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AXIOMS FOR THE CATEGORY OF SETS AND RELATIONS

ANDRE KORNELL

Abstract. We provide axioms for the dagger category of sets and relations that recall
recent axioms for the dagger category of Hilbert spaces and bounded operators.

1. Introduction

A dagger category is a category C with an operation (−)† : Mor(C) → Mor(C) such that

1. id†
X = idX for each object X;

2. f †† = f for each morphism f ;

3. (f ◦ g)† = g† ◦ f † for all composable pairs (f, g).

Two prominent examples of dagger categories are Rel, the dagger category of sets and
binary relations, and HilbF, the dagger category of Hilbert spaces and bounded operators
over F, where F = R or F = C. For a binary relation r, the binary relation r† is the
converse of r, and for a bounded operator a, the bounded operator a† is the Hermitian
adjoint of a.

The dagger categories Rel and HilbF have many properties in common. These proper-
ties may be expressed in terms of morphisms that behave like the embedding of one object
into another. These morphisms are characterized by the conjunction of two familiar prop-
erties: a morphism m : X → Y is said to be a dagger monomorphism if m† ◦ m = idX ,
and it is said to be a normal monomorphism if it is the kernel of some morphism Y → Z.

Following Heunen and Jacobs, we use the term dagger kernel for morphisms that
are both dagger monomorphisms and normal monomorphisms [11]. Heunen and Jacobs
showed that in any dagger category satisfying axioms A and B, below, each dagger kernel
m has a complement m⊥, which is a kernel of m†. Explicitly, they showed that m and
m⊥⊥ are isomorphic as morphisms into their shared codomain. Two dagger kernels m
and n are said to be orthogonal if m† ◦ n is zero or, equivalently, if m factors through n⊥.
A dagger kernel in Rel is an injective function, and a dagger kernel in HilbF is a linear
isometry.
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The dagger categories Rel and HilbF are also symmetric monoidal categories when
they are equipped with the Cartesian product and the tensor product, respectively. They
are said to be dagger symmetric monoidal categories because their symmetric monoidal
structures are compatible with their dagger structures: their monoidal products preserve
the dagger operation in the obvious way, and their coherence isomorphisms are all dagger
kernels.

The dagger symmetric monoidal categories Rel and HilbF both satisfy the following
axioms:

(A) there is a zero object;

(B) each morphism has a kernel that is a dagger kernel;

(C) each pair of complementary dagger kernels is jointly epic;

(D) each pair of objects has a coproduct whose inclusions are orthogonal dagger kernels;

(E) the monoidal unit is not a zero object;

(F) each nonzero endomorphism of the monoidal unit is invertible;

(G) the monoidal unit is a monoidal separator.

An object I is said to be a separator in the case that the morphisms a : I → X are
jointly epic, for all objects X. It is said to be a monoidal separator in the case that the
morphisms a ⊗ b : I ⊗ I → X ⊗ Y are jointly epic, for all objects X and Y . Axiom G
refers to this property. For further glosses of these axioms, see section 2.

The shared axioms A–G are almost sufficient to axiomatize both Rel and HilbF:

1.1. Theorem. Let (C,⊗, I, †) be a dagger symmetric monoidal category that satisfies
axioms A–G. Then,

(i) (C,⊗, I, †) is equivalent to (Rel,×, {∗}, †) if and only if every object has a dagger
dual and every family of objects has a coproduct whose inclusions are pairwise-
orthogonal dagger kernels;

(ii) (C,⊗, I, †) is equivalent to (HilbF,⊗,F1, †) for F = R or F = C if and only if every
dagger monomorphism is a dagger kernel and the wide subcategory of dagger kernels
has directed colimits.

This pair of equivalences provides a category-theoretic perspective on the analogy that is
sometimes drawn between sets and Hilbert spaces [26].

Dagger categories have been considered for more than half of a century [3, Defini-
tion 6.4.1]. Interest in dagger categories in the context of categorical quantum informa-
tion theory began with [1]. The term originates in [22]. The axiomatizations of HilbR and
HilbC in [12] derive from Solèr’s theorem [25]. Axiomatizations of ConR and ConC, the
categories of Hilbert spaces and contractions, have also been obtained [13].
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The classic work of Lawvere provides axioms for the category Set of sets and functions
[17]. The close relationship between Set and Rel and the similarity between Lawvere’s
assumption of limits and our assumption of biproducts naturally invite a comparison
between [17, Corollary] and Theorem 5.11. Unlike Lawvere, we have not chosen our axioms
to provide a foundation for mathematics but rather to draw a comparison between the
category Rel and the categories HilbF, as in Theorem 1.1. Less directly, our assumptions
about dagger kernels derive from [23], [20], and [11], and even less directly, they derive
from elementary results on abelian categories [18]. Nevertheless, we refer the reader to
Corollary 5.12.

Lawvere’s axiomatization of Set can be transformed into an axiomatization of Rel as
an allegory [7, 2.132]. An allegory is a dagger category that is enriched over posets with
meets and that satisfies the law of modularity : t ∧ (s ◦ r) ≤ s ◦ ((s† ◦ t) ∧ r) [7, 2.11].
The resulting axiomatization of A = Rel asserts that Map(A) satisfies Lawvere’s axioms
and that Rel(Map(A)) = A in the sense that (f, g) 7→ g ◦ f † defines an equivalence of
categories [7, 1.56]. The novelty of Theorem 1.1(i) relative to this older axiomatization of
Rel is that every axiom except one is also satisfied by FinHilbF and that enrichment over
posets is proved rather than assumed.

2. Dagger symmetric monoidal categories

This section explains the terms in Theorem 1.1; the reader may also wish to consult [14].
Throughout, we illustrate the terms using Rel and HilbF, where F = R or F = C. In Rel,
an object is a set, and a morphism r : X → Y is a subset r ⊆ X × Y . We say that r is a
relation from X to Y , and when (x, y) ∈ r, we say that r relates x to y. For r : X → Y
and s : Y → Z, the composition s◦r relates x to z if there exists y ∈ Y such that r relates
x to y and s relates y to z. In HilbF, an object is a Hilbert space over F, and a morphism
r : X → Y is a bounded linear operator.

A dagger category is commonly defined to be a category C with a contravariant functor
(−)† that is identity on objects and an involution on morphisms. However, this definition
is incompatible with the principle of equivalence [15, section 3.1], and for this reason, the
definition given in section 1 may be preferred. Thus, dagger categories are viewed as a
variant notion of categories, rather than as categories that are equipped with additional
structure. In Rel, the dagger of r : X → Y is the converse relation r† that relates y to x if
r relates x to y. In HilbF, the dagger of r : X → Y is the Hermitian adjoint operator r†,
which is defined by ⟨r†y|x⟩ = ⟨y|rx⟩ for all x ∈ X and y ∈ Y .

A number of basic concepts for categories have canonical analogs for dagger categories
[2, 15]. Prominently, a dagger isomorphism is a morphism u : X → Y such that u† ◦
u = idX and u ◦ u† = idY . In Rel, the dagger isomorphisms are the bijections, and in
HilbF, the dagger isomorphisms are the unitary operators. Dagger isomorphisms replace
isomorphisms in a variety of familiar contexts. For example, a dagger equivalence consists
of dagger functors F : C → D andG : D → C with natural dagger isomorphismsG◦F ∼= idC

and F ◦G ∼= idD. A dagger functor is, of course, a functor F such that F (r†) = F (r)† for
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all morphisms r.
A dagger symmetric monoidal category is a dagger category C that is equipped with

symmetric monoidal structure that is compatible with the dagger operation in two ways:
first, (r ⊗ s)† = r† ⊗ s† for all morphisms r and s, and second, the associators, braidings,
and unitors are all dagger isomorphisms. Both Rel and HilbF are canonically dagger
symmetric monoidal categories. In Rel, the product X ⊗ Y is the Cartesian product of
X and Y , and r ⊗ s relates (x1, y1) to (x2, y2) if r relates x1 to x2 and s relates y1 to y2.
The monoidal unit is a chosen singleton {∗}. In HilbF, the product X ⊗ Y is the tensor
product of X and Y , and r ⊗ s maps x⊗ y to rx⊗ sy. The monoidal unit is the Hilbert
space F1.

The dagger symmetric monoidal categories Rel and HilbF both satisfy the following
axioms:

(A) There is a zero object : there exists an object that is both terminal and initial. In
Rel, the zero object is the empty set. In HilbF, a zero object is a zero-dimensional
Hilbert space, e.g., F0. A zero morphism is a morphism that factors through a zero
object. For all objects X and Y , there is a unique zero morphism 0X,Y : X → Y .
In Rel, a zero morphism is an empty relation. In HilbF, a zero morphism is a zero
operator.

(B) Each morphism has a kernel that is a dagger kernel: for each morphism r : X → Y ,
there is a morphism m : A → X such that m† ◦ m = idA, such that r ◦ m = 0A,Y ,
and such that each morphism s : Z → X factors uniquely through m if r ◦ s = 0Z,Y .

A X Y

Z

m r

s

0Z,Y

!

In this case, m is said to be a dagger kernel of r or just a dagger kernel. In Rel,
the dagger kernels are exactly the injections, and for each relation r : X → Y , the
inclusion function of the subset A = {x ∈ X | (x, y) ̸∈ r for all y ∈ Y } is a dagger
kernel of r. In HilbF, the dagger kernels are exactly the isometries, and for each
operator r : X → Y , the incusion operator of the subspace A = {x ∈ X | rx = 0} is
a dagger kernel of r.

A complement of a dagger kernel m is a dagger kernel of m†. By [11, Lemma 1], if n
is a complement ofm, thenm is a complement of n. In this case, we say thatm and n
are complementary dagger kernels. In Rel, two injections m : A → X and n : B → X
are complementary iff the range of m and the range of n are complements as subsets
of X. In HilbF, two isometries m : A → X and n : B → X are complementary iff the
range of m and the range of n are orthogonal complements as subspaces of X.

(C) Each pair of complementary dagger kernels is jointly epic: for all dagger kernels
m : A → X and n : B → X and all morphism r1, r2 : X → Y , if r1 ◦ m = r2 ◦ m,



AXIOMS FOR THE CATEGORY OF SETS AND RELATIONS 309

r1 ◦ n = r2 ◦ n, and n is a complement of m, then r1 = r2. In Rel, each pair of
complementary injections, m and n, is jointly epic because the union of their ranges
is X. In HilbF, each pair of complementary isometries, m and n, is jointly epic
because the union of their ranges spans X.

(D) Each pair of objects has a coproduct whose inclusions are orthogonal dagger kernels:
for all objects X and Y , there exist an object W and dagger kernels i : X → W and
j : Y → W such that j† ◦ i = 0X,Y and such that each pair of morphisms r : X → Z
and s : Y → Z factors uniquely through i and j.

X W Y

Z

i

r
!

j

s

In this case the object W , together with the morphisms i and j, is said to be a
dagger biproduct of X and Y . It is both their product and their coproduct. In Rel,
a dagger biproduct of sets X and Y is a disjoint union of X and Y , and in HilbF, a
dagger biproduct of Hilbert spaces X and Y is a direct sum of X and Y .

(E) The monoidal unit is not a zero object: I is neither initial nor terminal. In Rel,
we have that {∗} ̸∼= ∅ because cardinality is an isomorphism invariant. In HilbF, we
have that F1 ̸∼= F0 because dimension is an isomorphism invariant.

(F) Each nonzero endomorphism of the monoidal unit is invertible: every nonzero mor-
phism a : I → I has an inverse. In Rel, there is exactly one nonzero endomorphism
of the monoidal unit I = {∗}. In HilbF, the nonzero endomorphisms of the monoidal
unit I = F1 are exactly the nonzero elements of F, which form a group because F is
a field.

(G) The monoidal unit is a monoidal separator: for all distinct r1, r2 : X⊗Y → Z, there
exist a : I → X and b : I → Y such that f1 ◦ (a⊗ b) ̸= f2 ◦ (a⊗ b). In Rel, morphisms
{∗} → X for a set X correspond exactly to the elements of X, so the monoidal
unit is a monoidal separator because the Cartesian product X ⊗ Y consists of pairs
of elements. In HilbF, morphisms F1 → X correspond exactly to the vectors in X,
so the monoidal unit is a monoidal separator because elementary tensors span the
tensor product X ⊗ Y .

Axioms A–G prescribe the existence of various objects and morphisms that need not
be unique. For convenience, we introduce notations for specific choices of these objects
and morphisms. In Rel, we write 0 = ∅, and in HilbF, we write 0 = F0. In Rel, we write
X ⊕ Y for the standard disjoint union of sets X and Y , and in HilbF, we write X ⊕ Y
for the standard direct sum of Hilbert spaces X and Y . In Rel, we write ker(r) for the
inclusion function that is a dagger kernel of a relation r : X → Y , and in HilbF, we write
ker(r) for the inclusion operator that is a dagger kernel of an operator r : X → Y .
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In an arbitrary dagger symmetric monoidal category that satisfies axioms A–G, it may
not be possible to choose a dagger kernel m = ker(r) for each morphism r : X → Y , and
it may not be possible to choose a dagger biproduct W = X ⊕ Y for each pair of objects
X and Y , because the objects of the category may form a proper class. In this case,
we make such choices only as necessary. We can always choose dagger kernels so that
ker(r1) = ker(r2) whenever ker(r1) and ker(r2) represent the same subobject of X, i.e.,
whenever r2 = r1 ◦ i for some isomorphism i. Our choice of canonical dagger kernels in
Rel and in HilbF follows this convention, and it significantly reduces clutter.

The dagger symmetric monoidal category FinHilbF of finite-dimensional Hilbert satis-
fies axioms A–G as well, and in some respects, it occupies a middle ground between Rel
and HilbF. For example, in both FinHilbF and HilbF, every dagger monomorphism is a
dagger kernel, i.e., every morphism m : A → X that satisfies m† ◦m = idA is the kernel
of some morphism r : X → Y . This does not occur in Rel. For example, the relation
f † : A → X is a dagger monomorphism but not a dagger kernel when A is a singleton,
X is a pair, and f : X → A is a function. On the other hand, in both FinHilbF and Rel,
every object has a dagger dual, but this does not occur in HilbF. We review dagger duals
now.

Let α, β, and γ, denote the associator, braiding, and left unitor of a dagger symmetric
monoidal category, respectively. A dagger dual of an object X is an object X∗ together
with a morphism ηX : I → X∗ ⊗X such that

γ̄X ◦ (idX ⊗ η†X) ◦ αX,X∗,X ◦ (ηX∗ ⊗ idX) ◦ γ†
X = idX

γ̄X∗ ◦ (idX∗ ⊗ η†X∗) ◦ αX∗,X,X∗ ◦ (ηX ⊗ idX∗) ◦ γ†
X∗ = idX∗ ,

where γ̄X = γX ◦βX,I , γ̄X∗ = γX∗ ◦βX∗,I , and ηX∗ = βX∗,X ◦ηX . In this case, the object X
together with the morphism ηX∗ : I → X ⊗X∗ is a dagger dual of X∗ as well. Of course,
a dagger dual of X is also a dual of X in the standard sense [19]. A dagger symmetric
monoidal category in which every object has a dagger dual has been called a strongly
compact closed category [2] and then a dagger compact closed category [22].

In Rel, the dagger dual of a set X is the same set X∗ = X together with the relation
ηX that relates the unique element of the monoidal unit to all pairs of the form (x, x)
for x ∈ X. In FinHilbF, the dagger dual of a finite-dimensional Hilbert space X is the
conjugate Hilbert space X∗ = X together with the operator ηX : 1 7→

∑
i∈M ei ⊗ ei,

where {ei | i ∈ N} is any orthonormal basis of X and {ei | i ∈ N} is the corresponding
orthonormal basis of X. In an arbitrary dagger compact closed category, it may not be
possible to choose a dagger dual X∗ for each object X because the objects of the category
may form a proper class. In this case, we make such choices only as necessary. We can
always choose dagger duals so that X∗∗ = X. Our choice of canonical dagger duals in
Rel and in FinHilbF follows this convention. In HilbF, no infinite-dimensional Hilbert space
has a dagger dual [14, example 3.2].
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3. Infinite biproducts and complete semirings

The biproduct ⊕ is classically defined in the setting of abelian categories [19]. In any
abelian category, we have that f + g = ∇Y ◦ (f ⊕ g) ◦ ∆X , where ∆X : X → X ⊕ X
and ∇Y : Y ⊕ Y → Y are the diagonal and the codiagonal morphisms, respectively. This
equation provides a bridge to an alternative definition of abelian categories, in which
no enrichment is assumed [6, 21]. In this context, a biproduct of objects X and Y is
an object X ⊕ Y together with “projections” p : X ⊕ Y → X and q : X ⊕ Y → Y and
“inclusions” i : X → X ⊕ Y and j : Y → X ⊕ Y such that (X ⊕ Y, p, q) is a product, such
that (X ⊕ Y, i, j) is a coproduct, and such that p ◦ i = idX , q ◦ j = idY , q ◦ i = 0X,Y , and
p ◦ j = 0Y,X .

Neither Rel nor HilbF are abelian categories. Fortunately, biproducts yield a canonical
enrichment over commutative monoids in a more general setting that includes both of
these categories [18, section 19]. In Rel, each infinite family of objects has a biproduct,
and this property distinguishes Rel from HilbF. This means that for any family of objects
{Xα}α∈M , there exists an object X =

⊕
α∈M Xα together with “projections” pα : X → Xα

that make X a product and “inclusions” iα : Xα → X that make X a coproduct such that
pα ◦ iα = idXα and otherwise pα ◦ iβ = 0Xβ ,Xα . These biproducts yield a canonical
enrichment over complete monoids in a straightforward generalization of the finite case;
see [16, Proposition 2.3] and [9, Theorem 3.0.17].

A complete monoid is an abelian monoid in which one can form the sum of any
indexed family of elements. For each set R, let Fam(R) be the class of all indexed families
of elements of R. Formally, a complete monoid is a set R together with an operation
Σ: Fam(R) → R that maps singleton families to their elements and that satisfies the
associativity condition ∑

α∈M

rα =
∑
β∈N

∑
α∈f−1(β)

rα

for every function f : M → N [10, 16]. If {rα}α∈M is a family of morphisms X → Y in a
category with biproducts for all indexed families of objects, then

∑
α∈M

rα := ∇ ◦

(⊕
α∈M

rα

)
◦∆,

where ∆: X →
⊕

α∈M X is the diagonal map and ∇ :
⊕

α∈M Y → Y is the codiagonal
map.

Thus, for each object X in a category with all biproducts, the set of all morphisms
X → X is both a complete monoid with respect to the operation

∑
and a monoid with

respect to the operation ◦. Enrichment over complete monoids implies that the latter
operation distributes over the former operation in the sense that

∑
α∈M

s ◦ rα = s ◦

(∑
α∈M

rα

)
,

∑
α∈M

rα ◦ s =

(∑
α∈M

rα

)
◦ s.
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In other words, the endomorphisms of X form a complete semiring [8, 16].
In the setting of dagger categories, a dagger biproduct of an indexed family {Xα}α∈M

is a biproduct
⊕

α∈M Xα such that pα = i†α for each α ∈ M . It follows that the morphisms
iα are dagger monomorphisms in the sense that i†α ◦ iα = idXα and that they are pairwise-
orthogonal in the sense that i†α ◦ iβ = 0Xβ ,Xα for α ̸= β. Thus, the existence of dagger
biproducts for all families of objects implies axiom D. In the case of dagger biproducts,
the diagonal map ∆: X →

⊕
α∈M X and the codiagonal map ∇ :

⊕
α∈M X → X are

related by ∇ = ∆†. It follows that in a dagger category with all dagger biproducts, the
endomorphisms of X form a complete semiring with sums that are defined by

∑
α∈M

rα := ∆† ◦

(⊕
α∈M

rα

)
◦∆.

The operation † is an involution that satisfies (r◦s)† = s†◦r† and
(∑

α∈M rα
)†

=
∑

α∈M r†α.

4. Complete Boolean algebras

Let (C,⊗, I, †) be a dagger symmetric monoidal category with dagger biproducts for all
families of objects. Assume that every morphism has a kernel that is dagger monic and
that k and k⊥ := ker(k†) are jointly epic for every dagger kernel k. The latter condition
means that f = g whenever f ◦ k = g ◦ k and f ◦ k⊥ = g ◦ k⊥. Further, assume that I is
a separator, that I is nonzero, and that all nonzero morphisms I → I are invertible. In
this section, we show that for each object X, morphisms I → X form a complete Boolean
algebra. First, we use an Eilenberg swindle to show that the scalars of C must be the
Boolean algebra {0, 1}.

4.1. Lemma. Let (R,Σ, ·) be a complete semiring, and let R× = R \ {0}. If (R×, · ) is a
group, then R× = {1}, and 1 + 1 = 1.

Proof. Let ω = 1 + 1 + · · · . Clearly ω + ω = ω. Furthermore, ω ̸= 0, because equality
would imply that 0 = ω = ω + 1 = 0 + 1 = 1. We now calculate that

1 + 1 = ω−1 · ω + ω−1 · ω = ω−1 · (ω + ω) = ω−1 · ω = 1.

Thus, r + r = r for all r ∈ R, and R is a join semilattice with r ∨ s = r + s; we define
r ≤ s if r + s = s [4, Theorem 1.12].

By distributivity, R× is a partially ordered group. Furthermore, it has a maximum
element m :=

∑
r∈R r. We now calculate, for all r ∈ R×, that r = r · 1 = r ·m ·m−1 ≤

m ·m−1 = 1. This implies that R× is trivial because 1 = r · r−1 ≤ r · 1 = r ≤ 1 for all
r ∈ R×.
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For all objects X and Y , let 0X,Y be the morphism X → Y that factors through 0.

4.2. Proposition.The two endomorphisms of I are 0 := 0I,I and 1 := idI , and 1+1 = 1.

Proof. The endomorphism set C(I, I) is a complete semiring for the operations

∑
α∈M

rα := ∆† ◦

(⊕
α∈M

rα

)
◦∆, r · s := r ◦ s;

see section 3. The multiplicative identity 1 is nonzero because I is nonzero by assump-
tion, and the nonzero elements of C(I, I) are invertible by assumption. Therefore, by
Lemma 4.1, the only nonzero element of C(I, I) is the identity 1, and 1 + 1 = 1.

4.3. Proposition. Let X and Y be objects of C. We can partially order the morphisms
X → Y by r ≤ s if r + s = s. Then, C(X, Y ) is a complete lattice with∨

α∈M

rα =
∑
α∈M

rα.

Proof. For all a : I → X and all r : X → Y , we calculate that

(r + r) ◦ a = r ◦ a+ r ◦ a = r ◦ a ◦ 1 + r ◦ a ◦ 1 = r ◦ a ◦ (1 + 1) = r ◦ a ◦ 1 = r ◦ a.

Since I is a separator, we conclude that r + r = r for all r : X → Y . Hence, C(X, Y ) is
an idempotent commutative monoid. Therefore, it is a poset with the given order, and
moreover, r1 + r2 is the join of morphisms r1, r2 : X → Y .

This reasoning is sound for infinitely many summands. For all morphisms a : I → X
and r : X → Y and all nonempty sets M , we calculate that(∑

α∈M

r

)
◦ a =

∑
α∈M

r ◦ a =
∑
α∈M

r ◦ a ◦ 1 = r ◦ a ◦
∑
α∈M

1 = r ◦ a ◦ 1 = r ◦ a,

where
∑

α∈M 1 = 1 because
∑

α∈M 1 is clearly an upper bound for 1 in C(I, I). Therefore,∑
α∈M r = r for all morphisms r : X → Y and all nonempty sets M .
Let {rα}α∈M be any nonempty indexed family of morphisms X → Y . The sum∑

α∈M rα is clearly an upper bound. Let s be another upper bound. Then, rα + s = s for
all α ∈ M , and hence

s =
∑
α∈M

s =
∑
α∈M

(rα + s) =
∑
α∈M

rα +
∑
α∈M

s =

(∑
α∈M

rα

)
+ s.

We conclude that
∑

α∈M rα ≤ s and, more generally, that
∑

α∈M rα is the least upper
bound of {rα}α∈M . Therefore, C(X, Y ) is a complete lattice with

∨
α∈M rα =

∑
α∈M rα.
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4.4. Definition. For each object X, let ⊤X be the maximum morphism I → X, i.e., let

⊤X =
∑

a : I→X

a,

and let 0X be the minimum morphism I → X, i.e., let 0X = 0I,X .

We will soon show that the ker(⊤†
X) is zero. To avoid clutter, we choose a repre-

sentative for each isomorphism class of dagger kernels into X, so that for all morphisms
r and s out of X, the kernels ker(r) and ker(s) are uniquely defined and furthermore
ker(r) = ker(s) whenever ker(r) ∼= ker(s). If the objects of C form a proper class, and if
our foundations do not allow us to choose representative dagger kernels for each of them,
then we make such choices only as necessary.

4.5. Proposition. Let r : X → Y . We have that r = 0X,Y if and only if r ◦ ⊤X = 0Y .
Furthermore, coker(r) = coker(r ◦ ⊤X).

Proof. The forward direction of the equivalence is trivial. For the backward direction,
assume that r ◦⊤X = 0Y . By the monotonicity of composition in the second variable, we
have that r ◦ a = 0Y for all a : I → X. Because I is a separator, we conclude that r = 0,
as desired. Hence, we have proved the equivalence.

To prove the equality, we compare coker(r) : X → A and coker(r ◦ ⊤X) : X → B.
We first observe that coker(r) ◦ r ◦ ⊤X = 0A, so coker(r) factors through coker(r ◦ ⊤X).
Next, we observe that coker(r ◦ ⊤X) ◦ r ◦ ⊤X = 0B. Via the proved equivalence, we infer
that coker(r ◦ ⊤X) ◦ r = 0X,B, so coker(r ◦ ⊤X) factors through coker(r). It follows that
coker(r) and coker(r ◦ ⊤X) are equal.

4.6. Definition. For each morphism a : I → X, let ¬a be the maximum morphism
I → X such that a† ◦ ¬a = 0.

4.7. Lemma. Let a : I → X. Then, j = ker(a†)⊥ satisfies a = j ◦⊤A and ¬a = j⊥ ◦⊤A⊥,
where A is the domain of j and A⊥ is the domain of j⊥.

Proof. For all b : I → X, we have the following chain of equivalences:

(j ◦ ⊤A)
† ◦ b = 0 ⇐⇒ ⊤†

A ◦ j† ◦ b = 0 ⇐⇒ j† ◦ b = 0

⇐⇒ (∃c) b = ker(j†) ◦ c ⇐⇒ (∃c) b = j⊥ ◦ c
⇐⇒ (∃c) b = ker(a†) ◦ c ⇐⇒ a† ◦ b = 0.

The second equivalence follows by Proposition 4.5. The second-to-last equivalence follows
by [11, Lemma 3]. Because I is a separator, we conclude that (j◦⊤A)

† = a† or equivalently
that j ◦ ⊤A = a.

We prove the equation ¬a = j⊥ ◦ ⊤A⊥ as a pair of inequalities. In one direction, we
calculate that a† ◦ j⊥ ◦ ⊤A⊥ = a† ◦ ker(a†) ◦ ⊤A⊥ = 0, concluding that j⊥ ◦ ⊤A⊥ ≤ ¬a. In
the other direction, we reason that

a† ◦ ¬a = 0 =⇒ (∃c) ¬a = ker(a†) ◦ c = j⊥ ◦ c =⇒ ¬a ≤ j⊥ ◦ ⊤A⊥ .

Therefore, ¬a = j⊥ ◦ ⊤A⊥ , as claimed.
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4.8. Proposition. For each object X, the lattice C(I,X) is an ortholattice when it is
equipped with the orthocomplement a 7→ ¬a. In other words, ¬¬a = a, a ∧ ¬a = 0X ,
a ∨ ¬a = ⊤X , and a ≤ b implies that ¬b ≤ ¬a for all a, b : I → X.

Proof. The operation a 7→ ¬a is antitone as an immediate consequence of Definition
4.6, and we now show that it is furthermore an order-reversing involution. Let b = ¬a.
By Lemma 4.7, the morphisms j = ker(a†)⊥ : A → X and k = ker(b†)⊥ : B → X are such
that a = j ◦ ⊤A, that ¬a = j⊥ ◦ ⊤A⊥ , that b = k ◦ ⊤B, and that ¬b = k⊥ ◦ ⊤B⊥ . By
Proposition 4.5,

k = ker(b†)⊥ = ker(⊤†
A⊥ ◦ j⊥†)⊥ = ker(j⊥†)⊥ = j⊥⊥⊥ = j⊥.

Thus, k⊥ = j⊥⊥ = j, and ¬¬a = ¬b = k⊥◦⊤B⊥ = j◦⊤A = a. Therefore, a 7→ ¬a is indeed
an order-reversing involution. For all a : I → X, we also have that (a∧¬a)† ◦ (a∧¬a) ≤
a†◦¬a = 0 and thus that a∧¬a = 0X . Dually, a∨¬a = ¬¬a∨¬a = ¬(¬a∧a) = ¬0X = ⊤X .
Thus, ¬a is a complement of a for all a : I → X, and therefore, C(I,X) is an ortholattice.

4.9. Lemma. Let j : A → X be a dagger kernel. Then, j ◦ j† + j⊥ ◦ j⊥† = idX .

Proof. Let i = [j, j⊥] : A⊕ A⊥ → X, where the bracket notation refers to the universal
property of the coproduct. Let inc1 : A → A⊕A⊥ and inc2 : A

⊥ → A⊕A⊥ be the coproduct
inclusions. We calculate that inc†1 ◦ i† ◦ i ◦ inc1 = j† ◦ j = idA = inc†1 ◦ idA⊕A⊥ ◦ inc1, and
similarly, inc†2 ◦ i† ◦ i◦ inc2 = inc†2 ◦ idA⊕A⊥ ◦ inc2. We also calculate that inc†1 ◦ i† ◦ i◦ inc2 =
j† ◦ j⊥ = 0A⊥,A = inc†1 ◦ idA⊕A⊥ ◦ inc2, and dually, inc†2 ◦ i† ◦ i ◦ inc1 = inc†2 ◦ idA⊕A⊥ ◦ inc1.
We conclude that i† ◦ i = idA⊕A⊥ , in other words, that i is dagger monic. It is also epic
because j and j⊥ are jointly epic by assumption. Therefore, i is a dagger isomorphism.
We now calculate that

idX = i ◦ i† = [j, j⊥] ◦ [j, j⊥]† = ∇X ◦ (j ⊕ j⊥) ◦ (j ⊕ j⊥)† ◦ ∇†
X = j ◦ j† + j⊥ ◦ j⊥†.

4.10. Theorem. For each object X, the lattice C(I,X) is a complete Boolean algebra.

Proof. We have already shown that C(I,X) is a complete ortholattice. It remains to
prove the distributive law. Let a : I → X. We will show that b 7→ a ∧ b distributes over
joins.

Let b : I → X. By Lemma 4.7, the dagger kernel j = ker(a†)⊥ : A → X satisfies
j ◦⊤A = a. We claim that j ◦ j† ◦ b = a∧ b. We certainly have that j ◦ j† ◦ b ≤ j ◦⊤A = a,
and by Lemma 4.9, we also have that j ◦ j† ◦ b ≤ j ◦ j† ◦ b+ j⊥ ◦ j⊥† ◦ b = b. Thus, j ◦ j† ◦ b
is a lower bound for a and b.

Let c : I → X be any lower bound for a and b. Then, (¬a)† ◦ c ≤ (¬a)† ◦ a = 0, so
c = ker((¬a)†) ◦ d for some morphism d. Applying Lemma 4.7 again, we calculate that
c = ker(⊤†

A⊥ ◦ j⊥†) ◦ d = ker(j⊥†) ◦ d = j⊥⊥ ◦ d = j ◦ d. It follows that

c = j ◦ d = j ◦ j† ◦ j ◦ d = j ◦ j† ◦ c ≤ j ◦ j† ◦ b.
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Therefore, j ◦ j† ◦ b = a ∧ b for all b : I → X.
Let b1, b2 : I → X. We calculate that

a ∧ (b1 ∨ b2) = j ◦ j† ◦ (b1 + b2) = j ◦ j† ◦ b1 + j ◦ j† ◦ b2 = (a ∧ b1) ∨ (a ∧ b2).

Therefore, a ∧ (b1 ∨ b2) = (a ∧ b1) ∨ (a ∧ b2) for all a, b1, b2 : I → X. We conclude that
C(I,X) is a Boolean algebra.

5. Characterizations of Rel

Additionally, assume that (C,⊗, I, †) is dagger compact closed [22, 1]. This means that
each object has a dagger dual. Explicitly, for each object X, there exists an object X∗

and a morphism ηX : I → X∗ ⊗ X such that ηX and ηX∗ := βX∗,X ◦ ηX together satisfy

(idX⊗η†X)◦(ηX∗⊗idX) = idX and (idX∗⊗η†X∗)◦(ηX⊗idX∗) = idX∗ . Here, β is the braiding,
and we have suppressed the associator and the unitors. See section 2 for more details.
More commonly, the dagger dual of X is equivalently defined in terms of two morphisms
ηX : I → X∗ ⊗X and ϵX : X ⊗X∗ → I that are then related by ϵ†X = βX∗,X ◦ ηX .

In any dagger compact closed category, we have a bijection C(X⊗Y, Z) → C(Y,X∗⊗Z)
that is defined by r 7→ (idX∗ ⊗ r) ◦ (ηX ⊗ idY ). We use this bijection to show that the
monoidal unit is a monoidal separator.

5.1. Proposition. I is a monoidal separator.

Proof. Let r1, r2 : X⊗Y → Z, and assume that r1◦(a⊗b) = r2◦(a⊗b) for all a : I → X
and b : I → Y . This equation is equivalent to r1◦(idX⊗b)◦a = r2◦(idX⊗b)◦a. It follows
that r1 ◦ (idX ⊗ b) = r2 ◦ (idX ⊗ b) for all b : I → Y , because I is a separator. Applying the
canonical bijection C(X,Z) → C(I,X∗ ⊗Z), we find that (idX∗ ⊗ (r1 ◦ (idX ⊗ b))) ◦ ηX =
(idX∗ ⊗ (r2 ◦ (idX ⊗ b))) ◦ ηX . Now we compute that

(idX∗ ⊗ r1) ◦ (ηX ⊗ idY ) ◦ b = (idX∗ ⊗ (r1 ◦ (idX ⊗ b))) ◦ ηX
= (idX∗ ⊗ (r2 ◦ (idX ⊗ b))) ◦ ηX = (idX∗ ⊗ r2) ◦ (ηX ⊗ idY ) ◦ b.

It follows that (idX∗ ⊗ r1)◦ (ηX ⊗ idY ) = (idX∗ ⊗ r2)◦ (ηX ⊗ idY ), because I is a separator.
Since the function r 7→ (idX∗ ⊗ r) ◦ (ηX ⊗ idY ) is a bijection C(X⊗Y, Z) → C(Y,X∗⊗Z),
we conclude that r1 = r2. More generally, we conclude that I is a monoidal separator.

Recall that an element x of a Boolean algebra is said to be an atom if a ≤ x implies
that a = x or a = 0, where 0 is the minimum element of the Boolean algebra.

5.2. Lemma. Let X be an object. If ⊤†
X ◦ ⊤X = 1, then C(I,X) contains an atom.

Proof. Assume that ⊤†
X ◦ ⊤X = 1, and assume that C(I,X) contains no atoms. Let

s : X → X be the morphism s = sup{¬c ◦ c† | c : I → X}. Let a be a nonzero morphism
I → X. By assumption, a is not an atom, so a = a1 ∨ a2 for some disjoint nonzero
a1, a2 : I → X. Hence,

s ◦ a ≥ ((¬a1 ◦ a†1) ∨ (¬a2 ◦ a†2)) ◦ a = (¬a1 ◦ a†1 ◦ a) ∨ (¬a2 ◦ a†2 ◦ a)
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= ¬a1 ∨ ¬a2 = ¬(a1 ∧ a2) = ¬0X = ⊤X .

We conclude that s ◦ a = ⊤X for all nonzero a : I → X, and of course, s ◦ 0X = 0X .
Because I is separating, it follows that s = ⊤X ◦ ⊤†

X .
The monoidal category (C,⊗, I) has a trace because it is compact closed. The trace

of an endomorphism r : X → X is defined by Tr(r) = η†X ◦ (idX∗ ⊗ r) ◦ ηX ∈ C(I, I). For
the standard properties of the trace, see [14, section 3.4.5]. The enrichment of C over
complete monoids [16, Proposition 2.3] immediately implies that Tr: C(X,X) → C(I, I)
is a homomorphism of complete monoids. We use these properties to calculate that

1 = Tr(1) = Tr(⊤†
X ◦ ⊤X) = Tr(⊤X ◦ ⊤†

X) = Tr

( ∨
c : I→X

¬c ◦ c†
)

=
∨

c : I→X

Tr(¬c ◦ c†) =
∨

c : I→X

Tr(c† ◦ ¬c) =
∨

c : I→X

0 = 0.

This conclusion contradicts Proposition 4.2. Therefore, C(I,X) has at least one atom.

Recall that a Boolean algebra is said to be atomic if every nonzero element is greater
than or equal to an atom. A complete Boolean algebra that is atomic is also atomistic,
which means that every element is the join of some set of atoms.

5.3. Theorem. Let X be an object. Then C(I,X) is a complete atomic Boolean algebra.

Proof. Assume that C(I,X) is not atomic. It follows that there exists a nonzero mor-
phism a : I → X such that there exist no atoms x ≤ a. By Lemma 4.7, there exists a
dagger kernel j : A → X such that j ◦ ⊤A = a and hence ⊤†

A ◦ ⊤A = a† ◦ a = 1. By
Lemma 5.2, C(I, A) contains an atom z.

We claim that j◦z is an atom of C(I,X). This morphism is certainly nonzero, because
j† ◦ j ◦ z = z ̸= 0A. Let b ≤ j ◦ z be nonzero too. Then, j⊥ ◦ j⊥† ◦ b ≤ j⊥ ◦ j⊥† ◦ j ◦ z = 0X ,
so

j ◦ j† ◦ b = j ◦ j† ◦ b+ j⊥ ◦ j⊥† ◦ b = b

by Lemma 4.9. Thus, j†◦b ̸= 0A because otherwise, we would have that b = j◦j†◦b = 0X .
Furthermore, j† ◦ b ≤ j† ◦ j ◦ z = z. Because z is an atom, we conclude that j† ◦ b = z
and hence that b = j ◦ j† ◦ b = j ◦ z. Therefore, j ◦ z is an atom.

Of course, j ◦ z ≤ j ◦ ⊤A = a, so there is a contradiction with our choice of a. We
conclude that C(I,X) is atomic after all.

5.4. Definition. For each object X, define E(X) to be the set of atoms of C(I,X). For
each morphism r : X → Y , define E(r) = {(x, y) ∈ E(X)× E(Y ) | y† ◦ r ◦ x = 1}.

We show that E is an equivalence of dagger symmetric monoidal categories C → Rel.
We will often appeal to the following elementary proposition.

5.5. Proposition. Let X be an object, and let x1, x2 ∈ E(X). Then, x1 = x2 iff
x†
1 ◦ x2 = 1.
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Proof. Because C(I,X) is a Boolean algebra, we have that

(x1 ∧ x2) ∨ (¬x1 ∧ x2) = (x1 ∨ ¬x1) ∧ x2 = x2,

(x1 ∧ x2) ∧ (¬x1 ∧ x2) = x1 ∧ ¬x1 ∧ x2 = 0X .

Since x2 is an atom and x1∧x2,¬x1∧x2 ≤ x2, we infer that x1∧x2 = x2 iff if ¬x1∧x2 ̸= x2.
We now reason that

x1 = x2 ⇐⇒ x2 ≤ x1 ⇐⇒ x1 ∧ x2 = x2 ⇐⇒ ¬x1 ∧ x2 ̸= x2

⇐⇒ x2 ̸≤ ¬x1 ⇐⇒ x†
1 ◦ x2 ̸= 0 ⇐⇒ x†

1 ◦ x2 = 1.

The first equivalence holds by the definition of an atom, and the fifth equivalence holds
by Definition 4.6. Thus, the proposition is proved.

5.6. Lemma. Let X be an object. Then, idX =
∨

x∈E(X)

x ◦ x†.

Proof. We apply Proposition 5.5 to calculate that for all a : I → X,

 ∨
x∈E(X)

x ◦ x†

 ◦ a =

 ∨
x∈E(X)

x ◦ x†

 ◦

 ∨
y∈E(X)
y≤a

y


=

∨
x∈E(X)

∨
y∈E(X)
y≤a

x ◦ x† ◦ y =
∨

x∈E(X)
x≤a

x = a = idX ◦ a.

We conclude the claimed equality because I is a separator.

5.7. Lemma. E is a dagger functor C → Rel. This means that E is a functor such that
E(r†) = E(r)† for all morphisms r of C.

Proof. Let X be an object of C.

E(idX) = {(x1, x2) ∈ E(X)× E(X) | x†
2 ◦ idX ◦ x1 = 1}

= {(x1, x2) ∈ E(X)× E(X) | x1 = x2} = idE(X).

Let r : X → Y and s : Y → Z be morphisms of C. We apply Lemma 5.6 to calculate that

E(s ◦ r) = {(x, z) ∈ E(X)× E(Z) | z† ◦ s ◦ r ◦ x = 1}
= {(x, z) ∈ E(X)× E(Z) | z† ◦ s ◦ (

∨
y∈E(Y ) y ◦ y†) ◦ r ◦ x = 1}

= {(x, z) ∈ E(X)× E(Z) |
∨

y∈E(Y ) z
† ◦ s ◦ y ◦ y† ◦ r ◦ x = 1}

= {(x, z) ∈ E(X)× E(Z) |
∨

y∈E(Y )(z
† ◦ s ◦ y) ∧ (y† ◦ r ◦ x) = 1}

= {(x, z) ∈ E(X)× E(Z) | z† ◦ s ◦ y = 1 and y† ◦ r ◦ x = 1 for some y ∈ E(Y )}
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= {(x, z) ∈ E(X)× E(Z) | (y, z) ∈ s and (x, y) ∈ r for some y ∈ E(Y )}
= E(s) ◦ E(r).

Thus, E is a functor. Furthermore,

E(r†) = {E(Y )× E(X) | x† ◦ r† ◦ y = 1}
= {E(Y )× E(X) | y† ◦ r ◦ x = 1}
= {E(Y )× E(X) | (x, y) ∈ E(r)} = E(r)†.

Therefore, E is a dagger functor.

5.8. Proposition. E is a dagger equivalence C → Rel. This means that E is a full and
faithful dagger functor and every set is dagger isomorphic to E(X) for some object X.

Proof. Let r, s : X → Y . Assume that E(r) = E(s), i.e., that y† ◦ r ◦x = y† ◦ s◦x for all
atoms x : I → X and all atom y : I → Y . Since C(I,X) and C(I, Y ) are complete atomic
Boolean algebras by Theorem 5.3, we find that b† ◦ r ◦ a = b† ◦ s ◦ a for all morphisms
a : I → X and all morphisms b : I → Y . Appealing twice to our assumption that I is a
separator, we conclude that r = s. Therefore, E is faithful.

Let X and Y be objects of C, and let R : E(X) → E(Y ) be a binary relation. We
reason that for all x0 ∈ E(X) and y0 ∈ E(Y ),

(x0, y0) ∈ E

 ∨
(x,y)∈R

y ◦ x†

 ⇐⇒ y†0 ◦

 ∨
(x,y)∈R

y ◦ x†

 ◦ x0 = 1

⇐⇒
∨

(x,y)∈R

y†0 ◦ y ◦ x† ◦ x0 = 1 ⇐⇒
∨

(x,y)∈R

(y†0 ◦ y) ∧ (x† ◦ x0) = 1

⇐⇒ y†0 ◦ y = 1 and x† ◦ x0 = 1 for some (x, y) ∈ R ⇐⇒ (x0, y0) ∈ R.

We conclude that E
(∨

(x,y)∈R y ◦ x†
)
= R. Therefore, E is full.

Let M be a set. Let X =
⊕

m∈M I, and for each m ∈ M , let jm : I → X be the
inclusion morphism for the summand of index m. We prove that jm is an atom. Let
a : I → X be a nonzero morphism such that a ≤ jm. It follows that a

† ◦ jm ≥ a† ◦ a = 1.
Furthermore, for all m′ ̸= m, we have that a† ◦ jm′ ≤ j†m ◦ jm′ = 0. By the universal
property of X, we conclude that a† = j†m or equivalently that a = jm. Therefore, jm is an
atom for all m ∈ M .

Suppose that there is an atom x : I → X such that x ̸= jm for all m ∈ M . Then
x† ◦ jm = 0. By the universal property of X, we conclude that x† = 0X,I , contradicting
that x is an atom. Thus, E(X) = {jm | m ∈ M}. The function m 7→ jm is a dagger
isomorphism M → E(X) in Rel because it is a bijection. Therefore, every set is dagger
isomorphic to E(X) for some object X of C.
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Finally, we prove that E is a monoidal functor. We suppress unitors throughout.

5.9. Lemma. Let X and Y be objects of C. Then, x ⊗ y ∈ E(X ⊗ Y ) for all x ∈ E(X)
and y ∈ E(Y ), and this defines a bijection µX,Y : E(X)× E(Y ) → E(X ⊗ Y ).

Proof. Let x ∈ E(X) and y ∈ E(Y ). Then, x⊗y is nonzero because (x⊗y)†◦(x⊗y) = 1.
The Boolean algebra C(I,X ⊗ Y ) is atomic, so there is an atom z ∈ E(X ⊗ Y ) such that
z ≤ x ⊗ y. We now show that z = x ⊗ y by appealing to the fact that I is a monoidal
separator by Lemma 5.1.

Let a : I → X and b : I → Y . If x ≤ ¬a or y ≤ ¬b, then x† ◦ a = 0 or y† ◦ b = 0, so

z† ◦ (a⊗ b) ≤ (x⊗ y)† ◦ (a⊗ b) = (x† ◦ a)⊗ (y† ◦ b) = 0

and thus z† ◦ (a⊗ b) = 0 = (x⊗ y)† ◦ (a⊗ b). If x ≤ a and y ≤ b, then

z† ◦ (a⊗ b) ≥ z† ◦ (x⊗ y) ≥ z† ◦ z = 1,

and thus z† ◦ (a⊗ b) = 1 = (x⊗ y)† ◦ (a⊗ b). Therefore, z† ◦ (a⊗ b) = (x⊗ y)† ◦ (a⊗ b)
for all a : I → X and b : I → Y , and we conclude that z† = (x⊗ y)† or equivalently that
z = x⊗ y. Consequently, x⊗ y is an atom.

We have shown that x ⊗ y ∈ E(X ⊗ Y ) for all x ∈ E(X) and y ∈ E(Y ), and hence
(x, y) 7→ (x ⊗ y) defines a function µX,Y : E(X) × E(Y ) → E(X ⊗ Y ). This function is

injective because (x1 ⊗ y1)
† ◦ (x2 ⊗ y2) = (x†

1 ◦ x2) ⊗ (y†1 ◦ y2) = 0 whenever x1 ̸= x2 or
y1 ̸= y2. This function is surjective because, by Lemma 5.6, for all z ∈ E(X ⊗ Y ), we
have that

z = idX⊗Y ◦ z = (idX ⊗ idY ) ◦ z =
∨

x∈E(X)

∨
y∈E(Y )

(x⊗ y) ◦ (x⊗ y)† ◦ z

and thus (x⊗ y)† ◦ z ̸= 0 for some (x, y) ∈ E(X)×E(Y ). Therefore, µX,Y is a bijection.

5.10. Proposition. E is a strong symmetric monoidal functor (C,⊗, I) → (Rel,×, {∗}):

1. the isomorphism {∗} → E(I) is the function ∗ 7→ 1;

2. the natural isomorphism E(X)×E(Y ) → E(X ⊗Y ) is the function (x, y) 7→ x⊗ y.

Proof. For all objects X, Y and Z, let aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) be the
associator in C, and for all sets L, M , and N , let αL,M,N : (L×M)×N → L× (M ×N)
be the associator in Rel. We prove that the following diagram commutes:

(E(X)× E(Y ))× E(Z) E(X)× (E(Y )× E(Z))

E(X ⊗ Y )× E(Z) E(X)× E(Y ⊗ Z)

E((X ⊗ Y )⊗ Z) E(X ⊗ (Y ⊗ Z))

αE(X),E(Y ),E(Z)

µX,Y ×idZ idX×µY,Z

µX⊗Y,Z µX,Y ⊗Z

E(aX,Y,Z)
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The six morphisms in this diagram are binary relations that are functions. In particular,
E(aX,Y,Z) consists of pairs (((x1 ⊗ y1) ⊗ z1), (x2 ⊗ (y2 ⊗ z2))) that satisfy the following
equivalent conditions:

(x2 ⊗ (y2 ⊗ z2))
† ◦ aX,Y,Z◦((x1 ⊗ y1)⊗ z1) = 1

⇐⇒ (x2 ⊗ (y2 ⊗ z2))
† ◦ (x1 ⊗ (y1 ⊗ z1)) = 1

⇐⇒ ((x†
2 ◦ x1)⊗ ((y†2 ◦ y1)⊗ (z†2 ◦ z1)) = 1

⇐⇒ x1 = x2 and y1 = y2 and z1 = z2.

We can now prove that the diagram commutes via function application. We simply
compute that for all x ∈ E(X), y ∈ E(Y ), and z ∈ E(Z), we have that

(E(aX,Y,Z) ◦ µX⊗Y,Z ◦ (µX,Y × idZ))((x, y), z) = (E(aX,Y,Z) ◦ µX⊗Y,Z)(x⊗ y, z)

= E(aX,Y,Z)((x⊗ y)⊗ z) = x⊗ (y ⊗ z) = µX,Y⊗Z(x, y ⊗ z)

= (µX,Y⊗Z ◦ (idX × µY,Z))(x, (y, z)) = (µX,Y⊗Z ◦ (idX × µY,Z) ◦ aE(X),E(Y ),E(Z))((x, y), z).

We conclude that E with the natural bijection µX,Y : E(X)×E(Y ) → E(X ⊗ Y ) is a
strong monoidal functor. The canonical bijection {∗} → E(I) for this monoidal functor
is evidently the unique such bijection [5, section 2.4].

We verify that E respects the braiding. For all objects X and Y , let bX,Y : X ⊗ Y →
Y ⊗X be the braiding in C, and for all sets M and N , let βM,N : M × N → N ×M be
the braiding in Rel. We prove that the following diagram commutes:

E(X)× E(Y ) E(Y )× E(X)

E(X ⊗ Y ) E(Y ⊗X)

µX,Y

βE(X),E(Y )

µY,X

E(bX,Y )

As before, the four morphisms in this diagram are binary relations that are functions. In
particular, E(bX,Y ) consists of pairs (x1⊗ y1, y2⊗x2) that satisfy the following equivalent
conditions:

(y2 ⊗ x2)
† ◦ bX,Y ◦ (x1 ⊗ y1) = 1 ⇐⇒ (y2 ⊗ x2)

† ◦ (y1 ⊗ x1) = 1

⇐⇒ (y†2 ◦ y1)⊗ (x†
2 ◦ x1) = 1 ⇐⇒ x1 = x2 and y1 = y2.

We can now prove that the diagram commutes via function application. We simply
compute that for all x ∈ E(X) and y ∈ E(Y ), we have that

(E(bX,Y ) ◦ µX,Y )(x, y) = E(bX,Y )(x⊗ y) = y ⊗ x = µY,X(y, x) = (µY,X ◦ βE(X),E(Y ))(x, y).

Therefore, E is a strong symmetric monoidal functor.
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5.11. Theorem. Let (C,⊗, I, †) be a dagger compact closed category. If

1. each family of objects has a dagger biproduct,

2. each morphism has a kernel that is dagger monic,

3. k and k⊥ are jointly epic for each dagger kernel k,

4. I is nonzero,

5. each nonzero morphism I → I is invertible,

6. I is a separator,

then the functor E : C → Rel of Definition 5.4 is a strong symmetric monoidal dagger
equivalence. Conversely, it is routine to verify that (Rel,×, {∗}, †) is a dagger compact
closed category satisfying (1)–(6).

Proof. Combine Propositions 5.8 and 5.10.

Assuming sufficient choice, the adjoint of E [19, Theorem IV.4.1] can be selected to
be a dagger functor [20, Lemma 5.1] and can then be made a strong symmetric monoidal
functor [5, Remark 2.4.10]. As corollary of Theorem 5.11, we obtain a characterization of
Rel that is more in the spirit of mathematical logic.

5.12. Corollary. Let (C,⊗, I, †) be a dagger compact closed category. If

(1’) each family of objects has a dagger biproduct,

(2’) I is simple and separating,

(3’) each object X has a unique morphism ⊤X : I → X such that coker(⊤X) = 0,

(4’) each morphism a : I → X has a dagger isomorphism i : A⊕B → X such that

I X

A A⊕B,

a

⊤A

inc1

i

then the functor E : C → Rel of Definition 5.4 is a strong symmetric monoidal dagger
equivalence. Conversely, it is routine to verify that (Rel,×, {∗}, †) is a dagger compact
closed category satisfying (1’)–(4’).

We may gloss these conditions as expressing that (1’) disjoint unions of sets exist, (2’)
the monoidal unit is a singleton set, (3’) every set has a coempty predicate, and (4’) every
predicate on a set determines a subset of that set. In particular, condition (4’) recalls the
axiom of separation in set theory.
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Proof of Corollary 5.12. Assume (1’)–(4’). First, we claim that for all a : I → X,
if a† ◦ a = 0, then a = 0. Applying assumption (4’), we write a = i ◦ inc1 ◦ ⊤A, where
i is a dagger isomorphism and coker(⊤A) = 0. Assume a† ◦ a = 0. Then, 0 = a† ◦ a =
⊤†

A ◦ inc1† ◦ i† ◦ i ◦ inc1 ◦ ⊤A = ⊤†
A ◦ ⊤A. It follows that ⊤†

A factors through 0. Thus, ⊤A

and hence a factor through 0. We have established our first claim.
Second, we claim that there are exactly two morphisms I → I, namely, 0 := 0I ̸= idI

and 1 := ⊤I = idI . Let a : I → I. By assumption (2’), coker(a) = ! : I → 0 or
coker(a) = idI : I → I up to isomorphism. In the former case, a = ⊤I by assumption
(3’), and in the latter case, a = 0I . In particular, idI = ⊤I or idI = 0I . In the latter case,
I ∼= 0, contradicting assumption (2’). Therefore, idI ̸= 0I , and hence idI = ⊤I . We have
established our second claim.

Thus, (C,⊗, I, †) is a dagger compact closed category that satisfies assumptions (1),
(4), (5), and (6) of Theorem 5.11. It remains to show that (C,⊗, I, †) satisfies assumptions
(2) and (3) of Theorem 5.11.

Let r : X → Y . Let a = r◦⊤X . By assumption (4’), there exists a dagger isomorphism
i : A⊕B → Y such that a = i ◦ inc1 ◦⊤A. We claim that inc†2 ◦ i† is a cokernel of r. First,
we calculate that inc†2◦i†◦r◦⊤X = inc†◦i†◦a = inc†2◦i†◦i◦inc1◦⊤A = inc†2◦inc1◦⊤A = 0.
By assumption (3’), we have that inc†2 ◦ i† ◦ r = 0.

Let s : Y → Z be such that s ◦ r = 0X,Z . It follows that s ◦ i ◦ inc1 ◦ ⊤A = s ◦ a =
s ◦ r ◦ ⊤X = 0. By assumption (3’), we have that s ◦ i ◦ inc1 = 0. As for any dagger
biproduct of two objects, we have that coker(inc1) = inc†2, and thus, s ◦ i = t ◦ inc†2 for
some morphism t. We conclude that s = s ◦ i ◦ i† = t ◦ inc†2 ◦ i†.

Therefore, inc†2 ◦ i† is a cokernel of r, as claimed. In other words i ◦ inc2 is a kernel
of r†. The kernel i ◦ inc2 is dagger monic, and hence we have verified assumption (2) of
Theorem 5.11. Furthermore, as for any dagger biproduct of two objects, we have that
inc1 and inc2 are jointly epic and that inc⊥2 = inc1. Hence, i ◦ inc1 and i ◦ inc2 are jointly
epic and (i ◦ inc2)⊥ = i ◦ inc1. We conclude that every dagger kernel is jointly epic with
its orthogonal complement, verifying assumption (3) of Theorem 5.11.

We have verified the assumptions of Theorem 5.11, and we now apply it to obtain the
desired conclusion.

We now complete the proof of Theorem 1.1, which provides comparable characteriza-
tions of the dagger symmetric monoidal categories (Rel,×, {∗}, †) and (HilbF,⊗,F1, †) for
F = R,C.

Proof of Theorem 1.1. Axiom D is just the existence of binary dagger biproducts
[22, 2]. Indeed, any binary coproduct whose inclusions are orthogonal dagger kernels
is clearly a dagger biproduct. Conversely, the inclusions of a binary dagger biproduct
are orthogonal dagger kernels [14, exercise 2.6]. By the same argument, the condition
that every family of objects has a coproduct whose inclusions are pairwise-orthogonal
dagger kernels is just the existence of all dagger biproducts. The backward implication of
statement (i) is thus a corollary of Theorem 5.11; the proof of the forward implication is
routine.
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Statement (ii) is a corollary of [12, Theorem 10]: Assume axioms A–G, that every
dagger monomorphism is a dagger kernel, and that the wide subcategory of dagger kernels
has directed colimits. Then, I is simple as a consequence of axioms E and F. Furthermore,
there is a morphism z : I → I such that 1 + z = 0. Indeed, suppose that there is no such
morphism z, and let ∆4 : I → I ⊕ I ⊕ I ⊕ I be the diagonal map. Then, ∆4/2 is a dagger
monomorphism and hence a dagger kernel. Its cokernel is zero because I is a separator
and (∆4/2)

†◦v ̸= 0 for all nonzero v : I → I⊕I⊕I⊕I. Thus, ∆4/2 is an isomorphism [11,
Lemma 2.3(iv)], which contradicts the assumption that I is nonzero. We conclude that 1
has an additive inverse in C(I, I). It follows that each parallel pair of morphisms, f and
g, has a dagger equalizer, which is equal to the dagger kernel of f − g. Therefore, by [12,
Theorem 10], (C,⊗, I, †) is equivalent to (HilbF,⊗,F1, †) for F = R or F = C. We have
proved the backward implication of statement (ii); the proof of the forward implication is
routine.

5.13. Remark. Finally, it is routine to verify that the dagger compact closed category
(Rel,×, {∗}, †) also has the property that the wide subcategory of dagger kernels has
directed colimits. Indeed, the latter category is simply the category of sets and injections.
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