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STRING DIAGRAMS FOR 4-CATEGORIES AND FIBRATIONS OF
MAPPING 4-GROUPOIDS

MANUEL ARAÚJO

Abstract. We introduce a string diagram calculus for strict 4-categories and use
it to prove that given a cofinite inclusion of 4-categorical presentations, the induced
restriction functor on mapping spaces to a fixed target strict 4-category is a fibration of
strict 4-groupoids.

1. Introduction

In this paper we introduce a string diagram calculus for strict 4-categories and we use it to
prove that given an inclusion of 4-categorical presentations P ↪→ Q, where Q is obtained
from P by adding a finite number of generating cells, the induced restriction functor on
mapping spaces to a fixed target strict 4-category is a fibration of strict 4-groupoids.
The string diagram calculus for strict 4-categories is based on the string diagram calculus
for n-sesquicategories introduced in [Ara24] and the homotopy generators introduced in
[BV16]. This string diagram calculus and the result on fibrations are essential ingredients
in [Ara22a] and [Ara22b] on coherence for adjunctions in 3 and 4-categories. All results
are stated in the context of strict 4-categories, but the proofs will work without change in
the context of a theory of semistrict 4-categories admitting an appropriate string diagram
calculus, which is currently being developed.

1.1. Results. Now we state the main result in this paper, for which we need to intro-
duce some terminology. By a strict n-groupoid we mean a strict n-category all of whose
morphisms are weakly invertible. A functor between strict n-groupoids is a fibration if
one can lift any k-morphism along it, extending a given lift of its source. We use the word
presentation to mean a 5-computad for the monad T4 on 4-globular sets whose algebras
are strict 4-categories. Given a presentation P we denote by F (P) the 4-category gener-
ated by P . Given a 4-category C, we denote by Map(P , C) the 4-groupoid whose objects
are funtors F (P) → C and whose k-morphisms (k = 1, · · · , 4) are the weakly invertible
k-transfors (also known as natural transformations, modifications and perturbations, for
k = 1, 2, 3).
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1.2. Theorem. Let C be a strict 4-category, P a presentation and Q another presenta-
tion, obtained by adding a finite number of cells to P. Then the restriction map

Map(Q, C) → Map(P , C)

is a fibration of strict 4-groupoids.

1.3. Related work. The string diagram calculus for strict 4-categories builds on the
string diagram calculus for n-sesquicategories introduced in [Ara22c] and [Ara24] and uses
the homotopy generators introduced in [BV16]. One can therefore implement all the
string diagram calculations in this paper in the proof assistant Globular ([BKV16]).

In [Ara22a] and [Ara22b], we use the results from the present paper to prove coher-
ence results for adjunctions in strict 3 and 4-categories. This can then be used to give
a simplified proof of the result in [Ara17] on coherence for 3-dualizable objects in strict
symmetric monoidal 3-categories. This is related via the cobordism hypothesis to the
ultimate goal of this project, which to establish a finite presentation for the symmetric
monoidal 3-category of framed cobordisms of dimension ≤ 3.

Another approach to string diagrams for higher categories is the theory of associative
n-categories ([Dor18]), developed into the theory of manifold diagrams in [DD22]. The
combinatorial counterpart of this theory is equivalent to the zigzags introduced in [RV19],
which forms the basis for the proof assistant homotopy.io ([hom]).

In [LMW10] the folk model strucuture on the category of strict n-categories is
introduced. Given n-groupoids E and B, it is natural to ask whether a map f : E → B
is a fibration in the sense of the present paper if and only if it is a folk fibration. If one
could show the two notions of fibration agree, then it would be possible to give a short
proof of Theorem 1.2 for all n, using results of [AL20]. See Remark 6.0.3 for more on this.
In the present paper, we give an explicit string diagram proof of Theorem 1.2, which has
the advantage that it will also apply in any model of semistrict 4-categories admitting a
string diagram calculus.

Note that in [BG89] the authors construct a model structure on the category of strict
n-groupoids. However, they define a strict n-groupoid as a strict n-category where every
k-morphism has a strict inverse, rather than a weak one. See also [AM11].

1.4. Future work. We are working on a theory of semistrict 4-categories based on
string diagrams. Once this is in place, the contents of Sections 4, 5 and 6 will extend to
that setting.

2. Background

We give a brief overview of the string diagram calculus for n-sesquicategories, introduced
in [Ara22c] and [Ara24]. Then we establish some basic terminology about equivalences in
and between strict n-categories.
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2.1. Globular pasting diagrams and strict n-categories. Let G be the globe
category, with set of objects N and morphisms generated by s, t : k → k + 1 satisfying
the usual globularity relations ts = ss and tt = st. Let gSet := Fun(Gop, Set) the
category of globular sets. Let Gn be the full subcategory of G on objects {0, · · · , n}
and gSetn := Fun(Gop

n , Set) the category of n-globular sets.
Recall (e.g. [Lei04, Chapter 8]) that one can define a strict n-category as an algebra

over a monad Tn : gSetn → gSetn. We now briefly recall the construction of this monad.

2.1.1. Notation. Denote by ⟨n⟩ the totally ordered set {1 ≤ · · · ≤ n} for n ∈ N.

2.1.2. Definition. A globular k-pasting diagram π is a diagram

⟨ℓk⟩ // · · · //⟨ℓ1⟩ //⟨1⟩

of totally ordered sets and order preserving maps. Denote by pd(k) the set of globular
k-pasting diagrams. The source s(π) and the target t(π) are both equal to the globular
(k − 1)-pasting diagram obtained by truncation. Thus pd becomes a globular set.

Diagrams of totally ordered sets as above can be pictured as trees, with height k and
ℓi nodes at level i. They can also be pictured as globular pasting diagrams. We explain
this in a couple of examples.

A globular 1-pasting diagram is just a natural number. The pasting diagram repre-
sentation of m is a string of m composable arrows

• // • // · · · // • .

The tree of height 2 on the left corresponds to the globular 2-pasting diagram on the
right.

• ����
GG

��

//• //• !!
<<�� •

To each k-pasting diagram π, it is possible to associate a k-globular set π̂ ∈ gSetk
whose cells are the the ones sugested by its pictorial representation. If we take π to be
the 2-dimensional example above, then π̂ has four 0-cells, six 1-cells and three 2-cells, and
the source and target maps can be easily read from the picture. A precise definition can
be found in [Lei04].

2.1.3. Definition. Given a globular k-pasting diagram π and a k-globular set X, we
define an X-labelling of π to be a map of k-globular sets π̂ → X.

This corresponds to the idea of labelling each dot and arrow in the graphical depic-
tion of the pasting diagram, with each label being a cell in X of the correct dimension,
satisfying source and target compatibility.
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Consider the functor

Tn : gSetn → gSetn

defined by
Tn(X)k =

∐
π∈pd(k)

gSetn(π̂, X).

This functor can be given a monad structure, by interpreting a pasting diagram labelled
by pasting diagrams as a pasting diagram.

2.1.4. Definition. An n-category is an algebra over the monad Tn. A functor between
n-categories is a morphism of algebras over Tn.

This agrees with the standard definitions of strict n-categories and strict functors
between them.

2.2. Simple string diagrams and n-sesquicategories. In [Ara22c], we defined
another monad

TDs

n : gSetn → gSetn

on n-globular sets, whose algebras we called n-sesquicategories. This is based on a
notion of simple string diagram, which plays the same role as globular pasting diagrams
in the definition of Tn.

2.2.1. Definition. A simple k-string diagram π is a diagram

⟨ℓk⟩ //· · · //⟨ℓ1⟩ //⟨1⟩

of totally ordered sets and maps which are not required to be order preserving. Denote
by Ds(k) the set of simple k-string diagrams. The source s(π) and the target t(π) are
both equal to the simple (k − 1)-string diagram obtained by truncation. Thus Ds becomes
a globular set.

Diagrams of totally ordered sets as above can be pictured as trees with crossings, with
height k and ℓi nodes at level i. They can also be pictured as simple string diagrams, as
we now explain. We always read k-string diagrams from left to right when k is odd and
from top to bottom when k is even.

A simple 1-string diagram is just a natural number. The string diagram representation
of m consists of m dots on a line, which we interpret at m composable morphisms. For
example, for m = 2 we have

.

The tree with crossings on the left corresponds to the simple 2-string diagram on the
right.
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We interpret this diagram as a vertical composition of three 2-morphisms, each of which
consists of a whiskering of a 2-morphism with two 1-morphisms.

The tree with crossings on the left corresponds to the simple 3-string diagram on the
right.

The tree with crossings on the left corresponds to the simple 4-string diagram on the
right.

2.2.2. Definition. We define a map of globular sets π : Ds → pd by “grabbing the leaves
and undoing the crossings”. See [Ara22c] for a precise definition.

2.2.3. Example. The map π on an example simple 2-string diagram.

7→

7→ • ����
GG

��

//• //• !!
<<�� •

2.2.4. Example. We give some more examples of simple string diagrams and their asso-
ciated globular pasting diagrams.
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7→ • • •

7→ • • •

7→ • • •

7→ • • •

7→ • •

2.2.5. Definition. Given a simple k-string diagram d and a k-globular set X, we define
an X-labelling of d to be an X-labelling of π(d), i.e. a map π̂(d) → X.

2.2.6. Definition. We define TDs

n : gSetn → gSetn by

TDs

n (X)(k) =
∐

d∈Ds(k)

gSetn(π̂(d), X).

We equip this with the structure of a monad by interpreting a simple string diagram
labelled by simple string diagrams as a simple string diagram (see [Ara22c]). An n-
sesquicategory is a TDs

n -algebra. A functor of n-sesquicategories is a morphism of
TDs

n -algebras.

The map π : Ds → pd now induces a map of monads

π : TDs

n → Tn.

In [Ara22c] we gave a presentation of the monad TDs

n by generators and relations.
Generators are of the form ◦i,j and ui, for i, k = 1, · · · , n. The generators ◦i,j induce
binary operations called composition (also called whiskering, if i ̸= j). The gener-
ators ui induce unary operations which create the identity morphisms. The relations
essentially express associativity and unitality of composition. We can therefore say
that an n-sesquicategory is an n-globular set equipped with strictly associative and unital
composition operations, which are however not required to satisfy the usual Godement
interchange relations which hold in strict n-categories.

2.2.7. Remark. In order to obtain a theory of semistrict n-categories, one must enlarge
the monad to include cells implementing coherent versions of these interchange relations.
This is work in progress.
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2.2.8. Example. Here are all generators ◦i,j and ui for i, j ≤ 4, as simple string diagrams.

◦1,1 = ◦1,2 = ◦2,1 = ◦2,2 = ◦1,3 = ◦3,1 =

◦2,3 = ◦3,2 = ◦3,3 = ◦1,4 = ◦4,1 =

◦2,4 = ◦4,2 = ◦3,4 = ◦4,3 = ◦4,4 =

u1 = u2 = u3 = u4 =

Finally, in [Ara22c] we also give an inductive description of n-sesquicategories sim-
ilar to the usual inductive definition of strict n-category. We won’t need it in the present
paper.

2.3. Computads and string diagrams for n-sesquicategories. Both Tn and TDs

n

are finitary monads, so they admit a theory of computads. This is explained in detail in
[SP09][Section 2.7], so we give only a brief summary here. Given a a monad T on gSetn
one denotes by AlgT its category of algebras. If T is finitary one can inductively define
categories CompT

k whose objects are the k-computads with respect to T , for 0 ≤ k ≤ n+1,
together with adjunctions

Fk : CompT
k AlgT : Vk

⊣ .

A k-computad C consists of sets Cm of generating m-cells for each 0 ≤ m ≤ k, together
with source and target maps s, t : Cm → Fm−1(C)m−1. We refer to Fk(C) as the T -algebra
presented by C. It is defined from Fk−1(C) by a certain pushout in T -algebras.

When T = Tn and k ≤ n, the morphisms in the strict n-category Fk(C) presented
by C are the n-categorical composites of cells in C. We obtain Fn+1(C) from Fn(C)
by imposing on n-morphisms the equivalence relation generated by s(x) ∼ t(x) for each
x ∈ Cn+1.

2.3.1. Definition. A n-categorical presentation is an (n+ 1)-computad for Tn.
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2.3.2. Example. Let’s define a 2-computad C having four 0-cells, which we call X, Y, Z
and W , five 1-cells, f, g : X → Z, a : X → Y , b : Z → W and c : Y → W and two 2-cells,
namely α : f → g and β : b ◦ g → c ◦ a. Then the following composite is a 2-morphism in
F2(C).

X Y

Z W

a

f c
β

b

α : b ◦ f → c ◦ a

The above example shows how computads allow us to make sense of composing pasting
diagrams which are more complicated than the globular pasting diagrams appearing in the
definition of strict n-categories. In [Ara24] we apply the same idea to n-sesquicategories
and string diagrams. We now give a brief overview.

2.3.3. Notation. We denote by 1 the terminal (n+ 1)-computad for TDs

n .

2.3.4. Definition. Given an n-computad C for TDs

n , a C-labelled k-string diagram
is a k-morphism in Fn(C). An unlabelled k-string diagram is a k-morphism in Fn(1).
The shape of a C-labelled string diagram is its image under the map Fn(C) → Fn(1). A
cell shape is a cell of 1.

2.3.5. Remark. Given an (n+1)-computad for TDs

n , the k-morphisms in Fn+1(C) are the
C-labelled k-string diagrams, for k ≤ n−1. The n-morphisms in Fn+1(C) are equivalence
classes of C-labelled n-string diagrams, where the equivalence relation is generated by
(n+ 1)-cells in C.

Using the presentation of TDs

n by generators and relations, one can describe C-labelled
k-string diagrams as equivalence classes of trees whose internal vertices are labelled by the
generating operations of TDs

n and whose leaves are labelled by cells in C. The equivalence
relation on trees is generated by the relations in the presentation of TDs

n (see [Ara24] for
details).

In [Ara24] we introduced a notion of normal form for such labelled trees and we
proved that each equivalence class contains a unique tree in normal form. This allows us
to construct, for each unlabelled k-string diagram d ∈ Fn(1)k, a k-computad d̂ together
with a natural bijection between C-labelled k-string diagrams of shape d and maps d̂ → C,
for any computad C.

2.3.6. Remark. This amounts to saying that the functor CompTDs
n

n → Set sending an
n-computad C to the set of C-labelled k-string diagrams Fn(C)k is familially repre-
sentable in the sense of [CJ95], with representing family (d̂)d∈Fn(1)k .

2.3.7. Remark. This justifies the name C-labelled string diagrams for morphisms in
Fn(C). Such a morphism consists exactly of an unlabelled string diagram d (its shape)
together with a C-labelling (the corresponding map d̂ → C).
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2.3.8. Remark. From this it follows that Comp
TDs
n

n+1 is equivalent to the category of
presheaves on a small category whose objects are cell shapes and where a morphism
c1 → c2 is given by a map of computads ĉ1 → ĉ2 (see [Ara24]).

2.3.9. Remark. Note that this famously fails for strict n-categories (see [MZ08],[Che13]).

2.3.10. Notation. Given a C-labelling λ : d̂ → C of some unlabelled diagram d, we
denote by d[λ] the corresponding C-labelled diagram.

Another important consequence of the existence of normal forms is that they make it
possible to construct graphical representations of unlabelled k-string diagrams.
We construct these inductively from the corresponding tree in normal form. We already
have a way of representing the generators of TDs

n which label the internal nodes. The
k-cells which label the leaves can be represented by drawing the source and target (k−1)-
diagrams and connecting the dots representing (k − 1)-cells to a common node in the
middle, representing the k-cell. Then one composes pictures according to the structure of
the tree, going from the leaves to the root (see [Ara24] for more details).

2.3.11. Example. We give some examples of cell shapes and unlabelled string diagrams.
Here is a 2-cell shape, with its source and target 1-diagrams.

: →

Here is a tree in normal form, then the same tree where we replace each generator by
the corresponding picture and finally the picture of the diagram itself.

◦2,2

◦2,1

::

◦1,2

dd

>> dd :: ``
= = .

Here is a 3-cell with its source and target 2-diagrams.

: →

Here is a 4-cell with its source and target 3-diagrams.

: →

The map of monads π : TDs

n → Tn induces functors
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π∗ : AlgTn
→ AlgTDs

n
and π∗ : Comp

TDs
n

k → CompTn
k .

The computads C and π∗(C) have the same sets of generating cells in each dimension.
Given a k-computad C for TDs

n , we have a map of TDs

n -algebras Fk(C) → π∗Fk(π∗(C)).

2.3.12. Notation. Given a k-computad C for TDs

n , we denote the map above by

πC : Fk(C) → π∗Fk(π∗(C)).

2.3.13. Example. Here are the pasting diagrams corresponding to the images under π1
of some of the string diagrams above.

7→

•

• •

•

7→

•

• •

• •

•

2.4. Equivalences. In a strict n-category, we say that a k-morphism f : x → y is an
isomorphism if there exists another k-morphism f : y → x such that f ◦ g = idy and
g ◦ f = idx. We also say that f is invertible and we call g its inverse (one can show
that it is unique). However, we are more interested in a weaker version of this, known as
equivalence.

2.4.1. Definition. Let C be a strict n-category. An n-morphism f : x → y in C is an
equivalence if it is an isomorphism. When k < n, a k-morphism f : x → y in C is an
equivalence when there is another k-morphism g : y → x and equivalences f ◦ g → idy

and g ◦ f → idx in C. We say that x is equivalent to y, and write x ≃ y, if there is an
equivalence x → y. When f : x → y is an equivalence, we also call it weakly invertible
and any morphism g : y → x such that f ◦g ≃ idy and g◦f ≃ idx is called a weak inverse
to f . When f is a k-morphism and an equivalence we also call it a k-equivalence.

2.4.2. Definition. An n-groupoid is an n-category all of whose morphisms are equiv-
alences.

Finally, we use the following notion of weak equivalence for functors, which coincides
with the one in the folk model structure of [LMW10].
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2.4.3. Definition. A map of sets f : X → Y is a weak equivalence if it is a bijection.
Let n ≥ 1. A functor F : C → D between strict n-categories is called essentially

surjective if for every object d ∈ D there exists an object c ∈ C and an equivalence
F (c) → d in D. A functor F : C → D between strict n-categories is called a weak
equivalence if it is essentially surjective and for all objects c1, c2 ∈ C the induced functor
C(c1, c2) → D(F (c1), F (c2)) is a weak equivalence of (n− 1)-categories.

3. String diagrams for strict 4-categories

Now we introduce the string diagram notation for strict 4-categories. This will be based
on string diagrams for 4-sesquicategories and the homotopy generators introduced in
[BV16]. Essentially these homotopy generators are certain distinguished generating cells
in a computad which implement the interchange laws which hold in strict 4-categories but
not in 4-sesquicategories.

3.1. Homotopy generators. Now we want to extend our string diagram notation
by introducing cells that connect C-labelled string diagrams which have the same image
under πC . In [BV16] the authors introduce the concept of a 4-signature with homotopy
generators with this same purpose in mind. The notion of a 4-signature used there
corresponds exactly to what we refer to here as a 5-computad for the monad TDs

4 . A
4-signature with homotopy generators, in the sense of [BV16], is then a 5-computad C
for the monad TDs

4 which contains some distinguished cells, called homotopy generators,
which the authors describe in detail. The source and target C-labelled string diagrams of
each homotopy generator have the same image under πC .

3.1.1. Notation. In this section, a computad will always mean a 5-computad (for TDs

4

or T4).

3.1.2. Remark. The question of whether any two C-labelled string diagrams whose im-
ages under πC agree can be connected by a sequence of homotopy generators is not
addressed in [BV16]. Proving this would show that the given list of homotopy generators
is exhaustive. In an upcoming paper, we address this in the case of 3-categories. We are
also working on extending this to 4-categories. This is an important step in developing a
theory of semistrict 4-categories, where composition is strictly associative and unital,
but the interchange laws hold only up to coherent equivalence. For the purposes of the
present paper, however, this issue is not essential. This is because we will be using the
string diagram calculus to prove statements about strict 4-categories, so all we need is a
list of homotopy generators which is enough for our computations.

3.1.3. Remark. Here homotopy generators are somewhat unnaturally added as extra
cells to computads. In the theory of semistrict 4-categories mentioned above, the ho-
motopy generators will come into the definition of a monad T ss

4 whose algebras will be
semistrict 4-categories.
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We now present the definition of signature with homotopy generators in our language.
We start by describing the unlabelled homotopy generators. These are an infinite col-
lection of unlabelled cells, which come in finitely many types. Each unlabelled homotopy
generator H has the property that π1(s(H)) = π1(t(H)).

We now describe the generator types from [BV16] in our string diagram notation.
For each generator of a certain type, there is another one where the source and target
are switched. In the case of 4-dimensional generators, there are also relations (i.e. 5-
cells) making the pair into an isomorphism. In the case of 3-dimensional generators there
are 4-cells and relations extending the pair into an adjoint equivalence. For each of the
generator types below there are also other versions, which correspond to switching the
relative positions of the various components of the source and target. We omit them for
conciseness. For more details, see [BV16].

The generators of type I2 are the 3-cells

...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

...
: → .

The generators of type I3 are the 4-cells

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

:

...

...

...
...

...

...

...

...

...

...

...

...

...
...

...

→

...

...
...

...

...

...

...
...

...

...
...

...
...

...

...

.

The generators of type I4 are the relations between 4-diagrams
...

...

...

...

...

...

...

...

...

...

...

...

... ... ...

... ... ...

... ... ...

... ... ...

=

...

...

...

...

...

...

...

...

...

...

...

...

... ... ...

... ... ...

... ... ...

... ... ...

.

We call type Ik homotopy generators interchangers.
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The generators of type II3 are the 4-cells
...

...

...

...

...

... ...

... ...

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

...

...

...... ...

... ... ... ...

...

...

...

...

...

... ...

......

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

...

...

...

... ... ......
...

...

...

...

: ...
...

...

...

...

...

...

............

...

...

...

...

...

......... ...

...

...

...

...

...

.........

......

... ..................
→ ...

...

...

...

...

...

...

......... ...

...

...

...

...

...

............

...

...

...

...

...

.........

......

............ .........

The generators of type II4 are the relations between 4-diagrams

...

...

...

.........

... ...

...

...

... ...

...

...

...
... ... ...

......

...

...

......

...

...

...

...
... ... ...

......

...

...

......

...

...

...

=

...

...

...

.........

... ...

...

...

... ...

...

...

...

...

.........

... ...

...

...

... ...

...

...

...

...
... ... ...

......

...

...

......

...

...

...

...

...

.

We call type IIk homotopy generators pull-through cells.
The homotopy generators of type III4 are the relations between 4-diagrams

...

...

...

...

...

...

...

...

... ...

... ...

...

...

...

...

...

...

...

...

...

... ...
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The homotopy generators of type IV4 are the relations between 4-diagrams
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Here the 3-diagrams consist only of type I2 homotopy generators. The 4-diagrams are
two different type II3 homotopy generators, each applying pull through to an interchanger
(highlighted in red).
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The homotopy generators of type V4 are the relations between 4-diagrams
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The homotopy generators of type VI are the relations between 4-diagrams
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3.1.4. Remark. For each homotopy generator H, we have π1(s(H)) = π1(t(H)) and also
ŝ(H) = t̂(H).

3.1.5. Definition. A signature with homotopy generators is a computad C for TDs

4

such that, for each unlabelled homotopy generator H of dimension k and each C-labelling
λ : ŝ(H) = t̂(H) → C there is a distingished (k + 1)-cell H[λ] : s(H)[λ] → t(H)[λ] in C.

3.2. String diagrams in strict 4-categories. We now explain how we will use
string diagrams over signatures with homotopy generators to do calculations in strict
4-categories.

Given a signature Σ ∈ Comp
TDs

4
5 with homotopy generators, define π̄∗(Σ) ∈ CompT4

5

to be the computad for T4 obtained from π∗(Σ) by discarding the cells corresponding to
the homotopy generators and replacing these cells by identities, whenever they appear in
a source or target diagram for another cell.

Now let C be a strict 4-category and consider a functor F5(π̄∗(Σ)) → C. Such a functor
consists of a choice of k-morphism in C for each k-cell in Σ which is not a homotopy gener-
ator, such that the source and target of each chosen morphism is a prescribed composite of
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chosen morphisms in lower dimension and the 4-morphisms satisfy relations correspond-
ing to the 5-cells in Σ. We can extend this map to a map F5(π∗(Σ)) → C by sending all
homotopy generators to identity morphisms in C.

We pull back to a map π∗F5(π∗(Σ)) → π∗C and compose with F5(Σ) → π∗F5(π∗(Σ))
to get a map of TDs

4 -algebras F5(Σ) → π∗C, so any string diagram in the signature Σ
determines a morphism in C and any identity between 4d string diagrams in the signature
Σ implies an identity between the corresponding 4-morphisms in C. This is what allows us
to use string diagrams with labels in a strict 4-category to describe composite morphisms
in this 4-category.

3.2.1. Remark. The string diagram calculus we are describing would be most naturally
interpreted in some kind of semistrict 4-category. The procedure described here collapses
all the homotopies and so interprets this in a strict 4-category.

4. Functor 4-categories

Given n-categories C and D, one can define an n-category Fun(C,D), whose k-morphisms
are called k-transfors. A 0-transfor is a functor, a 1-transfor is a natural transforma-
tion, a 2-transfor is also called a modification and a 3-transfor is sometimes known as a
perturbation (see the nLab page "transfor" for a discussion of this terminology).

Using the left and right internal Hom from the monoidal biclosed structure on n-
categories associated to the Crans-Gray tensor product ([Cra95]) one can define n-categories
Funlax(C,D) and Funoplax(C,D) for strict n-categories C and D. One can check that a k-
morphism in Funoplax(C,D) is a rule that associates to each ℓ-morphism in C a map
θ(k);(ℓ) → D, satisfying certain relations of compatibility with composition. Here θ(k);(ℓ)

is the (k + ℓ)-computad explictly constructed in [JFS17]. It can also be described as the
Crans-Gray tensor product θ(k) ⊗ θ(ℓ), where θ(k) denotes the computad generated by a
single k-cell. Similarly, a k-morphism in Funlax(C,D) is a rule that associates to each
ℓ-morphism in C a map θ(ℓ);(k) → D.

One can then define the n-category Fun(C,D) as the subcategory of Funoplax(C,D) con-
sisting of those k-morphisms which associate to an ℓ-morphism in C a (k+ ℓ)-equivalence
in D, for k, ℓ ≥ 1. Below we give an explicit description of Fun(C,D) in terms of string
diagrams, when C and D are 4-categories.

4.0.1. Remark. Whereas in the previous section we were using dashed lines to denote
interchangers in lower dimension, here these are omitted from the notation, for simplicity.
We will instead use dashed lines as well as colours to denote labellings of the diagrams.

4.1. Natural transformations. Given functors F,G : C → D, a natural transfor-
mation, or 1-transfor, α : F → G consists of the following data. We use red and blue to
denote the images of objects and morphisms under F and G, respectively.

0. For each object Y ∈ C a 1-morphism αY : F (Y ) → G(Y ).

Y = 7→ αY =
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1. For each 1-morphism g : X → Y in C an invertible 2-morphism αg in D.

g = 7→ αg = : →

2. For each 2-morphism ζ : f → g in C an invertible 3-morphism αζ in D.

ζ = 7→ αζ = : →

3. For each 3-morphism t : η → ζ in C an invertible 4-morphism αt in D.

t = 7→ αt = : →

4. For each 4-morphism W : s → t in C a relation αW in D.

W = 7→ αW : =

This data is subject to relations equating the values of α on composite morphisms
with the corresponding composites of values of α given by stacking diagrams.

4.2. Modifications. Given natural transformations α, β : F → G, a modification, or
2-transfor, m : α → β consists of the following data. We use green for α and purple for β.

0. For each object Y ∈ C a 2-morphism mY : αY → βY in D.

Y = 7→ mY = : →

1. For each 1-morphism g : X → Y in C an invertible 3-morphism mg in D.
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g = 7→ mg = : →

2. For each 2-morphism ζ = : f → g in C an invertible 4-morphism mζ in D.

mζ = : →

3. For each 3-morphism t : η → ζ in C a relation mt in D.

t = 7→ mt : =

This data is subject to relations equating the values of m on composite morphisms
with the corresponding composites of values of m given by stacking diagrams.

4.3. Perturbations. Given modifications l,m : α → β, a perturbation, or 3-transfor,
A : l → m consists of the following data. We use orange for l and light blue for m.

0. For each object Y ∈ C a 3-morphism AY : lY → mY in D.

Y = 7→ AY = : →

1. For each 1-morphism g = : X → Y in C an invertible 4-morphism Ag in D.
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Ag = : →

2. For each 2-morphism ζ : f → g in C a relation Aζ in D.

ζ = 7→ Aζ : =

This data is subject to relations equating the values of A on composite morphisms
with the corresponding composites of values of A given by stacking diagrams.

4.4. 4-transfors. Given perturbations A,B : l → m, a 4-transfor Λ : A → B consists
of the following data. We use olive for A and teal for B.

0. For each object Y ∈ C a 4-morphism ΛY : AY → BY in D.

Y = 7→ ΛY = : →

1. For each 1-morphism g =: X → Y in C a relation Λg in D.

g = 7→ Λg : =
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4.4.1. Definition. Let C,D be strict 4-categories. The functor category Fun(C,D)
is the strict 4-category whose set of k-morphisms is the set of k-transfors. Source and
target maps are already implicit in the above definitions. It is also clear how to define
composition operations by stacking diagrams, which provides the T4-monad structure on
Fun(C,D).

4.4.2. Notation. We use Map to denote the underlying 4-groupoid in Fun, whose k-
morphisms are weakly invertible k-transfors.

4.4.3. Notation. If P is a presentation, we write Map(P , C) instead of Map(F (P), C).

5. Composition with weakly invertible morphisms

The goal of this section is to give a proof of the following Proposition, which will be the
main ingredient in the proof of Theorem 1.2 on fibrations of mapping 4-groupoids.

5.0.1. Proposition. Take 1 ≤ k ≤ n ≤ 4 and let C be an n-category. Then any functor
between (n−k)-categories of k-morphisms in C given by composition with weakly invertible
morphisms of dimension ≤ k is essentially surjective. When k = n, any such functor is
a bijection.

For the rest of the section, let C be a 4-category, A,B,C objects in C and f : B → C
a weakly invertible 1-morphism in C. We write A = , B = , C = and f = .

5.1. Higher invertibility data. Since f is weakly invertible, we can pick a weak
inverse f−1, together with equivalences f−1 ◦ f ≃ idB and f ◦ f−1 ≃ idC . Now the weakly
invertible 2-morphisms witnessing these two equivalences themselves have weak inverses
and there are weakly invertible 3-morphisms between composites of these 2-morphisms
and the appropriate identity 2-morphisms and so on. In this way, simply by unraveling
the definition of a weak inverse 1-morphism in a 4-category, we obtain a collection of
k-morphisms (1 ≤ k ≤ 4) and some relations between the 4-morphisms, which we call
invertibility data for f . We write down here only those higher morphisms and relations
that we will use explicitly in the rest of the section.

1-morphisms:

f = :
//

oo : = f−1

2-morphisms:

u−1 = :
//

oo : = u

c = :
//

oo : = c−1

3-morphisms:
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:
//

oo :

:
//

oo :

4-morphisms:

:
//

oo :

:
//

oo :

relations:

= and =

5.2. Adjoint equivalences. We will need to use certain higher morphisms and re-
lations in addition to the ones mentioned above. These don’t come simply from the
definition of an equivalence in a 4-category, but from the fact that such an equivalence
can be promoted to an adjoint equivalence in h2(C).

5.2.1. Definition. An adjunction in a 2-category C consists of 1-morphisms l : B → C
and r : C → B together with 2-morphisms u : idB → r ◦ l and c : l ◦ r → idC satisfying
the snake relations. We write l ⊣ r.

5.2.2. Lemma. If f : B → C and f−1 : C → B are weakly inverse 1-morphisms in a 2-
category C, then there exist invertible 2-morphisms u : idB → f−1◦f and c : f ◦f−1 → idC

satisfying the snake relations, so that we have an adjunction f ⊣ f−1.

Proof. This is well known. There is a nice string diagram proof in the nLab article on
adjoint equivalence.
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Now returning to the context of the present section, the pair of weakly inverse 1-
morphisms (f, f−1) in the 4-category C can be promoted to an adjoint equivalence in
the homotopy 2-category h2(C), which means that we can pick the 2-morphisms u and
c in the higher invertibility data in such a way that they satisfy snake relations up to
equivalence, witnessing the adunction f ⊣ f−1. This allows us to find pairs of weakly
inverse 3-morphisms witnessing the snake relations, as well as pairs of inverse 4-morphisms
witnessing the fact that these 3-morphisms are in fact weakly inverse to each other. Of
the resulting data, we write down here only the part that we will use explicitly in the
rest of the section. Note that this data is not sufficient to specify a fully coherent adjoint
equivalence, or a biadjoint biequivalence as it is referred to in [Gur12], in the case of a
tricategory.

3-morphisms:

:
//

oo :

4-morphisms:

:
//

oo :

relation:

=

5.3. Proof of Proposition 5.0.1. We now prove a series of Lemmas which taken
together imply Proposition 5.0.1. We will use a slight extension of our string diagram
notation to allow us to specify functors between categories of morphisms. Namely, when
we draw a diagram containing a cell labelled by a blank square, this is meant to represent
a functor that takes as input a morphism of the appropriate dimension and having the
correct source and target, and outputs the result of composig the diagram with this
morphism in place of the blank square.

The proofs of the Lemmas in the rest of this section all follow the same line of reasoning,
differing only in the explicit string diagram calculations. We have included all of them for
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completeness and also because they serve as the first illustrations of the method of string
diagram calculations in this paper, but the reader can safely skip most of them.

Consider the functor f∗ : Hom(A,B) → Hom(A,C) given by composition with f ,
which we write down as follows, using the notation we just mentioned:

f∗ = : Hom( , ) → Hom( , ).

5.3.1. Lemma. The functor f∗ : Hom(A,B) → Hom(A,C) given by composition with f
is essentially surjective.

Proof. Given g : A → C we have g ≃ f∗(f
−1 ◦ g) for any choice of inverse f−1.

Now take 1-morphisms a, b : A → B in C and consider the functor f∗ : 2Hom(a, b) →
2Hom(f ◦ a, f ◦ b) given by composition with f . Using red for a, blue for b we denote this
functor by

f∗ = : 2Hom( , ) → 2Hom( , ).

5.3.2. Lemma. The functor f∗ : 2Hom(a, b) → 2Hom(f ◦ a, f ◦ b) given by composition
with f is essentially surjective.

Proof. Given a 2-morphism

: →

we need to show that it is equivalent to something in the image of f∗. Consider the
2-morphism

: → .

Applying f∗ we get

≃ ≃ .
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Now take 2-morphisms α, β : a → b in C and consider the functor f∗ : 3Hom(α, β) →
3Hom(f ◦α, f ◦β) given by composition with f along B. If we use green for α and purple
for β, we can denote f∗ by

f∗ = : 3Hom

(
,

)
→ 3Hom

(
,

)
.

5.3.3. Lemma. The functor f∗ : 3Hom(α, β) → 3Hom(f ◦ α, f ◦ β) given by composition
with f is essentially surjective.

Proof. Given a 3-morphism

: →

we need to show that it is isomorphic to something in the image of f∗.
Consider the 3-morphism

: → .

Applying f∗ we get

≃

≃

.

Finally, take 3-morphisms A,B : α → β and consider the functor f∗ : 4Hom(A,B) →
4Hom(f ◦ A, f ◦ B) given by composition with f . If we use orange for A and light blue
for B, we can denote f∗ by

f∗ = : 4Hom

(
,

)
→ 4Hom

(
,

)
.
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5.3.4. Lemma. The functor f∗ : 4Hom(A,B) → 4Hom(f ◦A, f ◦B) given by composition
with f is essentially surjective.

Proof. Given a 4-morphism f ◦ A → f ◦ B, which we denote by

: → ,

we need to show that it is in the image of f∗.
Consider the 4-morphism

: → .

Applying f∗ we get
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= =
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= = .

These four Lemmas taken together give a proof of the following Lemma.

5.3.5. Lemma. Take 1 ≤ k ≤ n ≤ 4 and let C be an n-category. Then any functor
between (n− k)-categories of k-morphisms in C given by composition with a fixed weakly
invertible 1-morphism is essentially surjective.

By replacing C with the appropriate categories of morphisms in C, we get the following
Lemma.

5.3.6. Lemma. Take 1 ≤ ℓ ≤ k ≤ n ≤ 4 and let C be an n-category. Then any functor
between (n− k)-categories of k-morphisms in C given by composition with a fixed weakly
invertible ℓ-morphism along an (ℓ− 1)-morphism is essentially surjective.

In the proofs of these Lemmas, we have actually constructed maps

kHom(f ◦ x, f ◦ y) → kHom(x, y),

where x and y are some k-morphisms. When k = n, we have showed that this map is
right inverse to f∗. But it is easy to see that it is also left inverse to f∗, which proves the
following Lemma.
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5.3.7. Lemma. Take 1 ≤ ℓ ≤ n ≤ 4 and let C be an n-category. Then any functor between
sets of n-morphisms in C given by composition with a fixed weakly invertible ℓ-morphism
along an (ℓ− 1)-morphism is a bijection.

Proof of Proposition 5.0.1. Any such functor can be obtained as a composite of
functors, each of which is given by composition with a fixed weakly invertible ℓ-morphism
(ℓ ≤ k) along an (ℓ − 1)-morphism. A composite of essentially surjective functors is
essentially surjective, and a composite of bijective maps is bijective, so we have proved
the Proposition.

6. Fibrations of mapping 4-groupoids

The goal of this section is to give a proof of the following Theorem.

6.0.1. Theorem. Let C a strict 4-category and P ,Q presentations, with Q obtained from
P by adding a finite number of cells. Then the restriction map

Map(Q, C) → Map(P , C)

is a fibration of 4-groupoids.

6.0.2. Definition. A map of n-groupoids p : E → B is called a fibration if, given any
k-morphism f : x → y in B and a lift x̃ of its source along p, there exists a lift f̃ : x̃ → ỹ
of f along p.

We can rephrase this as saying that for every commutative square of the type formed
by the solid arrows below, the dotted lift always exists, making both triangles commute.

θ(k−1) x̃ //� _

s
��

E

p

��

θ(k)
f
//

f̃
<<

B

.

This amounts to saying that p has the Right Lifting Property (RLP) with respect to
the source inclusion map s : θ(k−1) ↪→ θ(k) for each k = 1, · · · , n. Here θ(k) denotes the
n-globular set represented by k.

6.0.3. Remark. A map of n-groupoids p : E → B is a fibration in the folk model
structure on strict n-categories if every lifting problem of the form

θ(k) X

Ik+1 Y

f
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has a solution. Here Ik+1 can be thought of as a free walking coherent (k+1)-equivalence.
It is defined in [LMW10], where it is denoted by P k. Therefore, the question of whether
the two notions of fibration agree is related to the possibility of extending equivalences to
coherent equivalences. A mathoverflow question on this received no answers ([Ara]).

6.0.4. Remark. If the two notions of fibration agree, we can give a different proof of
Theorem 6.0.1 for all n, which we now sketch. In [AL20] it is shown that the category
of strict n-categories equipped with the Crans-Gray tensor product and the folk model
structure is a biclosed monoidal model category. This implies that the internal Hom func-
tors Funlax(−,D) and Funoplax(−,D) send cofibrations to fibrations. From [LMW10] one
can deduce that an inclusion of presentations induces a cofibration between the presented
n-categories. Therefore one can deduce that the restriction map on (op)lax functor cate-
gories is a folk fibration, from which it follows that the map of underlying n-groupoids is
also a folk fibration. Since Map(C,D) is the underlying n-groupoid of Funoplax(C,D), the
Theorem would then follow.

However, once a theory of semistrict 4-categories adpated to our string diagram cal-
culus is in place, the proof of Theorem 6.0.1 in the present paper will immeditely apply
in that setting, which is not the case for the proof sketched above.

In the rest of this section we prove Theorem 6.0.1, splitting the proof into the various
cases corresponding to the dimensions of the cells added to P and the morphism to be
lifted. We will repeatedly use the following colour code for distinguishing k-transfors in a
mapping groupoid, which we already used in Section 4: functors F and G are denoted in
red and blue; natural transformations α and β in green and purple; modifications l and
m in orange and light blue; perturbations A and B in olive and teal. The exception is
when there is only one k-transfor involved, in which case we simply label it in black.

The proofs of the Lemmas in the rest of this section all follow the same line of reasoning,
differing only in the explicit string diagram calculations. We have included all of them for
completeness. It is probably useful to look at some to understand the general method,
but then the reader can safely skip the rest.

6.1. Adding a 0-cell.

6.1.1. Lemma. Let P be a presentation, C a 4-category and consider the presentation
P ∪ {Y } obtained by adding a 0-cell Y . Then the map Map(P ∪ {Y }, C) → Map(P , C) is
a fibration of 4-groupoids.

Proof. Suppose we have a k-morphism xk : ak−1 → bk−1 in Map(P , C) together with an
extension of a to P ∪ {Y }. We define bY := aY and xY := idaY , which determines an
extension of x to P ∪ {Y }.

6.2. Adding a 1-cell. Let P be a presentation, C a 4-category and consider the presen-
tation P ∪ {g} obtained by adding a 1-cell g : X → Y , where X and Y are 0-cells in P .
We now prove that the map Map(P ∪ {g}, C) → Map(P , C) is a fibration of 4-groupoids.
We write X = , Y = and g = .
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6.2.1. Lemma. The map Map(P∪{g}, C) → Map(P , C) has the right lifting property with
respect to s : θ(0) ↪→ θ(1).

Proof. Suppose we have a 1-morphism α : F → G in Map(P , C) together with an
extension of F to P ∪ {g}. We want to define a 1-morphism G(g) = : → and a
weakly invertible 2-morphism

αg : → .

Since αX is weakly invertible, the functor

: Hom ( , ) → Hom ( , )

is essentially surjective, so we can pick a 1-morphism G(g) = : → such that
≃ and define αg to be any choice of such an equivalence.

6.2.2. Lemma. The map Map(P∪{g}, C) → Map(P , C) has the right lifting property with
respect to s : θ(1) ↪→ θ(2).

Proof. Consider two functors F,G in Map(P ∪ {g}, C). Suppose we have also natural
transformations α, β : F → G and a modification m : α → β in Map(P , C), together with
an extension of α to P ∪ {g}. We have weakly invertible 2-morphisms

mX = : → αg = : →

mY = : →

and we want to extend β and m to P ∪ {g}, so we need a weakly invertible 2-morphism

βg = : →

and a weakly invertible 3-morphism

mg : → .

The functor of 2-categories

: Hom

(
,

)
→ Hom

(
,

)

is given by composition with the weakly invertible 2-morphism , and therefore it is
essentially surjective. So we can pick a 2-morphism βg : βY ◦F (g) → G(g) ◦ βX such that
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≃

and we pick mg to be any such equivalence.

6.2.3. Lemma. The map Map(P∪{g}, C) → Map(P , C) has the right lifting property with
respect to s : θ(2) ↪→ θ(3).

Proof. Suppose we have a 3-morphism A : l → m in Map(P , C) together with an
extension of l to P ∪ {g}. We want to define a 3-morphism

mg = : →

and an invertible 4-morphism

Ag : → .

The functor

: Hom

(
,

)
→ Hom

(
,

)

is given by composition with a weakly invertible 3-morphism, therefore it is essentially
surjective. So we can pick a 3-morphism

mf = : →

such that

≃

and we can pick Ag to be any such isomorphism.
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6.2.4. Lemma. The map Map(P∪{g}, C) → Map(P , C) has the right lifting property with
respect to s : θ(3) ↪→ θ(4).

Proof. Suppose we have a 4-morphism Λ : A → B in Map(P , C) together with an
extension of A to P ∪ {g}. We want to define a 4-morphism

Bg = : →

such that

Λg .

The map

: Hom

 ,

→

 ,



is given by composition with an invertible 4-morphism, therefore it is an isomorphism
between sets of 4-morphisms. In particular it is surjective, so we can pick a 4-morphism
Bg satisfying the desired relation.

6.3. Adding a 2-cell. Let P be a presentation, C a 4-category and consider the pre-
sentation P ∪ {ζ} obtained by adding a 2-cell ζ : f → g, where f and g are 1-morphisms
in F1(P). We will show that the map Map(P ∪ {ζ}, C) → Map(P , C) is a fibration of
4-groupoids. We denote f by a dashed line and g by a solid line and write ζ = .

6.3.1. Lemma. The map Map(P∪{ζ}, C) → Map(P , C) has the right lifting property with
respect to s : θ(0) ↪→ θ(1).
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Proof. Suppose we have a 1-morphism α : F → G in Map(P , C) together with an
extension of F to P ∪ {ζ}. We want to define a 2-morphism G(ζ) : G(f) → G(g) and a
weakly invertible 3-morphism

αζ : → .

The functor of 2-categories

: Hom(G(f), G(g)) → Hom(αY ◦ F (f), G(g) ◦ αX)

is given by first composing with the weakly invertible 1-morphism αX and then compos-
ing with the weakly invertible 2-morphism αf . This implies this functor is essentially
surjective, so we can choose G(ζ) ∈ Hom(G(f), G(g)) such that

≃

and we can pick αζ to be any such equivalence.

6.3.2. Lemma. The map Map(P∪{ζ}, C) → Map(P , C) has the right lifting property with
respect to s : θ(1) ↪→ θ(2).

Proof. Suppose we have a 2-morphism m : α → β in Map(P , C) together with an
extension of α to P ∪ {ζ}. We want to define a 3-morphism

βζ = : →

and an invertible 4-morphism

mζ : → .

The functor

: Hom

(
,

)
→ Hom

 ,


is given by first composing with a weakly invertible 2-morphism and then with a weakly
invertible 3-morphism, therefore it is essentially surjective. So we can pick a 3-morphism
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βζ : →

such that

≃

and we can pick mζ to be any such isomorphism.

6.3.3. Lemma. The map Map(P∪{ζ}, C) → Map(P , C) has the right lifting property with
respect to s : θ(2) ↪→ θ(3).

Proof. Suppose we have a 3-morphism A : l → m in Map(P , C) together with an
extension of l to P ∪ {ζ}. We want to define a 4-morphism

mζ = : →

such that

Aζ .
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The map

Hom

(
,

)
→ Hom

 ,


given by

can be obtained by composing with weakly invertible mophisms, therefore it is surjective.
So we can pick mζ satisfying the desired relation.

6.3.4. Lemma. The map Map(P∪{ζ}, C) → Map(P , C) has the right lifting property with
respect to s : θ(3) ↪→ θ(4).

Proof. Suppose we have a 4-morphism Λ : A → B in Map(P , C) together with an
extension of A to P ∪ {ζ}, which means we have the relation
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Aζ .

We want to extend B to P ∪ {ζ}, so we need to prove that B satisfies the relation

Bζ .

Using the relations Λf , Λg and Aζ we have the following proof, where we use h
= when two

4-diagrams are related by homotopy geneators.



STRING DIAGRAMS FOR 4-CATEGORIES 1387

h Λ−1
g Aζ

h Λf
.

The map

Hom

 ,

→ Hom

 ,


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given by

can be obtained by composition with an invertible 4-morphism, therefore it is an isomor-
phism between sets of 4-morphisms. In particular it is injective, so the desired relation
follows.

6.4. Adding a 3-cell. Let P be a presentation, C a 4-category and consider the pre-
sentation P ∪ {t} obtained by adding a 3-cell t : η → ζ, where η and ζ are 2-morphisms
in F2(P). We will show that the map Map(P ∪ {t}, C) → Map(P , C) is a fibration of
4-groupoids. We denote η by a dashed line and ζ by a solid line and write t = .

6.4.1. Lemma. The map Map(P∪{t}, C) → Map(P , C) has the right lifting property with
respect to s : θ(0) ↪→ θ(1).

Proof. Suppose we have a 1-morphism α : F → G in Map(P , C) together with an
extension of F to P ∪ {t}. We want to define a 3-morphism G(t) : G(η) → G(ζ) and an
invertible 4-morphism

αt : → .

The functor

: Hom(G(η), G(ζ)) → Hom

(
,

)

is given by composing with weakly invertible morphisms. This implies that it is essentially
surjective, so we can choose G(t) : G(η) → G(ζ) such that
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≃

and we can pick αt to be any such isomorphism.

6.4.2. Lemma. The map Map(P∪{t}, C) → Map(P , C) has the right lifting property with
respect to s : θ(1) ↪→ θ(2).

Proof. Suppose we have a 2-morphism m : α → β in Map(P , C) together with an
extension of α to P ∪ {t}. We want to define a 4-morphism

βt = : →

such that

mt .

The map

Hom

 ,

→ Hom

 ,


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given by

can be obtained by composition with weakly invertible morphisms, so it is surjective. This
implies we can choose βt so that the desired equality holds.

6.4.3. Lemma. The map Map(P∪{t}, C) → Map(P , C) has the right lifting property with
respect to s : θ(2) ↪→ θ(3).

Proof. Suppose we have a 3-morphism A : l → m in Map(P , C) together with an
extension of l to P ∪ {t}, which means we have the relation

lt .

We want to extend m to P ∪ {t}, so we need to prove that m satisfies the relation
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mt .

Using the relations Aη, Aζ and lt we get

h
=

A−1
η
=

h
=
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lt=
h
=

Aζ
=

h
= .

The map

Hom

(
,

)
→ Hom

(
,

)
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given by

can be obtained by composition with weakly invertible morphisms, so it is an isomorphism
between sets of 4-morphisms. In particular it is injective, so the desired relation follows.

6.5. Adding a 4-cell. Let P be a presentation, C a 4-category and consider the pre-
sentation P ∪{W} obtained by adding a 4-cell W : s → t, where s and t are 3-morphisms
in F3(P). We will show that the map Map(P ∪ {W}, C) → Map(P , C) is a fibration of
4-groupoids. We denote s by a dashed line and t by a solid line and write

W = .

6.5.1. Lemma. The map Map(P ∪ {W}, C) → Map(P , C) has the right lifting property
with respect to s : θ(0) ↪→ θ(1).

Proof. Suppose we have a 1-morphism α : F → G in Map(P , C) together with an
extension of F to P ∪ {W}. We want to define a 4-morphism G(W) : G(s) → G(t) such
that

αW .
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The map

: Hom(G(s), G(t)) → Hom

 ,



is given by composing with weakly invertible morphisms. This implies that it is surjective,
so we can choose G(W) : G(s) → G(t) such that

αW .

6.5.2. Lemma. The map Map(P ∪ {W}, C) → Map(P , C) has the right lifting property
with respect to s : θ(1) ↪→ θ(2).

Proof. Suppose we have a 2-morphism m : α → β in Map(P , C) together with an
extension of α to P ∪ {W}, which means we have

αW .

We want to extend β to W , so we want to show that
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βW .

Using the relations ms, mt and αW , we get

h m−1
t αW

h ms .

The map

Hom

(
,

)
→ Hom

 ,


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given by

can be obtained by composing with weakly invertible morphisms, so it is an isomorphism
and we get the desired relation.

6.6. Adding a 5-cell. Let P be a presentation, C a 4-category and consider the presen-
tation P ∪{Φ} obtained by adding a 5-cell Φ : V → W , where V and W are 4-morphisms
in F4(P). We will show that the map Map(P ∪ {Φ}, C) → Map(P , C) is a fibration of
4-groupoids.

6.6.1. Lemma. The map Map(P ∪ {Φ}, C) → Map(P , C) has the right lifting property
with respect to s : θ(0) ↪→ θ(1).

Proof. Suppose we have a 1-morphism α : F → G in Map(P , C) together with an
extension of F to P ∪ {Φ}. Recall that in a 4-category a 5-cell corresponds to a relation,
so we have F (V) = F (W). We want to extend G to P ∪ {Φ}, so we want to show that
G(V) = G(W). Using the relations αV and αW we get

α−1
V F (Φ) αW .
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The map

: Hom(G(s), G(t)) → Hom

 ,



is invertible, as it is given by composing with weakly invertible morphisms. This implies
that it is injective, so G(V) = G(W).

This completes the proof of Theorem 6.0.1 in the case where Q is obtained from P by
adding a cell. Since a composite of fibrations is a fibration, the general case follows.
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