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EVERY THEORY IS EVENTUALLY OF PRESHEAF TYPE

CHRISTIAN ESPÍNDOLA, KRISTÓF KANALAS

Abstract. We give a detailed and self-contained introduction to the theory of λ-
toposes and prove the following: 1) A λ-separable λ-topos has enough λ-points. 2)
The classifying λ-topos of a κ-site (C, E) is a presheaf topos (assuming κ ◁ λ = λ<λ,
|C|, |E| < λ).
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1. Introduction

The geometric fragment Lg
∞κ of L∞κ is the class of formulas ∀x⃗(φ(x⃗) → ψ(x⃗)) where φ

and ψ are built up from atomic formulas, < κ
∧

(including ⊤), arbitrary
∨

(including
⊥) and ∃. This fragment (especially when κ = ω) is the subject of categorical logic. The
key connections between geometric logic and category theory are:

1) Syntactic categories/ sites: The algebraization of logic using categories originated in
the works of F. W. Lawvere (see [Law63] and [Law67]). Subsequently, the categorical
structure representing theories has evolved through several stages. In these notes a
theory T ⊆ Lg

∞κ will be replaced by a κ-site (CT , E): a category CT with < κ-limits
together with a distinguished collection E of arrow-families (wide cospans).

As a result Mod(T ), the category of T -models and homomorphisms will correspond
to Mod(CT , E, κ), the category of CT → Set κ-lex functors turning the E-families
into jointly epimorphic ones, see [MP89, Prop. 3.2.5] and [MR77, Chapter 8].
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2) Toposes: In the κ = ω case one can generate a Grothendieck-topology ⟨E⟩ω out of E
and consider sheaves wrt. it. The resulting category Sh(CT , ⟨E⟩ω) is the classifying
topos of T , see [Joh02] and [MM92]. The generalization for κ > ω is discussed in
Section 3.

3) Accessible categories: For any theory T ⊆ Lg
∞κ, the category Mod(T ) is accessible,

and every accessible category arises this way, see [MP89] and [AR94].

Now given a geometric theory T ⊆ Lg
∞ω (equivalently: an ω-site (C, E)) the following

questions are hard: What is the accessibility rank of Mod(T )/ Mod(C, E, ω)? Is the
classifying topos/ Sh(C, ⟨E⟩ω) equivalent to a presheaf topos? (In which case Mod(T ) is
finitely accessible, but not conversely, see [Bek04] for further details.)

Our motto could be the following: Given any T ⊆ Lg
∞κ there is a cardinal λ > κ

such that the classifying λ-topos of T ⊆ Lg
∞κ ⊆ Lg

∞λ is a presheaf topos (modulo some
assumptions on cardinal arithmetic, for example GCH is more than enough).

The key ideas of this paper have their origin in [Esp19b], [Esp20] and [Esp19a, Section
3.2 and Section 4], and our main result is a variant of [Esp19a, Theorem 4.1]. However,
the discussion here is more detailed, precise and accessible. In particular our proofs are
entirely category theoretic, in the sense that they avoid using techniques like ”first make a
theory from the site/topos in question, then change the fragment/ extend the signature/
add some axioms, finally make a site/topos from this modified theory”.

Now we comment on the structure of this paper. First the fundamental notion of com-
patibility between extremal epimorphic families and < κ-limits is discussed. In [Mak90]
a κ-regular category is defined as one having < κ-limits and pullback-stable effective epi-
mono factorizations, such that the transfinite cocomposition of a continuous < κ-sequence
of effective epis is effective epi. The natural counterpart of this for coherent categories
is formulated in terms of covering cotrees: if one builds a cotree on an object, which
is locally extremal epimorphic and every branch is continuous, < κ, then the cotree is
globally extremal epimorphic, i.e. the transfinite cocomposition of the branches form an
extremal epic family on the root. In the next section we study this notion in detail and
prove a completeness theorem.

Then we define a κ-topos as a Grothendieck-topos whose extremal epic families are
compatible with < κ-limits in the above sense. We lift the classical results concerning
classifying toposes to κ-toposes. Finally we reformulate the completeness theorem in
terms of κ-toposes whose defining site is small in an appropriate sense, generalizing [MR77,
Theorem 6.2.4] (Theorem 5.4), and derive the main result of this paper; that the classifying
λ-topos of a κ-site (C, E) is a presheaf topos, assuming κ ◁ λ = λ<λ, |C|, |E| < λ (Theorem
5.5).

The authors want to thank Will Boney and Nate Ackerman for their valuable remarks,
including a correction to the earlier version of Remark 2.8. They also thank the referee
for raising interesting questions, which motivated Proposition 3.4, Question 3.5, Remark
3.7, Remark 3.13, Remark 4.8 and Remark 5.7.
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2. A completeness theorem

This section motivates the definition of a κ-Grothendieck-topology, i.e. the correct notion
of compatibility between covers and < κ-limits. Its content is a completeness theorem: if
a κ-lex category C has ≤ κ-big Hom-sets then given a ≤ κ-big collection E of extremal
epimorphic families interacting well with < κ-limits, there is a jointly conservative set of
C → Set κ-lex E-preserving functors. As an application we give a Rasiowa-Sikorski-like
result for sufficiently distributive lattices. (In Section 5 we will present a more general
version of the completeness theorem, based on the same idea.)

We begin with a general remark on the notation, which will also be used in later
sections.

2.1. Remark. To avoid the overuse of ∗, we will write f ◦ = − ◦ f for pre-composition
with f , and f◦ = f ◦− for post-composition. Meanwhile, the inverse image of a geometric
morphism F will be denoted by F ∗, and the direct image by F∗. Similarly, if φ : C → D
is a morphism of sites or if φ : C → Sh(D) is a model, then φ∗ : Sh(C) ↔ Sh(D) : φ∗ is
the corresponding geometric morphism.

2.2. Definition. κ = cf(κ) ≥ ℵ0. C is κ-lex. A class E of extremal epimorphic families
is said to be compatible with < κ-limits if

1. Each member of E is pullback-stable (i.e. its pullback along any map is extremal
epimorphic). Epb denotes the class of extremal epimorphic families obtained this
way.

2. Given a rooted cotree (as a diagram in C), such that on any vertex its predecessors
form a member of Epb, every branch has length < κ and every branch is contin-
uous (objects sitting at limit points are limits in C); it follows that the transfinite
cocomposition of the branches is extremal epimorphic.

2.3. Definition. We shall name a few kind of diagrams: by cotree we will mean the
opposite of a rooted tree as a diagram in C. By continuous (Epb, κ)-cotree we mean that
on any vertex its predecessors form a member of Epb, every branch has length < κ and
every branch is continuous. By a continuous cofinal (Epb, κ+)-cotree we mean that the
cotree has height κ and each branch has size κ (hence order type κop). When E consists
of all extremal epimorphic families with < λ-many legs, we may write locally covering
continuous (λ, κ)-cotree instead of continuous (E, κ)-cotree.

2.4. Definition. A category C is of local size < κ if each Hom-set is of cardinality < κ.
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2.5. Theorem. C is κ-lex of local size ≤ κ, and it has a strict initial object ∅. Let E be
a set of extremal epimorphic families, such that |E| ≤ κ and E is compatible with < κ-
limits. Then given any object u0 ∈ C there is a continuous cofinal (Epb, κ+)-cotree with

root u0 such that given any branch u0
p0,i1←−− u0,i1

p0,i1,i2←−−−− u0,i1,i2 ← . . . the colimit of the

representable functors C(u0,−)
p◦
=⇒ C(u0,i1 ,−)

p◦
=⇒ . . . is either the terminal copresheaf

(iff the branch gets eventually ∅) or it preserves the extremal epimorphic families in E.
When u0 ̸= ∅ at least one branch yields a non-terminal copresheaf.

Proof. Let u0
p0←− u1 ← . . . be an (at this point not necessarily continuous) κ-chain in

C. First we would like to understand what does it mean for the colimit of C(u0,−)
p◦0=⇒

C(u1,−)⇒ . . . to preserve a given extremal epimorphic family (xj → y)j<γ (with γ ≥ 1).
This is easy: it is mapped to a jointly surjective family iff for any map uα → y there’s
uβ → uα in the sequence such that for some j < γ the dashed arrow

uβ uα y

x0 xj... ...

exists.
We shall also understand the γ = 0 case. The empty collection of arrows is extremal

epi on y iff y has no proper subobjects. As the initial object is strict, every map out
of it is mono, hence this is the same as y ∼= ∅. The colimit of the representables does
not preserve the initial object iff one of the uα’s is initial, in which case all the following
uβ’s are initial and hence the colimit is the terminal copresheaf which is allowed. So we
assume that the prescribed families are non-empty.

One such issue can certainly be solved at any stage of the construction: if we have
started to construct the chain (and we are in a successor step) u0 ← . . . uβ, then given
α ≤ β and a map uα → y ← xj just take the pullback

uβ+1 xj

uβ uα y

pb

(for any j: hence we have γ-many options to continue the chain, these possibilities will
form the cotree that we promised).

As our Hom-sets have size ≤ κ and we have κ-many prescribed families, there are
κ-many tasks concerning a given u ∈ C. But solving one such issue will yield a new uα
and hence κ-many new tasks. Luckily we have κ-many steps to arrange everything and
this can be done:

For any u ∈ C let Tu be the set (or list) of diagrams u → y ← x0, x1, . . . (where
(y ← xj)j is any member of E), well-ordered in order type κ (technicality: assume 1→ 1
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is among the given families, so Tu is non-empty. Allowing repetitions we can assume that
Tu has size κ). We have the canonical well-ordering f : κ × κ → κ with the property
f(α, β) ≥ β. We use it as follows:

Let’s fix a table of size κ×κ (the second coordinate labels the columns) whose entries
are empty at the moment. As the root of the cotree is u0 we list Tu0 in the zeroth column:
these tasks will have to be solved. Now, at step 1 we solve f−1(0), whose second coordinate
is ≤ 0, so it is one of the already listed tasks. We do it by forming the pullback of the
covering family; this yields the first level of the cotree

u00

u0 u0λ

...

...

To construct the continuation from u0λ fill in Tu0,λ
in the first column and solve f−1(1),

whose second coordinate is ≤ 1 hence we know which task it is.
The transfinite recursion is then the obvious thing: to define the α-level of the cotree

at limit α just take the transfinite cocomposition of the branches. Now do it for α + 1:
to continue from a given vertex u... pick the corresponding table whose columns before α
are filled in (with the tasks corresponding to the elements which are above u...). Now fill
Tu... into the αth column and solve task number f−1(α).

This defines a continuous cofinal (Epb, κ+)-cotree. When we go along a branch we
see that every task is solved, so the colimit preserves all the given extremal epimorphic
families, except the empty union which we cancelled from the list. So every branch yields
either the terminal copresheaf or an E-preserving one.

It remains to prove that when u0 ̸= ∅ at least one branch yields a non-terminal
copresheaf, i.e. that it cannot happen that every branch is becoming constant ∅ at some
point. But this is clear, otherwise (by cutting down each branch at that point) we would
get a continuous (Epb, κ)-cotree which is not covering the root.

From this we derive the completeness theorem:

2.6. Theorem. Let C be κ-lex of local size ≤ κ with a strict initial object, and let E
be a set of extremal epimorphic families, such that it is compatible with < κ-limits and
|E| ≤ κ. Then given x ∈ C and u, v subobjects of x, if for every M : C → Set κ-lex
E-preserving functor we have Mu ⊆Mv then u ⊆ v.

Proof. Take the above cotree with root u = u0. If a branch h yields a κ-lex E-preserving

functorMh = colim(C(u,−) p◦
=⇒ C(u0,h(1),−)⇒ . . . ) then by assumptionMh(u) ⊆Mh(v),

in particular 1u ∈Mh(u) ⊆Mh(x) lies in Mh(v), meaning that for some uλ in the branch
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we have a lift
x v

u uλ

When the branch becomes eventually ∅ we also have this lifting. Cutting down each
branch at such a point and using that the resulting (Epb, κ)-cotree is covering the root we
have an extremal epimorphic family with liftings

x v

u u0

uλ

...

...

Hence each uλ → u factors through v ∩ u and therefore v ∩ u = u so u ⊆ v.

2.7. Definition. λ = cf(λ) ≥ κ = cf(κ) ≥ ℵ0. A category C is (λ, κ)-coherent if

i) it has < κ-limits,

ii) it has pullback-stable effective epi - mono factorization,

iii) it has pullback-stable < λ-unions,

iv) and < λ extremal epimorphic families are compatible with < κ-limits (pullback-
stability follows from ii) and iii), so the additional requirement is the second clause of
Definition 2.2: that locally covering continuous (λ, κ)-cotrees are globally covering).

A functor is (λ, κ)-coherent if it preserves < κ-limits, effective epimorphisms and
< λ-unions.

2.8. Remark. We shall compute the number of branches of the tree in iv).
Recall, that an infinite cardinal κ has the tree property if given a tree of height κ such

that every level is of size < κ, it follows that the tree has a cofinal branch.
Since λ is regular there are < λ objects in each level below µ, assuming (< λ)<µ =

(< λ). Since every branch is < κ the tree has height ≤ κ. Therefore if λ > κ with
(< λ)κ = (< λ) or if λ = κ has the tree property and satisfies (< κ)<κ = (< κ), it follows
that the tree has < λ branches. The latter case is equivalent to κ being weakly compact.

2.9. Remark. When κ = ℵ0 iv) is redundant, i.e. (ℵ0,ℵ0)-coherent is just coherent,
(λ,ℵ0)-coherent is λ-geometric. Indeed, given a cotree as in iv) with root u0 and an
arbitrary proper subobject v ⫋ u0 one of the predecessors u1 of the root does not factor
through v. That is, the pullback of v along u0 ← u1 is a proper subobject v′ ⫋ u1.
Hence one of the predecessors of u1 does not factor through v′, equivalently: through v.
Since we cannot define an infinite branch we get stuck at a finite stage, meaning that the
(co)composition of a branch does not factor through v.
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2.10. Example. Set is (λ, κ)-coherent for any λ, κ. Given a set X and a locally covering
continuous cotree on it, we shall see that the transfinite cocomposition of the branches
cover X. But any element x0 ∈ X has a preimage in one of the predecessors X1. Once
we define a compatible family of preimages up to height α, a limit ordinal, this sequence
represents an element in the limit, so we’ve managed to find a preimage xα = (xi)i<α ∈
Xα = limi<αXi. This defines a branch whose cocomposition hits x0.

As in presheaf categories limits and colimits are pointwise, also SetA is (λ, κ)-coherent
for any λ, κ.

2.11. Definition. A λ-complete Boolean-algebra is (2, λ)-distributive if for any collec-
tion of elements (bi,0)i∈I , (bi,1)i∈I with |I| < λ, we have

⋂
i(bi,0 ∪ bi,1) =

⋃
h:I→2

⋂
i bi,h(i).

In particular the union exists, though we do not require the existence of such big unions
in general.

2.12. Example. (λ ≥ κ are infinite regular cardinals.) Every λ-complete (2, λ)-distribu-
tive Boolean-algebra is (λ, κ)-coherent if κ < λ and (< λ)<κ = (< λ) or if κ = λ is weakly
compact.

Given a continuous, locally covering (λ, κ)-cotree of elements

1

b0 . . . bα . . .

b0,0 . . . bα,0 . . .

we shall see that intersections along the branches cover the root (which can be assumed to
be 1, otherwise just put its complement next to it and put 1 to the −1th level). This means
that for any 0 ̸= u ⊆ 1 there’s a branch whose intersection has non-empty intersection
with u.

By the cardinality assumptions there are < λ-many elements in the tree (there are
< λ elements in each level below κ, when κ < λ their sum is < λ by regularity, and when
κ = λ is weakly compact the tree has height < κ, so again, the sum is < κ). Let A be the
set of these elements. By (2, λ)-distributivity 1 =

⋂
b∈A(b ∪ ¬b) =

⋃
ε:A→{+,−}

⋂
b∈A b

ε(b).

As u ̸= 0 it has non-empty intersection with a summand (otherwise ¬u would be a smaller
upper bound). Let u′ be this intersection. Then it is atomic in the sense that for any
b ∈ A either u′ ⊆ b or u′ ⊆ ¬b.

A member of the union is coming from decorating the tree with signs and then taking
intersections of the elements or their complements (depending on the sign). If a decorated
tree has non-empty intersection with u′ then 1 has decoration +, given any element with
decoration + one of the predecessors is decorated with + and given any chain of +-coloured
elements the intersection must be +-coloured as well. So u has non-empty intersection
with the intersection of a decorated tree that has a positive branch.
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2.13. Corollary. [of Theorem 2.6] Let L be a distributive lattice which is a (λ, κ)-
coherent category and let (Ai)i<κ be a collection of subsets each of size < λ. Then there’s
an injective homomorphism of posets L ↪→ P(X) to a power set Boolean-algebra, which
preserves all < κ-meets and which preserves

⋃
Ai for each i.

Proof. If a ̸= b then either a ∩ b ⫋ b or a ∩ b ⫋ a, hence they can be separated by an
L → Set functor which preserves all < κ-meets, monos, the terminal object, as well as
the prescribed unions. In particular it lands in 2 ↪→ Set. Putting these together yields
the required homomorphism L → 2X .

3. Classifying toposes

3.1. Definition. A category E is a κ-topos if it is a Grothendieck-topos which is (∞, κ)-
coherent. A geometric morphism F∗ : E1 → E2 is a map of κ-toposes if F ∗ preserves
< κ-limits.

3.2. Remark. By the adjoint functor theorem a map of κ-toposes E1 → E2 is the same
as an E2 → E1 functor preserving < κ-limits and all colimits. We write Fun∗

κ(E2, E1) for
the category of κ-lex cocontinuous functors and all natural transformations. (It is locally
small.)

3.3. Example. By Example 2.10 every presheaf topos is a κ-topos for any κ.

The next proposition is a partial converse to this:

3.4. Proposition. Assume that E is a κ-topos for all κ and the subobjects of 1 form a
generating set. Then E is a presheaf topos.

Proof. By the comparison lemma ([Joh02, Theorem C2.2.3]) E ≃ Sh(SubE(1)). By
assumption SubE(1) is an (∞,∞)-coherent distributive lattice. Applying Theorem 2.5 we
get that every element of SubE(1) can be written as a union of join-irreducible elements.
Let X be the poset of join-irreducible elements in SubE(1). Applying the comparison
lemma again, E is equivalent to sheaves on X with the restricted union-topology. But
that is the trivial topology and hence E ≃ SetX

op

.

3.5. Question. Is it true that if E is a κ-topos for all κ then E is a presheaf topos?

What we call a κ-topos here is the same as a κ-geometric topos from [Esp19b]. In
[Hen19] the term ”κ-topos” is used for κ-lex localizations of presheaf toposes. The fol-
lowing example connects these notions:

3.6. Example. While every κ-topos (in our sense) is the κ-lex localization of a presheaf
topos (see Proposition 3.11.(4)), the converse is false. (This claim appears in [Hen19],
based on [Esp19b, Remark 1.1.4].)

Consider the site ([0, 1], τsup) where [0, 1] is seen as a poset with the usual ordering
and (ri ≤ x)i∈I is a cover if sup{ri : i ∈ I} = x. [0, 1] has all limits (meets) given by
infimum, and τsup is a Grothendieck-topology.
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We claim that the sheafification map a : Set[0,1]
op → Sh([0, 1], τsup) preserves all limits.

This follows as on any object r ∈ [0, 1] there are only two covering sieves: [0, r) and [0, r],
hence the +-construction is given by a limit formula (see [MM92, p.134]).

However, Sh([0, 1], τsup) is not an ℵ1-topos. We build a locally covering continuous
cotree (inside [0, 1]) on 1 as follows: the root is 1, given an object r in the cotree, if
r = 0 then it has no predecessors, if r > 0 then its predecessors are given by an ω-
sequence converging to r, formed by elements that are < r. At limit stages we take
infimums. This defines a locally covering (the predecessors of any object form a τsup-
cover), continuous cotree such that every branch is countable (there is no uncountable
strictly decreasing sequence in [0, 1]), and every branch terminates in 0. By the previous

paragraph [0, 1]
y−→ Set[0,1]

op a−→ Sh([0, 1], τsup) takes infimums to limits (y preserves all
limits), it maps τsup-covers to extremal epimorphic families, and in particular takes 0 to
the initial and 1 to the terminal object. So if Sh([0, 1], τsup) is an ℵ1-topos, then the
branches of the ay-image of our tree form an extremal epimorphic family, therefore ∅ = ∗.
This is not the case as τsup-covers are effective epimorphic, hence ay is conservative (the
representables are sheaves).

3.7. Remark. It is clear that every κ-topos is a κ-regular category (the transfinite co-
composition of a continuous < κ chain of effective epis is an effective epi). The converse
is false: we claim that Sh([0, 1], τsup) is an ℵ1-regular topos.

First note that it is enough to consider chains indexed by ωop. Indeed, if α is any
countable ordinal then there is a cofinal map ω ↪→ α, and since cones on αop are in
bijective correspondence with cones on ωop, taking the limit along this subsequence is the
same as taking the limit of the original chain.

Recall that in any Grothendieck-topos Sh(C), a family (F ⇐ Fi)i∈I is (effective)
epimorphic iff the following is satisfied: for any x ∈ C and s ∈ F (x) there’s a cover
(x← xj)j∈J such that each s|xj

is the image of some s′ ∈ Fi(j)(xj).

So let F0

f0
↞−−− F1

f1
↞−−− . . . be an ωop-chain of effective epis, write (fω,i : Fω → Fi)i for

the limit cone and take s ∈ F0(p0) for some p0 ∈ [0, 1]. We have to show that p0 admits a
τsup-cover, such that the restrictions of s have preimages along the respective components
of fω,0.

Since f0 is epi we get a cover (p0,i1 ≤ p0)i1∈I1 such that s|p0,i1 has a preimage along

(f0)p0,i1 . For fixed i1 let s0,i1 ∈ F1(p0,i1) be such a preimage. By iterating this we obtain

a covering tree of height ω. Given any branch i⃗ = 0, i1, i2, . . . write p⃗i =
⋂
{p0, p0,i1 , . . . }.

Then the compatible family (s|p⃗i , s
0,i1|p⃗i , . . . ) gives a preimage of s|p⃗i along (fω,0)p⃗i .

So it is enough to show that given a locally τsup-covering tree of height ω in [0, 1] with
root p, the intersections of the branches can get arbitrarily close to p. This is easy. For
any fixed ε > 0 there is an element p1 in the first level of the tree that is strictly above
p− ε. Similarly one of the predecessors of p1 is strictly above p− ε. The infimum of the
elements in the resulting branch

⋂
{p, p1, p2, . . . } is ≥ p− ε.
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3.8. Definition. We fix the notation: Let C be a small κ-lex category and E be a set of
arbitrary families in C (a family is a set of arrows with common codomain). By Epb we
denote the closure of E under pullbacks; those families which can be obtained as a pullback
of an E-family. Etreeκ is the closure of E under the κ-tree operation: the set of those
families which are obtained as transfinite cocompositions of continuous (E, κ)-cotrees (the
predecessors on any node form an E-family, every branch is continuous, < κ). We write
⟨E⟩κ for (Epb)treeκ.

A (small) κ-site is a pair (C, E) where C is κ-lex (small) and E is an arbitrary collection
of families containing id : 1→ 1. F : (C, E)→ (D, E ′) is a morphism of κ-sites if F is a
κ-lex C → D functor which takes E-families (and hence ⟨E⟩κ-families) to ⟨E ′⟩κ-families.

3.9. Remark. What we call a κ-site is in fact a sketch. As such, κ-sites correspond to
theories in Lg

∞κ, see [MP89, Theorem 3.2.1, Proposition 3.2.5].

3.10. Remark. Usually a site is a category C equipped with a Grothendieck-topology
(and sometimes C is assumed to be lex). So it would make sense to define a κ-site as
a κ-lex category equipped with a κ-topology (that is: a Grothendieck-topology which is
closed under the κ-tree operation). But since in practice topologies often arise from a
generating set of families, and since in most of our results the size of this generating set
matters, we found it notation-wise more convenient to use the definition given above.

3.11. Proposition. Let (C, E) be a small κ-site. Then:

1. ⟨E⟩κ is closed under pullbacks and the κ-tree operation.

2. ⟨E⟩κ is a Grothendieck-topology.

3. Sh(C, ⟨E⟩κ) is a κ-topos.

4. The full inclusion Sh(C, ⟨E⟩κ) ↪→ SetC
op

is a map of κ-toposes, i.e. the sheafification
functor a is κ-lex.

5. The Yoneda-embedding followed by sheafification ay : C y−→ SetC
op a−→ Sh(C, ⟨E⟩κ) is

κ-lex, E-preserving (maps E-families to extremal epimorphic ones).

Proof.

1. The pullback of a continuous (Epb, κ)-cotree is again a continuous (Epb, κ)-cotree,
as the pullback of a pulled back E-family is the pullback of the original E-family
along the composite and the pullback of a transfinite cocomposition is the same
as the transfinite cocomposition of the pullbacks. Closed under the tree operation:
the cotree we build can be seen as pasting some (Epb, κ)-cotrees together, which
will be a continuous (Epb, κ)-cotree by the regularity of κ, and as the (transfinite)
cocomposition of the transfinite cocompositions is a transfinite cocomposition.

2. It contains the isomorphisms as those are pullbacks of id : 1 → 1. The rest of
the requirements (being closed under pullbacks and being closed under the tree
operation when one is building cotrees of height 2) is implied by Claim 1.
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3. The argument will be similar to the one in Remark 3.7.

Take a locally covering continuous (∞, κ)-cotree (i.e. every node is covered by an
arbitrarily large extremal epimorphic family, each branch is < κ and continuous),
let F0 be the root and take an x0 ∈ C and s0 ∈ F0(x0). Then x0 has a cover
(x0 ← x0,j1)j1 , such that the restrictions of s0 are coming from some Fi’s (there can
be many, so fix suitable i(0, j1)’s and preimages s0,j1 ∈ Fi(0,j1)(x0,j1)). Now each x0,j1
has a cover (x0,j1 ← x0,j1,j2)j2 such that the restrictions of s0,j1 ’s are coming from
some predecessors of Fi(0,j1). So we started to build a locally covering continuous
((Epb)tree, κ)-cotree on x0, together with a morphism i of cotrees, from the cotree on
x0 to the one on F0 (meaning: i(0, j1, . . . ) is an initial segment of i(0, j1, . . . , jk)).
It has the property that s0|xj⃗

has a preimage in Fi(⃗j).

Once we are at a limit stage, for any branch x0 ← x0,j1 ← x0,j1,j2 ← . . . its limit
x0,j1,... has the property that s0|x0,j1,...

has a preimage in Fi(0,j1,... )(x0,j1,...), namely the

compatible family [s0|x0,j1,...
, s0,j1|x0,j1,...

, . . . ] (which is in the limit of F0 ⇐ Fi(0,j1) ⇐
. . . because limits of sheaves are pointwise).

So we managed to define a locally covering continuous ((Epb)tree, κ)-cotree (every
branch has length < κ because the same holds in the cotree of sheaves and i is a map
of cotrees), and the restriction of s0 to the transfinite cocomposition of a branch xj⃗
has a preimage in the transfinite cocomposition of Fi(⃗j). This family on x0 is a cover
by Claim 1.

4. The poset of coveres on an object x ∈ C (ordered by refinement) is κ-filtered (one
can build a tree whose first level consists of the 0th family and whose α + 1th level
is formed by pulling back the αth family to the leafs). Hence the +-construction is
κ-lex.

5. The composite is κ-lex by Claim 4. It is true for any ω-site that ay takes covering
families to epimorphic ones, see e.g. [MM92, Corollary III.7.7].

3.12. Corollary. Let (C, E) and (D, E ′) be small κ-sites and F : (C, E)→ (D, E ′) be a
morphism of κ-sites. Then there is an induced morphism of κ-toposes F∗ : Sh(D, ⟨E ′⟩κ)→
Sh(C, ⟨E⟩κ) where F∗ is − ◦ F op and F ∗ is Sh(C) ↪→ SetC

op LanFop−−−−→ SetD
op a−→ Sh(D).

Proof. The geometric morphism exists by [Joh02, Corollary C2.3.4], LanF op is κ-lex by
[Joh02, Example A4.1.10] and a is κ-lex by Claim 4.

3.13. Remark. Every κ-topos is the category of sheaves on a κ-site and every morphism
of κ-toposes is induced by a morphism of κ-sites. Indeed, let E be a κ-topos and let C be
any small full subcategory which contains a set of generators and which is closed under
< κ-limits. By [Joh02, Theorem C2.2.3] (the inverse image part of) the induced geometric
morphism Sh(C, τcan) → E is an equivalence (here τcan is the set of effective epimorphic
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families). Since E is a κ-topos, its canonical topology is a κ-topology, hence τcan = ⟨τcan⟩κ.
The other part of the claim is proved similarly: if F ∗ : E → E ′ is a map of κ-toposes and
E ≃ Sh(C, τcan) as before, then let D be a small full subcategory of E ′ which is closed
under < κ limits, contains a set of generators and which contains the image of F ∗|C. Then
F ∗|C : (C, τcan)→ (D, τcan) is a morphism of κ-sites, and the induced geometric morphism
is F .

3.14. Definition. Given a small κ-site (C, E), we write Mod(C) =Mod(C, E, κ) for the
category of κ-lex E-preserving C → Set functors and natural transformations. Mod(C)<µ

denotes the full subcategory of models with pointwise cardinality < µ. Similarly, for a κ-
topos E we write ModE(C) =ModE(C, E, κ) for the category of C → E κ-lex E-preserving
functors.

3.15. Theorem. Let (C, E) be a small κ-site, E be a κ-topos and M : C → E be a κ-lex
E-preserving functor. Then

1. In the left Kan-extension

C E

Sh(C, ⟨E⟩κ)

M

ay
LanayM

η

η is an isomorphism, and LanayM is κ-lex cocontinuous.

2. Lanay : ModE(C, E, κ) → Fun∗
κ(Sh(C, ⟨E⟩κ), E) is an equivalence of categories,

whose quasi-inverse is precomposing with ay.

Proof. The above triangle can be written as

C E

SetC
op

SetC
op

Sh(C, ⟨E⟩κ)

M

y LanyM

a
i

η1

η2

(To check the universal property: given F : Sh(C)→ E and a natural transformation
γ :M ⇒ Fay, there’s an induced natural transformation γ̃ : LanyM ⇒ Fa fitting in the
picture:
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C E

γ =

SetC
op

SetC
op

Sh(C, ⟨E⟩κ)

id =

Sh(C, ⟨E⟩κ)

M

y

a i

a

F
LanyM

η2

η1

γ̃

ε2∼=

hence the pasting of γ̃ and ε2 yields the unique splitting of γ we were looking for.)
As both i and LanyM are κ-lex it follows that LanayM is κ-lex.
LanyM has a right adjoint E(M(−), •) which factors through i iff M is E-preserving

(easy). In this case it is also a right adjoint for LanyM ◦ i: E(LanyM(iF ), X) ∼=
SetC

op

(iF, iE(M(−), X)) ∼= Sh(C)(F, E(M(−), X)). We proved that LanayM is κ-lex
cocontinuous hence we have the restricted adjunction

ModE(C, E, κ) Fun∗
κ(Sh(C), E)

Lanay

(ay)◦

⊣

We want to prove (ay)◦ to be an equivalence. Then it follows that the adjunction is
an adjoint equivalence (whose unit is η in Claim 1.) and the proof will be complete.

In the composite

Fun∗
κ(Sh(C), E) Fun∗

κ(Set
Cop

, E) Lexκ(C, E)
y◦a◦

y◦ is an equivalence. a◦ is fully faithful: given α : Fa ⇒ Ga its unique preimage is

F
F◦ε−1

====⇒ Fai
α◦i
==⇒ Gai

G◦ε
==⇒ G.

A κ-lex cocontinuous functor N∗ : SetC
op → E is in the essential image of a◦ iff its

right adjoint N∗ factors through i. ⇒ is clear (adjoints compose). To see ⇐ assume

N∗ = i ◦ Ñ∗. As i preserves and reflects all limits it follows that Ñ∗ is continuous, hence
it has a left adjoint Ñ∗. By the uniqueness of adjoints Ñ∗ ◦ a ∼= N∗. Hence Ñ∗ preserves
all < κ-limits which are in the image of a, that is, all < κ-limits as ai ∼= 1Sh(C).

But for a κ-lex functor M : C → E , the left Kan-extension LanyM = (y◦)−1(M)
satisfies this property iff M was E-preserving, as we claimed before.
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4. Eventually: enough points ⇒ presheaf type

This section proves the first half of the main theorem of these notes: that the classifying
λ-topos of a κ-site is a presheaf topos. Here we will prove it under the assumption that
the classifying λ-topos has enough λ-points. Then in section 5. we shall see that this is
automatic when λ<λ = λ.

4.1. Remark. As previously mentioned, κ-sites are the same as theories in Lg
∞κ. Since

Lg
∞κ ⊆ Lg

∞λ (for λ ≥ κ), there is an easy way to define the free λ-site associated to some
κ-site (C, E): write down the theory of (C, E) over its canonical signature, treat it as a
theory in Lg

∞λ, then take the syntactic λ-site (cf. [MP89, Chapter 3]).
However, we prefer to remain within the framework of category theory (while retaining

model-theoretic intuition) for a cleaner and more rigorous discussion.
In Theorem 4.7, we will provide an explicit and simple description of the associated

λ-site, at least when λ is ”sharply larger” than κ. For now, we just call it (C̃, Ẽ) and
include its ”freeness” properties as assumptions.

4.2. Lemma. We have the following assumptions:

1. λ = cf(λ) ≥ κ = cf(κ) ≥ ℵ0.

2. (C, E) is a small κ-site, (C̃, Ẽ) is a small λ-site, φ : (C, E) → (C̃, ⟨Ẽ⟩λ) is a mor-
phism of κ-sites.

3. |C| < λ.

4. For any λ-topos E, the map φ◦ : ModE(C̃, Ẽ, λ) → ModE(C, E, κ) is an equivalence
of categories.

5. There are (Ñi : C̃ → Set)i λ-lex Ẽ-preserving functors with Ñiφ having pointwise

size < λ, such that ⟨LanayÑi⟩i : Sh(C̃, ⟨Ẽ⟩λ)→ SetI is conservative.

Then there is an equivalence SetMod(C)<λ → Sh(C̃, ⟨Ẽ⟩λ) making

C SetMod(C)<λ

C̃

Sh(C̃, ⟨Ẽ⟩λ)

φ

ay

ev

≃

∼=

commutative.
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Proof. We define a functor ∆ :Mod(C)op<λ → C̃ by

M
α−→ N 7→ lim(x,p)∈

∫
M φx lim(x,q)∈

∫
N φx

⟨π(x,αx(p))⟩

which makes sense as by the regularity of λ: |
∫
M | < λ. We have a natural transforma-

tion:

C SetMod(C)<λ

C̃

Sh(C̃, ⟨Ẽ⟩λ) Mod(C)op<λ

φ

ay

ev

Lany(ay∆) y

ay∆

η

∼=

whose v-component is defined by

aC̃(−, φv)

Lany(ay∆)(evv)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,q)∈
∫
N aC̃(−, φx)︸ ︷︷ ︸

(N, q0∈Nv)

α

⟨π(x,αx(p))⟩

π(v,p0)
π(v,q0)

ηv

(i.e. to compute Lany(ay∆)(evv) we have to write evv as the colimit of representables along
its category of elements, then apply ay∆ to this diagram, finally compute its colimit. We
have a cocone over this diagram with top ayφ(v), and ηv is the induced map).

To check the commutativity of the naturality squares (say at f : v → w), one has to
precompose with a leg of the colimit, then it has the form:
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aC̃(−, φv) aC̃(−, φw)

Lany(ay∆)(evv) Lany(ay∆)(evw)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,p)∈
∫
M aC̃(−, φx)︸ ︷︷ ︸

(M, Mf(p0)∈Mw)

ηv ηw

a(φf◦)

π(v,p0)
π(w,Mf(p0))

which can be drawn as

lim(x,p)∈
∫
M aC̃(−, φx)

aC̃(−, φv)p0 aC̃(−, φw)Mf(p0)

π(v,p0)

a(φf◦)

π(w,Mf(p0))

Our goal is to prove that η is an isomorphism and Lany(ay∆) is an equivalence. We
start with the following observation (saying that ifM is a sufficiently small model, so that

its diagram ∆M is a single formula in C̃, then its evaluation at a model Ñ(∆M) consists

of those tuples which enumerate an M → Ñφ homomorphism):
There is a natural isomorphism

Mod(C)op<λ C̃

SetMod(C)<λ SetMod(C̃)−◦φ<λ

∆

y

(φ◦)◦

evδ

given by
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ev∆M lim(x,p)∈
∫
M evφx lim∫

M Nat(C(−, x),− ◦ φ)

ev∆N lim(x,q)∈
∫
N evφx lim∫

N Nat(C(−, x),− ◦ φ)

Nat(colim∫
MC(−, x),− ◦ φ) Nat(M,− ◦ φ)

Nat(colim∫
NC(−, x),− ◦ φ) Nat(N,− ◦ φ)

ev∆α

∼=

⟨π(x,αxp)⟩

∼=

∼=

∼=

⟨π(x,αxp)⟩

(i(x,αxp))
◦

∼=

α◦

∼=

∼=

∼=

∼=

∼=

Now we will prove that η is an isomorphism. For this it suffices to prove that

φv

lim(x,p)∈
∫
M φx︸ ︷︷ ︸

(M, p0∈Mv)

lim(x,q)∈
∫
N φx︸ ︷︷ ︸

(N, q0∈Nv)

α

⟨π(x,αx(p))⟩

π(v,p0)
π(v,q0)

is mapped to a colimit by ay. By Theorem 3.15 and by Assumption 5. it is enough that it
is mapped to a colimit by any Ñ : C̃ → Set λ-lex Ẽ-preserving functor with |Ñφ| < λ (as

in this case the colim→ ayφ(v) map is taken to an iso by each (cocontinuous) LanayÑ ,
and those are jointly conservative).

But using the isomorphism δ constructed above we have

Ñφv Nat(C(−, v), Ñφ)

=

Ñ(∆M) = lim(x,p)∈
∫
M Ñφx︸ ︷︷ ︸

(M, p0∈Mv)

Nat(M, Ñφ)︸ ︷︷ ︸
(M,p0∈Mv)

π(v,p0)

∼=
(δM )

Ñ

i◦
(v,p0)

∼=

and the composite Nat(M, Ñφ)→ Ñφv takes β to βv(p0). So this is the canonical colimit

evv ∼= colim(M,p0)∈
∫
evvMod(C)<λ(M,−), evaluated at Ñφ.
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It remains to check that Lany(ay∆) is an equivalence. Its proposed quasi-inverse is
((φ◦)◦)−1 ◦ Lanayev, fitting in the diagram

SetMod(C)<λ SetMod(C̃)−◦φ<λ

Mod(C)op<λ C̃ Sh(C̃, ⟨Ẽ⟩λ)∆

y

(φ◦)◦

evδ

ay

Lanayev

γ−1

Since both Lany(ay∆) and ((φ◦)◦)−1 ◦ Lanayev are cocontinuous, this iso extends to
an isomorphism between identity on SetMod(C)<λ and ((φ◦)◦)−1 ◦ Lanayev ◦ Lany(ay∆).

To check the other composite, observe the diagram

C

C̃ C̃

∼=

Sh(C̃, ⟨Ẽ⟩λ) SetMod(C̃)−◦φ<λ SetMod(C)<λ Sh(C̃, ⟨Ẽ⟩λ)

φ

ay

ev

Lany(ay∆)

η

((φ◦)◦)−1

φ

ev
ay

Lanayev

γ−1

Assume that Lany(ay∆) preserves < λ-limits. Then both ay and Lany(ay∆)◦ ((φ◦)◦)−1 ◦
Lanayev ◦ay are C̃ → Sh(C̃, ⟨Ẽ⟩λ) λ-lex Ẽ-preserving functors, and there’s an iso between
their φ-restrictions. By Assumption 4. φ◦ is fully faithful, so there’s an iso between the
C̃ → Sh(C̃, ⟨Ẽ⟩λ) functors. So identity on Sh(C̃, ⟨Ẽ⟩λ) and Lany(ay∆)◦((φ◦)◦)−1◦Lanayev
are two λ-topos maps whose ay-restrictions are isomorphic. Then Theorem 3.15 Claim
2. completes the proof.

It remains to check that Lany(ay∆) preserves < λ-limits. For any Ñ : C̃ → Set λ-lex

Ẽ-preserving with |Ñφ| < λ we have

SetMod(C)<λ

Mod(C)op<λ Sh(C̃, ⟨Ẽ⟩λ) Set

y

ay∆

Lany(ay∆)

Ñ∗

Mod(C)<λ(−,Ñφ)

∼=

∼=
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coming from

Mod(C)op<λ C̃ Sh(C̃)

SetMod(C)<λ SetMod(C̃)−◦φ<λ Set

∆

y

ay

ev
Ñ∗

(φ◦)◦ ev
Ñ

∼=δ ∼=

As left adjoints preserve left Kan-extensions, Ñ∗◦Lany(ay∆) is the left Kan-extension

of a representable, hence representable, in particular λ-lex. So SetMod(C)<λ
Lany(ay∆)−−−−−−→

Sh(C̃, ⟨Ẽ⟩λ)
Ñi

∗

−−→ SetI is λ-lex, the second map is λ-lex, conservative, therefore the first
map is λ-lex (the second map inverts the connecting homomorphism going from the image
of the limit to the limit of the images).

Now we would like to identify C̃ from the previous lemma. Assume that we can
find φ : C → C̃ which is the free completion of C under < λ-limits, in the sense that
φ◦ : Lexλ(C̃, E)→ Lexκ(C, E) is an equivalence for any λ-lex (or at least for complete) E .
Then it restricts to an equivalence between the full subcategories of φ[E]-preserving and
E-preserving functors.

We have a good candidate: assume it exists, then apply the previous lemma with trivial

E (only the identities are contained). We get an equivalence: SetC̃
op ≃ SetLexκ(C,Set)<λ .

So our guess is that y : C → (Lexκ(C,Set)<λ)
op will do the job.

The following is [AR94, Proposition 1.45 (ii)]:

4.3. Proposition. C is κ-lex, small. Take y : C ↪→ Lexκ(C,Set)op. Then y is κ-lex and
y◦ : LEX∞(Lexκ(C,Set)op, E)→ Lexκ(C, E) is an equivalence for any complete category
E.

Proof. y preserves< κ-limits: we need that C(lim xi,−)
π◦
j←− C(xj,−) is a colimit diagram

in Lexκ(C,Set). A cocone with top M is a compatible family of elements (ai ∈Mxi)i in
theM -image of the base diagram. This corresponds to a unique element (ai)i inM(lim xi)

asM preserves < κ-limits, which yields the unique induced arrow C(lim xi,−)
17→(ai)i
=====⇒M .

We claim that for an M : C → E κ-lex functor (for complete E), the right Kan-
extension

C E

Lexκ(C,Set)op

y

M

RanyM

ε
∼=

is continuous. This follows as E ∋ x 7→ E(x,M(−)) ∈ Lexκ(C,Set)op is a left adjoint to
it.
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So y◦ is essentially surjective. It is also fully faithful: given continuous functors M̃, Ñ :
Lexκ(C,Set)op → E , they are the right Kan-extensions of M̃y, resp. Ñy (with identity

as ε), hence any natural transformation α : M̃y ⇒ Ñy induces a unique α̃ : M̃ → Ñ for
which α̃ ◦ y = α.

4.4. Definition. κ = cf(κ) is sharply smaller than λ = cf(λ) (written as κ ◁ λ) if
κ < λ and for any set X with |X| < λ, the poset Pκ(X) of < κ subsets contains a cofinal
set of size < λ.

4.5. Proposition. C is κ-lex, small, ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ). Write C
φ
↪−→

C̃
j
↪−→ Lexκ(C,Set)op for the factorization of y through the full subcategory spanned by κ-

cofiltered < λ limits of representables. Then C̃ is λ-lex, φ is κ-lex and φ◦ : Lexλ(C̃, E)→
Lexκ(C, E) is an equivalence for any complete category E.

Proof. We claim that C̃ is the full subcategory spanned by < λ limits of representables.
Indeed, take a < λ diagram I → Lexκ(C,Set). Its colimit is the κ-directed colimit
indexed by Pκ(Arr(I)), of the colimits of < κ subdiagrams and the induced maps between
them. These < κ-colimits are representable (see the first paragraph of the previous proof)

and by assumption the diagram has a cofinal subdiagram of size < λ. It follows that C̃ is
λ-lex and φ is κ-lex.

φ◦ is essentially surjective: given M : C → E κ-lex RanyM ◦ j gives a preimage. It is

faithful: any natural transformation between M̃, Ñ : C̃ → E λ-lex maps is uniquely deter-
mined by its φ-restriction; the components at the < λ-limits are the induced morphisms.

φ◦ is full: to simplify notation note that since y is injective on objects, ε in the right
Kan-extension can be assumed to be an identity. Take M̃, Ñ : C̃ → E λ-lex and a natural
transformation α : M̃φ⇒ Ñφ. Then Rany(M̃φ) ◦ j is a map whose φ-restriction equals

M̃φ and similarly for Ñ , moreover α has a preimage between these functors. So it suffices
to prove that if M̃1 and M̃2 are C̃ → E λ-lex functors such that M̃1φ = M̃2φ then there’s
a natural isomorphism γ : M̃1 ⇒ M̃2 such that γ|C is identity. But given an arrow

f : x → y in C̃op its domain and codomain are both κ-filtered colimits of representables,
which is also a colimit in SetC where representables are tiny, so the restrictions of our
arrow factor through some leg of the colimit with top y. It follows that once M̃1 decides
to which limit object x and y would be sent, the image of f is uniquely determined.
The comparison maps between the limits chosen by M1 and those chosen by M2 give the
required isomorphism.

As a last ingredient, we will prove the following version of the downward Löwenheim-
Skolem theorem:

4.6. Theorem. Assume ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ). Let (C, E) be a κ-site with
|C|, |E| < λ. Then Mod(C, E, κ) is a λ-accessible category with κ-filtered colimits (and its
λ-presentable objects are the pointwise < λ functors).
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Proof. It is enough to see that in Mod(C, E, κ) every object is a λ-filtered colimit of
pointwise < λ models. So start with a model M : C → Set. In SetC it is the λ-filtered
union of its pointwise < λ subfunctors, as the subfunctor generated by a collection of
subsets A(x) ⊆M(x) is the closure under M(f)-images for f ∈ C but |C| < λ. A filtered
union is a filtered colimit, because this holds in Set and in presheaf categories colimits are
pointwise. So it suffices to prove that every pointwise < λ subfunctor of M is contained
in a pointwise < λ subfunctor which is κ-lex E-preserving.

We will prove the following: i) every < λ subfunctor is contained in a < λ subfunctor
which is lex and E-preserving, ii) it is contained in a < λ subfunctor which preserves < κ
products. This is sufficient as we can build a κ-chain out of A, in odd steps applying i),
in even steps applying ii), in limit steps taking the colimit, then the union of this chain
is < λ, E-preserving, and preserves both finite limits and < κ-products, hence κ-lex.

i) This is easy: one has to build an ω-chain out of A, in each step applying the following
three closure operators:

- close under M(f)-images for f ∈ C,

- for each family (ui → x)i in E, and each a ∈ An(x) choose one arbitrary preimage
in one M(uj) and add it to An(uj),

- for each finite diagram I → C and each compatible family formed by elements in
An ((< λ)<ω = (< λ)) add the corresponding element to An(limI).

Each of these add < λ elements so Aω satisfies our requirements.
ii) By [AR94, Remark 1.21] we can write M as a κ-directed (as opposed to just κ-

filtered) colimit of representables (indexed by P ). By [AR94, Theorem 2.11] κ ◁ λ implies
that the κ-directed < λ subsets of P form a λ-directed poset Q. Hence we can writeM as
a λ-directed colimit of pointwise < λ and κ-lex functors (indexed by Q), as representables
are pointwise < λ and therefore their < λ colimits are < λ. We can take the pointwise
image-factorization of each Mq ⇒ M hence M is the λ-directed union of these images
which are easily proved to preserve < κ products.

4.7. Theorem. We have the following assumptions:

• ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ)

• (C, E) is a κ-site, |C|, |E| < λ.

Write C
φ
↪−→ C̃ for C

y
↪−→ (Lexκ(C,Set)<λ)

op. Then:

• The map − ◦ φ : ModE(C̃, φ[E], λ) → ModE(C, E, κ) is an equivalence for any λ-
topos E.

• TFAE:

1. Sh(C̃, ⟨φ[E]⟩λ) has enough λ-points.
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2. In the diagram below LanayRanφ(ev) is an equivalence:

C SetMod(C)<λ

C̃

Sh(C̃, ⟨φ[E]⟩λ)

φ

ay

ev

LanayRanφ(ev)

Ranφ(ev)
∼=

∼=

Proof. The first claim follows from Proposition 4.5. All we need is that κ-filtered < λ
colimits of representables in Lexκ(C,Set) (equivalently in SetC) are precisely those func-
tors which have pointwise cardinality < λ. ” ⊆ ” follows as C(x,−) has pointwise size
< λ and a < λ colimit of pointwise < λ functors is a quotient of the pointwise disjoint
union whose cardinality is < λ as λ was regular. ” ⊇ ” follows as (again by regularity)

if M is pointwise < λ then |
∫
M | < λ. The equivalence φ◦ : Lexλ(C̃, E) → Lexκ(C, E)

restricts to an equivalence between φ[E]-, resp. E-preserving functors.
(Note also that φ is a morphism of κ-sites, as since φ is κ-lex the ⟨E⟩κ-families are

taken to ⟨φ[E]⟩κ ⊆ ⟨φ[E]⟩λ-families.)
In the second claim the implication 2 ⇒ 1 is easy: evM for M ∈ Mod(C)<λ is a

jointly conservative set of λ-points. To prove the converse we have to check that φ :
(C, E) → (C̃, φ[E]) satisfies Assumption 5. in Lemma 4.2. That is, Sh(C̃, ⟨φ[E]⟩λ) has
enough λ-points whose restriction to C is pointwise < λ. (This is enough, as if there is an

equivalence SetMod(C)<λ → Sh(C̃) making the triangle commute up to isomorphism, then
the same holds for its quasi-inverse, in which case it must be LanayRanφ(ev).)

Now pick an arrow f : x → y in Sh(C̃) which is not an isomorphism and choose

Ñ∗ : Sh(C̃) → Set which keeps it non-iso. By Theorem 4.6 we can write Ñ∗ ◦ ay ◦ φ
as the λ-filtered colimit of Mi’s, each being pointwise < λ. Since φ◦ was an equivalence
(whose quasi-inverse hence preserves this colimit), we can write Ñ∗ ◦ ay as the λ-filtered

colimit of M̃i’s with M̃i ◦ φ ∼= Mi. This colimit is pointwise as Mod(C̃, φ[E], λ) is closed
under λ-filtered colimits in SetC̃. Now the quasi-inverse of (ay)◦ maps this to a λ-filtered

colimit of M̃i

∗
’s with top Ñ∗ such that M̃i

∗
◦ay◦φ ∼= Mi. This colimit is also pointwise: in

fact, the pointwise colimit N̂∗ is λ-lex cocontinuous, so there’s an induced map Ñ∗ ⇒ N̂∗,

inverted by the equivalence (ay)◦. It follows that M̃i

∗
(f) is non-iso for some i.

4.8. Remark. The fact that −◦φ :ModE(C̃, φ[E], λ)→ModE(C, E, κ) is an equivalence

for any λ-topos E is the same as −◦φ∗ : Fun∗
λ(Sh(C̃, ⟨φ[E]⟩λ), E)→ Fun∗

κ(Sh(C, ⟨E⟩κ), E)
being an equivalence. This universal property guarantees that the classifying λ-topos
Sh(C̃, ⟨φ[E]⟩λ) depends only on the κ-topos Sh(C, ⟨E⟩κ) and not on the κ-site (C, E).

Moreover we get a 2-functor (̃ ) from ”κ-toposes which have a < λ defining κ-site,
κ-lex cocontinuous functors and natural transformations” to ”λ-toposes, λ-lex cocontin-
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uous functors and natural transformations”. It takes 1-cells and 2-cells to their unique
extensions:

E Ẽ

F F̃

φE

F ∗ G∗ F̃ ∗ G̃∗

φF

α ∼=∼=
α̃

(meaning: for each 1-cell F ∗ we fix a choice of F̃ ∗ and an isomorphism in the square, then
for each 2-cell α there is only one α̃ which makes the above 3-cell commute).

It is natural to ask about the properties of this 2-functor. E.g. if F is an embed-
ding/surjection/open/. . . does the same apply to F̃?

5. A λ-separable λ-topos has enough λ-points

5.1. Lemma. Let (C, E) be a λ-site with |E| ≤ λ, C being of local size ≤ λ, λ = cf(λ),
and take a family (fj : uj → x0)j. If for every λ-lex E-preserving M : C → Set functor
the M-image of the family is jointly surjective then the ay-image is extremal epimorphic.

Proof. We repeat the proof of the completeness theorem from the first section. Write
E− for the subset of E consisting of non-empty covers (containing at least 1→ 1). By Txi

we denote a list containing all diagrams consisting of some E−-family and a map from xi
to the common codomain. As there are ≥ 1, ≤ λ such diagrams we can assume that the
list has size λ.

Now start filling a λ × λ-big table with the tasks we have to solve. We shall use the
canonical well-ordering h : λ × λ → λ with the property h(α, β) ≥ β. In the 0th column
fill in Tx0 . Then solve task number h−1(0), whose second coordinate is ≤ 0 so it is defined.
By solving we mean: take the pullback of the given family along the given arrow. So now
we see an (E−)pb-covering family on x0.

Inductively we build a tree of height λ, where all branches are cofinal. In a successor
step (α + 1), where the αth object of the branch is x0,i1,... take the table whose columns
are filled in with tasks concerning the preceding objects of the branch, fill Tx0,i1,...

to the

αth-column, and solve task number h−1(α), which is defined. Solving means: this is a
diagram formed by an arrow from a preceding object x′ above x0,i1,... to the codomain
of some E−-family, precompose with the x0,i1,... → x′ arrow of the branch, then take the
pullback of the family along this composite. In limit steps take the limits (cocompositions)
of the branches.

As we deleted the empty covers from E, no branch dies out and we get a locally (E−)pb-
covering continuous cotree of height λ, and when we take the colimit of the representables
C(x0,−) → C(x0,i1 ,−) → . . . along a (cofinal) branch we get a C → Set λ-lex functor
which maps each E−-family to a jointly surjective one.
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If a branch is not preserving an empty cover {z ∅}, it means that from some element
x⃗i of the branch there exists a morphism x⃗i → z. If the branch is E-preserving then by
assumption the colimit takes (fj : uj → x0)j to a jointly surjective family, in particular
[1x0 ] is hit, meaning that for some x⃗i in the branch the map x⃗i → x factors through some
fj. Cut down each branch at such a point, then we see an ⟨E−⟩λ-family on x0, such
that each leg either factors through some fj or the domain admits a map to some object
over which ∅ is a cover. ay turns these objects initial, so now each leg factors through
some ay(fj), the inductively built family is mapped to an (extremal) epimorphic one,
consequently (ay(fj) : ay(uj)→ ay(x0))j is epimorphic.

By [MR77, Lemma 6.1.4] this is sufficient. For the reader’s convenience we repeat the
proof.

5.2. Lemma. Let Sh(C, ⟨E⟩ω) be any Grothendieck-topos. Take a natural transformation
between sheafified representables α : aC(−, x) ⇒ aC(−, x′). Then there is a cover (fi :

ui → x)i such that each composite aC(−, ui)
a((fi)◦)
=====⇒ aC(−, x) α

=⇒ aC(−, x′) is a sheafified

post-composition a((gi)◦) for some gi : ui → x′.

Proof. A consequence of the +-construction is that given an arbitrary presheaf F :
Cop → Set and a natural transformation β : C(−, x)⇒ F+, there is a cover (fi : ui → x)i

such that each C(−, ui)
(fi)◦
===⇒ C(−, x) β

=⇒ F+ factors through the canonical map F ⇒ F+.

If we start with F++ = aF instead of F+, the same remains true as covering trees of
height 2 compose to a cover.

Apply this for the composite C(−, x) ⇒ aC(−, x) α
=⇒ aC(−, x′). We get a cover

(fi : ui → x)i such that for each i there’s a commutative diagram

C(−, ui) C(−, x) aC(−, x) aC(−, x′)

C(−, x′)

(fi)◦ α

(gi)◦

whose image under sheafification is exactly what we were looking for.

5.3. Corollary. Let Sh(C, ⟨E⟩ω) be any Grothendieck-topos and take a monomorphism

ι : F ⇒ aC(−, x). Then there is a cover of F with sheafified representables aC(−, ui)
βi
=⇒ F

such that each ι ◦ βi is a sheafified post-composition.

Proof. Take any cover of F with sheafified representables aC(−, vi)⇒ F then apply the
previous lemma for the composites aC(−, vi)⇒ aC(−, x).

5.4. Theorem. Let (C, E) be a λ-site with |E| ≤ λ, C being of local size ≤ λ, λ = cf(λ).
Then Sh(C, ⟨E⟩λ) has enough λ-points.
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Proof. We have to prove that for an arbitrary proper mono ι : F ⇒ G there is some
M∗ : Sh(C, ⟨E⟩λ) → Set λ-lex cocontinuous functor which keeps it proper. It suffices
to prove this for G = aC(−, x), as we can find a cover (aC(−, xj) ⇒ G)j, then form the
pullback:

G
⊔

j aC(−, xj)

pb

F
⊔

j Fj

ι
⊔

j ιj

finally note that ι is proper iff at least one ιj is proper.
By the previous corollary we have

aC(−, ui)

. . . F aC(−, x)ι

βi

a((gi)◦)

and since ι is proper (ay(gi))i cannot be epimorphic. Therefore by Lemma 5.1 there is some
M : C → Set λ-lex E-preserving for which (M(gi))i is not jointly surjective. By Theorem
3.15 its left Kan-extension M∗ = LanayM is λ-lex cocontinuous and M∗ ◦ ay ∼= M . But
since M∗(βi)’s form a jointly surjective family and M∗(ay(gi))’s do not, it follows that
M∗(ι) is proper.

5.5. Theorem. We have the following assumptions:

• ℵ0 ≤ κ = cf(κ) ◁ λ = cf(λ), 2<λ = λ

• (C, E) is a κ-site, |C|, |E| < λ

Then using the notation of Theorem 4.7, in the diagram

C SetMod(C)<λ

C̃

Sh(C̃, ⟨φ[E]⟩λ)

φ

ay

ev

LanayRanφ(ev)

Ranφ(ev)
∼=

∼=

LanayRanφ(ev) is an equivalence.
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Proof. All we have to check is that Lexκ(C,Set)<λ has local size ≤ λ. But there are
at most as many F ⇒ G natural transformations as

⊔
x∈C F (x) →

⊔
x∈C G(x) maps, and

since λ is regular this is (µ2)
µ1 for some µ1, µ2 < λ. This is ≤ λ by the assumption

µ < λ⇒ 2µ ≤ λ.

5.6. Remark. To ensure that C̃ has local size ≤ λ we assumed 2<λ = λ. To get that C̃
has size ≤ λ we would need λ<λ = λ. However, these two assumptions are equivalent for
a regular cardinal λ, see [Jec02, Exercise 5.21].

5.7. Remark. Fix κ = cf(κ) ≥ ℵ0. Then TFAE:

1. there are arbitrarily large cardinals λ satisfying κ ◁ λ = λ<λ

2. there are arbitrarily large cardinals λ satisfying λ<λ = λ and for α < λ: α<κ < λ.

This follows from [LRV19, Fact 2.5]. These equivalent conditions are true under GCH, or
more generally under SCH + ”CH holds at arbitrarily large cardinals of cofinality ≥ κ”.
Indeed, if µ > 2<κ, cf(µ) ≥ κ and 2µ = µ+ then λ = µ+ satisfies both λ<λ = λ (since
(µ+)µ = (2µ)µ = 2µ = µ+) and (< λ)<κ = (< λ), i.e. µ<κ = µ by [Jec02, Theorem
5.22.ii).b].

So under an additional set theoretic assumption we managed to prove that ”every
theory is eventually of presheaf type”. It is unknown to us whether this follows from
ZFC.

We get the following corollaries:

5.8. Theorem. Assume

• ℵ0 ≤ κ = cf(κ) ◁ λ = λ<λ

• (C, E) is a κ-site, |C|, |E| < λ

Then in SetMod(C)<λ the closure of {evx : x ∈ C} under κ-cofiltered limits of size < λ
form a generating set.

5.9. Theorem. Assume:

• ℵ0 ≤ κ = cf(κ) ◁ λ = λ<λ

• (C, E) is a κ-site, |C|, |E| < λ

Take a full subcategory A of Lexκ(C,Set)<λ containing Mod(C)<λ and write I :

Mod(C)<λ
J1
↪−→ A J2

↪−→ Lexκ(C,Set)<λ for the full embeddings. Let E be a λ-topos and

SetA
M−→ E be a λ-lex cocontinuous functor such that for any (ui → x)i family in E, the

familyM((evui
|A → evx|A)i) is extremal epimorphic. Then a λ-lex cocontinuous extension
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SetA SetMod(C)<λ

E

M

J◦
1

M̃

∼=

exists.

Proof. Unwinding everything that we’ve been hiding yields

C SetMod(C)<λ

(Lexκ(C,Set)<λ)
op

SetA

SetLexκ(C,Set)<λ

Sh((Lexκ(C,Set)<λ)
op, ⟨y[E]⟩λ) E

y

ev

LanayRany(ev)

Rany(ev)

y

a

J◦
2

J◦
1

ev

M

M̂

First note that all black triangles commute. Indeed, I◦ ◦ y is a λ-lex functor whose
y-restriction is isomorphic to ev, therefore I◦◦y ∼= Rany(ev). Also (LanayRany(ev)◦a)◦y
is isomorphic to Rany(ev), and since both I◦ and LanayRany(ev) ◦ a are cocontinuous
this extends to an isomorphism between LanayRany(ev) ◦ a and I◦.

By assumption M ◦J◦
2 ◦ y is λ-lex y[E]-preserving, hence there is a λ-lex cocontinuous

M̂ with M̂ ◦ a ◦ y ∼= M ◦ J◦
2 ◦ y. As M̂ ◦ a and M ◦ J◦

2 are cocontinuous it follows that

M̂ ◦ a ∼= M ◦ J◦
2 .

So now if we write M̃ = M̂ ◦ (LanayRany(ev))
−1 we have M̃ ◦ J◦

1 ◦ J◦
2
∼= M ◦ J◦

2 and

therefore M̃ ◦ J◦
1
∼= M since J◦

2 ◦ LanJ2
∼= 1SetA .
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[AR94] Jǐŕı Adámek and Jǐŕı Rosický. Locally Presentable and Accessible Categories.
Vol. 189. London Mathematical Society Lecture Note Series. London: Cam-
bridge University Press, 1994.

[Bek04] Tibor Beke. “Theories of presheaf type”. In: Journal of Symbolic Logic 69
(2004), pp. 923–934.



EVERY THEORY IS EVENTUALLY OF PRESHEAF TYPE 371
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Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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