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ATOMIC TOPOSES WITH
CO-WELL-FOUNDED CATEGORIES OF ATOMS

JÉRÉMIE MARQUÈS

Abstract. The atoms of the Schanuel topos can be described as the formal quotients
n/G where n is a finite set and G is a subgroup of Aut(n). We give a general criterion
on an atomic site (A, Jat) ensuring that the atoms of Sh(A, Jat) can be described in a
similar fashion, as the formal quotients n/G where n ∈ A and G ⊆ Aut(n) is a “valid”
subgroup. It might happen that every group of automorphisms is valid in this sense,
and we show that it is the case if and only if the Jat-sheaves coincide with the pullback-
preserving presheaves. We show that if the criterion is satisfied and the groups Aut(n)
are Noetherian, then Sh(A, Jat) is locally finitely presentable. By applying this to the
Malitz–Gregory atomic topos, we obtain a negative answer to a question of Di Liberti
and Rogers: Does every locally finitely presentable topos have enough points? We also
provide an example of an atomic topos which is not locally finitely presentable.

1. Introduction

This article is motivated by the following question posed in [DLR24]:

Does every locally finitely presentable sheaf topos have enough points?

As argued in [DLR24], this is a natural inquiry:

� Locally finitely presentable toposes include coherent toposes and presheaf toposes,
which do have enough points.

� The analogous question for frames has a positive answer.

� A locally finitely presentable topos has enough points if the slices of its category of
finitely presentable objects are essentially countable [DLR24, Cor. 4.1.12].

The same question was raised by Campion on MathOverflow [Cam21]. We show here that
the pointless atomic topos of [Mak82, Sec. 5] is a counter-example. In order to do so,
we give a combinatorial criterion on an atomic site ensuring that the atoms of its topos
of sheaves are not “too complex,” and as a consequence that this topos is locally finitely
presentable. A crucial property is that these categories of atoms are co-well-founded in
the sense that every chain stabilizes.
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A motivating example As a first example of an atomic topos, we consider the Schanuel
topos of nominal sets. It can be defined in many ways; for a complete introduction, we
refer to the book [Pit13]. Informally, an object of this topos, a nominal set, can be thought
of as a set of terms in which a finite number of variables may appear. These variables
can be renamed to yield other terms.

In order to give an idea of what nominal sets look like, we examine two examples.

� The nominal set of ordered pairs has terms (a, b) where a and b are variables.

� The nominal set of unordered pairs has terms {a, b} where a and b are variables.

The difference between these two nominal sets is that exchanging the variables of an
unordered pair does nothing, since {a, b} = {b, a} but (a, b) ̸= (b, a) if a ̸= b. These
two examples actually illustrate everything that can happen in a nominal set. More
precisely, each nominal set can be decomposed as a potentially infinite union of basic
building blocks, its atoms. An atom of a nominal set is a term modulo renaming of its
variables. This means that we can think of an atom as a term t(x1, . . ., xn) where the
xi are pairwise distinct variables. The number of variables is the support of the atom.
Another important information is the group G ⊆ Sn of permutations of the variables xi

that leave the term unchanged. The atom is in a sense completely determined by the pair
(n,G). In categorical terms, an atom of a nominal set is a minimal non-empty sub-object,
and two atoms are isomorphic if and only if they have the same invariant (n,G).

Let us determine for instance the atoms of the nominal set of unordered pairs. Modulo
renaming, there are two unordered pairs: {a, b} with a ̸= b and {a}. The invariants of
these atoms are respectively (2,S2) and (1,S1). Similarly, the nominal set of ordered
pairs also has two atoms, (a, b) with a ̸= b and (a, a), but their invariants are (2, {id})
and (1,S1).

The Schanuel topos can also be presented as the category of sheaves for the atomic
topology on the opposite of the category FinSetInj of finite sets and injections. There is
a direct connection with the explicit description of the atoms given above: each atom is
a formal quotient of an object n of FinSetInjop by a group of automorphisms of n. The
main objective of this paper is to generalize this phenomenon to other categories than
FinSetInj.

Overview of the paper In § 2, we present a condition on an atomic site (A, Jat)
under which we obtain a concrete description of the category of atoms of Sh(A, Jat). This
condition essentially says that A is a full subcategory of atoms which is stable under
pushouts and co-well-founded. The atoms can then be described as the formal quotients
n/G in [Aop, Set] where n ∈ A, G ⊆ Aut(n) is a subgroup and the pair (n,G) is atomic
(Definition 2.2.3). We focus in § 2.3 on the case where all the pairs (n,G) are atomic,
and we show that this happens precisely when the Jat-sheaves coincide with the pullback-
preserving functors Aop → Set. In § 3, we show that if the groups Aut(n) where n ∈ A are
all Noetherian, then the category of atoms is co-well-founded. This implies that Sh(A, Jat)
is locally finitely presentable. We apply this in § 4 to show that a classical example of
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pointless atomic topos, the Malitz–Gregory topos, is locally finitely presentable. This
gives a counter-example to the conjecture that every locally finitely presentable topos has
enough points formulated in [DLR24]. Finally, we provide in § 5 an example of an atomic
topos which is not locally finitely presentable.
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Notations In this paper, topos will mean sheaf topos. The symbol Jat denotes the
atomic topology on a category left implicit. We will never consider any other topology,
so it will often be left implicit. In particular, a sheaf with respect to the atomic topology
will simply be referred to as a sheaf. The sheafification of a presheaf F (with respect to
the atomic topology) will be denoted by sh(F ). The composite of two arrows f : A → B
and g : B → C will be denoted by fg or by g ◦ f .

2. A well-foundedness criterion to describe atoms

A chain in a category is a diagram indexed by a well-ordered poset. We say that a chain
(xi)i∈I stabilizes at i ∈ I if the morphisms xi → xj are isomorphisms for all j ≥ i. If a
chain stabilizes at i, then it stabilizes at every j ≥ i and the morphisms xj → colimk xk

are isomorphisms for all j ≥ i. An ω-chain is a chain indexed by the ordinal ω.

2.0.1. Definition. A category C is co-well-founded if every chain stabilizes. We say
that C is well-founded if Cop is co-well-founded.

Equivalently, C is co-well-founded if every ω-chain stabilizes: If there is a chain that
does not stabilize, pick an element a0 in it. Then there is a morphism a0 → a1 in the
chain which is not an isomorphism. Repeating this process produces an ω-chain that does
not stabilize.

The aim of this section is to give an explicit description of the category of atoms
of Sh(Cop, Jat), provided that C satisfies the conditions (C1), (C2) and (C3) below. We
express here (C1) and (C2) in an abstract form, but we will give equivalent combinatorial
formulations in § 2.1.

(C1) Cop → Sh(Cop, Jat) is fully faithful and sends each object of Cop to an atom.

(C2) Cop has pushouts and Cop → Sh(Cop, Jat) preserves them.
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(C3) C is well-founded.

In view of these conditions, the reader might wonder why we chose to work with C and
not directly with Cop. The reason is that in the examples, C is the category of “finitary”
models of some theory, while Cop is harder to work with directly. In terms of the syntax-
semantics duality, Cop lies on the syntactical side while C lies on the semantical side. Both
of these perspectives are important.

Conditions (C1) and (C2) ensure that Cop describes a category of “representable”
atoms stable under pushouts. Condition (C3) will be used to compute coequalizers of
morphisms between these representable atoms by iterating pushouts and then quotienting
by an automorphism (Lemma 2.2.1). From this, we deduce the description of the category
of atoms of Sh(Cop, Jat) presented in Theorem 2.2.6.

2.1. The combinatorial content of (C1) and (C2).We say that a category C has
amalgamation or satisfies the left Ore condition if every span admits a cocone.

As can be found in [BD80, Sec. 7(3)] and [Joh02, C2.1.12(c)], (C1) is equivalent to
the conjunction of

� C has amalgamation, and

� every morphism in C is the equalizer of all the pairs of maps that it equalizes.

When C has these properties, (Cop, Jat) is called a standard atomic site in [BD80]. In this
case, we call the atoms in the image of Cop → Sh(Cop, Jat) the representable atoms.

In order to give the combinatorial content of (C2) in Lemma 2.1.1, we introduce
another condition on C:

(C2’) C has pullbacks and for every pullback

X ∩ Y X

Y Z

f

g

(1)

in C, for every pair of parallel morphisms u, v : Z ⇒ A coinciding on X ∩Y , there is
a morphism w : A → A′ and a sequence of morphisms k0 = uw, k1, k2, . . ., kn = vw :
Z → A′ such that any two consecutive morphisms in this sequence coincide either
on X or on Y .

If C satisfies (C1), then every arrow is a monomorphism. This justifies the notation
X ∩ Y , but in general it is just a pullback.

2.1.1. Lemma. Let C be a small category. Then (C2) and (C2’) are equivalent.
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Proof. The canonical functor y : Cop → Sh(Cop, Jat) preserves pushouts if and only if
every sheaf F : C → Set preserves pullbacks, using that Hom(y(X), F ) ∼= F (X). Suppose
that C satisfies (C2’). Let F : C → Set be a sheaf. We show that it preserves the pullback
(1). First, note that the sheaf condition implies that F sends every morphism to an
injection. We have F (X ∩ Y ) ⊆ F (X) ∩ F (Y ) and we must show the reverse inclusion.
Let z ∈ F (X) ∩ F (Y ). We show that z satisfies the descent condition for the covering
X ∩ Y → Z. Let u, v : Z ⇒ A be a parallel pair of arrows coinciding on X ∩ Y . We
must show that F (u)(z) = F (v)(z). Let w : A → A′ and k0 = uw, k1, k2, . . ., kn = vw a
sequence of morphisms as in (C2’). Then k0(z) = k1(z) = · · · = kn(z). This shows that z
descends to X ∩ Y , and C satisfies (C2).

Suppose now that C satisfies (C2) and consider the square (1). Let P : C → Set be
the pushout of Hom(X,−) and Hom(Y,−) along Hom(Z,−) computed in [C, Set]. Recall
that the sheafification functor is written sh : [C, Set] → Sh(Cop, Jat). Then (C2) says that
sh(P ) → sh(Hom(X ∩ Y,−)) is an isomorphism. We obtain the diagram (2) in [C, Set].

P Hom(X ∩ Y,−)

sh(P ) sh(Hom(X ∩ Y,−))∼

(2)

Let u, v : Z ⇒ A be two arrows that coincide onX∩Y . They represent two elements [u], [v]
of P (A) which are sent to the same element of Hom(X ∩ Y,A). Using the commutativity
of (2) and the fact that sh(P ) → sh(Hom(X ∩ Y,−)) is an isomorphism, we obtain that
[u] and [v] are sent to the same element of sh(P )(A). This means that [u] and [v] are
locally equal, i.e., that there is a morphism w : A → A′ such that [uw] = [vw] in P (A′).
The definition of P (A′) as a pushout gives the sequence of morphisms in (C2’).

As we saw in the proof, (C2) also means that every sheaf is a pullback-preserving
presheaf. We will come back to this in in § 2.3, where we consider the converse implication.

2.2. The atoms of Sh(Cop, Jat). Given an object A of a category with small colimits
an automorphism σ of A, we denote by A/σ the coequalizer of σ and the identity. If
G ⊆ Aut(A) is a subgroup, A/G denotes the common coequalizer of all the arrows in G.

2.2.1. Lemma. Suppose that C satisfies (C1), (C2) and (C3). Let α, β : n ⇒ m be a
pair of morphisms between representable atoms in Sh(Cop, Jat). Then their coequalizer is
of the form m → m′ → m′/σ where m′ is a representable atom and σ is an automorphism
of m′.

Proof. We build a sequence of atoms

m0 m1 m2 · · ·
α0

β0

α1

β1

α2

β2
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as follows. We start with m0 = n, m1 = m, α0 = α and β0 = β. At each step, mi+1 is
built as the pushout below.

mi mi+1

mi+1 mi+2

αi

βi αi+1

βi+1

The coequalizer of αi and βi is canonically isomorphic to the coequalizer of αi+1 and
βi+1. Since every chain of representable atoms stabilizes by (C3), there is some i such
that αi and βi are isomorphisms. The coequalizer of αi and βi is mi/(αiβ

−1
i ), hence the

coequalizer of α and β is m ∼= m1 → mi → mi/(αiβ
−1
i ).

In general, the colimit of a diagram in Sh(Cop, Jat) is obtained by sheafifying the colimit
of the same diagram considered in [C, Set]. We will say that m/G is computed in [C, Set]
if there is no need to sheafify when computing this colimit.

2.2.2. Proposition. Suppose that C satisfies (C1), (C2) and (C3). Let n → a be a
morphism between atoms of Sh(Cop, Jat) where n is representable. Then n → a is equal to
some composition

n → m → m/G ∼= a

where m is another representable atom and G ⊆ Aut(m). Moreover, m and G can be
chosen such that the quotient m/G is computed in [C, Set].

Proof. Let n → m be a maximal representable quotient such that n → a factorizes
through it. Since Cop is supposed co-well-founded by (C3), such an m exists. Let G ⊆
Aut(m) be the subgroup of automorphisms fixing m → a. We claim that m/G = a.
Let x be a representable atom and let α, β : x ⇒ m be two morphisms coequalized by
m → a. By Lemma 2.2.1, the coequalizer of α and β is of the form m → m′ → m′/σ
with m′ a representable atom and σ ∈ Aut(m′). But m → m′ must be an isomorphism
since m is maximal, so that we can suppose m = m′ and the coequalizer is m → m/σ
with σ ∈ G ⊆ Aut(m). Hence we can factorize m → coeq(α, β) → m/G. But a is the
wide pushout of all these coequalizers coeq(α, β) for α and β coequalized by m → a, so
that a = m/G.

Now, we show that m/G is computed in [C, Set]. In other words, we must show
that Hom(−,m)/G is a sheaf on the category of representable atoms. Let f : n →
k be a morphism between representable atoms. Since Hom(k,m) → Hom(n,m) is an
injective morphism of G-sets, the map Hom(k,m)/G → Hom(n,m)/G is also injective,
so the presheaf is separated. To complete the argument, let [g] ∈ Hom(n,m)/G be the
equivalence class of some g ∈ Hom(n,m). We must show that if [g] satisfies the descent
condition with respect to the covering f : n → k, then it descends to k. If this descent
condition is satisfied by [g], then it is also satisfied by the composite of g and m → m/G.
Since Hom(−,m/G) is a sheaf on the representable atoms (and even on all the atoms),
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there is a morphism k → m/G making the diagram below commute.

n m

k m/G

g

f

Since representable atoms are stable under pushouts, we obtain the following diagram
with m′ representable.

n m

k m′ m/G

g

f

By maximality of m, the morphism m → m′ is invertible. This shows that g factors
through f , hence [g] descends to k.

Since every atom of Sh(Cop, Jat) is a quotient of a representable one, we obtained that
all the atoms are presheaves of the form Hom(X,−)/G with X ∈ C and G ⊆ Aut(X).
We will now characterize in combinatorial terms when, reciprocally, Hom(X,−)/G is a
sheaf, hence an atom of Sh(Cop, Jat).

2.2.3. Definition. Given X ∈ C, we say that a subgroup G ⊆ Aut(X) reduces X to a
subobject u : Y → X if for all arrows f, g : X ⇒ Z such that uf = ug, there is σ ∈ G
with σf = g. A pair (X,G) is atomic if G does not reduce X to any strict subobject.

2.2.4. Remark. If (X,G) is atomic, then so is (X,H) for any subgroup H ⊆ G.

2.2.5. Lemma. Suppose that C satisfies (C1), (C2) and (C3). Let X ∈ C and let G ⊆
Aut(X). The pair (X,G) is atomic if and only if Hom(X,−)/G is a sheaf.

Proof. As we saw in the proof of Proposition 2.2.2, Hom(X,−)/G is a sheaf if and
only if Hom(X,−) → sh(Hom(X,−)/G) cannot be factored through any Hom(X,−) →
Hom(Y,−) where Y ⊆ X is a strict subobject. We will see that there is such a factorization
if and only if G reduces X to Y . Indeed, this factorization means that we have an arrow
Hom(Y,−) → sh(Hom(X,−)/G) making the diagram below commute.

Hom(X,−) Hom(X,−)

Hom(Y,−) sh(Hom(X,−)/G)

id

Hence it is equivalent to [id] ∈ Hom(X,X)/G satisfying the descent condition for Y ⊆ X.
This descent condition is exactly the definition that G reduces X to Y .
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We obtain the following description of the category of atoms of Sh(Cop, Jat).

2.2.6. Theorem. Suppose that C satisfies (C1), (C2) and (C3). Then the category of
atoms of Sh(Cop, Jat) is the full subcategory of [C, Set] of all the quotients Hom(X,−)/G
where (X,G) is an atomic pair.

2.2.7. Remark. Given two atomic pairs (X,G) and (Y,H), we can describe concretely
the morphisms between the associated atoms. A morphism [f ] : Hom(Y,−)/H →
Hom(X,−)/G is an equivalence class of morphisms f : X → Y in C such that fH ⊆ Gf ,
subject to the relation [f ] = [g] if and only if Gf = Gg.

2.2.8. Remark. Given two atomic pairs (X,G) and (Y,H), an isomorphism between
the corresponding atoms is given by an isomorphism f : X → Y such that fHf−1 = G.
We deduce that the automorphism group of Hom(X,−)/G is the normalizer quotient
NAut(X)(G)/G. The normalizer NAut(X)(G) of G is the group of all the f ∈ Aut(X) such
that fGf−1 = G, and it is the largest subgroup of Aut(X) in which G is normal. Note that
since C is supposed well-founded, every endomorphism f : X → X is an automorphism,
and we have thus even described the monoid of endomorphisms of Hom(X,−)/G.

In general, when G ⊆ Aut(Y ) reduces X to a subobject u : Y → X, we do not
necessarily have sh(Hom(X,−)/G) ∼= sh(Hom(Y,−)/H) for some subgroup H ⊆ Aut(Y ).
A counter-example is obtained by taking C the category of finite sets of cardinality at most
2 and injections between them. Let u : {1} ↪→ {1, 2} be the canonical injection and let G
be the group of permutations of {1, 2}. In this case, sh(Hom({1, 2},−)/G) ∼= Hom(∅,−),
but the automorphism group of {1} is trivial.

As a consequence of Proposition 2.2.2, if Y is the smallest subobject to which G
reduces X, then sh(Hom(X,−)/G) ∼= sh(Hom(Y,−)/H) for some H ⊆ Aut(Y ). Propo-
sition 2.2.9 below shows that this holds more generally when G restricts to Y ⊆ X, in
addition to reducing X to Y . We say that an endomorphism σ : X → X restricts to
u : Y ↪→ X if there is a necessarily unique endomorphism σ|Y : Y → Y such that
uσ = σ|Y u. Automorphisms do not necessarily restrict to automorphisms, but in our
situation every endomorphism is an automorphism, because C is well-founded. In this
case, if an automorphism restricts to Y , then its inverse also restricts to Y . We say
that G restricts to Y when all of its elements restrict to Y , and its restriction to Y is
G|Y = {σ|Y | σ ∈ G}. The same notations will be used for the co-restriction in the dual
situation.

2.2.9. Proposition. Suppose that C satisfies (C1), (C2) and (C3). Let u : Y → X be
a subobject and let G be a subgroup of Aut(X) that reduces X to Y and that restricts to
Y . Then sh(Hom(X,−)/G) ∼= sh(Hom(Y,−)/ G|Y ).

Proof. The argument works at a more general level, where u : Y → X is replaced by
a morphism q : n ↠ m between atoms. Let G ⊆ Aut(n) be a subgroup that co-restricts
to m, and let H be its co-restriction to m. Moreover, we suppose that n → n/G factors
through q, which corresponds to the assumption that G reduces X to Y , as we showed in
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the proof of Lemma 2.2.5.

n m

n/G

q

G H

In this purely categorical situation, it can be shown that m/H ∼= n/G. We reduce to a
set-theoretic situation: it is enough to show that Hom(m/G,A) ∼= Hom(n/H,A) naturally
in A. The morphism q induces an injection Hom(m,A) ⊆ Hom(n,A). The group G acts
on Hom(n,A) and restricts to Hom(m,A).

Hom(m,A) Hom(n,A)H ⊆ G

The set of fixpoints ofG, identified with Hom(n/G,A), is included in Hom(m,A). Hence it
is equal to the set of fixpoints of H, and we conclude that Hom(n/G,A) ∼= Hom(m/H,A).

2.2.10. Remark. When we motivated Proposition 2.2.9, we said that it generalizes the
situation of Proposition 2.2.2 where Y is the smallest subobject to which G reduces X.
Let us show that it is indeed a generalization, and that G restricts to Y in this case. We
will show that any σ ∈ G restricts to Y ⊆ X. Let σ · Y be the subobject of X obtained
as the composite Y ↪→ X

σ−→ X. Since the quotient Hom(X,−) → sh(Hom(X,−)/G) is
invariant under σ, and since it factors through Hom(X,−) → Hom(Y,−), it also factors
through Hom(X,−) → Hom(σ ·Y,−). Hence G also reduces X to σ ·Y and by minimality
of Y , we obtain σ · Y = Y , so that σ restricts to Y .

2.3. When the sheaves are the pullback-preserving presheaves. According to
the description of the Schanuel topos given in the introduction of this paper, every pair
(X,G) with X ∈ FinSetInj and G ⊆ Aut(X) is atomic. Another well-known fact is that a
functor FinSetInj → Set is a sheaf if and only if it preserves pullbacks [Joh02, A2.1.11(h)].
We show here that it is not a coincidence.

2.3.1. Theorem. Let C be a small category satisfying (C1), (C2) and (C3). Then the
following are equivalent:

1. The pair (X,G) is atomic for every X ∈ C and every subgroup G ⊆ Aut(X).

2. The sheaves are exactly the pullback-preserving presheaves C → Set.

Proof. 1 =⇒ 2. We already saw in the proof of Lemma 2.1.1 that (C2) implies
that every sheaf preserves pullbacks. We will show that any pullback-preserving presheaf
F : C → Set can be written as a sum of presheaves of the form Hom(X,−)/G with X ∈ C
and G ⊆ Aut(X). Since 1 says that all the Hom(X,−)/G are sheaves, and since these
sheaves (with respect to the atomic topology) are stable under sums, this will imply 2.
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Note that if F preserves pullbacks, then it sends every morphism to an injection
because every morphism of C is monic. Given p ∈ F (X), the support of p is the minimal
Y ⊆ X such that p is in F (Y ) ⊆ F (X). Since C is well-founded, such a minimal Y
exists, and since F preserves pullbacks it is unique. Let AF be the set of pairs (p,X)
with p ∈ F (X) such that the support of p is X. Let Gp be the group of automorphisms
σ : X → X fixing p. For each (p,X) ∈ AF , the element p can be seen as a morphism
p : Hom(X,−) → F and it factors through Hom(X,−)/Gp → F . We claim that this
gives a decomposition

F ∼=
∑

(p,X)∈AF

Hom(X,−)/Gp.

Let Y ∈ C and let q : Hom(Y,−) → F . We must show that it factors uniquely through
one of the Hom(X,−)/Gp → F . First, the support of q is unique, hence there is a unique
p : Hom(X,−) → F in AF through which q factors. Since Hom(Y,−) is projective, q can
only factor through one Hom(X,−)/Gp → F . It remains to show that the factorization
of q through p is unique modulo Gp. Let f, g : X ⇒ Y such that F (f)(p) = F (g)(p).
Take the following pullback.

X ′ X

X Y

u

v f

g

Then u and v are isomorphisms, otherwise the support of p ∈ F (X) would be smaller
than X. We get that σ = v−1u is an automorphism fixing p and such that σ · f = g.
This shows that the factorization of q through p is unique and concludes the proof of the
decomposition.

2 =⇒ 1. We will show that given any pullback-preserving presheaf F : C → Set and
any automorphism group G ⊆ Aut(F ), the quotient F/G in [C, Set] is also a pullback-
preserving presheaf. Any f : A → B in C is a monomorphism, hence F (f) : F (A) → F (B)
is an injective morphism of G-sets and F (f)/G : F (A)/G → F (B)/G is injective too.
Consider a pullback in C.

A B

C D

f

g u

v

The morphism F (A)/G → F (B)/G×F (D)/GF (C)/G is injective since F (A)/G → F (B)/G
is injective. To show that it is surjective, let b ∈ F (B) and c ∈ F (C) such that there is
σ ∈ G with σ · F (u)(b) = F (v)(c). Then F (u)(σ · b) = F (v)(c) so there is a ∈ F (A) with
F (f)(a) = σ · b and F (g)(a) = c. This shows that F (A)/G → F (B)/G×F (D)/G F (C)/G
is surjective. As a consequence, for any atom n of Sh(Cop, Jat) and any G ⊆ Aut(n), the
quotient n/G computed in [C, Set] preserves pullbacks, hence is a sheaf by the assumption.
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2.3.2. Remark. The first condition of Theorem 2.3.1 is met when every morphism f :
X → Y sits in a cartesian square of the form (3) below. Indeed, in this situation, if
G ⊆ Aut(Y ) reduces Y to X, then there is in particular σ ∈ G such that σu = v. But
this implies that idY factors through f , which means that X = Y .

X Y

Y Z

f

f u

v

(3)

3. Co-well-founded categories of atoms and finite presentability

Given that the category of atoms of an atomic topos is always an atomic site of presenta-
tion, one could wonder whether the conditions (C1), (C2) and (C3) on a small category C
transfer to the opposite of the category of atoms of Sh(Cop, Jat). If this were the case, we
would obtain an intrinsic characterization of the toposes of the form Sh(Cop, Jat) where C
satisfies (C1), (C2) and (C3). However, (C3) does not transfer, as shown in Example 3.0.1.

3.0.1. Example. Let G be any group, considered as a category with one object denoted
⋆. Then it satisfies conditions (C1), (C2) and (C3), and every pair (⋆,H) with H ⊆ G is
atomic. The category of atoms of the corresponding atomic topos is well-founded exactly
when G is Noetherian, which means that every increasing chain of subgroups stabilizes.
For instance, the free group F2 on two generators x and y is not Noetherian. Indeed, let G
be the kernel of the morphism F2 → Z sending x and y to 1. It is freely generated by all the
elements of the form xny−n for n ∈ Z. (By the Nielsen–Schreier Theorem, every subgroup
of F2 is free.) Hence G is the increasing union of the subgroups ⟨xny−n | −N < n < N⟩
as N goes to infinity, and this chain does not stabilize.

In order to transfer (C3) to the category of atoms, we need a new condition on C:

(C4) The automorphism groups of the objects of C are Noetherian.

3.0.2. Theorem. Let C be a small category satisfying (C1), (C2), (C3) and (C4). Let
A be the category of atoms of Sh(Cop, Jat). Then Aop also satisfies (C1), (C2), (C3) and
(C4).

Proof. Given that A → E is fully faithful and preserves pushouts, and since the induced
functor Sh(A, Jat) → E is an equivalence, we know that Aop satisfies (C1) and (C2).

As for (C3), we must show that any ω-chain of atoms stabilizes. Let n → a1 → a2 →
· · · be an ω-chain of atoms. Suppose that n is representable without loss of generality.
By Proposition 2.2.2, we can write n → a1 as n → m1 → m1/G1 = a1. We iterate this
process with m1 → a2 to obtain m1 → m2 → m2/G2 = a2. We obtain the following
diagram.

n m1 m2 m3 · · ·

m1/G1 m2/G2 m3/G3 · · ·
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Since C is well-founded, the sequence (mi)i stabilizes at some N . Suppose mN = mN+i

for all i, without loss of generality. Then GN ⊆ GN+1 ⊆ GN+2 ⊆ · · · and by (C4), this
sequence also stabilizes. Hence the category of atoms of Sh(Cop, Jat) is co-well-founded.

We now show that A satisfies (C4). According to Remark 2.2.8, the group of auto-
morphisms of the atom associated to an atomic pair (X,G) is a quotient of a subgroup
of Aut(X), which is Noetherian. It is thus also Noetherian.

In the next proposition, we see that the atomic toposes appearing in Theorem 3.0.2
are locally finitely presentable. For instance, the classifying toposes of profinite groups
are of this form. Given an atomic topos E , we denote by π0 : E → Set the functor taking
an object to its set of atoms. We say that X is finite if π0(X), or equivalently SubE (X),
is finite.

3.0.3. Proposition. If the category of atoms of an atomic topos is co-well-founded, then
this topos is locally finitely presentable. In that case, the finitely presentable objects are
exactly the finite objects.

Proof. In an atomic topos, the class of atoms is essentially small, see [Joh02, p. 690]
or [BD80, Prop. 9]. Moreover, any object is the filtered colimit of its finite sub-objects.
It remains only to show that, under the hypothesis of the proposition, for any atom a,
the functor Hom(a,−) preserves filtered colimits. By [AR94, Cor. 1.7, p. 15], it suffices
to show that Hom(a,−) preserves colimits of chains. Let (Xi)i∈I be a chain in E and let
X = colimiXi. Let a → X be a morphism. The union of the images of Xi → X is X,
hence there is i ∈ I and an atom b ∈ Xi whose image coincides with the image of a in X.
The sequence of images of b ∈ Xi in Xj for j > i stabilizes since the category of atoms is
co-well-founded. Hence, a → X factors through Xj → X for some j > i. Now, consider
two different morphisms a ⇒ Xi such that the composites a ⇒ Xi → X are equal. There
is an index j > i such that the two morphisms a ⇒ Xj have the same image b ⊆ Xj,
since π0 is cocontinuous. Since the sequence of atoms obtained as the images of b in Xk

for k > j stabilizes, there is some k > j such that the two morphisms a ⇒ Xk are equal.
This shows that Hom(a, colimi Xi) ∼= colimi Hom(a,Xi).

3.0.4. Remark. We will sketch a different proof of Proposition 3.0.3. Given a small
category C, let

⊔
[C] be its free cocompletion under small coproducts and let ⊔[C] be its

free cocompletion under finite coproducts. It can be shown that
⊔
[Ind(C)] ≃ Ind(⊔[C]),

although the author does not know of a short proof or a reference for this fact. If the
category A of atoms is co-well-founded, then A ≃ Ind(A) and thus

Sh(A, Jat) ≃
⊔
[A] ≃

⊔
[Ind(A)] ≃ Ind(⊔[A]).

This could be put in comparison with [BP99], where a criterion involving well-foundedness
on a pretopos E is given to guarantee that Ind(E ) is the topos of sheaves on E with the
coherent topology. In general, Ind(E ) is only included in this topos.
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3.0.5. Example. In general, every finitely presentable object of an atomic topos is a finite
coproduct of atoms, but the converse is not true. Even in a locally finitely presentable
atomic topos, there can be atoms which are not finitely presentable. It happens for
instance in any of the toposes of Example 3.0.1 obtained from a non-Noetherian group
G. The finitely presentable atoms correspond to the finitely generated subgroups of G.

3.0.6. Corollary. If C satisfies (C1), (C2), (C3) and (C4), then Sh(Cop, Jat) is locally
finitely presentable.

We will show in § 5 that (C1), (C2) and (C3) are not enough to ensure that Sh(Cop, Jat)
is locally finitely presentable, as is the case when C is a group.

4. The Malitz–Gregory atomic topos

The Malitz–Gregory topos is an example of a non-degenerate atomic topos which does
not have any points. It was first given in [Mak82, Sec. 5], based on an earlier example
in infinitary logic in [Mal68] and [Gre71]. A description can also be found in [Joh02,
D3.4.14].

We define in § 4.1 an atomic site of presentation of this topos adapted to our study.
This site was obtained by first considering a simpler atomic site and by sheafifying the
representable presheaves. We show in § 4.2 that this topos is locally finitely presentable
by applying the criterion of § 3.

4.1. Definition of the Malitz–Gregory topos. A full binary tree is a tree in
which each node is either a leaf, or has exactly two children. More formally, it can be
defined as a pointed oriented graph (X, rX ∈ X,≻ ⊆ X2) such that:

� For each x ∈ X, the set {y ∈ X | x ≻ y} is either empty or of cardinality 2.

� For each node y, there is exactly one path rX = x0 ≻ x1 ≻ · · · ≻ xn = y.

When x ≻ y, we say that y is a child of x and that x is the parent of y. An embedding of
trees f : X → Y is an (injective) graph embedding preserving the root.

I-trees We now enrich our notion of tree with a partial labeling of its infinite branches.
Let I be a set. A branch of X is an infinite sequence rX = x0 ≻ x1 ≻ x2 ≻ · · · Let BX

be the set of branches of X. An I-tree is a full binary tree X equipped with a partial
function cX : BX → I. An embedding of I-trees is an embedding of full binary trees that
preserves the labeling function. This defines the category of I-trees, with embeddings as
morphisms. A sub-tree of an I-tree is a sub-object in this category.

An I-tree is finitary if it has a finite number of branches, a finite number of elements
whose parent is not on a branch, and a total labeling function. Let TI be the category of
finitary I-trees and embeddings.

4.1.1. Lemma. The category of I-trees is equivalent to Ind(TI).
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Proof. First, the category of I-trees has filtered colimits, by taking the union of the
underlying sets and labeling functions. Moreover, each I-tree is the filtered union of its
finitary sub-trees. We can also show that each finitary I-tree is finitely presentable: Let⋃

i∈I Xi be a filtered union of I-trees and let X ⊆
⋃

i∈I Xi be a finitary sub-tree. Each
branch ofX is labeled, thus it is labeled as a branch of

⋃
i∈I Xi. Since the labeling function

of
⋃

i∈I Xi is the union of the labeling functions of the Xi, the branch must be contained
in one of the Xi. For each element x of the branch, one of its children is contained in Xi,
hence the other one too. Only a finite number of elements of X are not covered in this
way, and since the union

⋃
i∈I Xi is filtered, X is a sub-tree of one of the Xi.

We impose the additional condition that the cardinality of I is strictly greater than
2ℵ0 . The Malitz–Gregory topos over I is Sh(Top

I , Jat).

4.1.2. Proposition. Sh(Top
I , Jat) has no points.

Proof.By Diaconescu’s theorem, a model of Sh(Top
I , Jat) in Set is a flat functor Top

I → Set
continuous with respect to the atomic topology, i.e., which sends every morphism to a
surjection. Since flat functors Top

I → Set can be identified with ind-objects of TI, and
thanks to Lemma 4.1.1, a model is a special I-tree X ∈ Ind(TI). The condition that the
corresponding functor sends every morphism to a surjection translates into the fact that
each morphism T → X with T ∈ TI extends along any morphism T → T ′ in TI.

T X

T ′
∃

(4)

However, no I-tree can satisfy this extension condition. For suppose that X is such a tree.
Like any tree as we defined them, X has at most a countable number of nodes. Moreover,
for each i ∈ I, there must be a branch labeled by i, by applying the extension property (4)
to the inclusion of the one-point tree into an infinite branch labeled by i, together with
the other nodes forced to be present in order to have a full binary tree. In particular, the
partial function BX → I must be surjective, but it is not possible because BX ⊆ P(T )
and I has cardinality strictly bigger than that of P(T ). In conclusion, Sh(Top

I , Jat) has
no model in Set.

4.1.3. Remark. As we will see below, TI has amalgamation. However, we will make
some arbitrary choices in order to amalgamate trees, and in particular we will not have
an amalgamation functor as in [DLR24, Dfn. 4.1.3]. This is a substantial difference from
the case of the Schanuel topos Sh(FinSetInjop, Jat), where amalgamation in FinSetInj is
functorial, as the restriction of the pushout functor in FinSet. A special case of [DLR24,
Cor. 4.1.9] shows that functorial amalgamation in C implies that Sh(Cop, Jat) has enough
points. We recall the idea here in our case of interest: If C has functorial amalgamation,
then we can extend amalgamation to Ind(C) and, by a small object argument, build an
ind-object X satisfying the extension property depicted in (4) above for all T, T ′ ∈ C.
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Hence, by Proposition 4.1.2, amalgamation in TI cannot be made functorial. A direct
proof of this fact, valid for instance even when I is a singleton, does not seem obvious.

4.2. The Malitz–Gregory topos is locally finitely presentable. Given two
nodes x and y in a tree T , we say that y is a descendant of x or that x is an ancestor
of y if there is a path x = x0 ≻ x1 ≻ · · · ≻ xn = y. Given a node x ∈ T , we denote by
↓Tx the set of all the descendants of x equipped with the induced tree structure. We use
simply ↓x when T is implicit. (It is not a sub-tree because the injection ↓x → T does not
preserve the root.)

4.2.1. Lemma. The category TI satisfies (C1).

Proof. First, we show that TI has amalgamation. This means that given two finitary
I-trees A and B, and given a common sub-tree X ⊆ A, X ⊆ B, we can find an I-tree
C containing both A and B as sub-trees, such that the intersection contains X. Let W
be the complete binary tree of infinite depth, with no labels on its branches. Choose
an arbitrary embedding X ⊆ W of trees (not of I-trees). Extend it arbitrarily to two
embeddings A ⊆ W and B ⊆ W . We now wish to label some of the branches of W so
that A ⊆ W and B ⊆ W become embeddings of I-trees. This might be impossible if a
branch of A and a branch of B with different labels are sent to the same branch of W .
Nonetheless, we can correct these “conflicts” as follows. A conflict is given by a branch
of A and a branch of B with different labels that get identified in W . This branch is not
in X, since the labels would coincide otherwise. Pick a node x of this branch which is
deep enough to ensure that x /∈ X and that both ↓Ax and ↓Bx are composed of a unique
branch containing every node or its parent. Modify the embedding of A and B in W from
x onward so that the two branches are not identified anymore. Doing so for each conflict
creates two new embeddings A,B ⊆ W . The union A∪B is finitary and can be equipped
with two labelings so that the embeddings of A and B preserve the labels. This shows
that TI has amalgamation.

We now show that every morphism of TI is a regular monomorphism. As a first step,
we show that for each finitary I-tree A, there are two embeddings A ⇒ A′ whose equalizer
contains only the root of A. If A contains only the root, we can take A′ = A. If not, let
x1 and x2 be the two children of the root of A. Let C be a finitary tree such that ↓x1 ⊆ C
and ↓x2 ⊆ C (this is possible because TI has amalgamation). Let A′ be the tree obtained
by joining two copies of C by a root. Then there are two obvious embeddings A ⇒ A′

and their equalizer contains only the root of A.
Now, let X ⊆ Y be an arbitrary embedding of finitary I-trees. We show it is a regular

monomorphism. Let LX be the set {x ∈ X | ↓Xx = {x}} of leaves of X. Let Y ′ be the
I-tree obtained by replacing each ↓Y x ⊆ Y for x ∈ LX by the tree [↓Y x]′ obtained in the
previous paragraph, with two embeddings ↓x ⇒ [↓x]′ whose equalizer is the identity. This
gives two embeddings Y ⇒ Y ′ whose equalizer is X, since every element of Y \ X is a
descendant of some element of LX . Hence X ↪→ Y is a regular monomorphism and the
atomic topology on Top

I is sub-canonical.
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4.2.2. Lemma. The category TI satisfies (C2).

Proof. We show that TI satisfies the equivalent condition (C2’). Consider a pullback as
below in TI.

X ∩ Y X

Y Z

Let u, v : Z ⇒ A be two parallel arrows coinciding on X∩Y . Let L = {x ∈ X∩Y | ↓Xx =
{x}}. Note that an element of L cannot be a descendant of another element of L. Define
k : Z → A by

k(x) =

{
v(x) if x has an ancestor in L,

u(x) if x has no ancestor in L.

Then k is a tree embedding because it is obtained by modifying the definition of u
on ↓Zx for each x ∈ L to fit another tree embedding v having the same definition on x.
Moreover:

� k and u coincide on X because if x ∈ X has an ancestor in L, then this ancestor is
x itself and u(x) = v(x);

� k and v coincide on Y because for each y ∈ Y , either y ∈ X ∩ Y and u(y) = v(y),
or y /∈ X ∩ Y and the closest ancestor of y in X ∩ Y is in L.

This shows that TI satisfies (C2’), with the identity w : A → A and the sequence u, k, v.
Hence TI also satisfies (C2).

4.2.3. Lemma. TI satisfies (C3) and (C4).

Proof. We must show that for every finitary I-tree X, the poset of sub-trees of X is
well-founded. Recall that BX is the set of branches of X. Let FX be the set of elements of
X whose parent is not in a branch of X. If Y ⊆ X is a proper sub-tree, then |BY | ≤ |BX |,
and if |BY | = |BX |, then |FX | < |FX |. Hence X 7→ (|BX |, |FX |) defines a strictly order-
preserving map TI → ω2 and TI is well-founded.

To show that the groups of automorphisms of TI are Noetherian, note that any mor-
phism X → Y in TI is uniquely determined by a function BX → BY and a function
FX → FY , thus there are only finitely many of them. The automorphism groups are thus
finite, and in particular Noetherian.

Using Corollary 3.0.6, we obtain:

4.2.4. Corollary. Sh(Top
I , Jat) is a connected locally finitely presentable atomic topos

with no points.

4.2.5. Remark. The equivalent properties of Theorem 2.3.1 do not hold for TI. For
instance, let n be the atom represented by the unique I-tree having exactly 3 nodes.
Then n/Aut(n) is isomorphic to the atom represented by the tree consisting only of its
root.
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5. An atomic topos which is not locally finitely presentable

The investigations presented in this paper were motivated by the goal of showing that the
Malitz–Gregory atomic topos is locally finitely presentable. In analogy with the case of
complete atomic Boolean algebras, I originally thought that every atomic topos is locally
finitely presentable. However, Morgan Rogers pointed out my mistake, and we provide
here a counter-example.

Given a group K, we define a category CK as follows. Its objects are X0, X1, X2, . . .
There is no morphism Xi → Xj when i > j. When i ≤ j, the morphisms f : Xi → Xj

are the tuples (f1, . . ., fi) ∈ Ki. The composite of two morphisms f : Xi → Xj and
g : Xj → Xk is (f1 · g1, . . ., fi · gi) : Xi → Xk. We will show that when K is not finitely
generated, Sh(Cop

K , Jat) is not locally finitely presentable.

5.0.1. Remark. If K = (Z/2Z)ω, which is indeed not finitely generated, CK can be de-
scribed in a more concrete and “semantical” fashion. Its objects are the Xn = {1, . . ., n}×
N× {0, 1} where n ∈ N. The morphisms Xi → Xj are the injective functions which pre-
serves the first two coordinates, so that in particular i ≤ j. For a general group K, we
can think of CK in a similar way by replacing N × {0, 1} by some object O whose group
of symmetries is K. We can portray an arrow (f1, f2) : X2 → X3, for instance, in the
following way.

O

O O

O O

f2

f1

5.0.2. Remark. Another family of counter-examples can be obtained by replacing CK

by the free co-affine symmetric monoidal category over K seen as a one-object category.
The objects of this category are the n-fold tensor products of a generator O and the
morphisms O⊗n → O⊗m are the elements of Inj(n,m) × Kn where Inj(n,m) is the set of
injections n → m. We obtain the Schanuel topos when K is the trivial group, but it is not
finitely generated. This idea admits further variations, such as replacing the injections by
order-preserving functions. Nonetheless, we will concentrate on the category CK described
above because the argument is simpler in this case.

It is straightforward to check that CK satisfies (C1), (C2) and (C3). Notice first that
two parallel arrows in CK represent always the same subobject.

� For (C1), the minimal amalgamation of Xi and Xj over any Xk is Xmax(i,j). Every
subobject Xi ⊆ Xj is the equalizer of the identity of Xj and an automorphism
(1, 1, . . ., 1, σ, σ, . . ., σ), where σ ∈ K \ {1} appears j − i times.

� In the diagram (1) of (C2’), we have X ∩Y = X or X ∩Y = Y since the subobjects
of Z are linearly ordered. This implies (C2’).

� The category C is well-founded.
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5.0.3. Proposition. If K is not finitely generated, Sh(Cop
K , Jat) is not locally finitely

presentable.

Proof.We first show that no atom is finitely presentable. By Theorem 2.2.6, any atom is
of the form Hom(Xi,−)/G where (Xi, G) is an atomic pair. We will write Hom(Xi,−)/G
as a filtered colimit of atoms which are not isomorphic to it.

For each subgroupH ⊆ K, we identifyG×H with the subgroup of Aut(Xi+1) consisting
of the tuples (f1, . . ., fi+1) where (f1, . . ., fi) ∈ G and fi+1 ∈ H. If H is a proper subgroup
of K, then (Xi+1, G × H) is atomic: This is seen by taking, in the definition of atomic
pairs (Dfn. 2.2.3), f = idXi+1

and g = (1, 1, . . ., 1, λ) with λ ∈ K \H. In particular, if H
is finitely generated, then it is proper by assumption on K and (Xi+1, G×H) is atomic.

In Sh(Cop, Jat), the filtered colimit of Hom(Xi+1,−)/(G × H) as H ranges over the
finitely generated subgroups of K is sh(Hom(Xi+1,−)/(G × K)). The group G × K re-
duces Xi+1 to Xi, and since any automorphism in C restricts to any subobject, we
obtain by Proposition 2.2.9 that sh(Hom(Xi+1,−)/(G × K)) ∼= sh(Hom(Xi,−)/G) ∼=
Hom(Xi,−)/G.

Xi+1/(G×H) Xi+1/(G×H ′) · · · sh(Xi+1/(G× K)) ∼= Xi/G

We have written every atom as a filtered colimit of other atoms which are not iso-
morphic to it. Thus no atom is finitely presentable. In an atomic topos, the finitely
presentable objects are the finite coproducts of finitely presentable atoms, hence 0 is the
only finitely presentable object of Sh(Cop, Jat). Since this topos is not trivial, we deduce
that it is not locally finitely presentable.

This example complements the proof that the Malitz–Gregory topos is locally finitely
presentable, since it shows that it is not simply a consequence of its atomicity. To sum-
marize:

atomic + lfp ̸⇒ enough points (§ 4)

atomic ̸⇒ lfp (§ 5)
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