strict T -algebra is codomain-discrete.
We will encounter this class of examples in Section 4.8.

2.21. The category of corners. In [Weber15], given a crossed double category X,
the category of corners CnrpXq is constructed in two steps: first, a 2-category of corners
B is constructed, and then the category of corners is obtained by taking connected com-
ponents in each hom category of B, i.e. CnrpXq � pπ0q�B. In order to avoid very long
proofs, we define CnrpXq for our notion of a crossed double category X straight away
without ever introducing B (which in the absence of the splitness assumption would only
be a weak 2-category). The universal property of this construction will be studied in
Subsection 4.3.

2.21.1. Definition and examples.
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2.22. Definition. Let X be a double category and assume we are given two bottom-left
corners pe,mq, pe1,m1q for which the domains of e, e1 and codomains of m,m1 agree (as
pictured below). A 2-cell β between them (denoted β : pe,mq ñ pe1,m1q) is a square as
below for which d1pβq � e � e1:

a

a1 b

a2 b

e

θ

e1

m1

m

β

2.23. Construction. Let X be a crossed double category. Define the category of cor-
ners CnrpXq as follows. Its objects are the objects of X, while a morphism a Ñ b is an
equivalence class of corners, denoted ru, gs : aÑ b:

a

a1 b

u

g

Here two corners pu, gq, pv, hq are equivalent if and only if there exists a zigzag of 2-cells
between them:

pu1, g1q pun, gnq

pu, gq . . . pv, hq

α1 β1 αn
βn

The identity on a P X is the equivalence class r1a, 1as, while the composite rv, hs�ru, gs
is defined to be the equivalence class of corners obtained by filling the middle corner with
a choice of an opcartesian square:

a

a1 b

pb b1 c

u

pv�u
g

pv v

pg

h�pg

h

κ

(3)

The composite is well-defined on the equivalence classes. To see this, consider two 2-cells
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α : pu, gq ñ pu1, g1q, β : pv, hq ñ pv1, h1q as pictured below:

a a b b

a1 b b1 c

a2 a2 b b2 b2 c

u1

u

v1

v

g

θ

h

θ1

g1 h1

α β

and consider two composites:

a a

a1 b a1 b

pb b1 c rb b2 c

u u1

g

pv v

g1

pv1 v1

pg

h

pg1

h1

κ κ1

Since κ is opcartesian, there exists a unique square τ satisfying the equation below:

a1 b a1 b

pb b1 � a2 b1

rb b2 rb b2

g

pv v

g

θ

pg

σ θ1

g1

pv1 v1

pg1 pg1

κ α

τ κ1

The following now provides a 2-cell between pv, hq � pu, gq and pv1, h1q � pu1, g1q:

a a

a1

a2 pb b1 c

rb rb b2 c

u1

u

pv

pv1

pg

σ

h

θ1

pg1 h1

τ β

The composite is also independent of the choice of the square κ: if κ1 is another
opcartesian square filling the corner (3), there is a unique square β such that the following
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holds:
a1 b a1 b

pb1 b1 �

pb1 b1 pb b1

g

vv1

g1

pg

g

vpv

pg

θ

pv κ

κ1

D!β

This square exhibits now the equality between the compositions:

a

a1

pb1 b1 c

pb b1 c

v1

θ

u

pv

pg

h

h

g1

β

2.24. Proposition. CnrpXq is a category.

Proof. Let rf, gs : aÑ b be a morphism in CnrpXq. To show that rf, gs�r1a, 1as � rf, gs,
note that the horizontal identity square on f is by definition opcartesian so we might as
well use it for the composite (the composite is independent of the choice) and the result
follows.

a

a a

c c b

f

g

f

f

g
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Analogously r1b, 1bs � rf, gs � rf, gs. Consider now a composable triple rf, gs, rf 1, g1s,
rf2, g2s and fill it to form a single corner as depicted below:

a

a1 b


 b1 c


 
 c1 d

f

g

f 1

g1

f2

g2

κ1

κ3 κ2

Denote this composite corner by rf2, g2s � rf 1, g1s � rf, gs and call it the ternary composite.
Now to define the composition rf2, g2s � rf 1, g1s, choose the square κ2 as above. To define
prf2, g2s � rf 1, g1sq � rf, gs, choose the square κ3 �κ1 (as a vertical composite of opcartesian
squares, it is opcartesian). We see that prf2, g2s � rf 1, g1sq � rf, gs is equal to the ternary
composite. By an analogous argument (and using that opcartesian squares are closed
under horizontal composites), rf2, g2s � prf 1, g1s � rf, gsq also equals this ternary composite
and thus composition is associative.

If F : X Ñ Y is any double functor between crossed double categories, there is an
induced functor CnrpF q : CnrpXq Ñ CnrpY q sending:

a Fa

a1 b ÞÑ Fa1 Fb

u

g

Fu

Fg

(4)

This gives us a functor Cnrp�q : Crossed Ñ Cat.

2.25. Remark. If X is codomain-discrete, note that there is a 2-cell β : pu, gq ñ pv, hq
between corners if and only if u � v, g � h and β � 1g is the identity square. Thus the
category CnrpXq has corners as morphisms with no equivalence relation involved. This
has also been observed in [Weber15, Corollary 5.4.7].

2.26. Example. Let C be a category with pullbacks and consider the double category
PbSqpCqv. The category CnrpPbSqpCqvq has as objects the objects of C, while a morphism
aÑ b is an equivalence class of corners (usually called spans) like this:

a

a1 b
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Note that there is a span isomorphism between two spans pu, gq, pv, hq if and only if there
is a 2-cell between them if we regard them as corners.

a a

a1 ðñ a1 b

a2 b a1 b

u

g

v

D�

h

u

g

g

v

D

The composition of corners is defined using pullbacks. In other words, we have that
CnrpPbSqpCqvq � SpanpCq, the category of isomorphism classes of spans in C.

2.27. Example. Let C be a category with pullbacks and consider the double category
MPbSqpCqv. By a similar reasoning as above we obtain that the category of corners
corresponding to this double category is isomorphic to the category ParpCq of partial
maps in C, as defined in [Lack02, p. 246].

2.28. Example. Let E be a category with pullbacks and consider now the double cate-
gory BOFibpEqv. Morphisms in CnrpBOFibpEqvq are equivalence classes of spans pF,Gq
where F is a bijection on objects and G is a discrete opfibration as pictured below:

A

A1 B

F

G

This category of corners is isomorphic to CofpEq, the category of internal categories and
cofunctors, see for instance [Clarke20, Theorem 18].

2.29. Example. If pL,Rq is an algebraic weak factorization system on a category C with
pullbacks, consider the co-crossed double category R-Alg of R-algebras (Example 2.15).
Its vertical dual R-Algv is thus crossed. Its category of corners construction now gives the
category of weak maps WklpL,Rq associated to the system pL,Rq, see [BG16, Section
3.4 and Remark 13].

2.30. Example. If X is split crossed, our category of corners construction agrees with
that of [Weber15, Corollary 5.4.5], as is easily verified.

Recall from Example 2.16 the free symmetric strict monoidal category 2-monad S and
the crossed double category Resp�q.

The objects of CnrpResp�qq are finite ordinals, while a morphism mÑ n is an equiva-
lence class of corners consisting of a permutation followed by an order-preserving map:

m

m n

φ

f
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It can be proven that CnrpResp�qq � FinSet, the category of finite ordinals and all func-
tions (see [Weber15, Theorem 6.3.1]).

If B is the free braided strict monoidal category 2-monad, CnrpResp�qq � Vine, the
category with objects being natural numbers and morphisms being vines, that is, “braids
for which the strings can merge” (see [Weber15, Theorem 6.3.2]).

2.30.1. Some properties of CnrpXq. The following proposition captures the idea that
“a square in X turns into a commutative square in CnrpXq”:

2.31. Proposition. Let X be a crossed double category. We have:

a b a b

in X ñ commutes in CnrpXq

c d c d

m

ee1

m1

re1,1s

r1,ms

re,1s

r1,m1s

D

Proof. Denote ru, gs :� re, 1s � r1,ms and denote by κ the opcartesian square we used
for this composition. From opcartesianness there is a unique square β such that:

a b a b

pb1 d �

c d c d

m

eu

g

m1

m

ee1

m1

θ

e1 α

κ

D!β

This square β now exhibits the equality r1,m1s � re1, 1s � re1,m1s � ru, gs � re, 1s � r1,ms.

The additional assumption requiring that every square is opcartesian simplifies the
description of CnrpXq for a crossed double category X:

2.32. Lemma. Let X be a crossed double category in which every square is opcartesian.
Then any 2-cell β : re,ms ñ re1,m1s between corners is vertically invertible. In partic-
ular two corners in CnrpXq are equivalent if and only if there exists a single (vertically
invertible) 2-cell between them.
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Proof. Consider a square β as pictured below. Since the vertical identity square 1g on
the morphism g is opcartesian, there exists a unique square γ such that:

a b a b

c b �

a b a b

u

g

h

v

g

g

g

D!γ

β

Thus γ � β � 1g. Post-composing with β, we get:

β � γ � β � 1h � β

Since β is opcartesian, we get β � γ � 1h as well.

2.33. Notation. Given a crossed double category X, denote by EX the class of corners
in CnrpXq of the form rf, 1bs and MX the class of corners of the form r1a, gs. We will call
these vertical and horizontal corners.

2.34. Proposition. Let X be a crossed double category. Then the class EX has the right
cancellation property. Both classes EX ,MX contain all identities and are closed under
composition. We also have:

CnrpXq �MX � EX .

Moreover, if every square is opcartesian in X, we have that EX is weakly orthogonal to
MX :

EX mMX .

Proof. To show the cancellation property, assume rs, ts � re, 1s � ru, 1s P EX . We then
have a square as pictured below left:

a

b b

b1 c a1 c

c c c c

s

t

e

θ

u

θ

t

s

θs

β β

The same square β now exhibits the equality rs, ts � rθs, 1s (pictured above right) and thus
rs, ts P EX . The fact that EX ,MX contain identities and are closed under composition, as
well as the fact that CnrpXq �MX � EX are obvious.
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Assume now that every square is opcartesian in X. Since CnrpXq � MX � EX , to
prove weak orthogonality we first show that given two factorizations re,ms � re1,m1s of
the same morphism, there exists a morphism of factorizations between them, i.e.:

a a1 b

a a2 b

re,1s r1,ms

re1,1s r1,m1s

(5)

Since re,ms � re1,m1s and thanks to Lemma 2.32, there exists a single invertible square
like this:

a

a1 b

a2 b

e1

e

m

θ

m1

β

It is now easy to verify that the corner rθ, 1s makes both squares in the above diagram
commute. Since the general lifting problem for the classes EX , MX reduces to (5), we
obtain that EX is weakly orthogonal to MX .

The classes pEX ,MXq give rise to an ordinary weak factorization system p�EX , �MXq
for which the first class is obtained by closing EX under codomain-retracts and the second
is obtained from MX by closing it under domain retracts. This is a well-known result so
we omit its proof.

2.35. Example. Recall the example CnrpPbSqpCqvq � SpanpCq. Since every square
is opcartesian (a pullback), we obtain that the class EPbSqpCqv is weakly orthogonal to
MPbSqpCqv . Note that in this case, both classes are already closed under the required
retracts. We obtain:

2.36. Proposition. The two canonical classes of morphisms in the category SpanpCq
form a weak factorization system.

3. Factorization systems and double categories

In this section we will be putting additional hypotheses on the crossed double category
X to ensure that the classes pEX ,MXq of morphisms in CnrpXq have more desirable
properties (namely, form a strict or an orthogonal factorization system). This gives us
the direction:

double categories ù factorization systems.

For the opposite direction, we introduce a construction that sends two classes pE ,Mq of
morphisms in a category C to a certain double category DE,M of commutative squares.
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We begin in Subsection 3.1 by doing this to the case of strict factorization systems,
showing that the mappings X ÞÑ pEX ,MXq and pE ,Mq ÞÑ DE,M induce an equivalence
between the categories of strict factorization systems and codomain-discrete double cat-
egories.

In Subsection 3.9 we prove analogous results for the categories of orthogonal factoriza-
tion systems and factorization double categories : a symmetric variant of crossed double
categories whose bottom-left corners satisfy a certain joint monicity property.

3.1. Strict factorization systems. In [RW02] it has been shown that distribu-
tive laws in Span can equivalently be described as strict factorization systems. Given a
codomain-discrete double category X, the category of corners CnrpXq can be constructed
using a distributive law in SpanpCatq5 – this gives a first hint that there is a relationship
between double categories and factorization systems.

3.2. Definition. A strict factorization system pE ,Mq on a category C consists of two
wide sub-categories E ,M � C such that for every morphism f P C there exist unique
e P E ,m PM such that: f � m � e.

3.3. Definition. Denote by SFS the category whose:

� objects are strict factorization systems E � C �M,

� morphisms pE � C �Mq Ñ pE 1 � C 1 �M1q are functors F : C Ñ C 1 satisfying:

F pEq � E 1,
F pMq �M1.

3.4. Lemma. Let X be codomain-discrete. Then the classes pEX ,MXq form a strict
factorization system on CnrpXq. The assignment X ÞÑ pEX ,MXq induces a functor
CodDiscr Ñ SFS.

Proof. Recall from Remark 2.25 that for such X, two morphisms ru, gs, rv, hs in CnrpXq
are equal if and only if u � v, g � h. From this it follows that the factorization ru, gs �
r1, gs � ru, 1s is unique.

If H : X Ñ Y is a double functor, the induced functor CnrpHq : CnrpXq Ñ CnrpY q
(see (4)) satisfies CnrpHqpEXq � EY , CnrpHqpMXq � MY and thus is a morphism in
SFS.

Denote the above functor simply by Cnrp�q : CodDiscr Ñ SFS.

3.5. Example. Let A,B be categories and XA,B the codomain-discrete double category
from Example 2.19. The category of corners CnrpXA,Bq is isomorphic to just A � B and
this category admits a strict factorization system pE ,Mq, where:

E :� tp1a, fq|a P A, f P Bu,
M :� tpg, 1bq|g P A, b P Bu.

5This is the original construction of CnrpXq for a codomain-discrete double category X in [Weber15]
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3.6. Construction. Let pE ,Mq be two classes of morphisms in a category C, both
closed under composition and containing all identities. We define a double category DE,M
as follows:

� The objects are the objects of C,

� the category of objects and vertical morphisms is E ,

� the category of objects and horizontal morphisms is M,

� the squares are commutative squares in C.

If we have two classes pE ,Mq, pE 1,M1q on categories C, C 1 and F : C Ñ C 1 a functor
satisfying F pEq � E 1 and F pMq � M1, there is an induced double functor DF : DE,M Ñ
DE 1,M1 defined in the obvious way.

3.7. Lemma. Let pE ,Mq be a strict factorization system on a category C. Then DE,M is
codomain-discrete. The assignment pE ,Mq ÞÑ DE,M induces a functor SFS Ñ CodDiscr.

Proof. Every morphism in C of form e � m can be uniquely factored as m1 � e1 with
e1 P E ,m1 PM. But this precisely means that DE,M is codomain-discrete.

In the above construction we have seen that pE ,Mq ÞÑ DE,M is functorial, the rest is
now obvious.

3.8. Theorem. The functor Cnrp�q : CodDiscr Ñ SFS is the equivalence inverse to
the functor D : SFS Ñ CodDiscr and so we have:

SFS � CodDiscr.

Proof. We will show that there are natural isomorphisms 1 � D � Cnrp�q and
Cnrp�q �D � 1:

To see that 1 � D � Cnrp�q, let X be a codomain-discrete double category. First
note that by Remark 2.25, the identity-on-objects functor E Ñ EX sending a morphism
e ÞÑ pe, 1q is an isomorphism. Similarly we have M � MX via the identity-on-objects
functor m ÞÑ p1,mq.

There is now a double functor X Ñ DEX ,MX
that is identity on objects and whose ver-

tical morphism and horizontal morphism components are given by the functors described
above. To see that it is well-defined on squares, we would need to prove the direction
“ñ” in the picture below:

a b a b

in X ðñ in DEX ,MX

c d c d

m

ee1

m1

pe1,1q

pm,1q

pe,1q

pm1,1q

D D

(6)
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But this direction follows from from Proposition 2.31. Since both double categories are
flat, to show that this double functor is an isomorphism it suffices to show the direction
“ð” in Diagram (6). Consider the square used for the composition pe, 1q � pm, 1q:

a b


 d

m

e
pe

pm

From the commutativity of the square on the above right we get e1 � pe, m1 � pm and thus
we obtain the left square in Diagram (6).

To see that Cnrp�q � D � 1, consider now a strict factorization system pE ,Mq on
C, we then have a functor C Ñ CnrpDE,Mq that is identity on objects and sends f ÞÑ
pe,mq, where f � me is the unique factorization with e P E ,m P M. The uniqueness of
factorizations also guarantees that this functor is fully-faithful, so it is an isomorphism.
It also clearly preserves the classes E ,M.

3.9. Orthogonal factorization systems.

3.10. Definition. An orthogonal factorization system pE ,Mq on a category C consists
of two wide sub-categories E ,M � C satisfying6:

� For every morphism f P C there exist e P E ,m P M such that f � m � e, and
if f � m1e1 is a second factorization with e1 P E ,m1 P M, there exists a unique
morphism θ so that this commutes:

a a1 b

a a2 b

e m

e1 m1

D!θ

� we have that E XM � tisomorphisms in Cu.

In the same way as in Definition 3.3 define the category OFS with objects orthogonal
factorization systems and morphisms being functors preserving both classes.

To describe orthogonal factorization systems as certain double categories, we will
introduce a more symmetric version of a crossed double category. Given a double category
X, denote:

X� :� ppXvqhqT . (7)

This is the double category obtained from X by taking both the vertical and horizontal
opposites as well as the transpose.

6Note that this definition is equivalent to the more standard one in which the orthogonality E K M
appears. See [Joyal23, Theorem 3.7]
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3.11. Definition. A square λ in a double category X will be called bicartesian if it is
opcartesian in both X and X�. In elementary terms, this means that given a square α
with the same top-right corner as λ, there exist unique squares ε, δ so that both the bottom
left composite and the bottom right composite are equal to the square α:

a b

c d a b a a b

e d e d e c d

g

vu

h

θ

k

l

ψ

u

g

v

h

g

l v

k

D!ε

λ

λD!δα

3.12. Definition. A double category X is top-right bicrossed if every top-right corner
can be filled into a bicartesian square, and moreover bicartesian squares are closed under
horizontal and vertical compositions and contain vertical and horizontal identities.

In a top-right bicrossed double category X, the two conditions of being opcartesian in
X and in X� can be expressed as a single condition as follows:

3.13. Lemma. Let λ be a bicartesian square in a top-right bicrossed double category X
and let α be any square with the same top-right corner. Then there exists a unique square
β such that this equation holds:

a a b a b

pb pb d �

d pb d d c

f

gπ1

π2

pv

pu

f

gu

v

π1

π2

v

u

λ

α

D!β

Proof. From the definition of opcartesianness in X� there is a unique square γ such that:

a a b a b

c pb d c d

f f v

g

k

g

h

vu

ψ

γ λ α� (8)

Because the horizontal identity square on a vertical morphism u is opcartesian in X



FACTORIZATION SYSTEMS AND DOUBLE CATEGORIES 571

(because X is top-right bicrossed), there exists a unique square γ1 such that:

a a a b

pb pb �

pb d c d

u

θ

ψ

u

uf

ψ

γ

γ1

This gives us the existence. To prove the uniqueness, let β be a different square
satisfying the equation in the Lemma. Then the composite β � 1
π1 (vertical composite of
β and the horizontal identity square on π1) satisfies the equation (8) (with β �1
π1 in place
of γ). Because λ is opcartesian in X�, this forces β � 1
π1 � γ � γ1 � 1
π1 . Because 1
π1 is
opcartesian in X, this in turn forces β � γ1.

3.14. Example. In the double category SqpCqv, a square is bicartesian if and only if it is
a pullback square. If C has pullbacks, the double category SqpCqv is top-right bicrossed.

Both MPbSqpCqv (for a category C with pullbacks) and BOFibpEqv are top-right bi-
crossed with every square being bicartesian.

We will now focus on double categories in which every top-right corner can be filled
into a square and every square is bicartesian. Such double categories are automatically
crossed so we may again use the category of corners construction. Notice that in this case,
two corners pe,mq, pe1,m1q are equivalent if and only if there is a single 2-cell between
them (Lemma 2.32), and moreover every 2-cell has the following form (since the vertical
identities on morphisms are bicartesian):

a a

a1 a1 b

a2 a1 b

m

ee

θ

ψ m

e1

m1

β

(9)

Recall Notation 2.33.

3.15. Lemma. Let X be a double category in which every top-right corner can be filled
into a square and every square is bicartesian. Then:

EX XMX � tisomorphisms in CnrpXqu.
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Proof. Let ru, 1s � r1, hs be a morphism in the intersection. There is then a 2-cell as
follows (see the remark above diagram (9)):

a a

a1 a1 a1

a a1 a1

uu

θ

h

h

β

Since every square is bicartesian, θ, h are isomorphisms, and so is θ�1 � u. Hence ru, 1s
is an isomorphism in CnrpXq with the inverse being ru�1, 1s.

3.16. Lemma. Let X be a double category in which every top-right corner can be filled
into a square and every square is bicartesian. An equivalence class of corners ru, gs is
invertible in CnrpXq if and only if both u and g are isomorphisms.

Proof. Let ru, gs be an isomorphism in CnrpXq with inverse rv, hs as pictured together
with the inverse laws below:

a a b b

a1 a1 b b1 b1 a

a a b1 a b b a1 b

a a b1 a b b a1 b

u u v v

pv

g

pv v
pu

h

pu u

θ

pg

h

θ1
ph

g

ψ
pg h

ψ1

ph
g

(10)
From the pictures below we obtain the following equalities:

rv, 1s � ru, gs � r1, pgψs,

ru, gs � r1, hs � rθ1pu, 1s.
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a a

a1 a1 b b1 b1 a

a a b1 b b a1 b

a a b1 b b a1 b

u u

pv

g

pv v
pu

θ1pu

h

pu u

θ

pg

θ1
ph

g

ψ

pgψ

pg
ψ1

ph
g

Now consider the following composite:

rvθ1pu, 1s � rv, 1s � rθ1pu, 1s � rv, 1s � ru, gs � r1, hs � r1, pgψs � r1, hs � r1, pgψhs

This composite belongs both in EX and MX , so as in the proof of Lemma 3.15 we ob-
tain that ppgψqh is an isomorphism that we denote by Θ. This implies that Θ�1ppgψqh � 1
and so h is a split monomorphism. Since hppgψq � 1 by Equation (10), h is a split epi-
morphism. Thus h is an isomorphism and by similar reasoning, v is also an isomorphism.
Hence rv, hs is an isomorphism in CnrpXq with the inverse being given by rv�1, 1s�r1, h�1s.

Note that for X � PbSqpCqv the above lemma gives the usual folklore characterization
of isomorphisms in the category SpanpCq of spans.

3.17. Lemma. Let X be a double category in which every top-right corner can be filled
into a square and every square is bicartesian. Assume in addition that X is invariant.
Then:

EX XMX � tisomorphisms in CnrpXqu.

Proof. We will show that when X is horizontally invariant, we have:

ru, gs P CnrpXq, g is an isomorphism ñ ru, gs P EX .

Let ru, gs be such a corner. From horizontal invariance we get the square (pictured
below), that exhibits the equality ru, gs � rθu, 1s:

a

a1 b

b b

u

θu
g

θ

Thus, ru, gs P EX . Dually, if X is vertically invariant, we have:

ru, gs P CnrpXq, u is an isomorphism ñ ru, gs PMX .
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Now if ru, gs is an isomorphism, by previous lemma both u, g are isomorphisms, and
by the above implications ru, gs belongs to both EX and MX .

The following somewhat technical notion is introduced in this paper to guarantee the
uniqueness of factorizations up to a unique morphism:

3.18. Definition. A bottom-left corner pπ1, π2q is said to be jointly monic if, given
squares κ1, κ2 pictured below:

a a1 a1 a1 a1

a1 b a2 a1 a2 a1

π1 θ θ1

π2

ψ ψ1

κ1 κ2

We have the following implication:

pθπ1 � θ1π1 ^ π2ψ � π2ψ
1q ñ θ � θ1, ψ � ψ1.

In the examples below, we will consider bottom-left corners in double categories of
form Xv. Those are the same as top-left corners pπ1, π2q in X having the property that,
when given squares κ1, κ2 pictured below:

a1 b a2 a1 a2 a1

a a1 a1 a1 a1

π2

π1

ψ

θ

ψ1

θ1κ1 κ2

We have the following implication:

pπ1θ � π1θ
1 ^ π2ψ � π2ψ

1q ñ θ � θ1, ψ � ψ1.

We will say the top-left corner in X is jointly monic if the corresponding bottom-left
corner is so in Xv.

3.19. Example. In SqpCq a top-left corner pπ1, π2q is jointly monic if and only if the
pair of morphisms pπ1, π2q is jointly monic in the category C. In PbSqpCq a top-left
corner is jointly monic if and only if the pair is jointly monic in C with respect to all
isomorphisms.

3.20. Example. In the double category MPbSqpCq every top-left corner is jointly monic
as we now show: Let there be squares κ1, κ2 as in the definition, then θ � ψ, θ1 � ψ1 and
the equality π1θ � π1θ

1 forces θ � θ1 because π1 is a monomorphism.
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3.21. Example. Every top-left corner is jointly monic in the double category BOFibpEq
as well: Let there be a top-left corner and squares as pictured below:

C B D C D C

A C C C C

G

F

P 1

H

P

H 1 κ2κ1

Assume that FH � FH 1, GP � GP 1. We again get H � P,H 1 � P 1. Now since F is
a bijection on objects, we have H0 � H 1

0 (the object parts of the functors agree). Because
G is a discrete opfibration, the square below is a pullback and we obtain H1 � H 1

1 as well:

D1

C1 B1

C0 B0

ss

G1

G0

{

H 1

1

H1

sH0�sH 1

0

G1H 1

1�G1H1

3.22. Lemma. Let X be a double category in which every top-right corner can be filled into
a square and every square is bicartesian. Assume further that every bottom-left corner in
X is jointly monic. Then the pEX ,MXq-factorization of a morphism in CnrpXq is unique
up to a unique morphism.

Proof. Assume that re,ms � re1,m1s are two pEX ,MXq-factorizations of a morphism in
CnrpXq. We wish to show that there is a unique morphism between them:

a a1 b

a a2 b

re,1s r1,ms

re1,1s r1,m1s

(11)

As in the proof of Theorem 2.34, one such morphism is given by the corner rθ, 1s,
where θ is the domain of the 2-cell square between pe,mq and pe1,m1q:

a a

a1 a1 b

a2 a1 b

e

m

e

θ

ψ m

e1

m1

β
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Assume that there is a different morphism rs, ts : a1 Ñ a2 making both squares in (11)
commute. The commutativity of these two squares gives the following 2-cells:

a a

a1 a1 a1 a1

x x a2 x x a2 b

a2 x a2 a1 x a2 b

e

e1

e

s s s s

θ1

t

rθ

t m1

ψ1

t
rψ

m

t
m1

β1
rβ

We claim that we have the following:

θrθ � θ1,

rψψ � ψ1.
(12)

The square β1 will then exhibit the equality rs, ts � rθ, 1s:

a1 a1

x x a2

a2 x a2

s

θ

s

θ1

t

ψ1 t

β1

To prove the claim that (12) holds, note that because the corner pse,m1tq is jointly
monic in Xv, to show (12) it suffices to show:

θrθse � θ1se,

m1t rψψ � m1tψ1.

The first equality holds because:

θrθse � θe � e1 � θ1se,

while the second equality holds because:

m1t rψψ � mψ � m1 � m1tψ1.
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We therefore propose the following terminology:

3.23. Definition. By (an orthogonal) factorization double category we mean a double
category X with the following properties:

� X is invariant,

� every top-right corner in X can be filled into a square and every square is bicartesian,

� every bottom-left corner in X is jointly monic.

Denote by FactDbl the full subcategory of Dbl consisting of factorization double categories.

3.24. Remark. Any factorization double category is automatically flat: Given two squares
α, λ with the same boundary, by Lemma 3.13 there exists a unique square β as follows:

a a b a b

d d d �

d d d d c

f

gu

v

ψ

θ

f

gu

v

u

v

v

u

λ

α

D!β

Now in Xv the corner pu, vq is jointly monic and we have θu � 1du, vψ � v1d. Thus
θ � 1d and v � 1d. Invariance now forces γ � ld, the identity square on the morphism
1d and so α � λ.

Combining Lemmas 3.15, 3.17, 3.22 we obtain:

3.25. Proposition. Let X be a factorization double category. Then the classes pEX ,MXq
of vertical and horizontal corners form an orthogonal factorization system on the category
CnrpXq.

3.26. Example. [Partial maps] Let C be a category with pullbacks and consider the dou-
ble category MPbSqpCqv. It is obviously flat and invariant with every square bicartesian.
We have seen that top-left corners in its vertical dual are jointly monic in Example 3.20.
MPbSqpCqv is thus a factorization double category.

Combined with the description of the category of corners from Example 2.27 and
Proposition 3.25 we obtain that the category ParpCq of objects and partial maps admits
an orthogonal factorization system given by vertical corners followed by horizontal ones:

A A

A1 A1 A B

ι

f

In [Lack02] these are called the domains and total maps in C.
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3.27. Example. [Categories and cofunctors] If E is a category with pullbacks, the double
category BOFibpEqv is a factorization double category. In the category
CnrpBOFibpEqvq � CofpEq every morphism can be factored as (the opposite of) a bijection
on objects functor followed by a discrete opfibration (as mentioned in [Clarke20, Theorem
18]). By the results in this section, these classes form an orthogonal factorization system
on CofpEq.

3.28. Example. Given a fibration P : E Ñ B, there is an associated sub-double category
XP � SqpEq whose vertical morphisms are P -vertical morphisms (those that are sent to
isomorphisms by P ), horizontal morphisms are cartesian lifts of morphisms in B, and
squares are commutative squares in E .

3.29. Proposition. XP is a factorization double category.

Proof. Invariance is straightforward. To show joint monicity, assume we are given the
data as in Definition 3.18. Note then that from the existence of squares κ1, κ2 in pXP qv it
follows that Pθ � pPψq�1, and from θπ1 � θ1π1 we have Pθ � Pθ1. Since π2 is a cartesian
lift, the following picture forces ψ � θ1 � 1 and thus ψ � ψ1:

a1 P Pa1

a1 b ÞÑ Pa1 Pb

π2

π2

Pπ2

Pπ2

ψ�θ1

Given a top-right corner λ, u, the bicartesian filler square is given by the cartesian lift of
the pair pPλ, b1q and the unique canonical comparison morphism:

a b a b b1

a1 b1 Pa Pb

λ

u

λPλ,b

D!

λ u

Pλ

ÞÑ

The category of corners CnrpXP q is isomorphic to the category E via the functor
sending an equivalence class ru, λs to the composite λ � u.

From the results in this section we obtain that the category E admits an orthogo-
nal factorization system given by the class of P -vertical morphisms followed by cartesian
morphisms. Factorization systems associated to fibrations are a special case of simple re-
flective factorization systems associated to prefibrations and have been studied in [RT07].

3.30. Non-example. [Spans] Let C be a category with pullbacks and consider the double
category PbSqpCqv of (opposite) pullback squares. This is not a factorization double
category because not every top-left corner in PbSqpCq is jointly monic (see Example
3.19). We can not thus use Theorem 3.25 to obtain an orthogonal factorization system
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on CnrpPbSqpCqvq � SpanpCq and in fact, the two canonical classes of spans in SpanpCq
do not form one7.

To see this, let C � Set, denote by sw : 2 Ñ 2 the non-identity automorphism of the
two-element set. Note that the class rsw, 1s : 2 Ñ 2 in Span is not the identity morphism.
Consider now the span p!, !q : � Ñ �:

�

2 �

!

!

As both rsw, 1s and r1, 1s in the place of the dotted line make the diagram below commute,
we obtain that the factorization is not unique up to a unique isomorphism and thus the
classes are not orthogonal.

� 2 �

� 2 �

r!,1s

r!,1s r1,!s

r1,!s

Recall now the assignment pE ,Mq ÞÑ DE,M from Construction 3.6. We have:

3.31. Proposition. Let pE ,Mq be an orthogonal factorization system on a category C.
Then DE,M is a factorization double category. The assignment pE ,Mq Ñ DE,M induces
a functor OFS Ñ FactDbl.

Proof. Let us verify each point:

� Invariance: We show the horizontal invariance, the vertical invariance is done
similarly. Because the classes E ,M are closed under composition, given u P E and
two isomorphisms θ, ψ, the composite ψ�1uθ gives the unique square with the given
boundary:

a b

c d

θ�

u

ψ�

� Filling corners into squares, every square bicartesian: Consider a top-right
corner as pictured below:

a b

a1 c

m1

e1e

m

7They do form a weak factorization system as we have seen in Example 2.35
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The filler square is given by the pE ,Mq-factorization of the morphism e1m1 in C.
Next, let there be a square as pictured below left:

a b a b

a1 c a2 c

g

e u

g

e1 u

m m1

We wish to show that it is bicartesian. Assume there is another square (pictured
above right) with the same top-right corner.

Because me � m1e1 are two factorizations of the same morphism, there is a unique
isomorphism θ P E XM between them (pictured below left). It then gives a com-
parison square between the first square and the second square, as pictured below
right:

a a b a b

a2 a1 a1 c �

c a2 c a2 c

e1 e

g

e u

g

e1 u

m1

�θ

m

m

θ

m1 m1

This gives the existence. To prove the uniqueness, assume that there is a dif-
ferent comparison square. Its vertical domain map then gives the morphism of
factorizations pe,mq, pe1,m1q and is thus forced to be equal to θ. Thus the square is
opcartesian in DE,M. The proof that it is also opcartesian in pDE,Mq� is done the
same way.

� Joint monicity: Let pπ1, π2q, κ1, κ2 be the data in DE,M as pictured below:

a a1 a1 a1 a1

a1 b a2 a1 a2 a1
π2

π1

ψ1

θ

ψ

θ1 κ2κ1

Assume θπ1 � θ1π1 and π2ψ � π2ψ
1. We have the following:

ψ1θπ1 � π1,

π2 � π2ψ
1θ.

In other words, ψ1θ is an endomorphism of the factorization:

a a1 b

a a1 b

π1 π2

π1 π2

ψ1�θ
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From orthogonality we get ψ1θ � 1. Since ψ � θ is an pE ,Mq-factorization of the
identity, both of ψ and θ are isomorphisms together with ψ1θ � 1 we get:

ψ � θ�1 � ψ1.

Applying inverses, we get θ � θ1.

Thus DE,M is a factorization double category. The functoriality is straightforward.

Analogous to Theorem 3.8, we have:

3.32. Theorem. The functor Cnrp�q : FactDbl Ñ OFS is the equivalence inverse to
the functor D : OFS Ñ FactDbl and so we have:

OFS � FactDbl.

Proof. We will again show that there are natural isomorphisms 1 � D � Cnrp�q and
Cnrp�q �D � 1:

To see that 1 � D �Cnrp�q, let X be a factorization double category. Consider again
the identity-on-objects functor E Ñ EX that sends the morphism e ÞÑ re, 1s, we would
like to show that it is an isomorphism. It is clearly full. To see faithfulness, assume we
have re, 1s � re1, 1s, then there is a 2-cell like this:

a

a1 a1

a1 a1

θ

e

e1

Since the double category X is invariant, the square is forced to be the identity and
thus e � e1. Analogously there is an isomorphism M � MX . Define a double functor
X Ñ DEX ,MX

so that it is identity on objects, on vertical morphisms sends e ÞÑ re, 1s
and on horizontal morphisms sends m ÞÑ r1,ms. Because both double categories are flat,
to show that it is well-defined on cells and an isomorphism, it is enough to prove the
following:

a b a b

in X ðñ in DEX ,MX

c d c d

m

ee1

m1

re1,1s

rm,1s

re,1s

rm1,1s

D D
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The direction “ñ” follows already from Proposition 2.31. For the direction “ð”
assume the right square commutes. If we denote re, 1s � r1,ms � ru, gs, we obtain the
square required above right as the following composite, where the upper square is the
square used for the composition of the corners, and the lower square exists from the
equality ru, gs � re1,m1s:

a b

c d

c d

m

u

e1

e

g

θ

m1

To see that Cnrp�q � D � 1, let pE ,Mq be an orthogonal factorization system on a
category C and define an identity-on-objects functor F : CnrpDE,Mq Ñ C so that it sends
the class of corners re,ms to m � e. This is well defined because if re,ms � re1,m1s, there
is a 2-cell between pe,mq, pe1,m1q in DE,M:

a a

a1 a1 b

a2 a1 b

e

e1

e

θ

m

ψ

m1

m

But since squares in this double category are commutative squares in C, we get: me �
mψθe � m1e1. Functoriality of F is straightforward, faithfulness follows from the fact
that pE ,Mq-factorizations are unique up to a unique isomorphism, and fullness follows
because every morphism in C has an pE ,Mq-factorization. Thus F is an isomorphism.

4. Codescent objects and double categories

The purpose of this final section is to put the previous ones into the broader perspective
of 2-category theory. In Subsection 4.1 we give a brief exposition of a 2-categorical colimit
called the codescent object. In Subsection 4.3 we study codescent objects of double cate-
gories: if X is crossed, the codescent object is given by the category of corners CnrpXq –
this was in fact the original reason for introducing the category of corners of crossed double
categories in [Weber15]. As a colimit, the category CnrpXq enjoys a universal property: it
is the universal category equipped with functors pF : X0 Ñ CnrpXq, ξ : hpXq Ñ CnrpXqq
satisfying a certain naturality condition (Proposition 4.6).

In Subsection 4.8 we use the results to obtain an explicit description of various lax
morphism classifiers. Section 3.1 then gives us a conceptual reason for why they admit
strict factorization systems.
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4.1. Review of codescent objects. Denote by ∆ the category of finite ordinals and
order-preserving maps and by ∆2 its full subcategory spanned by the ordinals r0s, r1s, r2s.
Let W : ∆2 Ñ Cat be the 2-functor that regards each ordinal as a category.

4.2. Definition. Let K be a 2-category. By (strict, reflexive) coherence data in K we
mean a 2-functor X : ∆op

2 Ñ K. By the lax codescent object of X we mean the W -
weighted colimit of X.

In elementary terms, a W -weighted cocone for coherence data X is a pair pF, ξq of a 1-cell
F : X0 Ñ Y and a 2-cell ξ : Fd1 ñ Fd0 satisfying the following equations:

X1 X0 X1 X0

X2 X1 Y � X2 X0 Y

X1 X0 X1 X0

d0

d1

d0

d0

d1

F

Fd2

d1

d0

d2

d0

d1

d0

F

F

d1

F

ξ

ξ

ξ

X0

X0 X1 Y � 1F

X0

s

d0

d1

F

F

ξ

A W -weighted cocone pF, ξq with apex Y is then the lax codescent object for X if
given any other cocone pG,ψq with apex Z, there exists a unique map θ : Y Ñ Z such
that8:

θF � G, (13)

θξ � ψ. (14)

4.3. Codescent objects and double categories.

4.4. Lemma. Let X be a double category regarded as a diagram X : ∆op Ñ Cat. There
is a natural bijection between codescent cocones for X and pairs of functors pF : X0 Ñ
Y , ξ : hpXq Ñ Yq (recall hpXq is the category of objects and horizontal morphisms in X)
that agree on objects and satisfy the following naturality condition:

a b

c d exists in X ñ Fv � ξpgq � ξphq � Fu in Y

g

vu

h

Dα

8This is the 1-dimensional universal property. We omit mentioning the corresponding 2-dimensional
universal property here since for the case we will be interested in (K � Cat) it follows automatically from
the 1-dimensional one. For the full definition see [Bourke10, 2.2].
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Proof. A cocone pF, ξq for X consists of a functor F : X0 Ñ Y and a natural trans-
formation ξ : Fd1 ñ Fd0 : X1 Ñ Y . The cocone axioms mean precisely that given a
composable pair of morphisms ph, gq in hpXq and an object a P X, we have:

ξg � ξh � ξg�h,

ξspaq � 1Fa.

In other words, ξ induces a functor hpXq Ñ Y that sends an object a P hpXq to Fa and a
morphism g P hpXq to ξg. The naturality condition above is precisely the condition that
ξ is a natural transformation.

Similarly, the cocone pF, ξq is the codescent object if and only if the corresponding pair
of functors is initial in the sense that given a different pair of functors pG,ψq satisfying
the naturality condition, there is a unique map commuting with the functors:

Y

X0 hpXq

Z

F ξ

G ψ

From now on, we will not distinguish between codescent cocones pF, ξq and pairs of
functors satisfying the conditions above.

4.5. Proposition. [Invariance under transposition] Let X be a double category. We
have: CoDescpXq � CoDescpXT q.

Proof. Because Cat admits cotensors with an arrow, it is enough to show just the one-
dimensional universal property9, i.e. show that there is a natural bijection between the
sets of W -weighted codescent cocones:

CoconepX, Cq � CoconepXT , Cq

The bijection is given by pF, ξq ÞÑ pξ, F q.

4.6. Proposition. Let X be a crossed double category. Then the pair of functors pF :
X0 Ñ CnrpXq, ξ : hpXq Ñ CnrpXqq sending u ÞÑ ru, 1s, g ÞÑ r1, gs is the codescent object
of X.

9See [Kelly89, Page 306]
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Proof. The naturality condition has already been verified in Proposition 2.31. Let now
pG : X0 Ñ Y, ψ : hpXq Ñ Y q be another cocone. We have to show that there is a unique
functor θ : CnrpXq Ñ Y commuting with the functors:

CnrpXq

X0 hpXq

Y

F ξ

G ψ

The above commutativity forces θpaq � Fa � ξpaq for an object a P CnrpXq, and on
morphisms θpru, gsq � ψpgq �Gu. It is routine to verify that this mapping is well defined
and a functor.

4.7. Remark. Note that if X is a general double category, the category of corners can
be generalized in terms of generators and relations as follows. The codescent object
CoDescpXq has objects the objects of X, while a morphism is an equivalence class of
paths rf1, . . . , fns, with fi being either a vertical or a horizontal morphism of X. The
equivalence relation on morphisms is then generated by the following:

rf1, f2s � rf2 � f1s if both f1, f2 are vertical or horizontal,

r1as � rsa if 1a is a vertical or a horizontal identity morphism in X,

rg, vs � ru, hs if there is a square α as pictured below:

a b

c d

g

u v

h

α

To give an example, let G,H be groups. We can define a double category X with one
object, vertical morphisms being elements of G, horizontal morphisms being elements of
H, such that there are no non-identity squares in X. Then CoDescpXq � G � H is the
free product of the groups G,H.

4.8. Lax morphism classifiers.

4.9. Definition. Let pT,m, iq be a 2-monad on a 2-category K and let pA, aq be a strict
T -algebra. By its resolution, denoted RespA, aq, we mean the following coherence data in
T-Algs:

T 3A T 2A TAT iA

Ta

mAmT2A

TmTA

T 2a
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4.10. Theorem. Assume the 2-category T-Algs admits lax codescent objects of resolu-
tions of strict algebras. Then the inclusion 2-functor T-Algs Ñ T-Algl admits a left
2-adjoint:

T-Algs T-Algl

p�q1

%

This left adjoint is given by the formula:

pA, aq1 � CoDescpRespA, aqq.

Proof. Lemma 3.2 in [Lack02].

Given a strict T -algebra pA, aq, the algebra pA1, a1q :� pA, aq1 has the property of being
a lax morphism classifier : there is a lax T -morphism pA, aqù pA1, a1q (the unit of the
above adjunction) such that for any lax morphism pF, F q : pA, aqù pB, bq there exists
a unique strict T -morphism G : pA1, a1q Ñ pB, bq such that the following commutes:

A B

A1

@pF,F q

D!G

4.11. Definition. A monad pT 1,m1, i1q on a category E is said to be cartesian if T 1

preserves pullbacks and the naturality squares for m1, i1 are pullbacks.

If T 1 : E Ñ E is a cartesian monad on a category E with pullbacks, it preserves internal
categories in E and thus induces a cartesian 2-monad CatpT 1q on the 2-category CatpEq
of internal categories and functors10.

4.12. Assumption. Let pT,m, iq be a 2-monad on Cat of form CatpT 1q for a cartesian
monad T 1 on Set. Assume that T preserves codescent objects.

Denote by U : T-Algs Ñ Cat the forgetful 2-functor.

4.13. Proposition. URespA, aq is a double category. Its transpose, URespA, aqT , is
codomain-discrete.

Proof. The fact that URespA, aq is a category internal in Cat follows directly from the
fact that T is a cartesian 2-monad. Denote now by s, t : A1 Ñ A0 the domain, codomain

10See for example [Bourke10, Remark 3.16].
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maps of the category A. Regarding URespA, aq as a diagram in Set:

T 2A1 TA1

T 2A0 TA0

Ta1

TtT 2s

Ta0

T 2t Ts

mA1

mA0

The domain functor dT0 of URespA, aqT has object and morphism components these maps:

pdT0 q0 � Tt

pdT0 q1 � T 2t.

To show that it is a discrete opfibration is to show that the square below is a pullback
in Set (recall the alternative definition of a discrete opfibration from Example 2.8 for the
case of E � Set):

T 2A1 TA1

T 2A0 TA0

T 2t T t

mA1

mA0

This follows from the fact that m is a cartesian natural transformation.

4.14. Notation. Given a strict T -algebra pA, aq we denote:

CnrpA, aq :� CnrpURespA, aqT q.

Since by our assumption T preserves codescent objects, we can lift the codescent object
CnrpAq from Cat to T-Algs. Combining Proposition 4.13 with Proposition 4.5, we obtain:

4.15. Theorem. Let pT,m, iq be a 2-monad on Cat of form CatpT 1q for a cartesian
monad T 1 on Set. Assume that T preserves reflexive codescent objects. Then the lax
morphism classifier for a T -algebra pA, aq is given by the category of corners associated
to the transpose of the resolution of this T -algebra. In other words:

pA, aq1 � CnrpA, aq.

4.16. Examples.
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4.17. Example. Let pT,m, iq be the free strict monoidal category 2-monad on Cat. It
is of form CatpT 1q for the free monoid monad on Set, and it preserves reflexive codescent
objects since it preserves sifted colimits (see [Weber15, Example 4.3.7]).

Let pA,bq be a strict monoidal category. The double category RespA,bq has:

� Objects the tuples of objects pa1, . . . , anq P ob TA,

� vertical morphisms being tuples of morphisms pf1, . . . , fnq P mor TA,

� horizontal morphisms being partial evaluations11, that is, objects of T 2A whose
codomain is given by Tb and whose domain is given by the multiplication mA. For
instance:

pa1, a2, a3, a4q pa1, a2 b a3, I, a4q
ppa1q,pa2,a3q,pq,pa4qq

� squares being morphisms of T 2A.

The fact that the transpose of this double category is codomain-discrete amounts to
having a unique filler for every bottom-left corner in RespA,bq, for example consider the
following:

pa1, a2, a3, a4q

pb1, b2, b3, b4q pb1, b2 b b3, I, b4q

pf1,f2,f3,f4q

ppb1q,pb2,b3q,pq,pb4qq

The unique filler is given by square ppf1q, pf2, f3q, pq, pf4qq P mor T 2A.
By Theorem 4.15, the lax morphism classifier is the category CnrpA,bq described

as follows. The objects are tuples of objects from A, while a morphism is a tuple
pe, pf1, . . . , fnqq of a partial evaluation followed by a tuple of morphisms. For instance
here is an example of a morphism pa1, a2, a3q Ñ pb1, b2, b3, b4q:

pa1, a2, a3q pa1 b a2, I, a3, Iq

pb1, b2, b3, b4q

ppa1,a2q,pq,pa3q,pqq

pf1,f2,f3,f4q

The strict monoidal structure is given by concatenation of lists. By Lemma 3.4, this
category admits a strict factorization system given by partial evaluations followed by
tuples of morphisms of A.

The following is the extension of the previous example in the sense that we obtain it
if we put X � �:

11See for instance [FP20].
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4.18. Example. Fix a set X. Consider a cartesian monad T on SetX�X (the category
of graphs with the set of objects being X) given by paths:

pTCqA,B � PathCpA,Bq � tpf1, . . . , fmq|m P N, codpfiq � dompfi�1q@i   mu

Consider its extension CatpT q (that we again denote by T ) to CatpSetX�Xq � CatX�X ,
the 2-category of Cat-graphs whose set of objects is X. A strict T -algebra C is a Cat-graph
equipped with a composition functor for each tuple pA,Bq P X �X:

PathCpA,Bq Ñ CpA,Bq.

It is easily verified that such C is precisely a small 2-category with the set of objects being
X. Also, lax T -algebra morphisms are identity-on-objects lax functors.

Any 2-category C (regarded as a T -algebra) gives rise to its resolution URespCq, which
is a diagram in CatX�X . Denote its codescent object by C 1 – this is a Cat-graph with the
set of objects being X that moreover has the structure of a 2-category.

As colimits in CatX�X are computed pointwise, C 1px, yq is given by the codescent object
of RespCqpx, yq. Because the 2-monad multiplication m : T 2 ñ T is a pointwise discrete
opfibration, each RespCqpx, yq is a codomain-discrete double category and so C 1px, yq can
be computed using the category of corners construction as follows.

Objects in C 1px, yq are the objects of TCpx, yq, that is, paths of morphisms in the 2-
category C. Morphisms are corners whose first component is given by a partial evaluation
2-cell (an object of T 2Cpx, yq) and the second component is given by a tuple of 2-cells in
C (a morphism in TCpx, yq). For instance this morphism pf1, f2, f3, f4q Ñ pg1, g2, g3q:

a1 a2 a3 a4 a5

a3 a4

f2�f1

g1 g3

f1 f2 f4f3

g2

f4�f3α1

α3

α2

ppf1,f2q,pf3,f4q,pqq

The 2-category structure of the lax functor classifier C 1 is given by concatenation of paths
and tuples of 2-cells. By Lemma 3.4, each hom category of C 1 admits a strict factorization
system given by partial evaluation 2-cells and tuples of 2-cells on C. Moreover, these strict
factorization systems are stable under post- and pre-composition with 1-cells of C 1.

This description of the lax functor classifier 2-category has been sketched in [John-
stone02, Page 246].

4.19. Remark. [Colax morphism classifiers] We can apply dualities to compute colax
morphism classifier for a 2-monad T on Cat of form CatpT 1q as follows. First note that
the opposite category 2-functor p�qop : Catco Ñ Cat induces a 2-isomorphism

T-Algc � T co-Algl,

pA, aq ÞÑ pAop, aopq.
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This implies that a T -algebra pB, bq is the colax T -morphism classifier for pA, aq if and
only if pBop, bopq is the lax T co-morphism classifier for pAop, aopq.

Now let pA, aq be a strict T -algebra. The lax-T co-morphism classifier for pAop, aopq is
a T co-algebra CnrpAopq, and thus the colax morphism classifier is given by the formula:

pA, aq1 � CnrpAopqop.

For instance, the colax monoidal functor classifier for a strict monoidal category pA,bq
again has tuples of objects in A as object, and a morphism pa1, a2, a3, a4q Ñ
Ñ pb1, b2, b3, b4q is a corner (or rather, a cospan) like this:

pa1, a2, a3, a4q

pb1, b2 b b3, I, b4q pb1, b2, b3, b4q

pf1,f2,f3,f4q

ppb1q,pb2,b3q,pq,pb4qq

4.20. Example. While this example does not follow from the results as stated in this
paper, it follows from their internal analogue in CatpEq, where E � Graph. Let fc :
Graph Ñ Graph be the free category on a graph monad. It is a cartesian monad, it
thus admits an extension to a 2-monad T :� Catpfcq on the 2-category CatpGraphq. This
2-category consists of structures like double categories except we can not compose squares
or horizontal morphisms horizontally, there is only vertical composition.

A strict T -algebra is a double category. It can also be seen that a colax T -algebra
morphism is a colax double functor. Given a T -algebra X, the construction CnrpXq of
the colax double functor classifier agrees with the construction Path X of [DPP06, The
construction 1.1, Proposition 1.19]. The fact that it admits an internal strict factorization
system was also proven in [DPP06, 1.5 Proposition].

The internal versions of the results in this paper as well as the generalization of the
category of corners to lax T -algebras will appear in the author’s upcoming Ph.D. thesis.
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Kotlářská 267/2, 611 37 Brno, Czech republic

Email: miloslav.stepan@mail.muni.cz

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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