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DIAGONAL LEMMA FOR PRESHEAVES ON ELEGANT REEDY
CATEGORIES

DANIEL CARRANZA, KRZYSZTOF KAPULKIN AND LIANG ZE WONG

Abstract. The diagonal lemma asserts that if a map of bisimplicial sets is a levelwise
weak equivalence in the Kan–Quillen model structure, then it induces a weak equivalence
of the diagonal simplicial sets. In this paper, we observe that the standard proof of this
fact works in greater generality, namely that of (elegant) Reedy categories.

Introduction

The diagonal lemma is a fundamental result of simplicial homotopy theory [GJ99, Ch. IV].
It states that a map of bisimplicial sets f : X → Y that is a levelwise equivalence (i.e.,
fn : Xn → Yn is a weak homotopy equivalence for every non-negative integer n) induces a
weak homotopy equivalence on the diagonal simplicial sets diagf : diagX → diagY (where
(diagX)m = Xm,m).

The result was independently discovered by Bousfield and Kan [BK72, Lems. XII.4.2–
3], Segal [Seg74, Prop. A.1], and Tornehave (cf. [LTW79, Rem. 3.14]). Newer accounts
include the seminal text of Goerss and Jardine [GJ99, Prop. IV.1.9] and a constructive
proof of the Kan–Quillen model structure due to Gambino, Sattler, and Szumi lo [GSS22,
Prop. 2.3.5].

In particular, the proof presented in [GSS22] generalizes straightforwardly to other
settings in several ways. The first generalization is abstracting away the notion of weak
equivalence in that instead of working with weak homotopy equivalences, one might, for
example, consider weak categorical equivalences of the Joyal model structure. The second
generalization has to do with the indexing category — instead of bisimplicial sets, i.e.,
functors ∆op × ∆op → Set, one might consider more general functors Aop × Aop → Set
or even Aop × Rop → Set, where A and R are sufficiently nice categories, for example,
(elegant) Reedy. Moving to the case of Aop × Rop → Set, one is forced to rethink what
it means to be a ‘diagonal’ functor, and the requisite properties of such a functor can be
axiomatized. Putting all these generalizations together, we prove the following version of
the usual diagonal lemma.

0.1. Theorem. [cf. Theorem 2.8] Suppose A and R are Reedy categories and consider
SetA

op

with a cofibration category structure whose cofibrations are the monomorphisms.
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Let f : X → Y be a morphism in SetA
op×Rop

between Reedy cofibrant diagrams such that
fr : Xr → Yr is a weak equivalence in SetA

op

for all r ∈ R. If d⊗ is a diagonal functor in
the sense of Definition 2.2, then d⊗f : d⊗X → d⊗Y is a weak equivalence.

Examples of applications of this statement abound and we give several in Section 3.
In particular, in subsequent joint work with Lindsey, the first two authors used the above
theorem in the context of the Joyal model structure [CKL23]. Although in all of these
examples, we consider the case A = R, the proof is perhaps the cleanest when considered
in the more general form stated above.

One can consider further generalizations of the above statement. One such gener-
alization would be a weakening of the Reedy condition to allow objects to have non-
trivial automorphisms. Another possibility would be to replace SetA

op

with an arbitrary
(Grothendieck) topos. Although both of these seem plausible, the proof techniques used
here do not apply to them, and hence such generalizations could be a subject of future
work.

The paper is organized as follows. In Section 1, we collect the necessary background
on Reedy categories and the homotopical structure of presheaves thereon, which we use as
a generalization of the simplex category ∆. Then in Section 2, we prove the Generalized
Diagonal Lemma (Theorem 2.8) before giving several examples of interest in Section 3.

Acknowledgement. We thank the anonymous referee for numerous suggestions that
helped improve the quality of the paper, including the generalization from SetA

op×Aop

to
SetA

op×Rop

, which in turn let us identify the necessary assumptions on A and R.
This material is based upon work supported by the National Science Foundation under

Grant No. DMS-1928930 while the first two authors participated in a program hosted by
the Mathematical Sciences Research Institute in Berkeley, California, during the 2022–23
academic year.

1. Preliminaries

In this section, we collect the necessary background on Reedy theory and its extensions,
for which an excellent survey is [Cam23]. We begin by recalling the definition of a Reedy
category.

1.1. Definition. A Reedy category is a category R with a function deg : obR → N and
two wide subcategories R− and R+ of R such that:

1. If a non-identity map r → s is in R−, then deg r > deg s; if a non-identity map
r → s is in R+, then deg r < deg s.

2. For any morphism φ ∈ R, there are unique morphisms φ− ∈ R− and φ+ ∈ R+ such
that φ = φ+φ−.

Note that conditions (1) and (2) imply that R has no non-identity isomorphisms.
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1.2. Example. The simplex category ∆ and several variants of the box category □ (e.g.,
with or without connections) are Reedy categories (cf. [DKLS20, Cor. 1.17]).

1.3. Example. A category I is direct (respectively, inverse) if there exists a function
deg : ob I → N such that for every non-identity morphism i→ j in I, we have deg i < deg j
(respectively, deg i > deg j). With these definitions, every direct or inverse category is a
Reedy category. Moreover, for any Reedy category R, the subcategory R− is inverse and
the subcategory R+ is direct.

We fix two Reedy categories A and R. We shall use the small letters a, b, c, . . . and r,
s, t, . . . to indicate objects of A and R, respectively. The objects of A×R are denoted in
bold as ar = (a, r) or bs = (b, s).

The category of presheaves on A, i.e., contravariant functors Aop → Set is denoted
aSet, and the category of presheaves on R is similarly denoted rSet. The category of
presheaves on A×R is denoted arSet.

We shall use capital letters K, L, . . . to denote presheaves on A or R, and letters
X, Y , . . . to denote presheaves on A × R. Representable presheaves A(−, a) or R(−, r)
represented by a or r are denoted â and r̂, respectively. A representable presheaf A ×
R(−, ar) is denoted âr.

For K ∈ aSet and a ∈ A, we write Ka for the set K(a). For x ∈ Ka and φ : b → a in
A, we write xφ ∈ Kb for the application of the function K(φ) : Ka → Kb to the element
x.

We will see that a version of the diagonal lemma holds for presheaves on arbitrary
Reedy categories (Theorem 2.8). However, an important technical assumption (namely,
Reedy cofibrancy) is simplified (Corollary 2.9) by working with elegant Reedy categories,
a notion due to Bergner and Rezk [BR13]. To state it, we need a preliminary definition.

1.4. Definition. Let K be a presheaf on R and r an object of K. An element x ∈ Kr

is degenerate if there is a non-identity σ : r → s in R− and y ∈ Ks such that x = yσ; it
is non-degenerate if it is not degenerate.

1.5. Definition. A Reedy category R is elegant if for any presheaf K ∈ rSet and any
element x ∈ Kr, there is a unique map σ : r → s in R− and a unique non-degenerate
element y ∈ Ks such that x = yσ.

Just like CW complexes, presheaves on Reedy categories have a notion of skeleta,
which we now define. For n ≥ −1, let R≤n denote the full subcategory of the EZ category
R spanned by objects r with deg r ≤ n. (In particular, R≤−1 is the empty category.) The
inclusion in : R≤n ↪→ R induces adjoint triples

SetR
op
≤n rSet aSetR

op
≤n arSet

(in)!

(in)∗

i∗n

(id×in)!

(id×in)∗

(id×in)∗
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1.6. Definition.

1. For n ≥ −1, the n-skeleton of a presheaf K ∈ rSet is the presheaf SknK = (in)!i
∗
nK.

2. For n ≥ −1, the n-skeleton of a presheaf X ∈ arSet is the presheaf SknX =
(id × in)!(id × in)∗X.

1.7. Notation. For r ∈ R such that deg(r) = n, we write ∂r̂ for the (n − 1)-skeleton
Skn−1 r̂ of r̂.

Recall that every presheaf K ∈ rSet is a colimit of representables K ∼= colim
(r,x)∈

∫
RK

r̂,

where
∫
R
K denotes the category of elements of K. The following result adapts this

colimit to give a description of the n-skeleton of a presheaf.

1.8. Proposition. Given n ≥ −1,

1. for any K ∈ rSet, there is an isomorphism

SknK ∼= colim
(r,x)∈

∫
RK

deg(r)≤n

r̂

natural in K.

2. for any X ∈ arSet, there is an isomorphism

SknX ∼= colim
(a,r,x)∈

∫
A×RX

deg(r)≤n

âr

natural in X.

Proof. For (1), the category of elements
∫

R≤n

i∗nK is isomorphic to the full subcategory

of
∫
R

K consisting of objects (r ∈ R, x ∈ Kr) such that deg(r) ≤ n. By writing i∗nK as a

colimit of representables, this gives an isomorphism

SknK = (in)!i
∗
nK

∼= (in)!
(

colim
(r,x)∈

∫
R≤n

i∗nK
r̂
)

∼= (in)!
(

colim
(r,x)∈

∫
RK

deg(r)≤n

r̂
)

∼= colim
(r,x)∈

∫
RK

deg(r)≤n

(in)!r̂

∼= colim
(r,x)∈

∫
RK

deg(r)≤n

r̂.

The argument for (2) is analogous.
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From this description, we deduce the usual colimit sequence of “skeletal induction”.

1.9. Corollary.

1. For K ∈ rSet, there is a natural map SkmK → SknK whenever m < n. These
maps form a diagram

Sk−1K → Sk0K → Sk1K → · · ·

from N → rSet, and K is the colimit of this seqeuence.

2. For X ∈ arSet, there is a natural map SkmX → SknX whenever m < n. These
maps form a diagram

Sk−1X → Sk0X → Sk1X → · · ·

from N → arSet, and X is the colimit of this seqeuence.

The n-skeleton of a representable presheaf has a convenient explicit description.

1.10. Proposition. Let n ≥ −1.

1. For r, s ∈ R, we have a bijection

(Skn ŝ)r ∼= {f : r → s | f factors through an object of degree ≤ n}

natural in r and s. In particular,

(∂ŝ)r ∼= {f : r → s | f+ ̸= id}.

2. For a, b ∈ A and r, s ∈ R, we have a bijection

(Skn b̂s)a,r ∼= A(a, b) × {f : r → s | f factors through an object of degree ≤ n}

natural in a, r, and bs.

Proof. Item (1) is [RV14, Lem. 3.17 & Obs. 3.18]. For item (2), we apply Proposition
1.8 to obtain an isomorphism

(Skn b̂s) ∼= colim
(c,t,φ,ψ)∈

∫
A×Rb̂s

deg(t)≤n

ĉt.
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The full subcategory of
∫

A×R
b̂s spanned by pairs (c, t, φ, ψ) satisfying deg(t) ≤ n is iso-

morphic to the product category
∫
A

b̂×
∫

R≤n

ŝ. Thus,

(Skn b̂s)a,r ∼=
(

colim
(c,φ)∈

∫
A b̂

(t,ψ)∈
∫
R≤nŝ

ĉt
)
a,r

∼= colim
(c,φ)∈

∫
A b̂

(t,ψ)∈
∫
R≤nŝ

(ĉt)a,r

∼= colim
(c,φ)∈

∫
A b̂

(t,ψ)∈
∫
R≤nŝ

(
A(a, c) ×R(r, t)

)
∼= colim

(c,φ)∈
∫
A b̂
A(a, c) × colim

(t,ψ)∈
∫
R≤n

ŝ
R(r, t)

∼= A(a, b) × (Skn ŝ)r,

from which the result follows by item (1).

In light of Proposition 1.10, we view Skn ŝ and Skn b̂s as subobjects of ŝ and b̂s,
respectively.

We now extend our considerations from purely category-theoretic notions to include
some ‘homotopical’ structure. As suggested by Example 1.2, Reedy categories are ‘nice
shape categories’ for diagrams taking values in a category with such homotopical structure.
A typical target category could be a model category, but for our purposes a cofibration
category (cf. [Bro73, RB09, Szu16]) is sufficient.

1.11. Definition. A cofibration category consists of a category C together with two wide
subcategories: of cofibrations, denoted ↣, and of weak equivalences, denoted

∼→, subject
to the following conditions (where by an acyclic cofibration we mean a morphism that is
both a cofibration and a weak equivalence):

1. Weak equivalences satisfy 2-out-of-3.

2. The category C has an initial object ∅ and for any object X ∈ C, the unique map
∅ → X is a cofibration (i.e., all objects are cofibrant).

3. For any object X ∈ C, the codiagonal map X ⊔ X → X can be factored as a
cofibration followed by a weak equivalence.

4. The category C admits pushouts along cofibrations. Moreover, the pushout of an
(acyclic) cofibration is an (acyclic) cofibration.

5. The category C admits (small) coproducts; if {fi : Xi → Yi}i∈I is a collection of
(acyclic) cofibrations then

∐
fi :

∐
Xi →

∐
Yi is an (acyclic) cofibration.
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6. Given a countable sequence of composable (acyclic) cofibrations X1 → X1 → X2 →
. . . , the colimit colimXi exists and the cone maps Xi → colimXi are (acylic) cofi-
brations.

The following example shows in what way cofibration categories generalize model
categories.

1.12. Example. Given a model category M, its full subcategory of cofibrant objects
forms a cofibration category.

1.13. Definition. Let R be a Reedy category, C a cofibration category, and X : Rop → C
a diagram.

1. The latching category ∂(r ↓ R−) of r ∈ R is the full subcategory of the slice category
r ↓ R− spanned by all non-identity morphisms r → s in R−.

2. The latching object of X at r is

LrX := colim
(
∂(r ↓ R−)op → Rop X−→ C

)
3. The diagram X is Reedy cofibrant if for every r ∈ R, the induced map LrX → Xr

is a cofibration in C.

When we say a presheaf X ∈ arSet is Reedy cofibrant, we will always mean it is Reedy
cofibrant when viewed as a diagram Rop → aSet.

An advantage of Reedy cofibrant diagrams is that their colimits are homotopy colimits
if the indexing category is an inverse category.

1.14. Proposition. [RB09, Thm. 9.3.5.(1c)] If R is an inverse category (i.e. Rop is a
direct category) then a pointwise weak equivalence f : X → Y between Reedy cofibrant
diagrams X, Y : Rop → C induces a weak equivalence

colim f : colimX → colimY.

Recall that a Cisinski model category is a model structure on a topos in which cofi-
brations are the monomorphisms. The Kan–Quillen model structure on the category of
simplicial sets, as well as the Grothendieck model structure on the category of cubical
sets, are examples of Cisinski model categories [Cis06, Prop. 2.1.5 & Thm. 8.4.38].

We are however interested in working with a weaker structure, namely that of a cofi-
bration category, which motivates the following definition.

1.15. Definition. A Cisinski cofibration category is a cofibration category structure on
a (Grothendieck) topos in which cofibrations are the monomorphisms.
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1.16. Example. Since all objects of a Cisinski model category are cofibrant, every Cisin-
ski model structure has an underlying Cisinski cofibration category structure.

Working in the generality of Cisinski cofibration categories means that one can use
the Generalized Diagonal Lemma to construct model structures on presheaf categories.
This recovers a useful application of the original diagonal lemma (e.g. [GSS22]).

The key advantage of working with both elegant Reedy categories and Cisinski cofi-
bration categories is Reedy cofibrancy.

1.17. Lemma. Let aSet be equipped with a Cisinski cofibration category structure and R
be an elegant Reedy category. Then any diagram Rop → aSet is Reedy cofibrant.

Proof. We use [BR13, Prop. 3.14], which shows that if R is an elegant Reedy category
and K ∈ rSet is a presheaf then the latching map LrK → K is a monomorphism for
all b. For a diagram X ∈ arSet, applying [BR13, Prop. 3.14] to Xa ∈ rSet gives that
LrXa → Xa,r is a monomorphism for all a and r. We have a natural isomorphism

Lr(Xa) = colim
f∈∂(r↓R−)

Xa,cod(f)

∼=
(

colim
f∈∂(r↓R−)

(Xcod(f))

)
a

= (LrX)a.

Thus, (LrX)a → Xa,r is a monomorphism for all a, hence LrX → Xr is a monomorphism.
As monomorphisms are cofibrations in aSet, the diagram X : Rop → aSet is Reedy cofi-
brant.

2. Generalized Diagonal Lemma

The goal of this section is to state and prove the Generalized Diagonal Lemma, which we
do in Theorem 2.8. We begin however by stating our global assumption.

2.1. Assumption. Throughout the remainder of the paper, A and R will be Reedy cate-
gories, and aSet will always be considered with a Cisinski cofibration category structure.

As indicated in the introduction, the diagonal lemma can be generalized to other
diagonal-like functors. In order to spell out the requisite properties of such a functor, let
us first recall the notion of the external product of presheaves — it is a functor × : aSet×
rSet → arSet given by (K × L)a,r = Ka × Lr.

2.2. Definition. A functor d⊗ : arSet → aSet is (left) diagonal if

• d⊗ preserves colimits;

• d⊗ preserves monomorphisms; and
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• for any K ∈ rSet, the composite

aSet
×K
−−→ arSet

d⊗−→ aSet

preserves weak equivalences.

There is a notion of right diagonal functor for functors raSet → aSet (where raSet
denotes the category of presheaves on R × A). A functor d⊗ : raSet → aSet is right
diagonal if and only if the composite

arSet
≃−→ raSet

d⊗−→ aSet

is left diagonal. Thus, pre-composition by the equivalence arSet ≃ raSet gives a bijection
between right diagonal functors on raSet and left diagonal functors on arSet (ignoring
size issues). All statements that we make for left diagonal functors (in particular, the
Generalized Diagonal Lemma, Theorem 2.8) will immediately have analogues for right
diagonal functors, hence we treat only the case of left diagonal functors and refer to them
as simply diagonal functors.

2.3. Remark. If d⊗ : arSet → aSet is a diagonal functor then, for any K ∈ rSet, the
functor

d⊗(−×K) : aSet → aSet

is an exact functor between cofibration categories [Szu16, Def. 1.2], though this will not
play a role in the remainder of the paper.

Given a diagonal functor d⊗ : arSet → aSet, we write ⊗ for the composite d⊗ ◦×. The
choice of notation here is meant to be suggestive, as many examples in practice occur in
the case when A = R and d⊗ arises from a monoidal structure ⊗ on the category aSet
(cf. Section 3 and Example 3.4).

2.4. Proposition. Let bs = (b, s) be an object in A×R. For a ∈ A and r ∈ R, we have
an isomorphism

(Lrb̂s)a ∼= A(a, b) × {f : r → s | f− ̸= id},
natural in bs.

Note the condition f− ̸= id is equivalent to the condition that f ̸∈ R+.

Proof. We first compute

(Lrb̂s)a ∼= colim
g∈∂(r↓R−)

(b̂scod(g))a

= colim
g∈∂(r↓R−)

(
A(a, b) ×R(cod(g), s)

)
∼= A(a, b) × colim

g∈∂(r↓R−)
R(cod(g), s).

It remains only to construct a bijection

colim
g∈∂(r↓R−)

R(cod(g), s) ∼= {f : r → s | f− ̸= id}
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natural in s (since the above computation is natural in b).
The colimit in question admits an explicit description

colim
g∈∂(r↓R−)

R(cod(g), s) ∼=

{
(h, g)

∣∣∣∣∣
g : r → r′,
g ∈ R− \ {id},
h : r′ → s

}/
∼,

where ∼ is generated by identifications (kh, g) ∼ (k, hg) for any k ∈ R and h, g ∈ R−
such that g ̸= id and the pairs kh and hg are composable. Let S denote this set.

Define a function Φ: S → {f : r → s | f− ̸= id} by

Φ(h, g) := hg.

Note that (hg)− ̸= id since g strictly lowers the degree, hence Φ takes values in the
codomain subset. This map is well-defined by associativity of composition.

We claim this map is a bijection, with inverse given by

Φ−1(f) := (f+, f−).

The inverse takes values in the set S (i.e. f− ∈ R− \ {id}) by assumption. The equality
Φ ◦ Φ−1 = id is clear. To show that Φ−1 ◦ Φ = id, fix a pair (h, g) ∈ S and factor h as
h = h+h−. Since g ∈ R−, it follows that (hg)− = h−g and (hg)+ = h+. With this, we
compute

Φ−1(Φ(h, g)) = Φ−1(hg)

= ((hg)+, (hg)−)

= (h+, h−g)

∼ (h+h−, g)

= (h, g).

Regarding naturality in s, both the domain and codomain set of Φ form functors in
the variable s by post-composition. From this, it is immediate that the naturality squares
commute.

2.5. Lemma. For X ∈ arSet and n ≥ 0, the square∐
r∈R

deg(r)=n

LrX × r̂ ∪LrX×∂r̂ Xr × ∂r̂ Skn−1X

∐
r∈R

deg(r)=n

Xr × r̂ SknX

is a pushout.
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Proof. As every presheaf is a colimit of representable presheaves and colimits commute
with colimits (in particular, Lr commutes with colimits), it suffices to assume X is a
representable presheaf over some bs ∈ A×R. Instantiating this diagram at at ∈ A×R,
it suffices to show the diagram∐

r∈R
deg(r)=n

(Lrb̂s× r̂ ∪Lrb̂s×∂r̂ b̂sr × ∂r̂)a,t (Skn−1 b̂s)a,t

∐
r∈R

deg(r)=n

(b̂sr × r̂)a,t (Skn b̂s)a,t

is a pushout of sets.
For r ∈ R such that deg(r) = n, the top left set in the square may be explicitly

described as ∐
r∈R

deg(r)=n

A(a, b) × {(g : r → s, h : t→ r) | g− ̸= id or h+ ̸= id},

since

(Lrb̂s× r̂)a,t = (Lrb̂s)a × (r̂)t
∼= A(a, b) × {g : r → s | g− ̸= id} × A(t, r)

by Proposition 2.4, and

(b̂sr × ∂r̂)a,t = (b̂sr)a × (∂r̂)d

= A(a, b) ×R(r, s) × {h : t→ r | h+ ̸= id}.

by Proposition 1.10. The top map in the square sends a tuple (r, f, g, h) to the pair

(f, gh) ∈ b̂sa,t, which is an element of (Skn−1 b̂s)a,t since gh factors through some r′ ∈ R
such that deg(r′) < n (since either g or h factors). The bottom left set may be written as∐

r∈R
deg(r)=n

(b̂sr × r̂)a,t =
∐
r∈R

deg(r)=n

A(a, b) ×R(r, s) ×R(t, r)

and the bottom map sends a tuple (r, f, g, h) to the pair (f, gh) ∈ (Skn b̂s)a,t.
Showing this square is a pushout, fix a set S and a commutative square∐

r∈R
deg(r)=n

(Lrb̂s× r̂ ∪Lrb̂s×∂r̂ b̂sr × ∂r̂)a,t (Skn−1 b̂s)a,t

∐
r∈R

deg(r)=n

(b̂sr × r̂)a,t S

Φ

Ψ
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Define a map Ω: (Skn b̂s)a,t → S as follows: for (f : a → b, φ : t → s) ∈ Skn b̂sa,t, factor
φ as in the diagram

t s

r

φ

φ− φ+

By Proposition 1.10, we have that deg(r) ≤ n. If deg(r) ̸= n then (f, φ) is in the image

of the inclusion (Skn−1 b̂s)a,t ↪→ (Skn b̂s)a,t. In this case, we define Ω by

Ω(f, φ) := Φ(f, φ).

Otherwise, we have that deg(r) = n, hence (r, f, φ+, φ−) is an element of the bottom left
set. Thus, we may define Ω by

Ω(f, φ) := Ψ(r, f, φ+, φ−).

It remains to show Ω is the unique map making the diagram

∐
r∈R

deg(r)=n

(b̂sr × r̂)a,t (Skn b̂s)a,t (Skn−1 b̂s)a,t

S

Ψ Ω Φ

commute. Commutativity of the right triangle follows by construction. For the left
triangle, fix a tuple (r, f, g, h). If either g− ̸= id or h+ ̸= id then commutativity follows
from commmutativity of the starting square and the right triangle. Otherwise, it must be
that g ∈ R+ and h ∈ R−. By uniqueness of factorizations, we have that (gh)+ = g and

(gh)− = h, thus Ω(f, gh) = Ψ(r, f, g, h) as desired. If Ω′ : (Skn b̂s)a,t → S also makes the

diagram commute then, for (f, φ) ∈ (Skn b̂s)a,t, we factor φ through some object r ∈ R
as φ = φ+φ− as before. If deg(r) < n then

Ω(f, φ) = Φ(f, φ) = Ω′(f, φ).

Otherwise, if deg(r) = n then

Ω(f, φ) = Ψ(r, f, φ+, φ−) = Ω′(f, φ+φ−) = Ω′(f, φ).

The following two lemmas (alongside Proposition 1.14) encapsulate the role of Reedy
cofibrancy in the proof of the Generalized Diagonal Lemma.
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2.6. Lemma. If X : Rop → aSet is Reedy cofibrant then for n ≥ 0 and r ∈ R with
deg(r) = n, the maps

LrX × r̂ ∪LrX×∂r̂ Xr × ∂r̂ → Xr × r̂

and
Skn−1X → SknX

are monomorphisms.

Proof. For the first map, we instantiate at at ∈ A×R and show that

(LrX × r̂ ∪LrX×∂r̂ Xr × ∂r̂)a,t → (Xr × r̂)a,t

is injective. Using that pushouts of presheaves commute with evaluation, this map is
induced via universal property from the commutative square

(LrX)a × (∂r̂)t (LrX)a × (r̂)t

Xa,r × (∂r̂)t Xa,r × (r̂)t

The map (LrX)a → Xa,r is injective since X is Reedy cofibrant (Lemma 1.17). The map
∂r̂ → r̂ is injective by Proposition 1.10. The desired map is the pushout-product of two
injections, hence is injective.

The second map is a monomorphism by Lemma 2.5, since it is a pushout (in arSet) of
the first map.

2.7. Lemma. If X : Rop → aSet is Reedy cofibrant then the diagram

∂(r ↓ R−)op → Rop X−→ aSet

is Reedy cofibrant.

Proof. The latching category of an object σ : r → s in ∂(r ↓ R−) is isomorphic to
the latching category of s ∈ R by [RB09, pg. 102, before Def. 9.1.3]. Since X is Reedy
cofbrant, the map LsX → Xs is a monomorphism for any s, therefore the map from the
latching category of σ : r → s to Xcodσ is a monomorphism.

We may now prove the Generalized Diagonal Lemma.

2.8. Theorem. [Generalized Diagonal Lemma] Let f : X → Y be a morphism in arSet
between Reedy cofibrant diagrams such that fr : Xr → Yr is a weak equivalence in aSet for
all r ∈ R. Then, d⊗f : d⊗X → d⊗Y is a weak equivalence.
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Proof. The maps SknX → Skn+1X and Skn Y → Skn+1 Y are monomorphisms by
Lemma 2.6. As d⊗ preserves colimits and monomorphisms, the diagrams

d⊗ Sk−1X → d⊗ Sk0X → d⊗ Sk1X → . . .→ d⊗X

and
d⊗ Sk−1 Y → d⊗ Sk0 Y → d⊗ Sk1 Y → . . .→ d⊗Y

are colimit diagrams valued in monomorphisms. Any diagram N → aSet taking val-
ues in monomorphisms is Reedy cofibrant, so by Proposition 1.14, it suffices to show
d⊗ Skn f : d⊗ SknX → d⊗ Skn Y is a weak equivalence for n ≥ −1. For n = −1, this is
immediate. For n = 0, this follows by assumption.

By induction, fix n > 0 and suppose d⊗ Skn−1 f : d⊗ Skn−1X → d⊗ Skn−1 Y is a weak
equivalence. By Lemma 2.5, the front and back squares in∐
r∈R

deg(r)=n

LrX × r̂ ∪LrX×∂r̂ Xr × ∂r̂ Skn−1X

∐
r∈R

deg(r)=n

LrY × r̂ ∪LrY×∂r̂ Yr × ∂r̂ Skn−1 Y

∐
r∈R

deg(r)=n

Xr × r̂ SknX

∐
r∈R

deg(r)=n

Yr × r̂ Skn Y

are pushouts. Applying d⊗, the front and back squares in∐
r∈R

deg(r)=n

LrX ⊗ r̂ ∪LrX⊗∂r̂ Xr ⊗ ∂r̂ d⊗ Skn−1X

∐
r∈R

deg(r)=n

LrY ⊗ r̂ ∪LrY⊗∂r̂ Yr ⊗ ∂r̂ d⊗ Skn−1 Y

∐
r∈R

deg(r)=n

Xr ⊗ r̂ d⊗ SknX

∐
r∈R

deg(r)=n

Yr ⊗ r̂ d⊗ Skn Y

are again pushouts as d⊗ is cocontinuous. The map between the top right objects is a
weak equivalence by the inductive hypothesis. The map between the bottom left objects
is a weak equivalence since a coproduct of weak equivalences is a weak equivalence [RB09,
Lem. 1.6.3.(1)]. The left maps in both the front and back squares are cofibrations (Lemma
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2.6), so by the gluing lemma [RB09, Lem. 1.4.1.(1b)], it suffices to show the map between
the top left objects is a weak equivalence. This map is a coproduct of maps between
pushouts which appear in the bottom right of

LrX ⊗ ∂r̂ Xr ⊗ ∂r̂

LrY ⊗ ∂r̂ Yr ⊗ ∂r̂

LrX ⊗ r̂ LrX ⊗ r̂ ∪LrX⊗∂r̂ Xr ⊗ ∂r̂

LrY ⊗ r̂ LrY ⊗ r̂ ∪LrY⊗∂r̂ Yr ⊗ ∂r̂

The map between the top right objects is a weak equivalence by assumption. Both the
top and left maps in the front and back squares are cofibrations (by Reedy cofibrancy and
by Proposition 1.10, respectively). By the gluing lemma, it suffices to show LrX → LrY
is a weak equivalence.

The map f induces a pointwise weak equivalence between diagrams

∂(r ↓ R−)op Rop aSet.
X

Y

These diagrams are Reedy cofibrant by Lemma 2.7, hence by Proposition 1.14, the induced
map between colimits LrX → LrY is a weak equivalence.

Using Lemma 1.17, we can rephrase the assumptions to obtain the following corollary.

2.9. Corollary. Suppose R is an elegant Reedy category. Let f : X → Y be a morphism
in arSet such that fr : Xr → Yr is a weak equivalence in aSet for all r ∈ R. Then,
d⊗f : d⊗X → d⊗Y is a weak equivalence.

3. Examples

We now give several examples of applications of Theorem 2.8. Throughout this section,
we still follow Assumption 2.1: A and R are Reedy categories, and aSet is considered with
a Cisinski cofibration category structure. Furthermore, in the examples presented below,
R will always be an elegant Reedy category, hence all R-presheaves are Reedy cofibrant.

If aSet carries a bicocontinuous (right) rSet-action ⊗ : aSet × rSet → aSet then one
might define a functor d⊗ : arSet → aSet as a left Kan extension

A×R aSet

arSet

⊗

d⊗
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It is easy to see that the composite d⊗ ◦ × defines an rSet-action on aSet that agrees
with the original action. Analogously, if aSet carries a bicocontinuous left rSet-action then
we may define d⊗ in a similar way to obtain a right diagonal functor.

3.1. Corollary. Suppose R is elegant and aSet is equipped with a (left or right) rSet-
action which preserves colimits in each variable, and weak equivalences in the aSet vari-
able.

If f : X → Y is a map in arSet such that fr : Xr → Yr is a weak equivalence for every
r ∈ R, then d⊗f : d⊗X → d⊗Y is a weak equivalence.

Proof. The functor d⊗ is a diagonal functor in the sense of Definition 2.2, and hence we
may apply Theorem 2.8.

3.2. Example. If aSet is a simplicial model category whose cofibrations are the monomor-
phisms then the tensoring of weak equivalences is a weak equivalence (by the “pushout-
product axiom”). As ∆ is elegant, any levelwise weak equivalence f• : X• → Y• between
simplicial objects in aSet induces a weak equivalence d⊗f• : d⊗X• → d⊗Y•.

Reversing the role of the simplex category in Example 3.2 yields another example.

3.3. Example. Both the Kan–Quillen and Joyal model structures on sSet are Cisinski
model structures. Thus, if R is elegant and sSet has a bicocontinuous tensoring ⊗ by rSet
satisfying the pushout-product axiom then any levelwise weak equivalence f : X → Y
between R-diagrams valued in sSet induces a weak equivalence d⊗f : d⊗X → d⊗Y in sSet.

When A = R, an rSet action on aSet is exactly a monoidal product on aSet. Many
natural applications of the Generalized Diagonal Lemma arise in this way.

3.4. Example. If aSet is a Cisinski monoidal model category (i.e., a monoidal model
category whose cofibrations are the monomorphisms), then the monoidal product of weak
equivalences is again a weak equivalence. Thus in any such case a levelwise weak equiva-
lence f : X → Y induces a weak equivalence d⊗f : d⊗X → d⊗Y .

3.5. Example. [Geometric product of cubical sets] Consider the box category □ with
zero, one, or two connections, but no symmetries, reversals, or diagonals. This category
carries a monoidal structure given by ([1]m, [1]n) 7→ [1]m+n, giving rise to the functor
d⊗ : ccSet → cSet whose composite ⊗ := d⊗ ◦ × is the geometric product on cubical sets.
Since cubical sets form a monoidal model category (the Grothendieck model structure
with the geometric product), the product of weak equivalences is again a weak equivalence.
Hence any map f : X → Y of bicubical sets that is a levelwise weak equivalence induces
a weak equivalence d⊗f : d⊗X → d⊗Y .

3.6. Example. [Join of simplicial sets] Consider the promonoidal structure ∆ × ∆ →
sSet on the simplex category given by ([m], [n]) 7→ ∆m+n+1. The resulting diagonal
functor d∗ : ssSet → sSet composed with the external product yields the join structure on
simplicial sets, which preserves both weak homotopy equivalences and weak categorical
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equivalences. Thus any map f : X → Y of bisimplicial sets that is a levelwise weak
equivalence induces a weak equivalence d∗f : d∗X → d∗Y .

Another class of promonoidal structures A × A → aSet comes from the categorical
product via the functor (a, b) 7→ â × b̂. Put differently, given an elegant Reedy category
A, we have the canonical categorical diagonal inclusion (id, id) : A→ A×A sending a to
(a, a), which induces an adjoint triple

aaSet aSetdiag

where the middle functor diag : aaSet → aSet is given by precomposition with the inclusion
A→ A× A.

3.7. Corollary. Suppose the product w × w′ of weak equivalences in aSet is a weak
equivalence.

If f : X → Y is a map in aaSet such that fa : Xa → Ya is a weak equivalence for every
a ∈ A, then diagf : diagX → diagY is a weak equivalence.

3.8. Example. [Joyal model structure on simplicial sets] The Joyal model structure on
simplicial sets is monoidal with respect to the categorical product. Hence if f : X → Y
is a bisimplicial map such that fn : Xn → Yn is a weak categorical equivalence for every
n ∈ N, then diagf : diagX → diagY is a weak categorical equivalence.

For instance, if A is a strict test category [Mal05, Def. 1.6.7], then the weak equiva-
lences of aSet are closed under finite products. This gives:

3.9. Corollary. Let A be an elegant Reedy category that is also a strict test category
and let aSet be equipped with the corresponding canonical model structure.

If f : X → Y is a map in aaSet such that fa : Xa → Ya is a weak equivalence for every
a ∈ A, then diagf : diagX → diagY is a weak equivalence.

3.10. Example. [Kan–Quillen model structure on simplicial sets] The simplex category
∆ is a strict test category [Mal05, Prop. 1.6.14] and the test category model structure
coincides with the Kan–Quillen model structure thereon, which allows us to recover the
usual Diagonal Lemma. (Of course, there are many simpler ways of showing that weak
homotopy equivalences of simplicial sets are closed under products.)

3.11. Example. [Cubical sets] The box category □ with one or two connections (but
again, no symmetries, reversals, or diagonals) is a strict test category [Mal09, Prop. 4.3],
and hence any map of bicubical sets f : X → Y that is a levelwise equivalence induces a
weak equivalence diagf : diagX → diagY .

Note however that this would not be true in the minimal box category, i.e., without
connections. Since the categorical product □1 × □1 has the homotopy type of S2 ∨ S1

(cf. [Mal09, §6]), the product of the weak equivalence □1 → □0 with itself is not a weak
equivalence.
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Homotopy Appl. 11 (2009), no. 2, 309–326.
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