
Theory and Applications of Categories, Vol. 43, No. 5, 2025, pp. 93–107.

TWO THEOREMS OF LIE ON INFINITESIMAL SYMMETRIES OF
DIFFERENTIAL EQUATIONS

Dedicated to the memory of Bill Lawvere
with thanks

ANDERS KOCK

Abstract. We give an account, in terms of synthetic differential geometry, of some
of Sophus Lie’s geometric theory of first order differential equations. This theory is, in
modern terms, formulated in terms of vector fields on manifolds.

1. Some algebra of nilpotent elements

We consider a commutative ring R. Recall that a ∈ R is nilpotent if ak = 0 for some
natural number k = 1, 2, 3, . . .. We are mainly concerned with the case k = 2, and define

D := {d ∈ R | d2 = 0}.

The letter ‘d’ will hence forward be reserved to elements of D.
Note that commutativity of R implies that d ∈ D ⇒ r · d ∈ D, for any r ∈ R, in

particular −d ∈ D. So the subset D is closed under multiplication. However, it is not
closed under addition; indeed (d1 + d2)

2 = d21 + d22 + 2d1 · d2 = 0 + 0 + 2d1 · d2, which is
not necessarily 0.

The 2-dimensional analogue of D ⊆ R is the subset D(2) ⊆ D ×D given by

D(2) := {(d1, d2) ∈ R×R | d21 = 0, d22 = 0, d1 · d2 = 0}.

For x and y in R, we write x ∼ y if (x − y)2 = 0. If R has the property that x + x = 0
implies x = 0 (which we henceforth assume), we therefore have

1.1. Proposition. For d1 and d2 in D,

d1 + d2 ∈ D iff d1 · d2 = 0 iff d1 − d2 ∈ D iff (d1, d2) ∈ D(2) iff d1 ∼ d2.

The n-dimensional analogue of D(2) is D(n) ⊆ Dn, described by

D(n) := {(d1 . . . , dn) ∈ Rn | di · dj = 0 for all i, j = 1, . . . , n}.
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By binomial expansion, one sees that (d1, . . . , dn) ∈ D(n) implies
∑

di ∈ D.
We shall not in the present note have occasion to consider nilpotent elements of higher

degree, such as D2 ⊆ R given by {x ∈ R | x3 = 0}. Note that we have D ⊆ D2. Also
note that, for (d1, d2) ∈ D×D, we have d1+ d2 ∈ D2; this follows by binomial expansion.

2. Synthetic differential geometry

We present a short review of the version of synthetic differential geometry (SDG) which
will be used here; see e.g. [5] or [12]. It is an axiomatic theory dealing with a Cartesian
closed category E equipped with a commutative ring object R. We think of R as the
number line, or as the ring of scalars. We use language as if E were the category of sets.
We sometimes call the objects of E spaces.

The use of nilpotent scalars provides a tool that allows definition of notions of “in-
finitesimals” of various order; thus the intuition behind d ∈ D is that d is an infinitesimal
of order 1 (and elements in D2 are infinitesimals of order 2, etc.)

2.1. The SDG axiomatics. We shall need only one axiom scheme, Axioms 2.7 for
n = 1, 2, . . .. The n = 1 case is particularly important, and we state it separately: 1

2.2. Axiom. For every f : D → R, there exists unique a and b in R such that f is of the
form f(d) = a+ d · b.

In diagrammatic terms, this basic Axiom 2.2 can be expressed by saying that a certain
map

γ : R×R → RD

is an isomorphism. In set theoretic terms, this γ has the description,

(a, b) 7→ [d 7→ a+ d · b].

The assumption that E is Cartesian closed implies that this description does indeed make
sense, with the displayed square bracket expression defining an element in the function
space object RD in E .

Putting d = 0, one gets immediately that a = f(0); the unique b may suggestively be
denoted f ′(0). From uniqueness of b, one immediately gets that

(∀d ∈ D : d · b = 0) ⇒ b = 0 (1)

(“principle of cancelling universally quantified ds”), and hence, by iteration, one also gets

(∀(d1, d2) ∈ D ×D : d1 · d2 · b = 0) ⇒ b = 0.

From the Axiom 2.2, one gets

1There is an axiom scheme, comprising all the various axioms that have been used in the development
of SDG, one axiom for each “Weil algebra”, see e.g. [5], [12] or [1].
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2.3. Proposition. For any f : D ×D → R,

f(d1, d2) = f(0, 0) + d1 · b1 + d2 · b2 + c · d1 · d2
for unique b1, b2 and c ∈ R.

A special case is:

2.4. Proposition. Any f : D×D → R which for all d ∈ D satisfies f(d, 0) = f(0, d) =
f(0, 0) is of the form f(d1, d2) = g(d1 · d2) for a unique function g : D → R.

Proof. The assumptions give b1 = b2 = 0; and then the unique function claimed is given
by (d1, d2) 7→ f(0, 0) + c · d (where c is as in Proposition 2.3).

We note that Proposition 2.4 implies the following parametrized version:

2.5. Proposition. A function f : M × D × D → R which for all d ∈ D satisfies
f(m, d, 0) = f(m, 0, d) = f(m, 0, 0) is of the form

f(m, d1, d2) = f(m, 0, 0) + g(m) · d1 · d2
for a unique function g : M → R.

2.6. Definition. An object M ∈ E has the property W if any f : D × D → M which
satisfies f(d, 0) = f(0, d) = f(0, 0), is of the form f(d1, d2) = g(d1 · d2) for a unique
g : D → M .

Note that Proposition 2.4 says that the object R has property W.
We leave to the reader to prove that if M and N are objects which have the property

W, then so does M ×N . In particular Rn has the property W. More generally, if M has
property W, then so does MX for any object X.

The basic Axiom 2.2 is the special case (for n = 1) of the following Axiom Scheme,
whose nth case is:

2.7. Axiom. For every f : D(n) → R, there exists unique b1, . . . , bn in R, such that f is
of the form

f(d1, . . . , dn) = f(0, . . . , 0) + d1 · b1 + . . .+ dn · bn.
From this axiom, one immediately gets (taking n = 2)

2.8. Proposition. Given maps f1 : D → R and f2 : D → R with f1(0) = f2(0), there
exists a unique g : D(2) → R with g(−, 0) = f1, and with g(0,−) = f2.

2.9. Definition. An object M ∈ E has the property IL2 if for τ1 : D → M and τ2 :
D → M with τ1(0) = τ2(0), there exists a unique g : D(2) → M with g(−, 0) = τ1 and
with g(0,−) = τ2.

Proposition 2.8 says that R has property IL2. And just as for property W, we have
that if M and N are objects which have the property IL2, then so does M × N . In
particular Rn has the property IL2. Also, if M has property IL2, then so does MX for
any object X.

There are completely analogous properties ILn for n = 3, 4, . . ..
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2.10. Definition. A tangent vector τ to a space M is a map D → M ; the point τ(0) =
m is called the base point of τ .

This is essentially a paraphrasing of Ehresmann’s notion that a tangent vector at
m ∈ M is the 1-jet at 0 of a map R → M .

2.11. Tangent vectors and tangent bundles. The space of tangent vectors τ to
M is the space MD. It comes equipped with a base-point map MD → M (or natural
projection), with description τ 7→ τ(0). Writing T (M) for MD, we have the base point
map T (M) → M , making T (M) the tangent bundle of M . The fibre over m ∈ M in
T (M), i.e. the space of tangent vectors with base point m, is denoted Tm(M).

There is an action of the multiplicative monoid ofR on any Tm(M), given by (t·τ)(d) :=
τ(t · d) for t ∈ R. In fact, if M has properties IL2 and IL3, Tm(M) is canonically an R-
module, see e.g. [12] 3.1.1.

The functor T given by T (M) := MD is an endofunctor on E . (Many differential
geometric notions and arguments can be expressed entirely in terms of such endofunctor
T , see Rosicky [19], and the Canadian school, see e.g. [2] and the references therein).

The property IL2 for an object M can be used to define addition of tangent vectors
on M with same base point: define τ1 + τ2 by putting (τ1 + τ2)(d) := g(d, d), where g is
as in the Definition 2.9. If property IL3 holds for M , one can prove associativity of this
addition; more completely (cf. e.g. [5] Proposition I.7.2):

2.12. Proposition. If M has the properties IL2 and IL3, Tm(M) carries a canonical
structure of R-module.

2.13. Definition. An R-module V is called a Euclidean R-module (or a KL vector
space) if it satisfies the following generalization of Axiom 2.2: For every f : D → V ,
there is a unique b ∈ V in R so that f is of the form f(d) = f(0) + d · b.

This unique b deserves the name f ′(0), or the principal part of f .

2.14. Remark. The reason we consider the properties W and ILn is that they are coor-
dinate free; they are basic for the early developments of SDG. They will be sufficient for
the arguments we are to give for the Theorems of Lie referred to in the Introduction, as
(partly) paraphrased in Theorems 3.10 and 5.5 below. The letter ’W’ refers to Wraith,
who made this property explicit (1972), as subsumed in [18]; the letters ILn stand for “In-
finitesimal Linear”, a notion originally made explicit by Bergeron (1980). The properties
W and ILn are instances of a “property scheme”, subsumed under the name “microlin-
earity”; see Appendix D in the 2006 edition of [5]. Common to all the microlinearity
properties is that the axioms in the basic axiom scheme for SDG (as parametrized by the
category of Weil algebras) imply that R satisfy all of these microlinearity properties. For
a succinct account of Weil algebras and microlinearity, see Chapter 2 in [12].
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3. “Vector fields = Infinitesimal transformations”

The notion of transformation is central in Lie’s work. In modern terms, a transformation
on a (smooth) manifold M is a diffeomorphism M → M . They form a group Aut(M), and
although not finite dimensional, Aut(M) allows for a rich differential geometry, relevant
for instance to the theory of differential equations, cf. e.g. Lie’s book [16]. In this book, he
considers in particular infinitesimal transformations, reasoning synthetically and geomet-
rically with infinitesimals; but (in a related paper) he admits that he found it “difficult”
to “give a clear exposition on synthetic investigations” except by expressing them in an-
alytic terms.2 The present note is hopefully a contribution to give a synthetic exposition
of some of these investigations, by utilizing concepts and methods that have developed
since the time of Lie, notably category theoretic ones.

Lawvere’s seminal 1967 conception (in [13]) was that the category E of spaces should
be Cartesian closed, and that the tangent bundle formation should be representable by an
object D as the functor (−)D.

So the tangent bundle T (M) = MD is the space of maps D → M . In the setup
presented in Section 2 with the R and D as described there, there is a “base point” map:
MD → M (evaluation at 0 ∈ D). This gives the projection map of the tangent bundle. So
a vector field on M is a section M → MD of the projection map. This is the formulation
in (3) below.

But, as Lawvere pointed out, exponential adjointness then gives two further equivalent
formulations of the notion of vector field on M :

M ×D
X

- M with X(m, 0) = m; (2)

M
X̂

- MD with X̂(m)(0) = m; (3)

D
X

- MM with X(0) = id: M → M. (4)

We shall also use the notation X(d) = Xd, or equivalently Xd(m) = X(m, d).
We shall mainly use the formulation (2), an action of D on M . The formulation (3) is

the classical “section of the tangent bunde”; and (4) is the formulation which is considered
by Lie, and he uses the name “infinitesimal transformation”. In our formulation, this is
justified by the fact that each individual Xd (for d ∈ D) is a map M → M bringing each
m to an “infinitesimal neighbour” of m, (written Xd(m) ∼ m, see the Subsection 3.3).
So in our exposition, it is the individual Xds that are the infinitesimal transformations,
where with Lie, it is the collection of all the Xds, i.e. the map X, which is an infinitesimal
transformation.

3.1. Proposition. Let X be a vector field on M , and assume that M has the property
IL2. Then for (d1, d2) ∈ D(2), we have

X(X(m, d1), d2) = X(m, d1 + d2). (5)

2A complete quotation of these statements of Lie may be found (in translation) in the preface to [5],
and (in the original language) in [15], 1876. The latter is paraphrased in SDG terms in [9].
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Proof. Note that the right hand side makes sense, since d1 + d2 ∈ D by Proposition 1.1
and the assumption (d1, d2) ∈ D(2). Now use the uniqueness assertion in the property
IL2 (Definition 2.9).

The following is an immediate consequence:

3.2. Proposition. For all d ∈ D, we have X(X(m, d),−d) = m. In particular, the map
Xd : M → M is invertible with inverse X−d.

3.3. A neighbour relation ∼. A genuine differential-geometric theory of spaces M
should preferably allow the use of some notion of (first order) neighbour relation between
points of M . It should be a reflexive and symmetric relation. There are several ways
for how this can be done, depending on the category E and the object in question. In
algebraic geometry, one has the notion of first neighbourhood of the diagonal of an affine
scheme; it is derived from the idea “A ⊗ A/I2,” where A is the coordinate ring of the
scheme, and I ⊆ A⊗ A is the kernel of the multiplication map A⊗ A → A.

In the setting of SDG, the relevant first order ∼ derives ultimately from D. Thus, on
R itself, there is the canonical ∼, namely with x ∼ y iff (x − y)2 = 0. Therefore, for d1
and d2 in D , we have d1 ∼ d2 iff d1− d2 ∈ D iff d1+ d2 ∈ D iff d1 · d2 = 0, cf. Proposition
1.1.

For the purpose of the present article: for m1 and m2 points in a space M , a sufficient
condition for m1 ∼ m2 is that there exists a τ : D → M and a d ∈ D such that either
τ(0) = m1 and τ(d) = m2, or τ(0) = m2 and τ(d) = m1. In this case, we say thatm1 ∼ m2

is witnessed by τ and d. Note that ∼ thus defined is a reflexive relation. The “either. . . or
. . . ” in the definition is to ensure that ∼ is a symmetric relation. For M = R, m ∼ n is
equivalent to (m− n)2 = 0.

If m1 ∼ m2 in M , witnessed by τ and d ∈ D, then for any map f : M → N , we have
f(m1) ∼ f(m2), witnessed by f ◦ τ and d. For future reference, we record this fact:

3.4. Proposition. Any map f : M → N preserves the relation ∼. Hence any invertible
map preserves and reflects ∼.

A subspace M of a space V is called formally open if it is stable under the ∼-relation,
i.e. if m ∼ n and m ∈ M imply n ∈ M . Assume that V is a Euclidean R-module, and
M ⊆ V a formally open subspace. A tangent vector field X on such a M ⊆ V is of the
form X(m, d) = m + d · f(m), for m ∈ M and with f(m) ∈ V , so f(m) is the principal
part of the tangent vector X(m,−). So we have a map f : M → V , called the principal
part function of X. We call X a proper vector field if all values f(m) of f are “cancellable”
in the sense ∀t ∈ R, t · f(m) = 0 implies that f(m) = 0. For instance, in Rn, any element
(n-tuple) with at least one invertible entry, is proper.

More generally, for any space M , a tangent vector τ : D → M is proper if it preserves
and reflects ∼, and a vector field X on M is proper if for all m ∈ M , Xm is a proper
tangent vector.
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3.5. Flow and streamlines of a vector field. Given a vector field X : M ×D →
M . A map F : M ×R → M , with F (m, d) = X(m, d) for all m ∈ M and d ∈ D, is called
a complete flow of X, if it satisfies, for all t1 and t2 in R,

F (F (m, t1), t2) = F (m, t1 + t2), (6)

in particular, for d2 ∈ D

X(F (m, t1), d2) = F (m, t1 + d2) (7)

and likewise F (X(m, d1), t2) = F (m, d1+ t2), for all m ∈ M and for all t1 and t2 in R, and
d1 and d2 in D, cf. [11]. Note that validity of the equation (5) is a necessary condition for
the existence of such an extension F of X.

3.6. Remark. Existence and uniqueness of a flow of a vector field in this sense is an
integration question, and is therefore a question of, say, real analysis, or it may be posed
axiomatically.

Example: the vector field on M = R given by X(m, d) = m+ d ·m has the complete
flow F (m, t) = m · et (provided that the category E contains the exponential function
et : R → R). Not all vector fields admit a complete flow M × R → M . For example, the
vector field X on R, given by X(m, d) = m+ d ·m2, is an example of a vector field which
does not admit a complete flow. So there are less ambitious notions of flow. An example
of this is a map F : M × D∞ → R satisfying (6), where D∞ ⊂ R is the space of all
nilpotent scalars, i.e. t ∈ R with tk = 0 for some natural number k. The equation makes
sense, since D∞ is a subgroup of the additive group of R. Call such a F : M ×D∞ → R
a formal flow. For M microlinear (in a suitably strong sense), formal flows always exist,
and uniquely so, see [10] Theorem 2. This is in essence a solution in terms of a formal
power series.

For simplicity of exposition, we shall only consider vector fields X on M which have a
complete flow F . Such F is in fact unique, using an induction principle, essentially: if f ′

is constant 0, then f is constant. Then for fixed m ∈ M , the map F (m,−) : R → M is
a parametrized curve, so it is of kinematic nature. Its image, as a subset of M , is called
a streamline or orbit of X (or of F ). By being unparametrized, it is of a geometric/static
nature, and pictures can be drawn (cf. [16]). The family of streamlines of such X is the
subject of Section 5.4 below.

The flow of a vector field X is in Lie’s terminology called the “1-parameter group”
(“eingliedriche Gruppe”) generated by X.

3.7. Directional derivatives. We consider a Euclidean R-module V (cf. Definition
2.13). A tangent vector τ with base point m ∈ V is of the form d 7→ m + d · v for some
unique v ∈ V . The vector v is called the principal part of τ . The basic Axiom 2.2 in SDG
says that R itself is a Euclidean R-module.

A vector field X on a Euclidean R-module V (or on a formally open subset U of V )
is therefore of the form

X(u, d) = u+ d · g(u)
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for some unique g : U → V , called the principal part function of the vector field.
If X is a vector field on M and f : M → V is a function to a Euclidean R-module

V , one may construct a new function ∂X(f) : M → V , called the directional derivative of
f in the direction X, namely: ∂X(f) maps m ∈ M to the principal part of the tangent
vector f ◦X(m,−). So ∂X(f)(m) is characertized by the validity, of

∀d ∈ D : f(X(m, d)) = f(m) + d · ∂X(f)(m). (8)

Another commonly used notation for ∂X(f) is X(f).

3.8. Vector fields as differential operators. For V = R, the differential oper-
ator f 7→ ∂X(f) is a derivation in the algebraic sense. Lie calls this differential operator
the symbol of X. Classically (for smooth manifolds), X can be reconstructed from its
symbol, and one may for suitable spaces M define a vector field to be such a differential
operator. This depends, however on existence of enough functions M → R; and it is not
a geometric viewpoint allowing pictures to be drawn. The description of the Lie bracket
of two vector fields given in Sections 4 and 5 below does not use the “vector fields as
differential operators” viewpoint, but is purely geometric.

3.9. Lie “Theorem 7”. Recall that a map f : M → U is a regular epimorphism if it
is a coequalizer. Then it is also a coequalizer of its kernel pair Ker(f), as displayed in
the top of the following diagram; and f is said to admit an invertible ξ : M → M if ξ
preserves the kernel pair of f (i.e. if the left hand square is “pairwise” commutative):

M ×U M
Ker(f)

-- M
f

- U

M ×U M

ξ ×U ξ

?
-

Ker(f)
- M

ξ

?

f
- U

ξ̂

?

Verbally in the category of sets: ξ maps each fibre (level set) of f to some fibre of f . In

this case, ξ descends to a map ξ̂ : U → U with ξ̂ ◦ f = f ◦ ξ as displayed in the right hand
square, using the universal property of f as a coequalizer.

If X : M × D → M is a vector field on M , we say that f admits X if f admits the
infinitesimal transformations Xd : M → M , for all d ∈ D, or that X is an infinitesimal
symmetry of f . So for each d ∈ D, we have a similar diagram, with ξ replaced by Xd and
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ξ̂ replaced by X̂d : U → U :

M ×U M
Ker(f)

-- M
f

- U

M ×U M

Xd ×U Xd

?
-

Ker(f)
- M

Xd

?

f
- U

X̂d

?

(9)

This family of maps X̂d, as d ranges over D, may be subsumed in a map X̂ : U ×D → U ,

X̂(v, d) := X̂d(v).

Now X0 is the identity map on M , so X̂0 is the identity map of U . So X̂ is a vector field
on U . Since U is a formally open subset U ⊆ V of a Euclidean R-module V , X̂ is of the
form

X̂(v, d) = v + d · g(v)

for a unique g : U → V , i.e. g is the principal part function of the vector field X̂ on U .
The following is (a contemporary formulation of) “Theorem 7” in Lie’s [16], p. 91:

3.10. Theorem. Let f : M → U be a regular epimorphism, with U a formally open
subspace of a Euclidean R-module V . If the kernel pair of f admits a vector field X, then
there exists a function g : U → V (necessarily unique) so that ∂X(f) = g ◦ f .

Proof. The description of a vector field X̂ on U , and its principal part function g : U →
V , has been given above. We shall prove that this g satisfies ∂X(f)(m) = g(f(m)) for
each m ∈ M . For this, it suffices (by the principle of cancelling universally quantified ds)
to see that for all d ∈ D, we have d · ∂X(f)(m) = d · g(f(m)), or equivalently, by adding
f(m) to both sides, to prove

f(m) + d · ∂X(f)(m) = f(m) + d · g(f(m)).

The left hand side is f(X(m, d)) by definition (8), and the right hand side is similarly

X̂(f(m), d); they agree by commutativity of the right hand square in (9). This proves the
Theorem.

4. The Lie bracket of two vector fields

The property W for an object M (cf. Definition 2.6) is at the heart of the construction of
the Lie bracket of two vector fields on M .
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4.1. Group theoretic commutators give Lie brackets. We consider two vector
fields X and Y on a space M (where M is assumed to have the properties IL2 and W).
Recall that Xd denotes the map m 7→ X(m, d). Thus Xd is a map M → M (for d ∈ D). It
is invertible with inverse (Xd)

−1 = X−d, by Proposition 3.2. Following the paraphrasing
of Lie provided by Reyes and Wraith in [18], we may therefore, for d1 and d2 in D, consider
the group theoretic commutator of Xd1 and Yd2 : composing from right to left, this is the
map M → M given as

{Xd1 , Yd2} := Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1 ,

and its value on a given m ∈ M is therefore the r, displayed in the following geomet-
ric figure. This “pentagonal” picture is (for fixed m) a member of a family of figures
(parametized by (d1, d2) ∈ D ×D).

• - •�
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• pXXXXXXyXXXXXX•

q









�











O
O

m Xd1 n

Yd2

X−d1

Y−d2

•r
[X, Y ]d1·d2

From [18], we quote

4.2. Theorem. Given two vector fields X and Y on M , there exists a unique vector field
[X, Y ] on M such that, for any (d1, d2) ∈ D ×D,

[X, Y ]d1·d2 = {Xd1 , Yd2}. (10)

So [X, Y ]d1·d2(m) = r, as indicated by the dotted arrow. Note that the bracket [X, Y ]
is constructed without reference to vector fields as differential operators.

In this figure, each straight line connect neighbour points (in the sense of ∼), by
construction, and the dotted arrow also connect two neighbour points, witnessed by [X, Y ]
and d1 · d2. But we in fact also have

4.3. Proposition. The points n and r are neighbours: n ∼ r.

Proof. We have p ∼ q. By Proposition 3.4, Y−d2 preserves the neigbour relation ∼, so
we get n ∼ r.
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5. Proper vector fields

5.1. Proper tangent vectors. We say that τ : D → M is a proper tangent vector if
τ is a monic map and it preserves and reflects the relation ∼.

For a tangent vector τ on the Euclidean R-module Rk, it is clear that if the princi-
pal part of τ is a proper vector, then the tangent vector τ itself is proper. (A vector
(v1, . . . , vk) ∈ Rk is proper if at least one of the vis is invertible; this is a positive way of
formulating that it is not the null vector.) A proper vector field on a space M is a vector
field X where all the individual X(m,−) : D → M are proper.

Let X be a proper vector field on a space M . Let m and n be points on M . Then we
say that n is an X-neigbour of m, if n is of the form n = X(m, d) for some d ∈ D (which
is unique, by properness of X). In this case, we write n ≈X m. This is a reflexive relation:
m ≈X m since X(m, 0) = m; if M has property IL2, it is also symmetric, because Xd has
X−d as inverse, by Proposition 3.2, so that X(m, d) = n iff X(n,−d) = m. So we have

5.2. Proposition. Assume M has the property IL2. Then the relation ≈X is reflexive
and symmetric. And m ≈X n implies m ∼ n.

The relation ≈X is not transitive in general. However, ≈X is “transitive relative to
∼”3 in the sense of the following key Lemma

5.3. Lemma. Assume that X is a proper vector field on M , and that M has the property
IL2. Then given m, n and r in M , we have

(m ≈X n ≈X r and m ∼ r) implies m ≈X r.

Proof. We have by assumption that X(n, d1) = m and X(n, d3) = r for some d1 and
d3 ∈ D; (note that the d1 here corresponds to −d1 in the above pentagon picture); they
are unique with this property, by properness of X. Trivially, we have d1 = d3 + (d1 − d3).
Now X(n,−) : D → M reflects the neighbour relation ∼, by properness of X(n,−), so
the assumption m ∼ r implies d1 ∼ d3 in D, hence d1 − d3 ∈ D, by Proposition 1.1
Therefore, Proposition 3.1 implies the *-marked equality sign in

m = X(n, d1) = X(n, d3 + (d1 − d3))
∗
= X(X(n, d3), d1 − d3) = X(r, d1 − d3)

proving m ≈X r, as witnessed by d2 := d1 − d3.

5.4. Permuting the streamlines. Let M be a space which has the properties IL2
and W. We consider two vector fields X and Y on M , with X proper. We shall study
the question: when does X admit all the infinitesimal transformations Yd belonging to Y ,
i.e. when do the Yds permute the streamlines (viewed as unparametrized subsets) of X.
In [16] Theorem 9 (p. 105), Lie provides an answer. The geometric clue in the Theorem
is the following infinitesimal version of it (seeing {n ∈ M | n ≈X m} as an infinitesimal
part of a streamline of X).

3Such “relative transitivity” of a reflexive symmetric refinement ≈ of ∼ was studied in [6] to formulate
a combinatorial/geometrical version of Frobenius integrability; the phrase “≈ is involutive” was in loc.cit.
used for such relative transitivity.
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5.5. Theorem. If X is a proper vector field, and Y is any vector field (both vector fields
on M), then the following conditions are equivalent

(i) each Yd preserves the relation ≈X ,
(ii) [X, Y ] = g ·X for some g : M → R (which is unique, since X is proper).

Proof. Assume (i). Consider the pentagon which is displayed below, so r is the value at
m of the commutator {Xd1 , Yd2}.
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Yd2
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[X, Y ]d1·d2

The five points depend on m, d1 and d2, thus in particular r = r(m, d1, d2). We have
m ≈X n and q ≈X p, both assertions witnessed by ±d1. Since by assumption, Y−d2

preserves ≈X , and q ≈X p, we have r ≈X n. Finally, m ∼ r, as witnessed by [X, Y ]
and d1 · d2. So Lemma 5.3 yields that m ≈X r, so r(m, d1, d2) = X(m, δ(m, d1, d2)) for
some δ : M × D × D → D (unique since X is proper). If d1 = 0, δ returns 0, and
similarly if d2 = 0. So by Proposition 2.5, δ : M × D × D → D ⊆ R is of the form
δ(m, d1, d2) = g(m) · d1 · d2 for some unique g : M → R. We therefore have

[X, Y ](m, d1 · d2) = r(m, d1, d2) = X(m, g(m) · d1 · d2),

and cancelling the universally quantified d1 and d2, we get [X, Y ](m,−) = g(m)·X(m,−).
Since this holds for all m ∈ M , we have [X, Y ] = g ·X.

Conversely, assume (ii). Let q ≈X p by virtue of d1. Apply the transformation
Yd2 , to get points r and n. We shall prove r ≈X n. Define m to be X(n,−d1), so
n = X(m, d1). So we have r = [X, Y ](m, d1 · d2), as in the figure. By assumption, this
equals X(m, g(m) ·d1 ·d2), hence r ≈X m. Since m ≈X n by construction of m, and r ∼ n
by Proposition 4.3, Lemma 5.3 gives r ≈X n, as desired.

5.6. Streamlines of a complete vector field. Let M be a space having the
property IL2. Let X be a complete and proper vector field on M . So it has a flow
F : M × R → M . For any m ∈ M , we have the map F (m,−) : R → M , the flow
of m, generated by X. It is a “kinematic” entity, describing a motion of m. We want
to describe its image C(m) ⊆ M , called the streamline of m. It is no longer kinematic,
but a purely geometric entity. Likewise, the “infinitesimal” version of the flow of m,
namely the subspace {n ∈ M | n ≈X m} is a geometric entity (even though it admits a
parametrization by X(m,−)).
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For this, it is convenient to introduce the notion of an étale map. Let R and M be two
spaces, with R equipped with a symmetric reflexive relation ∼, and let M be equipped
with a symmetric reflexive relation ≈.

5.7. Definition. A map p : R → M is étale if
1) it has the preservation property that s ∼ t in R implies p(s) ≈ p(t) in M ,

and
2) p(s) ≈ m ⇒ ∃!t ∼ s with p(t) = m (for s and t in R and m in M).

5.8. Proposition. Let X be a proper vector field on M , with a complete flow F : R →
M . Then for any m ∈ M , the image C(m) of F (m,−), as a subspace of M , admits a
surjective R → M which is étale w.r.to the relations ∼ on R and ≈X on M .

Proof. The map F (m,−) itself maps R onto its image C. Also, if s ∼ t in R, we have t =
s+ d for some d ∈ D, by definition of ∼ on R; so F (m, t) = F (m, s+ d) = X(F (m, s), d),
by the flow equation. Therefore F (m, s) ≈X F (m, t), witnessed by X(F (m, s),−) and
d. This is the required preservation property 1). To see 2), we have to that prove if
F (m, t) ≈X n in C, then there exists a unique d ∈ D such that F (m, t + d) = n.
Let the assumed F (m, t) ≈X n be witnessed by X(F (m, t), d) = n. This d is unique
since X(F (m, t),−) is a proper tangent vector. But F (m, t + d) = X(F (m, t), d) by
the flow equation, and X(F (m, t), d) = F (F (m, t), d), So there is a unique d ∈ D with
F (F (m, t), d) = n.

5.9. Remark. Note that the étaleness condition in some sense says that F (m,−) is
“locally bijective”. However, one will not in general expect that it is globally bijective; it
is well known that there are complete proper vector fields, where the streamlines of the
flow are closed curves, e.g. on M = a punctured plane, or on M = a circle.

I conjecture that the property in Proposition 5.8 characterizes the streamlines of m
under the flow F of X. And these conditions are expressed entirely in terms of ≈X . So
(under the two equivalent conditions stated in Proposition) the transformations Yd pre-
serve ≈X , hence preserve the property of being a streamline. So assuming the conjecture
holds, we can augment the Theorem 5.5 by a third equivalent condition:

(iii) The family of streamlinesX admits all transfornations Yd. This is Lie’s “Theorem
9”, [16] p. 105.

The proof of (iii) given in [4], Proposition 5, depends on existence of “integrals” of the
vector field X, meaning functions ϕ : M → R which are constant on the streamlines.
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