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GROUPOID CARDINALITY AND RANDOM PERMUTATIONS

JOHN C. BAEZ

Abstract. If we treat the symmetric group Sn as a probability measure space where
each element has measure 1/n!, then the number of cycles in a permutation becomes a
random variable. The Cycle Length Lemma describes the expected values of products
of these random variables. Here we categorify the Cycle Length Lemma by showing that
it follows from an equivalence between groupoids.

1. Introduction

There is a well-behaved generalization of the concept of cardinality from finite sets to
finite groupoids [2]. But what is it good for? As an illustration, here we use it to give a
new proof of a known fact about random permutations: the Cycle Length Lemma [4]. In
this lemma one treats the number of k-cycles in a permutation of n things as a random
variable, where each permutation occurs with equal probability. The lemma says that in
the limit as n → ∞, this random variable approaches a Poisson distribution with mean
1/k. Furthermore, in the n → ∞ limit these random variables become independent for
different choices of k.

These are quick rough statements. In Section 2 we state the Cycle Length Lemma in
a precise way. In Section 3 we prove a categorified version of the Cycle Length Lemma,
which asserts an equivalence of groupoids. In Section 4 we derive the original version of
the lemma from this categorified version by taking the cardinalities of these groupoids.
The categorified version contains more information, so it is not just a trick for proving
the original lemma (which is, after all, quite easy to show). Instead, it reveals the original
lemma as a consequence of a stronger fact about groupoids.

In Section 5 we sketch how some of the ideas here generalize to other finite groups.

2. The Cycle Length Lemma

In the theory of random permutations, we treat the symmetric group Sn as a probability
measure space where each element has the same measure, namely 1/n!. Functions f : Sn →
R then become random variables, and we can study their expected values:

E(f) =
1

n!

∑
σ∈Sn

f(σ).
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An important example is the function

ck : Sn → N

that counts, for any permutation σ ∈ Sn, its number of cycles of length k, also called
k-cycles. A well-known but striking fact about random permutations is that whenever
k ≤ n, the expected number of k-cycles is 1/k:

E(ck) =
1

k
.

This has some nice consequences. For example, a randomly chosen permutation of any
finite set has, on average, one fixed point. Also, its expected number of cycles is

1 +
1

2
+ · · ·+ 1

n
,

which for large n becomes close to lnn plus Euler’s constant γ.
Another striking fact is that whenever j ̸= k and j + k ≤ n, so that it is possible for

a permutation σ ∈ Sn to have both a j-cycle and a k-cycle, the random variables cj and
ck are uncorrelated in the following sense:

E(cjck) = E(cj)E(ck).

You might at first think that having many j-cycles for some large j would tend to inhibit
the presence of k-cycles for some other large value of k, but that is not true unless j+k > n,
when it suddenly becomes impossible to have both a j-cycle and a k-cycle!

These two facts are special cases of the Cycle Length Lemma. To state this lemma
in full generality, recall that the number of ordered p-tuples of distinct elements of an
n-element set is the falling power

xp = x(x− 1)(x− 2) · · · (x− p+ 1).

It follows that the function
c
p

k : Sn → N
counts, for any permutation in Sn, its ordered p-tuples of distinct k-cycles. We can also
replace the word ‘distinct’ here by ‘disjoint’, without changing the meaning, since distinct
cycles must be disjoint.

The two striking facts mentioned above generalize as follows:

1. First, whenever pk ≤ n, so that it is possible for a permutation in Sn to have p
distinct k-cycles, then

E(c
p

k) =
1

kp
.

For readers familiar with the moments of a Poisson distribution, here is a nice
equivalent way to state this equation: when pk ≤ n, the pth moment of the random
variable ck equals that of a Poisson distribution with mean 1/k.
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2. Second, as n → ∞ the random variables ck become better and better approxi-
mated by independent Poisson distributions. To state this precisely we need a bit
of notation. Let p⃗ denote an n-tuple (p1, . . . , pn) of natural numbers, and let

|p⃗| = p1 + 2p2 + · · ·+ npn.

If |p⃗| ≤ n, it is possible for a permutation σ ∈ Sn to have a collection of distinct
cycles, with p1 cycles of length 1, p2 cycles of length 2, and so on up to pn cycles of
length n. If |p⃗| > n, this is impossible. In the former case, where |p⃗| ≤ n, we always
have

E

(
n∏

k=1

c
p
k

k

)
=

n∏
k=1

E(c
p
k

k ).

Taken together, 1) and 2) are equivalent to the Cycle Length Lemma, which may be
stated in a unified way as follows:

The Cycle Length Lemma. Suppose p1, . . . , pn ∈ N. Then

E

(
n∏

k=1

c
p
k

k

)
=


n∏

k=1

1

kpk
if |p⃗| ≤ n

0 if |p⃗| > n

This appears, for example, in Ford’s comprehensive review of the statistics of cycle
lengths in random permutations [4, Lem. 3.1]. He attributes it to Watterson [9, Thm. 7].
The most famous special case is when |p⃗| = n, which apparently goes back to Cauchy.

For more details on the sense in which random variables ck approach independent
Poisson distributions, see Arratia and Tavaré [1].

3. The Categorified Cycle Length Lemma

To categorify the Cycle Length Lemma, the key is to treat a permutation as an extra
structure that we can put on a set, and then consider the groupoid of n-element sets
equipped with this extra structure:

3.1. Definition. Let Permn be the groupoid in which

� an object is an n-element set equipped with a permutation σ : X → X

and

� a morphism from σ : X → X to σ′ : X ′ → X ′ is a bijection f : X → X ′ that is
permutation-preserving in the following sense:

f ◦ σ ◦ f−1 = σ′.
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We’ll need the following strange fact below: if n < 0 then Permn is the empty groupoid
(that is, the groupoid with no objects and no morphisms).

More importantly, we’ll need a fancier groupoid where a set is equipped with a per-
mutation together with a list of distinct cycles of specified lengths. For any n ∈ N and
any n-tuple of natural numbers p⃗ = (p1, . . . , pn), recall that we have defined

|p⃗| = p1 + 2p2 + · · ·+ npn.

3.2. Definition. Let Cp⃗ be the groupoid of n-element sets X equipped with a permutation
σ : X → X that is in turn equipped with a choice of an ordered p1-tuple of distinct 1-cycles,
an ordered p2-tuple of distinct 2-cycles, and so on up to an ordered pn-tuple of distinct
n-cycles. A morphism in this groupoid is a bijection that is permutation-preserving and
also preserves the ordered tuples of distinct cycles.

Note that if |p⃗| > n, no choice of disjoint cycles with the specified property exists, so
Cp⃗ is the empty groupoid.

Finally, we need a bit of standard notation. For any group G we write B(G) for its
delooping: that is, the groupoid that has one object ⋆ and Aut(⋆) = G.

3.3. Theorem. (The Categorified Cycle Length Lemma.) For any p⃗ = (p1, . . . , pn) ∈
Nn we have

Cp⃗ ≃ Permn−|p⃗| ×
n∏

k=1

B(Z/k)pk .

Proof. Both sides are empty groupoids when |p⃗| > n, so assume |p⃗| ≤ n. A groupoid
is equivalent to any full subcategory of that groupoid containing at least one object from
each isomorphism class. So, fix an n-element set X and a subset Y ⊆ X with n − |p⃗|
elements. Partition X − Y into subsets Skℓ where Skℓ has cardinality k, 1 ≤ k ≤ n, and
1 ≤ ℓ ≤ pk. Every object of Cp⃗ is isomorphic to the chosen set X equipped with some
permutation σ : X → X that has each subset Skℓ as a k-cycle. Thus Cp⃗ is equivalent to
its full subcategory containing only objects of this form.

An object of this form consists of an arbitrary permutation σY : Y → Y and a cyclic
permutation σkℓ : Skℓ → Skℓ for each k, ℓ as above. Consider a second object of this form,
say σ′

Y : Y → Y equipped with cyclic permutations σ′
kℓ. Then a morphism from the first

object to the second consists of two pieces of data. First, a bijection

f : Y → Y

such that
σ′
Y = f ◦ σY ◦ f−1.

Second, for each k, ℓ as above, a bijection

fkℓ : Skℓ → Skℓ

such that
σ′
kℓ = fkℓ ◦ σkℓ ◦ f−1

kℓ .
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Since Y has n − |p⃗| elements, while σkℓ and σ′
kℓ are cyclic permutations of k-element

sets, it follows that Cp⃗ is equivalent to

Permn−|p⃗| ×
n∏

k=1

B(Z/k)pk .

The case where |p⃗| = n is especially pretty, since then our chosen cycles completely
fill up our n-element set and we have

Cp⃗ ≃
n∏

k=1

B(Z/k)pk .

4. Groupoid Cardinality

The cardinality of finite sets has a natural extension to finite groupoids, which turns out
to be the key to extracting results on random permutations from category theory. We
briefly recall this concept [2]. Any finite groupoid G is equivalent to a coproduct of finitely
many one-object groupoids, which are deloopings of finite groups G1, . . . , Gm:

G ≃
m∑
i=1

B(Gi),

and then the cardinality of G is defined to be

|G| =
m∑
i=1

1

|Gi|
.

This concept of groupoid cardinality has various nice properties. For example it is addi-
tive:

|G+ H| = |G|+ |H|

and multiplicative:
|G× H| = |G| × |H|

and invariant under equivalence of groupoids:

G ≃ H =⇒ |G| = |H|.

None of these three properties forces us to define |G| as the sum of the reciprocals
of the cardinalities |Gi|: any other power of these cardinalities would work just as well.
What makes the reciprocal cardinalities special is that if G is a finite group acting on a
set S, we have

|S � G| = |S|/|G|
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where the groupoid S � G is the weak quotient or homotopy quotient of S by G,
also called the action groupoid. This is the groupoid with elements of S as objects and
one morphism from s to s′ for each g ∈ G with gs = s′, with composition of morphisms
coming from multiplication in G.

The groupoid of n-element sets equipped with permutation, Permn, has a nice descrip-
tion in terms of weak quotients:

4.1. Lemma. For all n ∈ N we have an equivalence of groupoids

Permn ≃ Sn � Sn

where the group Sn acts on the underlying set of Sn by conjugation.

Proof. We use the fact that Permn is equivalent to any full subcategory of Permn con-
taining at least one object from each isomorphism class. For Permn we can get such a
subcategory by fixing an n-element set, say X = {1, . . . , n}, and taking only objects of the
form σ : X → X, i.e. σ ∈ Sn. A morphism from σ ∈ Sn to σ′ ∈ Sn is then a permutation
τ ∈ Sn such that

σ′ = τστ−1.

But this subcategory is precisely Sn � Sn.

4.2. Corollary. For all n ∈ N we have

|Permn| = 1.

Proof. We have |Permn| = |Sn � Sn| = |Sn|/|Sn| = 1.

For another useful perspective, note that for any finite groupoid G we have

|G| =
∑
g∈G

1

|out(g)|

where out(g) is the set of all morphisms out of the object g ∈ G. The groupoid Sn � Sn

has one object for each σ ∈ Sn, and there are n! morphisms out of each object, so the
groupoid cardinality of Sn � Sn is 1.

This clarifies why we can prove results on random permutations using the groupoid
Permn: this groupoid is equivalent to Sn �Sn, which has one object for each permutation
in Sn, each contributing 1/n! to the groupoid cardinality.

Now let us use these ideas to derive the original Cycle Length Lemma from the cate-
gorified version.

4.3. Theorem. (The Cycle Length Lemma.) Suppose p1, . . . , pn ∈ N. Then

E

(
n∏

k=1

C
p
k

k

)
=


n∏

k=1

1

kpk
if |p⃗| ≤ n

0 if |p⃗| > n.
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Proof. We know that

Cp⃗ ≃ Permn−|p⃗| ×
n∏

k=1

B(Z/k)pk .

So, to prove the Cycle Length Lemma it suffices to show three things:

|Cp⃗| = E

(
n∏

k=1

c
p
k

k

)

Permn−|p⃗| =


1 if |p⃗| ≤ n

0 if |p⃗| > n

and
|B(Z/k)| = 1/k.

The last of these is immediate from the definition of groupoid cardinality. The second
follows from the Corollary above, together with the fact that Permn−|p⃗| is the empty
groupoid when |p⃗| > n. Thus we are left needing to show that

|Cp⃗| = E

(
n∏

k=1

c
p
k

k

)
.

We prove this by computing the cardinality of a groupoid equivalent to Cp⃗. We claim this
groupoid is of the form Qp⃗ � Sn where Qp⃗ is some set on which Sn acts. As a result we
have

|Cp⃗| = |Qp⃗ � Sn| = |Qp⃗|/n!

and to finish the proof we need to show

E

(
n∏

k=1

c
p
k

k

)
= |Qp⃗|/n! .

What is the set Qp⃗, and how does Sn act on it? An element of Qp⃗ is a permutation
σ ∈ Sn equipped with an ordered p1-tuple of distinct 1-cycles, an ordered p2-tuple of
distinct 2-cycles, and so on up to an ordered pn-tuple of distinct n-cycles. Any element
τ ∈ Sn acts on Qp⃗ in a natural way, by conjugating the permutation σ ∈ Sn to obtain a
new permutation, and mapping the chosen cycles of σ to the corresponding cycles of this
new conjugated permutation τστ−1.

Recalling the definition of the groupoid Cp⃗, it is clear that any element of Qp⃗ gives
an object of Cp⃗, and any object is isomorphic to one of this form. Furthermore any
permutation τ ∈ Sn gives a morphism between such objects, all morphisms between such
objects are of this form, and composition of these morphisms is just multiplication in Sn.
It follows that

Cp⃗ ≃ Qp⃗ � Sn.
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To finish the proof, note that

E

(
n∏

k=1

c
p
k

k

)
is 1/n! times the number of ways of choosing a permutation σ ∈ Sn and equipping it with
an ordered p1-tuple of distinct 1-cycles, an ordered p2-tuple of distinct 2-cycles, and so
on. This is the same as |Qp⃗|/n!.

5. Conclusion

We have opted to treat an example rather than develop a general theory, but many of the
ideas here go beyond the symmetric group. Any finite groupG acts on itself by conjugation
and gives a groupoid G�G of cardinality 1. Any functor F : G�G → FinSet describes a
conjugation-equivariant structure we can put on elements of G, with F (g) being the set
of structures we can put on the element g ∈ G. Taking the ordinary cardinality of these
sets, we obtain a function |F | : G → N. Its expected value with respect to the normalized
Haar measure on G is, by definition,

E(|F |) = 1

|G|
∑
g∈G

|F (g)|.

However, E(|F |) also equals the cardinality of a certain groupoid for which an object is
an element g ∈ G equipped with a structure x ∈ F (g). This groupoid is the familiar
category of elements of F , denoted ∫F , for which:

1. an object is a pair (g, x) where g ∈ G and x ∈ F (g);

2. a morphism from (g, x) to (g′, x′) is an element h ∈ G such that g′ = hgh−1 and
x′ = F (h)(x);

3. composition of morphisms is multiplication of group elements.

5.1. Theorem. If G is a finite group and F : G � G → FinSet is a functor, then

E(|F |) = |∫F | .

Proof. Let Ob(∫F ) be the set of objects of ∫F . The group G acts on Ob(∫F ), with h ∈ G
mapping the object (g, x) to the object (hgh−1, F (h)(x)). Using the explicit description
of ∫F in items (1)–(3) above, there is an evident isomorphism of groupoids

∫F ∼= Ob(∫F ) � G

that is the identity on objects and sends each morphism h from (g, x) to (g′, x′) to the
analogous morphism in Ob(∫F ) � G. It follows that

|∫F | = |Ob(∫F ) � G| = |Ob(∫F )|/|G| = 1

|G|
∑
g∈G

|F (g)| = E(|F |).
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The expected value of |F | is its integral over G with respect to normalized Haar
measure, so we can write it as ∫ |F |, and then the theorem above takes an amusing
though perhaps confusing form:

∫ |F | = |∫F | .

The above theorem sheds new light on the proof of Theorem 4.3, because the Sn-set Qp⃗

in that proof is none other than Ob(∫Cp⃗) for the functor Cp⃗ : Sn � Sn → FinSet assigning
to any permutation the set where an element is an ordered p1-tuple of distinct 1-cycles,
an ordered p2-tuple of distinct 2-cycles, and so on. Thus, the groupoid Cp⃗ is equivalent to
∫Cp⃗. The same ideas apply to other structures that we can put on a finite set equipped
with a permutation.

The above theorem may also let us derive results about random elements of other
groups from equivalences of groupoids. Results on GL(n,Fq) are promising candidates
[5], since some are already proved using generating functions, which are connected to the
category-theoretic techniques used here [2, 3, 6], and there are powerful analogies between
finite sets and finite-dimensional vector spaces over finite fields [7, 8].
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